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 2 

Abstract 23 

Although motor cortex has been found to be modulated by sensory or cognitive sequences, the 24 
linkage between multiple movement elements and sequence-related responses is not yet understood. 25 
Here, we recorded neuronal activity from the motor cortex with implanted micro-electrode arrays 26 
and single electrodes while monkeys performed a double-reach task that was instructed by 27 
simultaneously presented memorized cues. We found that there existed a substantial multiplicative 28 

component jointly tuned to impending and subsequent reaches during preparation, then the coding 29 
mechanism transferred to an additive manner during execution. Multiplicative joint coding, which 30 
also spontaneously emerged in a recurrent neural network trained for double-reach, enriches neural 31 
patterns for sequential movement, and might explain the linear readout of elemental movements.  32 
 33 
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 3 

Introduction 35 

Motor cortex has long been thought to be central in planning and generating movement. A large 36 
body of evidence demonstrates a correlation between neuronal activity in motor cortex and a variety 37 
of motor variables, such as direction, speed, distance, and trajectory 1-7. Beyond the single ballistic 38 
movements examined in these studies, multi-step movements, such as sequencing and ordering 39 
action, are crucial in daily behavior 8, 9. As one of the brain areas conveying highly accurate 40 

information about movement timing 10 and kinematics 11, motor cortex seems to be involved in 41 
causal sequencing of multi-step movements 12.  Sequential information has been reported to be 42 
encoded in the population response before movement initiation 13-15. In addition, most neurons are 43 
reported to show activity related to both target location and serial order 16, 17. However, most of these 44 
studies instructed the sequence of movement with serial sensory stimuli, which might result in neural 45 

activity that differs from internally generated motor sequences18-20. In tasks carried out in the 46 
absence of serial sensory inputs, neuronal activity related to sequential contexts emerges during 47 

preparation, and becomes prominent during execution 21, 22. Furthermore, despite differences at the 48 
single-neuron level, the neural population preserves a reliable readout of movement direction. That 49 
is to say, both individual movement elements and sequential information are simultaneously and 50 
robustly encoded in the motor cortex 21. 51 

In principle, a continuous action sequence consists of elements spatio-temporally coordinated in a 52 

complex manner, rather than a series of independent actions 23-25. However, the ‘competitive 53 
queuing’ hypothesis suggests that the brain produces sequential movement via a combination of 54 

parallel representations of specific actions 26. A recent study on double-reach supports this parallel-55 
representation hypothesis, suggesting that motor cortex does not fuse two reaches, but recruits two 56 

independent motor processes sequentially 27. The resulting concurrence of motor execution and 57 
motor planning, however, is insufficient for rejecting the possibility of interaction between 58 

movement elements beforehand. It remains unclear if sequential movement is parallel or jointly 59 
coded in the preparation period.  60 

To further explore the motor preparation and encoding characteristics of sequential movements in 61 
a strict behavioral and neurophysiological context, we recorded neuronal activity from the motor 62 

cortex via implanted arrays or single electrodes while monkeys were performing a double-reach that 63 
was instructed by simultaneously presented cues that had to be memorized. We found that neuronal 64 
activity could be regressed as a multiplication of directional tunings to reaching elements in the 65 

preparatory period, and then converted to parallel coding for both movement elements after 66 
movement onset, indicating the existence of a gain-like interaction in planning the motor sequence. 67 
Neural population dynamics derived from our array-recorded data indicates that a nonlinear 68 

interaction is embodied in the spatial structure of initial states. In computational simulations, 69 
multiplicative coding for motor sequences spontaneously emerges in a recurrent dynamical network, 70 
and benefits reliable linear readouts of movement elements. These results suggest that the motor 71 
cortex is profoundly involved in concatenating multiple movement elements into a sequence, and 72 

that a gain-like multiplication is a key signature of complex serial behavior. 73 
  74 
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Results 75 

Behavioral task 76 

Three rhesus monkeys (Macaca mulatta, male 5-10 kg) performed the memory-guided double-77 
reach task (Fig. 1a). A trial began with a green dot displayed on the center of a touch screen, and the 78 

monkey was required to touch it. After 300 ms, in 1/3 of the trials (single-reach, SR), another green 79 
dot was presented as a reaching goal for 400 ms (cue period) at one of the six corners of a regular 80 
hexagon (i.e., at directions of 0°, 60°, 120°, 180°, 240°, or 300°). After the peripheral cue was 81 
extinguished, there was a memory period of 400-800 ms. The monkey was trained to keep its hand 82 
on the central green dot until it was turned off (GO signal), and then reach to the previously cued 83 

location to obtain a reward. In the remaining trials (double-reach, DR), a green square and a green 84 

triangle were presented simultaneously during the cue period. The square was in the same alternative 85 
directions as the SR surrounding targets. The triangle was displaced from the square by 120° 86 

clockwise (CW, 1/3 of trials) or 120° counterclockwise (CCW, 1/3 of trials). After the memory 87 
period without peripheral cues, the monkey was required first to reach to the memorized square 88 
location, and then to immediately reach to the memorized triangle location. The monkey was 89 

rewarded only if it reached the specified target within a margin of three centimeters, and in the 90 
correct order. For a correct trial, the green square would reappear after the 1st reach, and the triangle 91 
would appear in purple after the 2nd reach. All 18 conditions (three trial types × six directions) were 92 

pseudo-randomly interleaved. Only correct trials were included in the analysis. Event markers are 93 
denoted as the GO signal (GO), the 1st/only movement onset (MO), the 1st/only movement end 94 

(ME), and the 2nd movement onset (MO2). 95 

Hand trajectories exhibited a stereotype movement pattern in each condition for well-trained 96 
monkeys. All 1st reaches started from the center and moved towards the corresponding target in each 97 

condition (Fig. 1b). Muscular activities remained constant during the preparatory period across 98 
different conditions, excluding the possibility that the monkeys might develop different premature 99 

movements (e.g., adjust arm orientation) after cue for different conditions. The Pearson correlation 100 

coefficient of speed profiles until ME between DR and SR was 0.99±0.006 (mean±sd), and of 101 

surface electromyography (sEMG) of extensor digitorum communis (EDC) was 0.99±0.005 102 

(mean±sd) for monkey C (Fig. 1c). In addition, the dwell time on the 1st target was 194±75 ms 103 

(mean±sd) for monkey C, 350±110 ms (mean±sd) for monkey G, and 150±47 ms (mean±sd) for 104 

monkey B. The median duration of DR was 586±95 ms (mean±sd) for monkey C, 818±131 ms 105 

(mean±sd) for monkey G, and 481±72 ms (mean±sd) for monkey B, averaged across conditions. 106 

These results verified the expected transitory dwell on the 1st target in this task, and indicated 107 

behavioral consistency between SR and the 1st reach of DR in the same direction, in terms of hand 108 

trajectory, speed profile, and sEMG. 109 
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 110 
Figure 1 Paradigm and behavior.  111 

a. Three types of trials were pseudo-randomly interleaved in each session. In single-reach (SR) trials, 112 
monkeys had to perform memory-guided center-out reach. In double-reach (DR) trials, two targets (a square and a 113 
triangle) were presented simultaneously in cue period, and then extinguished; the monkeys were required to hold the 114 
central target for a 400-800 ms memory period until it was turned off (GO signal). Next, monkeys finished reaching 115 
both targets in the sequence of the square to the triangle within 700-1200 ms. The triangles were located 120° from 116 
the squares in CW or CCW directions. 117 

b. Hand trajectories in different conditions are grouped by their 1st/only reach direction from monkey C. 118 
Some trajectories are overlapped due to high similarity. No significant difference was found before the end of 119 
1st/only reach (one-way ANOVA, p>0.05).  120 
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c. Surface electromyography (sEMG) and speed in one typical session. The Pearson correlation coefficient of 121 
the speed profile until 1st movement end between double reach and single reach was 0.99±0.006 (mean±sd) and of 122 
sEMG of extensor digitorum communis (EDC) was 0.99±0.005 (mean±sd) for monkey C. 123 

 124 

Heterogeneity in neuronal activity indicated mixed selectivity 125 

All electrophysiological recording sites were in the hemisphere contralateral to the hand used 126 

during the task. Only one hand was used by monkeys B and G, but for monkey C data were recorded 127 
first with single electrodes, and then arrays in the other hemisphere with a switch of hands. We 128 
collected 322 well-isolated task-related neurons from single-electrode recordings (224 from monkey 129 
B, 98 from monkey C left hemisphere) and 202 units sorted from array recordings (44 from monkey 130 

G, 158 from monkey C right hemisphere) in motor cortex (Fig. S1). Among these, we found 131 
considerable heterogeneity in firing patterns. Figure 2 illustrates four representative cells. The 132 

neuron in Fig. 2a exhibited a two-peak firing pattern in DR, each peak after a movement onset, while 133 
it had only one burst in SR. Notably, the direction with the highest firing rate changed remarkably in 134 

sequential movements. The neuron in Fig. 2b fired with a constant PD towards the lower left. 135 
Surprisingly, even though its directional selectivity was remarkably similar for both SR and DR, the 136 
firing rate was significantly higher in DR (according to the 95% confidential interval plotted in 137 

shade), indicating that it conveyed information regarding target-movement number. Also, the 138 
preparatory activity would diverge with the 2nd reach before GO and MO in neurons, as in Fig. 2c 139 

and 2d.  140 

We further examined the proportion of neurons with sequence selectivity in three periods: 141 

preparatory (600 ms before GO), pre-movement (200 ms before MO), and peri-movement period 142 

(200 ms before ME). Among the 322 neurons recorded by single-electrodes, 52% exhibited 143 
significantly different firing rates for SR and DR in the preparatory period (Wilcoxon rank sum test, 144 

p<0.05). This proportion increased to 68% in the pre-movement period, and then to 84% in the peri-145 
movement period (Wilcoxon rank sum test, p<0.05). As for the comparison between CW and CCW 146 
trials, 30%, 48%, and 72% of neurons showed significant differences during the preparatory, pre-147 

movement, and peri-movement periods, respectively (Wilcoxon rank sum test, p<0.05). For the 202 148 
array-recorded neurons, 80%, 89%, and 97% were significantly tuned to sequence during 149 

preparatory, pre-movement, and peri-movement periods, respectively (Wilcoxon rank sum test, 150 
p<0.05). In comparing CW and CCW trials, the proportions were 48%, 68%, and 87% during the 151 
preparatory, pre-movement, and peri-movement periods, respectively (Wilcoxon rank sum test, 152 

p<0.05). These considerable proportions reveal a substantial sequence-selectivity in the motor 153 

cortex. 154 
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 155 
Figure 2 Examples of cells in motor cortex showing heterogeneous firing patterns.  156 
In each panel (a-d), the six subplots show PSTHs of the same neuron in three conditions with 1st reach toward the 157 
corresponding location (e.g., the upper-right subplot denotes the 1st reach to 60°). Rasters are plotted at the top of 158 
each PSTH (20-ms SD Gaussian kernel). Spike trains in SR (black line), CW (blue line), and CCW (red line) trials 159 
are aligned to the 1st/only movement onset (MO) in a, b, d, but aligned to GO-cue in c. Time of GO (magenta dots), 160 
MO (green dots), the 2nd movement onset (MO2, cyan dots), and the 2nd movement end (yellow dots) are presented 161 
in the rasters. 162 

 163 

Additive vs. multiplicative joint coding 164 

The above results show single-neuron responses related to reaching sequences. However, whether 165 
such sequence-related response results from joint coding or parallel coding is the next question. 166 
Then, based on the directional tuning function: 167 

𝐹𝑅 = 𝑎 cos(𝜃 − 𝜃𝑃𝐷) + 𝑐                                                          (1) 168 

where 𝜃 is the movement direction, 𝜃𝑃𝐷 is the PD, 𝑎 and 𝑐 denote regression coefficients; we 169 
developed two fitting models. 170 
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For parallel coding, the sequence-related difference comes from the overlap of two independent 171 
tuning components. For this kind of model, sequential modulation is a parallel process resulting from 172 

the preparation of the 2nd movement while the 1st movement still is in flight, as pointed out by 173 
Ames et al. 28. Here, we focused on directional tuning alone, and defined an ‘additive model’ as 174 
follows:  175 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑎2 cos(𝜃21 − 𝜃𝑃𝐷) + 𝑐                                     (2) 176 

where 𝐹𝑅 is neuronal firing rate, 𝜃1 is the movement direction of the 1st reach, 𝜃21 is the 2nd 177 

movement direction starting from the 1st reaching endpoint, that is, in execution coordinates, since 178 
the regression result (Fig. S2) indicates that the 2nd reach is predominately conveyed in execution 179 

coordinates (movement direction) rather than visual coordinates (target location). 𝜃𝑃𝐷 represents the 180 

PD, 𝑎1 and 𝑎2 are coefficients, and 𝑐 is the baseline firing rate. For simplicity, we assumed the PD to 181 
be consistent for both terms at the same time.  182 

However, since the visual targets in our task were presented simultaneously, rather than 183 
sequentially as in many previous studies 9, 15, 16, 28, the monkeys were more likely to prepare the 184 
entire reaching sequence beforehand 24, 29. In this case, the different responses in DR might not 185 

simply result from the overlap of the ‘preparation-execution’, but from interaction between the 186 
tuning components corresponding to two reaches. Therefore, this raises the possibility of joint 187 

coding, for which an interactive term is essential. For computational convenience, and as inspired by 188 
a previous study suggesting that hand speed may act as a ‘gain field’ to the directional cosine tuning 189 
function 30, we propose a ‘multiplicative model’ to depict the potential nonlinear gain-modulation 190 

between both elemental movements: 191 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑏 cos(𝜃21 − 𝜃𝑃𝐷) cos(𝜃1 − 𝜃𝑃𝐷) + 𝑐                                  (3) 192 

where 𝑏 is a coefficient and other notations as in Eq. 2. If we set Δ𝜃 = (𝜃21 − 𝜃1)/2, then the 193 
multiplicative term in Eq.3 can be transformed into a summation form that includes a doubled 194 

frequency (Eq. 4). 195 

𝑏 cos(𝜃1 − 𝜃𝑃𝐷) cos(𝜃21 − 𝜃𝑃𝐷) =
𝑏

2
cos (2 (𝜃1 − 𝜃𝑃𝐷 +

Δ𝜃

2
)) +

𝑏

2
𝑐𝑜𝑠Δ𝜃                  (4) 196 

To further examine the interaction between element movements and to avoid overfitting in the 197 
regression analysis, in addition to the standard version of the paradigm described in Results (Fig. 198 
1a), we trained monkey C to perform an extended version of the task with multi-direction, in which 199 

the angle between the square and triangle could be 60º or 120º in both CW and CCW directions as 200 
well as 180º. This multi-direction task has 36 conditions in total (six SR and 30 DR). 201 

We tested these two possibilities on condition-averaged normalized firing rates with a 200-ms 202 
sliding window 31. The fitting results of an example neuron are shown in Fig. 3, in comparison with 203 
its actual PSTHs. This neuron obviously had a sequence-related mixed selectivity, because its peri-204 
movement activity varied with different subsequent movements, and the preparatory activity was 205 
also condition-dependent, though with small variation. The response reconstructed by the additive 206 
model (Eq. 2) reproduced the peri-movement firing pattern, but it did not capture the sequence-207 
specific modulation during preparation. In contrast, the multiplicative model (Eq. 3) better captured 208 
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neural activity during the preparatory period, while losing that during the peri-movement period. In 209 
Fig. 4, we plotted directional tuning curves of the same example cell with its actual firing rates (Fig. 210 

4, left panel), along with reconstructed firing rates by additive (Fig. 4, middle panel) or 211 
multiplicative (Fig. 4, right panel) models. The real firing rate for plotting and fitting was normalized 212 
and averaged around MO (-100~100 ms to MO, peri-MO) and around ME (100~300 ms to MO, 213 
peri-ME), respectively. For peri-MO (Fig. 4a), the neural tuning curves consist mostly of two peaks 214 
and were only replicated by the tuning curves of the multiplicative model. This was not accidental, 215 

because frequency doubling is a corollary of the product of two trigonometric functions (Eq. 4). For 216 
peri-ME (Fig. 4b), PD shifted with conditions in data, and only the additive model yielded a similar 217 
outcome. These results suggest that different coding rules cause distinctly different firing patterns. 218 
The multiplicative interaction contributes to the period changing, whereas the additive relation can 219 
easily lead to PD shifts while retaining the periodic identity. Comparing two epochs, the two coding 220 

possibilities could co-exist and might alternate. 221 

 222 
Figure 3 Model fitting of an example neuron.  223 
Each row shows conditions with the same 1st reach (black arrow); the 2nd reach is plotted in different colors (CW 224 
60º in green, CW 120º in blue, 180º in purple, CCW 120º in red, CCW 60º in orange; here angle is according to the 225 
target locations in cue period). Four columns left to right are: Normalized data PSTHs; normalized firing rate 226 
reconstructed by the addictive model, the multiplicative model, and the full model, respectively. All activity is 227 
aligned to MO (marked by the gray dots under timeline, time window is -800 ~ 600 ms to MO). 228 

To further investigate the temporal dynamics of joint-coding rules, we proposed a ‘full model’ to 229 

combine the two modulation forms:  230 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑎2cos(𝜃21 − 𝜃𝑃𝐷) + 𝑏 cos(𝜃21 − 𝜃𝑃𝐷) cos(𝜃1 − 𝜃𝑃𝐷) + 𝑐            (5) 231 
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where descriptions of notations are the same as in Eq. 2 and Eq. 3, defining 𝑎1 as the 1st reach 232 

weight, 𝑎2 as the additive weight, and 𝑏 as the multiplicative weight. The fluctuation of the 233 

regression coefficients (𝑎1, 𝑎2, and 𝑏) reflects the time-varying contribution of the corresponding 234 

terms, thus enabling the full model to profile the transition of coded objects. 235 

 236 

 237 
Figure 4 Joint tunings of the example neuron around movement onset and end.  238 
a. Directional tuning curves of the example cell in Fig. 3 were plotted around MO (-100~100 ms to MO, peri-MO). 239 
Left: Normalized firing rate in DR were trial-averaged and plotted in corresponding condition colors. Tuning curves 240 
were fitted by Fourier expansion separately. Middle: Tuning curves of firing rates reconstructed by the addictive 241 
model. Right: Tuning curves of firing rates reconstructed by the multiplicative model. R2 showed the goodness-of-fit 242 
of the model tuning curve. b. Similar with a, directional tuning curves around ME (100~300ms to MO, peri-ME). 243 

We compared the goodness-of-fit of the full model with that of the additive model, the 244 
multiplicative model, and a single cosine model (Eq.1, 1st reach direction), by the standard of the 245 

population-averaged adjusted 𝑅2 (For the statistical method to compensate for the difference in 246 

numbers of parameters between the full model and other models, see Methods) for M1 and PMd, 247 
respectively (Fig. 5, array data from monkey C). The full model performed best in both areas; it was 248 

also able to describe the tuning property of the example neuron throughout the whole trial (Fig. 3, 249 
Full). Remarkably, the overall trend and preference for the multiplicative or additive model varied 250 
by brain areas. For M1 neurons (n=118), the goodness-of-fit for all models gradually increased 251 
during preparation, and the multiplicative model was significantly better than the additive model at 252 
MO (two-tailed Wilcoxon signed rank test, p=1.2e-05). Nevertheless, the additive model performed 253 

better after MO. Similar results were found in M1 data in all monkeys (Fig. S3, single-electrode 254 
recording from monkeys B and C, and array data from monkey G). The effect size r (see Methods) 255 
also indicates there is a small to medium effect for multiplicative model during preparatory period 256 
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for each monkey (Fig. S4).  For PMd neurons (n=40), the adjusted R2 remained stable during 257 
preparation. No significant difference was found between two models before MO (two-tailed 258 

Wilcoxon signed rank test, p=0.06). It seems that the transition from multiplicative to additive 259 
coding was different in M1 and PMd. 260 

 261 

 262 
Figure 5 Dynamics of goodness-of-fit and coefficient  263 
a. Results of regression on M1 neurons in array dataset from monkey C are illustrated at the population level. Left: 264 
Goodness-of-fit was evaluated with averaged adjusted R2 for all fitting models in a 200-ms sliding window (with 265 
twice standard error in shade). The upper line showed the significance (p<0.0005) of comparison between 266 
performance of multiplicative (purple line) and additive (blue line) model. Middle: Scatters compared the goodness-267 
of-fit at MO (-100~100 ms to MO) between the multiplicative and additive models, each dot represents the result of 268 
a neuron. Right: Absolute value of each coefficient is averaged across neurons (with twice standard error in shade), 269 
the temporal dynamics of which shows the contribution of terms. The coefficient weight of permutation test was 270 
plotted in light shade as the chance level. b. Similar with A, results of regression on PMd neurons in array. 271 

To scrutinize the changing encoding pattern, we plotted the averaged absolute coefficients of the 272 
full model across time (Fig. 5, right panel). For M1 neurons, the weights of the 1st reach and the 273 
multiplicative term ramped up over the chance level (given by a permutation test, see Methods) 274 

during preparation, whereas the additive weight remained at the chance level in preparation and 275 
mainly increased after MO. This contemporaneous activation of coefficients was similar to the 276 
situation in prefrontal cortex where neurons were modulated by both direction and sequence 32-34. 277 

Similar dynamics were found in all monkeys (Fig. S3), suggesting a common transition from a gain-278 
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modulation interplay during motor preparation to a concurrent coding during motor execution. This 279 
concurrence has been reported by the previous study 27. For PMd neurons, the overall encoding 280 

process was essentially consistent with that in M1: the 1st movement → the multiplicative term → 281 
the additive term. However, in PMd, these three components made comparable contributions in the 282 
preparation period, and there was no obvious peak of the 1st reach and multiplicative coefficients. 283 
The onset times for the increase of the additive coefficient, and the decrease of the 1st reach and 284 
multiplicative coefficients, were much earlier in PMd than in M1, implying that PMd takes 285 

precedent in coding of the 2nd reach. 286 

So far, we have analyzed the linear and nonlinear components comprised in neural encoding for 287 
double-reach and their interchangeable predominance. The multiplicative joint coding, revealed by 288 
the multiplicative model and validated by the multiplicative weight in the full model, now becomes a 289 

key concern because it would be apparently a unique signature of continuous motor sequences. 290 

 291 

Multiplicative coding embodied in initial states 292 

According to our regression analyses, the multiplication of the tunings corresponding to the 1st 293 
and 2nd reaches could be intrinsic in sequence-related preparatory activity. From the dynamical 294 
systems perspective, preparatory activity would be set to a subspace optimal as initial states to 295 
trigger motor generation 35. We expected a spatially inclusive distribution of initial states to accord 296 
with mathematical multiplication. 297 

To verify this hypothesis, we performed a supervised dimensionality reduction procedure. Firstly, 298 
principal component analysis (PCA) was applied to the preparatory neural activity during a period of 299 
600 ms before GO. Next, the Fisher’s linear discriminant analysis (LDA) was utilized to find the 300 

optimal discriminant projection in accordance with tagged conditions 36. In this PCA-LDA analysis, 301 
selected principal components from PCA (the number was chosen by cross-validation) were applied 302 

to LDA. We first analyzed neural activity in SR trials and built an SR subspace. Neural states 303 
clustered by conditions, as visualized in the 2-d projections found by LDA (Fig. 6a). Then, we 304 
projected both DR and SR data onto the resulted space and found that neural states of both DR and 305 

SR trials clustered according to their 1st or only reach direction. This suggests that despite the 306 
proposed sequence modulation in preparatory activity for single neurons, the neural population 307 

preserved a linear representation for the preceding movement. However, the variance explained were 308 
higher for SR than DR (For monkey C array, variance explained of SR is 10.9%, DR is 7.8%. For 309 

monkey B, variance explained of SR is 9.0%, DR is 6.6%. For monkey C single electrode, variance 310 
explained of SR is 6.2%, DR is 5.6%. For monkey G, variance explained of SR is 31.6%, DR is 311 
27.5%.). To neutralize the tuning for the immediate movement, we used DR trials with the same 1st 312 
reach direction alone for the PCA-LDA analysis. Therefore, relatively low-dimensional neural states 313 
grouped by the 1st reach directions, could be projected again onto dimensions maximizing the 314 

difference brought by the 2nd reach directions. The result of trials where the 1st reach direction was 315 
towards the lower-right was visualized, with trials classified into six clusters corresponding to their 316 
subsequent reach directions (Fig. 6c; subsequent reach directions are indicated by markers; ten-fold 317 
cross-validation accuracy was higher than 0.6, above the chance level for the classification of six 318 
conditions, 1/6, excluding LDA overfitting). There were great differences between SR (circles) and 319 
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DR (other markers) clusters, indicating that the initial states for sequential movements were 320 
distinctive. Interestingly, in some conditions, DR trials obviously clustered in order from CW 60° to 321 

CCW 60°, and the CW and CCW states were located on both sides of the 180° states. This structural 322 
spatial distribution of LDA states supported by Mahalanobis distances (Fig. S5) may signify a 323 
condensation of subsequent movement information in the strong representation of occurrent 324 
movement. In addition, the results for other monkeys for the DR task showed a similar tendency 325 
(Fig. S6-S8). 326 

 327 
Figure 6 Projection of preparatory activity onto PCA-LDA resulting initial state space.  328 
a. Projection on SR space. Neural states of SR trials were clearly clustered according to their reaching directions. b. 329 
Neural states of DR trials also clustered into six groups according to their 1st reach direction when projected onto 330 
the SR space. Variance explained by the two dimensions were calculated. c. LDA classified neural states of trials 331 
with the same 1st reach direction into clusters grouped by 2nd reach directions, forming an initial state space for the 332 
subsequent movement. Colors indicate the 1st movement directions; DR trials are presented in the same color family 333 
of related SR trials. Markers indicate 2nd reaching direction. The ellipses show the covariance projection of related 334 
conditions. 335 

Multiplicative coding preserves linear readout of immediate reach 336 

As several investigators have pointed out 12, 21, 37, 38, as well as PCA results suggested, the 337 
neural population preserves a reliable readout of ongoing movement direction, despite the 338 
sequence-related differences at the single-neuron level. Since nonlinear mixed selectivity is 339 
believed to form high-dimensional neural representations that guarantee the linear readout of 340 

particular parameters 39, we speculate that each linear readout in sequential movements benefits 341 
from multiplicative joint coding.   342 6
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We checked the linear readout of immediate movement direction as population vectors (PV) in 343 
data. The PV pointed to the immediate reach direction before MO in DR trials as expected (Fig. S9). 344 

To figure out the impact of the multiplicative or additive joint coding on PV, we adopted a proved 345 
simulation method 40 to obtain surrogate data corresponding to the cosine, additive, and 346 
multiplicative models (see Methods). Each dataset consisted of 200 model neurons with activity in 347 
an epoch of 600 ms from preparatory activity until the 1st reach end. Those additive and 348 
multiplicative neurons were regulated by a fixed 2nd reach direction as well. We present the 349 

responses of three example model neurons with the same 𝜃𝑃𝐷 in Fig. 7a. Obviously, the direction 350 
inducing the highest firing rate changed in additive and multiplicative neurons, compared to the 351 

‘single cosine’ neurons, resulting in a modulated tunning curve (Fig.7b). We used the original 𝜃𝑃𝐷 352 
for the calculation of PV. Interestingly, PVs in the multiplicative DR dataset correctly and stably 353 

pointed to the immediate reach direction as in the SR condition, whereas PVs in the additive DR 354 

dataset deviated from the desired direction (Fig.7c). These simulations show that multiplicative joint 355 

coding can preserve a robust linear readout of immediate reach direction, even containing 356 
subsequent reach directions. 357 

 358 
Figure 7 Simulation of neural tunings on population vector during single and double reach. 359 
a. Example neurons of three simulated datasets. Averaged firing rates of different conditions (1st reach directions) 360 
are shown in corresponding colors. These three example model neurons were simulated according to the single 361 
cosine, the additive, and the multiplicative models with the same preferred direction 𝜃𝑃𝐷. b. Directional tunning 362 
curves with (solid line) and without (dash line) modulation. c. Population vectors of three simulated datasets. 363 
Population vectors were calculated every 50 ms. The correct reaching direction is upward. The population vector of 364 
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multiplicative dataset pointed in the same direction as PV of single cosine dataset, while the PVs of additive dataset 365 
shift away from the desired reaching direction. 366 

 367 

Multiplicative joint coding emerged in recurrent neural network (RNN) generating motor 368 

sequence  369 

Due to their flexibility and time-varying characteristics, RNNs are increasingly welcomed as 370 
models matching a dynamical system 41-43. To find out whether a dynamical system can also 371 
capture the subtle joint-coding rule found in the motor cortex, we trained an RNN model to 372 

perform the double-reach task. 373 
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 374 
Figure 8 Results of an RNN model. 375 
a. Schematic of the RNN model. The RNN model consisted of an input layer, a hidden layer, and an output layer. 376 
The input layer received signal for position of two targets simultaneously, while the output layer produced 377 
population vector (PV), whose magnitude reflects the degree of movement tendency for neural population in the 378 
corresponding direction. b. Response of two example nodes under four conditions. The selected conditions are 379 
represented in different colors as shown in left. The black dots denote target on (TO), the 1st movement onset (MO), 380 
and the 2nd movement onset (MO2), respectively. Most model nodes show temporally similar responses to real 381 
neurons. c. Full model fitting result for RNN nodes. It turned out that the temporal dynamics of the terms in this 382 
RNN model are comparable to those in real neurons. The R2 was calculated across nodes. The error bar in this panel 383 
was plotted according to twice standard error. Time markers are ticked as: target on (TO), go-cue on (GO), the 1st 384 
movement onset (MO), and the 2nd movement onset (MO2). 385 
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The three-layer RNN received the movement direction of two reaches as input (Fig. 8a). The 387 
input signals were presented simultaneously, though instructing sequential actions. In contrast to 388 

previous work in which RNNs were instructed to generate velocity 40 or EMG 44, our model was 389 
required to produce PV. This design was preferred for these reasons: first, the variables related to 390 
actual movement, like velocity and EMG, have to lag behind the neural activity due to 391 
transmission delay from cortex to muscle. In contrast, PV could be real-time, and thus reflect 392 
more temporal features; also, this design is consistent with our hypothesis that multiplicative 393 

joint coding benefit linear readout of movements (Fig. 7). 394 

The trained RNN performed well (for training set 𝑅2=0.9711±0.0044, for validation 395 

𝑅2=0.8976±0.1070, mean±SD; see Methods). Model nodes exhibited comparable temporal 396 
dynamics with real neurons recorded in the present study. Here we exhibit two example nodes 397 

under four specific conditions (Fig. 8b). For the node 088, the two bumps of its response indicate 398 
that it is closely related to the ongoing movement, which is typical for neurons in M1. The 399 
response of the node 061 seems more complex, as the augment around MO does not occur in all 400 

conditions. Interestingly, this node appears to have ‘direction selectivity’, the only exceptive 401 
movement direction for the 1st reach (in cyan) induces obviously distinguished response. 402 
Moreover, its responses under different conditions retain distinct during preparatory period. 403 

Observing richer preparatory dynamics than expected, we wondered whether the temporal 404 

dynamics of components corresponding to different movement courses were consistent between 405 
model and neural data. Therefore, we tested the ‘full model’ fitting on nodes of our model. As 406 

shown in Fig. 8c, the profile of regression coefficients of model nodes largely resembles that of 407 
real data (Fig. 5a, right, Fréchet distance = 0.47, see Methods). The weight of the 1st reach peaks 408 

at MO and decays afterwards. The weight of the additive term, which relates to the 2nd reach, 409 
reaches its apex around MO2 with a slightly smaller magnitude. During the preparation, the 410 

weight of the multiplicative term fluctuates, but maintains a considerable influence. This 411 
suggests that the proposed multiplicative joint coding for sequential movement, here a double 412 
reach, also emerges in a dynamical system. 413 

 414 
  415 
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Discussion 416 

In order to understand how the motor cortex generates motor programs for consecutive arm 417 
movement sequences, we recorded neuronal activity when monkeys performed double-reach 418 
directed at simultaneously cued memorized targets. We found that pre-movement activity carries 419 
sequence information in a heterogeneous manner. Regression analysis shows that neuronal tuning to 420 
1st and 2nd reaches can be well explained by multiplicative and additive models in the preparatory 421 

and execution periods, respectively. Dimensionality reduction analysis demonstrates that neural 422 
states during preparation sub-clustered according to the 2nd reach within the optimal subspaces of 423 
the 1st reach. Simulation via model neurons points out the merit of multiplicative joint coding in 424 
maintaining robust linear readout for the ongoing movement direction. An RNN model trained for 425 
double-reach task can simulate the real encoding properties, which are marked by conspicuous 426 

nonlinearity. Taken together, these results suggest that primate motor cortex is profoundly involved 427 
in forming plans for multi-step movements. In addition, the transition between the newfound 428 

multiplicative joint coding and overlapped independent coding hints at a shifting neural encoding 429 
mechanism for motor sequences. 430 

Previous studies have revealed that motor cortex not only carries information regarding upcoming 431 
movements, but also reflects sensory and cognitive factors during both preparation and execution 432 
periods 6, 9, 12, 16, 17. Nevertheless, how this ‘sequence selective’ response reflects motor sequence has 433 

not yet been answered. A recent work following the dynamical systems perspective found that ‘the 434 
preparatory subspace was occupied twice, once before each reach’ thus suggested that each of 435 

movement elements were encoded independently in the motor cortex rather than holistically. 436 
However, if individual movements were independently planned, the reaching error should 437 

accumulate, which has not yet been observed 45. Furthermore, it was demonstrated that the holistic 438 
planning might enhance motor learning, but such effect would not occur when different follow-439 

throughs were rehearsed individually 46. This finding strongly suggests that sequential planning is 440 
associated with special neural states in preparation, in accordance with our findings. Also, unlike in 441 
the parietal cortex, neuronal activity in the motor cortex exhibits strong heterogeneity 47, which often 442 

comes from mixed selectivity of behavioral parameters and tuning dynamics 30, 48-50. Given these 443 
considerations and our results, we propose that elements in a consecutive movement sequence 444 

should be interactively planned in a spatio-temporally coordinated manner beforehand. 445 

As one of the cortical regions carrying much information regarding movement timing 10 and 446 

kinematics 11, motor cortex presumably participates in encompassing and coordinating sequence 447 
components. In the present study, both reaching targets were turned off 400-800 ms before GO, 448 
encouraging the monkeys to plan the whole reaching sequence in the preparatory period. Our results 449 

revealed that neurons tended to jointly encode double-reach in a nonlinear multiplicative manner 450 
during preparation. The multiplicative model’s performance degraded after MO, perhaps because 451 
joint coding mainly exists during preparation, but lies in the null-space during execution. Also, as a 452 
reaching sequence is decomposed into motor elements, the lack of an additive term makes it 453 

incapable of capturing the parallel components after MO 27. The concept of the multiplicative model 454 
originated from gain modulation 51, 52, and a work regarding the question of whether the neural 455 
response was constructed with nonlinear interactions between parameters, rather than their linear 456 
combination  30. In the case of sequential movements, this issue becomes whether sequential 457 
elements are planned conjunctively or independently. As the primary nonlinear interaction, 458 
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multiplication is a common form of gain modulation that has been widely found in mixed selectivity 459 
51, 52. This coding manner can provide new dimensions for motor preparation and learning 53, and 460 

according to our simulation, it can also consolidate the linear readout for impending movements. 461 
Because such mixed selectivity of parameters enlarges the neural space encoded by a certain number 462 
of neurons 36, 39, 53, the dimensionalities induced by multiplicative coding may perform as the null 463 
space of impending movement.  464 

Although our analyses of joint coding are based on directional tuning, we did not mean to 465 
imply that the motor cortex exclusively encodes movement direction. Rather, we treated the 466 
directional tuning as a marker of interaction, rooted in the heterogeneous neuronal response. 467 
Since the motor cortex is recognized to play a straightforward role in generating descending 468 
command for muscle activity production 54, 55, future studies should also take into account 469 

muscle activity to explain how joint coding benefits the generation of compound double reaches 470 
from a dynamical systems perspective 44. However, it is a limitation of the present study that 471 

sEMG data were not sufficient to explore this issue.  472 

Regarding joint coding embodied in motor cortex as a key signature to encompass movement 473 

elements in the planning of consecutive sequences, we are not claiming that it seeds a neural 474 
dynamical system that can autonomously generate the entire motor sequence. Instead, sequential 475 
behavior emerges from a large brain network, including parietal-frontal circuits 9, 56 and subcortical 476 

areas like the thalamus and basal ganglia 57. Remarkably, our results of PMd, which are so different 477 
from those of M1, have already indicated diverse functions and coding characteristics of different 478 

cortical regions. Now that the dynamical evolution in the motor cortex necessarily relies on external 479 
inputs from other brain areas 58, an intriguing question is how intrinsic dynamics and external inputs 480 

interplay to generate a motor sequence, including the role of the proposed joint coding in the motor 481 
cortex. To go further, collective studies across multiple brain regions and experimental interventions 482 

are needed. 483 

 484 

 485 
  486 
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Methods 505 

 506 

Experimental preparation.  507 

Three male rhesus macaques (monkey B, C, and G, Macaca mulatta, 5-9 kg) were trained to 508 
perform a cohesive double reach (Fig. 1a). In each session, the monkey sat in a custom-designed 509 
primate chair. Stimuli were backprojected onto a vertical touch screen (Elo Touchsystems, 19”; 510 
sampling at 100 Hz, spatial resolution <0.1 mm) ~30 cm in front of the monkey. In the recording 511 

sessions using microelectrode arrays (Utah array, Blackrock), hand position was monitored optically 512 
via reflective markers attached to the wrist (Vicon Inc.), besides, acceleration and surface 513 

electromyography (sEMG) were recorded via a wireless sensor (Delsys Trigno Lab) attached to the 514 

targeted muscles. All procedures were in accordance with NIH guidelines and were approved by the 515 
Institutional Animal Care and Use Committee (IACUC) of Institute of Neuroscience, CAS. 516 

 517 

Behavioral task.  518 

In addition to the standard version of the paradigm described in Results (Fig. 1a), to further 519 
examine the interaction between movement elements, we trained monkey C to perform an extended 520 

version of the task with multi-direction, in which the angle between the square and triangle could be 521 
60º or 120º in both CW and CCW directions as well as 180º. This multi-direction task has 36 522 

conditions in total (six SR and 30 DR). 523 

 524 

Data collection and analysis. 525 

For single-electrode recording, monkeys B and C were implanted with a standard recording 526 
cylinder (diameter = 19 mm) located over M1 and caudal PMd in the left hemisphere, guided by pre-527 

scanned MRI and stereotactic coordinates. Recording sites are shown in Fig. S1. Recordings were 528 
made using glass-coated tungsten electrodes (AlphaOmega, ~1.5 MΩ impedance at 1 kHz). Activity 529 
was recorded online by an AlphaOmega Lab SNR system, sampled at 44 kHz. After recordings, raw 530 

data were sorted offline according to an online template by Spike2 (Spike2 7.15, CED). For multi-531 

electrode recording, monkey G and C, respectively, were implanted with a 96-channel and two 128-532 

channel Utah microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT) in the motor 533 
cortex of the right hemisphere (Fig. S1). Recording sites were located using MRI and cortex surface 534 
features. Array recorded raw data were sorted offline by Wave_clus 59.All monkeys were restricted 535 
to using the hand contralateral to the recorded hemisphere when performing the task. Data from 536 
monkey C were first obtained with a single microelectrode, and subsequently from an array in the 537 

other hemisphere with a switch of hands. 538 

In total, we collected 279 and 117 well-isolated units from monkey B and C through single-539 

electrode recording, respectively. Among these, 224 units from monkey B and 98 from monkey C 540 
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with significant directional preference (One-way ANOVA, p<0.05) in single reach were chosen for 541 
further analysis. For multi-electrode recording, we collected 252 and 63 well-isolated units from 542 

monkey C and G, respectively. Among these, 158 units from monkey C and 44 from monkey G with 543 
significant directional preference (One-way ANOVA, p<0.05) were used. The selected neurons 544 

formed a 3-dimensional 𝑁𝐾𝑇 (𝑁: neuron number, 𝐾: trial number, and 𝑇: spike time) dataset for 545 
regression and state-space analysis. 546 

 547 

Peri-stimulus time histograms (PSTHs).  548 

For each unit, we calculated its PSTHs with time aligned to event markers such as the GO signal, 549 

the 1st/only movement onset (MO), the 1st/only movement end (ME), and the 2nd movement onset 550 
(MO2). We defined MO as the moment when the monkey’s hand left the touch screen and ME as the 551 
time when monkey’s hand touched the target on the screen. All firing rates were smoothed with a 552 
Gaussian kernel (SD = 20 ms). The mean standard error (mean SE) of firing rate was estimated from 553 

10 bootstrap samples.  554 

 555 

Regression 556 

We adopted the directional tuning model 1, 30 to fit neural responses in the double-reach task. We 557 
fitted the normalized condition-averaged firing rates in a 200-ms sliding window with 20-ms step 558 

(using Matlab function ‘fit’ and ‘fitnlm’). First, we fitted the double-reach data as follow: 559 

𝐹𝑅 = 𝑎 cos(𝜃 − 𝜃𝑃𝐷) + 𝑐                                                          (1) 560 

where 𝜃 is the movement direction, 𝜃𝑃𝐷 is the PD, 𝑎 and 𝑐 denote regression coefficients. Both the 561 
1st and the 2nd reach direction were used for regression to see which direction is better represented 562 

at that time bin (Fig. S2). Then we regressed double-reach data with the following models:  563 

Additive model:  564 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑎2 cos(𝜃21 − 𝜃𝑃𝐷) + 𝑐                                     (2) 565 

Multiplicative model:  566 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑏 cos(𝜃21 − 𝜃𝑃𝐷) cos(𝜃1 − 𝜃𝑃𝐷) + 𝑐                                  (3) 567 

Full model:  568 

𝐹𝑅 = 𝑎1 cos(𝜃1 − 𝜃𝑃𝐷) + 𝑎2cos(𝜃21 − 𝜃𝑃𝐷) + 𝑏 cos(𝜃21 − 𝜃𝑃𝐷) cos(𝜃1 − 𝜃𝑃𝐷) + 𝑐            (5) 569 

where 𝑎1, 𝑎2, 𝑏, 𝑐 are regression coefficients, 𝜃1 is the 1st movement direction, 𝜃21 is 2nd movement 570 

direction from the 1st reach endpoint, 𝜃𝑃𝐷 is preferred direction.  571 
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Note that both the additive and multiplicative model have four coefficients while full model has 572 

five. To compensate for this difference, we use the adjusted 𝑅2 rather than actual 𝑅2.  573 

𝑅𝑎𝑑𝑗
2 = 1 − (

𝑛 − 1

𝑛 − 𝑝
)
𝑆𝑆𝐸

𝑆𝑆𝑇
 574 

where SSE is the sum of squared error, SST is the sum of squared total, 𝑛 is the number of 575 

observations, and 𝑝 is the number of regression coefficients. Because actual 𝑅2 likely increases with 576 

added predictor variables in the regression model, the adjusted 𝑅2 adjusts for the number of 577 
predictor variables in the model. This makes it more useful for comparing models with a different 578 

number of predictors.  579 

We also compared the goodness-of-fit between the multiplicative and additive models using the 580 
Wilcoxon signed rank test. We plot a line (purple for the multiplicative model, blue for the additive 581 
model) when one is significantly (p<0.0005) better than the other.  582 

In addition, we calculated the effect size  𝑟 = 𝑍/√𝑛 using function “wilcoxonPairedR” in package 583 

“rcompanion” of R (Mangiafico, S.S. 2016. Summary and Analysis of Extension Program 584 

Evaluation in R, version 1.19.10. rcompanion.org/handbook/). The 𝑟 value could be interpretated as 585 

small effect in 0.1-0.4, medium effect in 0.4-0.6, and large effect ≥ 0.6. 586 

To get the chance levels of each coefficient and to reflect the effect of modulation, we performed 587 
a permutation test with 1000 repetitions separately for the coefficient of the 1st reach, multiplicative 588 
term, and additive term in reference of Sober and Sabes 60.  589 

 590 

PCA-LDA analysis for neural states.  591 

𝑁𝐾𝑇 datasets were used in this analysis. Neuronal firing rates were calculated with a 300-ms bin 592 

width (𝑇 = 2) and normalized by Z-score (MATLAB function ‘zscore’) to avoid bias from high 593 

firing rate neurons. 𝑁𝐾𝑇 data were reshaped into 𝐾 × 𝑁𝑇, where 𝐾 is trial number, 𝑁 is neuron 594 

number, and 𝑇 is bin number. After pre-processing, we ran PCA to reduce these dimensions to 595 

𝐾 × 𝑃. The number of PCs, 𝑃, was chosen by 10-fold cross-validation to avoid overfitting. This step 596 
also helped avoid singular matrices for LDA and reduced data noise 36. Then we ran LDA to project 597 

the 𝑃-dimensional matrix onto a 𝐶-dimensional space, where 𝐶 is the number of trial conditions. 598 

LDA can find axes that best separate the categories. After this, we applied QR decomposition to get 599 

the orthonormal basis for the neural state space 61. Each trial was finally described by 𝐶 − 1 600 

components derived from selected neural activity. We chose the first two components covering the 601 
largest variance to plot the 2-D projection of trial data and the ellipse of covariance; each data point 602 
represented the neural state in a trial. 603 

 604 

 605 
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Simulation of population vector in sequential reach 606 

We adopted the simulation method of 40 to generate surrogate data based on single cosine, 607 
additive, and multiplicative models. Preparatory and peri-movement activity were simulated with 608 

200 neurons in six directions. The averaged neuronal firing rate 𝑓𝑛,𝑐 for neuron 𝑛, in condition 𝑐, at 609 

time 𝑡 is given by, 610 

𝑓𝑛,𝑐(𝑡, 𝜏𝑛, 𝜎) = {𝑏𝑛,𝑐𝑒
−
(𝑡−𝜏𝑛−𝜇0)

2

2𝜎2 + 𝜀,   𝑡 ≥ 𝜏𝑛  

𝜑𝑏𝑛,𝑐 + 𝜀,       𝑡 < 𝜏𝑛
 611 

where 𝜎 is the duration parameter, 𝜏𝑛 is the response latency of each neuron (normally distributed), 612 

𝜑 is the preparatory activity amplitude constant fixed at 0.2, 𝜇0 is constant given by 𝜇0 =613 

𝜎√−2𝑙𝑛𝜑, and 𝜀 is random noise (SD=0.01). 𝑏𝑛,𝑐 is the gain for neuronal condition preference. For 614 

data of the cosine model, which is expected to mimic neuronal activity in SR trials, 𝑏𝑛,𝑐 is simply 615 

tuned to reach directions as  616 

𝑏𝑛,𝑐 =
1 + cos(𝜃1 − 𝜃𝑃𝐷)

2
. 617 

The additive surrogate data were based on the parallel coding hypothesis that sequential movements 618 

are planned independently with the overlap in the peri-movement period; 𝑏𝑛,𝑐 is given by  619 

𝑏𝑛,𝑐 =
1 + cos(𝜃1 − 𝜃𝑃𝐷) + cos(𝜃21 − 𝜃𝑃𝐷)

3
. 620 

The multiplicative surrogate data were based on the gain-modulation hypothesis, the interaction of 621 
both movement directions in sequential reach contributed to the neuronal response,  622 

𝑏𝑛,𝑐 =
1 + cos(𝜃1 − 𝜃𝑃𝐷) + cos(𝜃1 − 𝜃𝑃𝐷) cos(𝜃21 − 𝜃𝑃𝐷)

3
, 623 

For the above definitions, 𝜃1 is the 1st movement direction, 𝜃21 is the 2nd movement direction 624 

relative to the 1st movement endpoint, and 𝜃𝑃𝐷 is the preferred direction. 625 

 626 

Model training 627 

Our RNN model was designed to simulate the situation where double reach was accomplished 628 
by a pure dynamical system. The input was movement direction for two sequential reaches, in 629 

form of 2-D coordinates [cos(𝜃1) , sin(𝜃1) ; cos(𝜃2) , sin(𝜃2)], where 𝜃1 and 𝜃2 represent the 1st 630 

and relative 2nd movement directions, respectively. Because the model was built to generate 631 
population vectors (PVs), we constructed ‘desired PVs’ instead of using real data for generality. 632 

The output was read out as [𝑟 cos(𝜃) , 𝑟 sin(𝜃)], where 𝜃 is the present movement direction, and 633 

𝑟 reflects the intensity of integrated response for population. We used Gaussian functions to 634 
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emulate the time-varying magnitude. To ensure the trend at critical time markers was similar to 635 
the actual situation, we separated the two-peak PV profile into four sections: from GO to MO, 636 

from MO to the 1st touch, from the 1st touch to MO2, and from MO2 to the 2nd touch, and 637 
spliced them together after respective optimization and normalization. We used 18 standard 638 
conditions in training, including SR conditions and DR conditions as mentioned previously. For 639 
validation, we tested 30 conditions, in which the angles between the 1st and 2nd targets were 60º 640 
and 120º in both CW and CCW directions, as well as 180º. 641 

The nodes in the RNN model were evolved according to a standard continuous dynamical 642 
equation 40: 643 

𝜏ẋ𝑖(𝑡) = −𝑥𝑖 +∑𝐽𝑖𝑘𝑟𝑘(𝑡)

𝑁

𝑘=1

+∑𝐵𝑖𝑘𝑢𝑘(𝑡)

𝐼

𝑘=1

 644 

where 𝜏 is a time constant, 𝑁 is the number of network nodes, and 𝐼 is the number of the inputs. 645 

The activity of nodes is represented by 𝑥, whose firing rates are determined by  646 

𝑟 = {
0,              𝑥 < 0
tanh(𝑥) , 𝑥 ≥ 0

 . 647 

The output was read out linearly as:  648 

𝑧𝑖 =∑𝑊𝑖𝑘𝑟𝑘(𝑡)

𝑁

𝑘=1

 649 

where 𝑧 represents the two PV readouts (𝑖 = 1,2). In this model, the connection weight among 650 

nodes is denoted by matrix 𝐽, the connectivity between hidden nodes and input 𝑢(𝑡) is defined by 651 

matrix 𝐵, and the weight matrix between hidden nodes and output is 𝑊. 652 

The size of our RNN was fixed at 200. We initialized both connection matrix 𝐵 and 𝐽 to be 653 

normally distributed (for 𝐵:𝑚𝑒𝑎𝑛 = 0, 𝑆𝐷 = 1/√𝑁; for 𝐽:𝑚𝑒𝑎𝑛 = 0, 𝑆𝐷 = 𝑔/√𝑁; 𝑔 = 1.5), 654 

matrix 𝑊 to be all zero, and chose a time constant 𝜏 = 50 𝑚𝑠 in the light of previous work 40, 62.  655 

All three weights were adjustable and optimized during training. We used the summation of the 656 

error function and three regularity terms as a cost function 44. The error function was the squared 657 
error between the model output and the desired PV. The three regularity terms penalized the 658 
magnitude of the averaged firing rate, the intensity of the input and output weights, and the 659 
complexity of state trajectories; the hyper-parameters for these three terms in our model were 1e-2, 660 

1, and 1e-2, respectively. The training was finished with PyTorch, and the weights were optimized 661 
by Adam (Adaptive Moment Estimation). 662 

To compare the pattern of coefficients, we visualized the three time-varying coefficients as a 663 
normalized 3D trajectory, and calculated the Fréchet distance between trajectories of different 664 
sessions or monkeys. The distance between monkey C’s array and the RNN was 0.47; in contrast, 665 
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that between monkey C’s array and single electrode recordings was 0.39, between monkey C’s array 666 
and monkey B was 0.56, between monkey C array and monkey G was 0.23. The average distance 667 

between monkey C’s array and the permutation was 1.08.  668 
  669 
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