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16 Abstract

17 Deep learning is a powerful tool for neural decoding, broadly applied to systems 

18 neuroscience and clinical studies. Interpretable and transparent models which can explain 

19 neural decoding for intended behaviors are crucial to identify essential features of deep 

20 learning decoders in brain activity. In this study, we examine the performance of deep 

21 learning to classify mouse behavioral states from mesoscopic cortex-wide calcium 

22 imaging data. Our convolutional neural network (CNN)-based end-to-end decoder 

23 combined with recurrent neural network (RNN) classifies the behavioral states with high 

24 accuracy and robustness to individual differences on temporal scales of sub-seconds. 

25 Using the CNN-RNN decoder, we identify that the forelimb and hindlimb areas in the 

26 somatosensory cortex significantly contribute to behavioral classification. Our findings 

27 imply that the end-to-end approach has the potential to be an interpretable deep learning 

28 method with unbiased visualization of critical brain regions.

29

30 Author Summary

31 Deep learning is used in neuroscience, and it has become possible to classify and predict 

32 behavior from massive data of neural signals from animals, including humans. However, 

33 little is known about how deep learning discriminates the features of neural signals. In 
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34 this study, we perform behavioral classification from calcium imaging data of the mouse 

35 cortex and investigate brain regions important for the classification. By the end-to-end 

36 approach, an unbiased method without data pre-processing, we clarify that information 

37 on the somatosensory areas in the cortex is important for distinguishing between resting 

38 and moving states in mice. This study will contribute to the development of interpretable 

39 deep-learning technology.

40

41 Introduction

42 Neural decoding is a method to understand how neural activity relates to perception 

43 systems and the intended behaviors of animals. Deep learning is a powerful tool for 

44 accurately decoding movement, speech, and vision from neural signals from the brain and 

45 for neuroengineering such as brain-computer interface (BCI) technology that utilizes the 

46 correspondence relationship between neural signals and their intentional behavioral 

47 expressions (Craik et al., 2019; LeCun et al., 2015; Livezey and Glaser, 2021). In clinical 

48 studies, electrical potentials measured by implanted electrodes in a specific brain area, 

49 such as the motor cortex, were often used to decode the intended movements such as 

50 finger motion, hand gesture, and limb-reaching behavior (Hochberg et al., 2012; Pan et 

51 al., 2018; Schwemmer et al., 2018; Skomrock et al., 2018). In contrast, neural decoding 
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52 of the movements with whole-body motion, such as running and walking, remains 

53 uncertain due to measurements of neural activity from the entire brain under immobilized 

54 conditions in functional magnetic resonance imaging (fMRI) and 

55 magnetoencephalography (MEG) scanners and contamination of noise signals (e.g., non-

56 neuronal electrical signals during muscular contraction) in electroencephalography 

57 (EEG) recording. It is challenging to decode voluntary behaviors from brain dynamics 

58 that contain complex information processing from motor planning to sensory feedback 

59 during the execution of a movement. 

60 The calcium imaging technique allows us to measure in vivo neural activity 

61 during behavioral conditions from microscopic cellular to mesoscopic cortex-wide scales 

62 (Ren and Komiyama, 2021). Recent studies suggest that cellular activities have enough 

63 resolution for decoding behaviors. The cellular imaging data using microendoscopy in 

64 the hippocampal formation was used to decode free-moving mouse behaviors (Chang et 

65 al., 2021; Etter et al., 2020; Murano et al., 2022) by a Baysian- and a recurrent neural 

66 network (RNN)-based decoders. In addition, a convolutional neural network (CNN) is 

67 also used to predict the outcome of lever movements from microscopic images of the 

68 motor cortex in mice (Li et al., 2019). On the other hand, it is little known whether 

69 mesoscopic cortex-wide calcium imaging that contains neural activity at the regional 
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70 population- but not the cellular resolution is applicable for neural decoding of animal 

71 behaviors. This mesoscopic strategy may be appropriate for end-to-end analyses since it 

72 deals with substantial spatiotemporal information of neural activity over the cortex.

73 Minimal preprocessing of input data can attenuate arbitrary interference for 

74 neural decoding. CNN is most applicable to image data, while RNN is often used for 

75 sequential inputs, including time-variable data (LeCun et al., 2015). By taking advantage 

76 of these architectures, we developed a two-step CNN-RNN model for decoding 

77 behavioral states from the mesoscopic cortical fluorescent images without intermediate 

78 processing. Moreover, it is desired to identify biologically essential features for deep 

79 learning classification to make the models interpretable and transparent for explanations 

80 of neural decoding as suggested by XAI-Explainable Artificial Intelligence (Gunning et 

81 al., 2019). To this end, we developed a visualization method of the features that 

82 contributed to the performance of the CNN-RNN-based classifications and identified the 

83 somatosensory areas are the most significant features for the type of behavioral states 

84 during voluntary locomotion behavior. This unbiased identification was supported by 

85 separate analyses of regional cortical activity using deep learning with RNN and the 

86 assessment by Deep SHAP, a developed Shapley additive explanations (SHAP) for deep 

87 learning (Lundberg and Lee, 2017; Vega García and Aznarte, 2020). Our findings 
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88 demonstrate possibilities for neural decoding of voluntary behaviors with the whole-body 

89 motion from the cortex-wide images and advantages for identifying essential features of 

90 the decoders. 

91

92 Results

93 To perform behavior classification from the cortical activity with deep learning, we used 

94 the previously reported data composed of mesoscopic cortex-wide calcium imaging in 

95 the mouse, which exhibits voluntary locomotion behavior in a virtual environment under 

96 head-fixed conditions (Nakai et al., 2023). The fluorescent calcium signals of the cortex 

97 were imaged at a frame rate of 30 frames/s during a 10-min session (18,000 

98 frames/session) from behaving mice (Figs 1A–1B). Two behavioral states (run or rest) 

99 were defined by a threshold of the speed of locomotion (>0.5 cm/s) and binarized as 1 for 

100 a run and 0 for rest in each frame. The proportion of run state differed according to 

101 individual mice (mean ± SD; mouse ID1, 36 ± 8 % (n = 11 sessions); ID2, 66 ± 22 % (n 

102 = 12 sessions); ID3, 65 ± 16 % (n = 14 sessions); ID4, 58 ± 11 % (n = 15 sessions); ID5, 

103 80 ± 8 % (n = 12 sessions); Fig 1C). To generalize decoding across individuals, we 

104 assigned the data to training, validation, and testing at the ratio of 3:1:1 on a per-mouse 

105 basis (Fig 1D). Thus, we generated 20 models for all combinations and classified the test 
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106 data with each.

107

108 CNN-based end-to-end deep learning accurately classified behavioral states from 

109 functional cortical imaging signals 

110 We tried to classify the behavioral states from images of cortical fluorescent signals using 

111 deep learning with CNN. To handle the single-channel images obtained from calcium 

112 imaging, we converted a consequence three images into a pseudo-3-channel RGB image 

113 by combining the previous and next images with the target image (Fig 2A). First, we 

114 trained CNN with EfficientNet B0 (Tan and Le, 2020), where the individual RGB images 

115 were used for input data. The binary behavior labels were used for output (Fig 2B). We 

116 used the pre-trained model on ImageNet for the initial weight values in training. In 

117 training, the loss was reduced by increasing epochs in CNN decoders (Fig 2D, left). 

118 However, in validation, the loss was increased every epoch (Fig 2D, left), suggesting that 

119 models fell into overlearning during CNN training. We chose a model with the lowest 

120 loss in the validation as a decoder at each data allocation. The decoder's performance was 

121 evaluated by the area under the receiver operating characteristic curve (AUC) for all test 

122 data frames. The decoder using CNN alone classified the behavioral states with about 

123 90% accuracy (0.896 ± 0.071, mean ± SD, n = 20 models; Fig 2E).
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124 To improve the performance of decoding, we then created a two-step deep 

125 learning architecture that combines CNN with long short-term memory- (LSTM) 

126 (Hochreiter and Schmidhuber, 1997) or gated recurrent unit- (GRU) (Cho et al., 2014) 

127 based RNN, in which the output at the final layer of the CNN was compressed by average 

128 pooling and connected to the RNN (Fig 2C). In this stage, input data was the sequential 

129 RGB images from −0.17 s to 0.17 s from the image t, located at the center of the input 

130 time window. We used weights of the former CNN decoders for setting the initial values 

131 in two-step CNN-RNN. As with CNN decoders, the loss of two-step CNN-RNNs was 

132 reduced by the increment of epochs in training, whereas it was increased in validation 

133 (Fig 2D, right). The performance of behavior state classification was upgraded using 

134 two-step CNN-RNNs regardless of individual cortical images and behavioral activities 

135 (GRU, 0.955 ± 0.034; LSTM, 0.952 ± 0.041; mean ± SD, n = 20 models; Fig 2E). In 

136 addition, we confirmed that the classification accuracy was not significantly affected by 

137 the length of the input window ranged from 0.067 s to 0.50 s in the two-step deep learning 

138 (Fig 2F). These results demonstrate that deep learning decoding with CNN classifies 

139 locomotion and rest states accurately from functional cortical imaging consistently across 

140 individual mice, and the performance of the decoding can be improved by combining it 

141 with RNN. 
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142

143 The somatosensory area contains valuable information on the behavioral 

144 classification 

145 To make deep learning decoding interpretable, we tried to quantify the critical areas of 

146 images which contributed to the behavioral classification in the CNN-RNN decoder. We 

147 calculated and visualized the importance score in subdivisions of images in each decoder 

148 using a newly developed method named cut-out importance (see Methods for details). 

149 Briefly, a subdivision of the image was covered with a mask filled with 0 before training. 

150 The decoder trained with the masked images was compared with the decoder with original 

151 unmasked images (Fig 3A). The importance score indicates how much the decoder's 

152 performance was affected by the masked area. As a result, the highest importance score 

153 was detected slightly above the middle of the left hemisphere (0.054 ± 0.045; mean ± SD, 

154 n = 20 models; Fig 3B). The symmetrical opposite area is also higher than other 

155 subdivisions within the right hemisphere (0.024 ± 0.014). This laterality seemed to be 

156 derived from individual differences (S1 Fig). These subdivisions corresponded to the 

157 anterior forelimb and hindlimb areas of the somatosensory cortex (Fig 3C; S2 Fig). 

158

159 Regional cortical activity is applicable for the behavioral classification using RNN 
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160 decoders 

161 To confirm the contribution of the somatosensory cortex in the decoding performance, 

162 we designed RNN decoders to classify the behavioral states from activities of the specific 

163 cortical areas. For this purpose, the fluorescent signals at 50 regions of interest (ROIs) in 

164 the cortex were analyzed as regional cortical activities that accord with known cortical 

165 parcellations of the mouse brain (S2 Fig; (Nakai et al., 2023)). To reduce baseline 

166 fluctuation of cortical activity, we performed data preprocessing by subtracting a 1,000-

167 frame moving average from the normalized fluorescent signals at each ROI (S3 Fig). 

168 At the beginning of the deep learning decoding with RNN, we used a GRU 

169 architecture and set an input window of size 31, including a one-second duration of 

170 cortical activity that ranged from −0.5 s (−15 frames) to 0.5 s (+15 frames) from the 

171 behavioral state-target label (frame t) (Fig 4A). To train the deep learning models, we 

172 used the ±0.5 s input window with a one-frame sliding window for a total of 1,152,000 

173 frames data (n = 64 sessions). The random batches of size 256 with Adam optimizer 

174 (https://keras.io/api/optimizers/adam/ (Kingma and Ba, 2017)) and binary cross-entropy 

175 loss function were used as model parameters. The models were trained across 30 epochs 

176 to converge the loss substantially. In the training data, the loss was reduced in the first 10 

177 epochs, with a slight improvement in the following epochs, and the accuracy was 
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178 dramatically improved and almost saturated within the first 10 epochs (Fig 4B). In the 

179 validation, although changes of loss and accuracy behaved similarly, the loss was about 

180 twice, and the accuracy was slightly decreased compared to the training (Fig 4B). We 

181 chose a model with the lowest loss in the validation as a decoder at each data allocation. 

182 Then, the decoders classified all frames of the test data into the two behavioral states in 

183 good agreement with the behavioral labels (Fig 4C), supported by the AUC (Fig 4D). 

184 The GRU decoder trained with preprocessing data (mean ± SD; GRU, 0.974 ± 0.014; n = 

185 20 each; Fig 4E) showed significantly higher performance of behavioral classification 

186 with high accuracy than the GRU decoder trained with un-preprocessing data (Raw, 0.911 

187 ± 0.057). Both performances were considerably higher than the control decoder, a null 

188 model trained with randomly assigned behavioral labels (Random, 0.492 ± 0.031).

189 We next examined how much the architectures of RNN affect the decoder 

190 performance. All decoders classified behavioral states with high accuracy over 0.95 on 

191 average (mean ± SD; LSTM, 0.970 ± 0.013; Simple, 0.953 ± 0.035; Bi-LSTM, 0.960 ± 

192 0.020; Bi-GRU, 0.974 ± 0.012; Bi-Simple, 0.967 ± 0.016; Fig 4F), while the simple RNN 

193 decoder only underperformed compared with the GRU decoder (P<0.05, Wilcoxon rank 

194 sum test with Holm correction). Given the accuracy and variance in these decoder 

195 performances, GRU and bidirectional GRU architectures are most suitable for the 
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196 behavioral classification from cortical activity. We used, hereinafter, GRU but not 

197 bidirectional GRU as an RNN architecture to simplify the process and time of computing.

198 We investigated whether the temporal specificity of the input data affects the 

199 performance of GRU decoders. The initial setting of the length of the input window was 

200 0.5 s when the length contains information on cortical fluorescent signals ranging 

201 between 0.5 s before and after the center of the input window (i.e., 0 s). The shift 0 s was 

202 initially chosen, which means the position of the behavioral label at 0 s (Fig 5A). 

203 Regarding the analysis of length, the accuracy of the decoder performance from length 

204 0.33 s to 1.0 s did not differ (Fig 5B). Only the accuracy was significantly decreased at 

205 length 0.17 s, suggesting that a temporally enough length (≥0.33 s) of input window is 

206 needed to obtain information of behavioral states from cortical activity. We then 

207 examined the temporal distance of the decoding target from the center of the input 

208 window by shifting the position of the target labels in a time range from −2 s (backward 

209 in time) to 2 s (forward in time) (Fig 5C). The accuracy of back-shifted target labels 

210 gradually but significantly decreased with distance from the center of the input window. 

211 Similarly, in the forward shift of target labels, the performance was significantly degraded 

212 when the target labels were set to more than 0.33 s distant from the center of the input 

213 window. These results suggest that our decoders are more fitting for predicting current 
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214 states than future and past states of behaviors.

215

216 Cortical activity in the somatosensory limb areas contributes to the behavioral 

217 classification

218 Finally, we assessed how much cortical areas significantly impact the GRU decoder using 

219 Deep SHAP (see Methods for details). We visualized a SHAP value which is the index 

220 to what extent each feature contributes to the behavioral classification in the trained 

221 models. The SHAP values in a model were calculated against each input window from 

222 ~5% of randomly selected test data. The absolute SHAP values were averaged across all 

223 models to quantify the degree of importance in cortical areas (Fig 6A). The remarkably 

224 high SHAP values were detected in the anterior regions of the somatosensory forelimb 

225 (FLa, ROIs 6 and 31) and hindlimb (HLa, ROIs 8 and 33) areas. The peaks of SHAP 

226 values were observed around +0.1 s after the center of the input window. Although SHAP 

227 values of many cortical areas surpassed those in null models, overall, the magnitudes were 

228 smaller than the somatosensory areas (Fig 6B). 

229 Based on the results of SHAP, we trained the model using input data only from 

230 FLa and HLa (ROIs 6, 8, 31, and 33) and confirmed the performance of the behavioral 

231 classification (Fig 6C). We masked the signals out of these areas by replacing them with 
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232 value 0 and used the masked data to train and test the GRU decoder (FLa&HLa). 

233 Oppositely, we masked the signals in FLa and HLa with 0 and trained and tested the GRU 

234 decoder (Other). The decoder performance using the somatosensory areas was compatible 

235 with the decoder trained with all area data (FLa&HLa, 0.966 ± 0.026; mean ± SD, n = 20 

236 models; Fig 6D). However, the decoder using other cortical areas underperformed (Other, 

237 0.938 ± 0.011; mean ± SD, n = 20 models; Fig 6D).

238 We further tested the group of cortical areas. We divided bilateral cortical areas 

239 into five parts (motor areas (M2&M1, ROIs 1–4, 26–29); somatosensory limb areas 

240 (FL&HL, ROIs 6–9, 31–34); parietal and retrosplenial areas (PT&RS, ROIs 14–17, 49–

241 52); primary visual and medial visual areas (V1&Vm, ROIs 18–21, 43–46); lateral visual 

242 and auditory areas (Vl&A1, ROIs 22–25, 47–50); Fig 6E) and used them separately for 

243 GRU training. The decoder performances were 0.869 ± 0.037 in M2&M1, 0.966 ± 0.030 

244 in FL&HL, 0.776 ± 0.097 in PT&RS, 0.793 ± 0.060 in V1&Vm, and 0.798 ± 0.058 in 

245 Vl&A1 (mean ± SD, n = 20 models, respectively; Fig 6F). Consistent with the results in 

246 Fig. 5B, the decoder trained with FL&HL classified behavioral states with the highest 

247 accuracy. Moreover, the motor area’s decoder outperformed other cortical areas except 

248 for FL&HL. The correlation of the cortical activities with dynamics of behavioral states 

249 was weakly positive in all areas (mean ± SD; 0.21 ± 0.10, n = 50 ROIs; S4 Fig), which 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535664doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535664
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

250 could not explain the predominance of the somatosensory limb areas in the GRU decoders. 

251 In summary, our methods accurately classified mouse behavioral states from 

252 cortex-wide functional images consistent across mice and identified the essential features 

253 of cortical areas for behavioral classification in deep learning with both CNN and RNN. 

254 These results suggest the possibility of generalized neural decoding of voluntary 

255 behaviors with a whole-body motion from the cortical activity and the generation of 

256 interpretable decoders by end-to-end approach.

257

258 Discussion

259 Advantages of end-to-end behavior decoding from cortical calcium imaging

260 The present study demonstrated that deep learning using CNN-based end-to-end 

261 approaches accurately decoded the mouse behavioral states from cortical activity 

262 measured by mesoscopic calcium imaging. Recently, attempted speech and handwriting 

263 movements have been decoded on the temporal scales in real-time from the cortical 

264 activity obtained by microelectrode array and electrocorticography (ECoG) from human 

265 patients (Makin et al., 2020; Pan et al., 2018; Willett et al., 2021). Compared with the 

266 electrical recordings, calcium imaging is temporally slow but spatially high with a 

267 variable range of resolution from synaptic and cellular to regional scales. In CNN-RNN 
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268 decoders, the robust performance of behavior classification was obtained using an input 

269 window from 0.067 s to 0.5 s. Our results indicate that the high spatial resolution of the 

270 calcium imaging contains sufficient information for decoding the mouse behavior even 

271 in the sub-second temporal order. 

272 Furthermore, we visualized the importance of brain areas, the somatosensory 

273 cortex limb areas, for behavioral classification by the CNN-based end-to-end approach. 

274 These areas were commonly detected in the CNN-RNN decoders, suggesting that models 

275 were generalized between mice. Regional cortical activity in the somatosensory areas 

276 contributed to the decoding performance, supported by the RNN decoders. Since mice 

277 receive sensory inputs from the left and right limbs when moving on and touching the 

278 treadmill, the regional activity in the somatosensory areas may be reflected as a featured 

279 cortical response during locomotion. In addition, the primary somatosensory cortex also 

280 receives prior information about future movements from the primary motor cortex 

281 (Umeda et al., 2019). Utilizing the neural information from input-output relationships, 

282 such as the motor and somatosensory cortices, improves the performance of robotic arm 

283 control (Flesher et al., 2021). Our interpretable approach for deep learning decoders may 

284 help to identify multiregional cortical activities related to behavioral expressions. 

285
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286 Combination of CNN and RNN for behavior decoding

287 Recently, a convolutional and recurrent neural network model has been applied to 

288 decoding finger trajectory from ECoG data, in which CNN was used to extract the 

289 features, and LSTM was used to capture the temporal dynamics of the signal (Xie et al., 

290 2018). Similar to this architecture, our decoder with CNN-RNN effectively worked for 

291 mouse behavior classification and was superior to the decoder with CNN alone. 

292 Furthermore, the architecture LSTM followed by CNN was also applied to decoding the 

293 brain activity using EEG by reconstructing the visual stimuli, and it performed more 

294 accurately than the architecture CNN followed by LSTM (Zheng et al., 2020). The 

295 direction of architectures should be considered as a critical factor in the case of the 

296 combination of deep learning methods. By expanding the application of these methods in 

297 neuroscience research, behavior decoding from brain activity can deal with more complex 

298 patterns of behaviors with high temporal information, leading to the further development 

299 of BCI technologies.

300
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301 Materials and Methods

302 Datasets

303 We used the previously reported dataset, including the 18,000-frame images of 

304 fluorescent signals in the cortex measured by mesoscopic calcium imaging at 30 

305 frames/second and the time-matched behavioral states of locomotion and rest from head-

306 fixed mice (Nakai et al., 2023). The dataset contains 64 sessions (for 10 min/session) from 

307 five Emx1G6 mice. The number of sessions in each mouse was 11, 12, 14, 15, and 12. 

308 We used all images (128 × 128 pixels × 18,000 frames × 64 sessions) for deep learning 

309 decoding with CNN and RNN. For deep learning analysis, we divided the five mice into 

310 subgroups at the rate of 3:1:1 for training, validation, and testing, respectively, to perform 

311 cross-validation, generating the twenty models in total (four models for each testing). For 

312 behavioral labeling, the frames with a locomotion speed more significant or less than 0.5 

313 cm/s were defined as a state of “Run” or “Rest,” respectively.

314

315 Data analysis

316 Deep learning with CNN-RNN

317 Deep learning with CNN-RNN was performed using Python 3.6, Anaconda Packages, 

318 PyTorch (https://pytorch.org), and fastai (https://docs.fast.ai). We used a PC equipped 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535664doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535664
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

319 with Ubuntu 18.04 OS and NVIDIA GeForce RTX3090 GPU. All images were 

320 normalized by subtracting the average intensity in each pixel. The normalized images 

321 were divided by the variance of intensities of all pixels. For CNN classification, all images 

322 were then converted to an RGB image It by combining three consecutive images from 

323 one frame before (red, t −1) to one frame after (blue, t +1) the target image t (green) with 

324 labeling a behavioral state of the target image t (Fig 2A). As the architecture of CNN, 

325 EfficientNet B0 was used from the Python package in GitHub 

326 (https://github.com/lukemelas/EfficientNet-PyTorch) (Tan and Le, 2020).

327 First, we trained the CNN to classify the behavioral state from the RGB images 

328 in the same manner of data allocation as deep learning with RNN. For the initial values 

329 of the CNN, we used the publicly available model that was pre-trained by ImageNet 

330 (Russakovsky et al., 2015). We used the random batches of size 512 using Adam 

331 optimizer (https://keras.io/api/optimizers/adam/ (Kingma and Ba, 2017)), binary cross-

332 entropy loss function, and one-cycle training with a maximum learning rate of 0.001. 

333 After training, 1,280 features were extracted and fully connected to an output node. The 

334 activation function of the output node was set as sigmoid for binary classification of 

335 behavior labels. The number of epochs was set to 3. The model with the lowest loss in 

336 the validation data was adopted.
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337 Next, a two-step training with CNN and RNN was performed for behavior state 

338 classification. Following the CNN training (Step 1), in which the initial values were set 

339 to the CNN models trained at the first stage, the RNN was trained using input data of 

340 sequential RGB images (Step 2). The inputs of RGB images for CNN were initially eleven 

341 consecutive images ranging from 0.17 s before (It −5) to 0.17 s after (It +5) the image t, 

342 which was labeled with the behavioral state at image It (Fig 2A). After the convolution 

343 layer of CNN, 1,280 features per image were extracted by compression with average 

344 pooling and recursively input to RNN. The GRU and LSTM were used as the RNN 

345 architectures, which consisted of 128 units, 2 layers, and a dropout of 0.2. The hyperbolic 

346 tangent function was used as an activation function for RNN. The RNN units in the 

347 second layer were then fully connected to an output node. The activation function of the 

348 output node was set to sigmoid for the binary classification of behavior labels. We used 

349 the random batches of size 32 using Adam optimizer, binary cross-entropy loss function, 

350 and one-cycle training with the maximum learning rate of 0.001. The number of epochs 

351 was set to 3. The mixed precision (https://docs.fast.ai/callback.fp16.html) was used to 

352 improve the efficiency of the two-step training. We evaluated the loss for each Epoch and 

353 adopted the model with the lowest loss in the validation data. To compare the size of the 

354 input data for the CNN-RNN classification, we tested four different lengths of the time 
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355 window, i.e., 0.067 s (t ±2), 0.17 s (t ±5), 0.33 s (t ±10), and 0.5 s (t ±15) before and after 

356 the image t (Fig 2F). The decoder performance was evaluated by the area under the 

357 receiver operating characteristic curve (AUC) for the classification of the test data.

358

359 Cut-out importance

360 We quantified the critical areas of images which contributed to the behavioral 

361 classification in the CNN-RNN decoder. The image (128 × 128 pixels) was divided into 

362 a 32-pixel square with a 16-pixel overlap, and each end was connected to the opposite 

363 end, thus obtaining 64 compartments. Before the CNN-RNN training, all pixels in a 

364 compartment were masked with a value of 0. We then trained the CNN-RNN by 

365 excluding information in the masked compartment area. Each compartment was scored 

366 by importance score, calculated by subtracting the AUC using the decoder trained with 

367 the masked data from the AUC using the decoder with the unmasked data.

368 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝐴𝑈𝐶𝑏𝑎𝑠𝑒 ― 𝐴𝑈𝐶𝑚𝑎𝑠𝑘𝑒𝑑

369 The importance score indicates how much the decoder performance using masked data 

370 (AUCmasked) decreased compared to unmasked data (AUCbase). The importance scores at 

371 one-fourth of the 32-pixel square were averaged among four times overlaps at the 

372 different masked areas and plotted on an 8×8 heat map. Then, the heat maps were 
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373 averaged across all models. We named this analysis “cut-out importance.”

374

375 Preprocessing of regional cortical activity

376 This analysis was performed using MATLAB (MathWorks). The changes in cortical 

377 activity were calculated from fluorescent signals at the 50 regions of interest (ROIs) in 

378 the cortex (25 ROIs in each hemisphere), which was represented by dF/F, a percentage 

379 of changes from the baseline fluorescence (Nakai et al., 2023). In this study, a 1,000-

380 frame moving average of dF/F was subtracted from dF/F to attenuate baseline variation 

381 of the fluorescent changes, which was an optimal filter size (S3 Fig). 

382

383 Deep learning with RNN

384 Deep learning with recurrent neural network (RNN) was performed using Python 3.6 

385 (https://www.python.org/), Anaconda Packages 

386 (https://docs.anaconda.com/anaconda/packages/old-pkg-lists/2021.05/py3.6_win-64/), 

387 TensorFlow (https://www.tensorflow.org/) and Keras (https://keras.io/). A PC with 

388 Ubuntu 16.04 OS and NVIDIA GeForce RTX2080 GPU was used. The code for deep 

389 learning is available in the following GitHub repository 

390 (https://github.com/atakehiro/Neural_Decoding_from_Calcium_Imaging_Data).
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391 For binary classification of behavioral states, we assigned a value of 1 and 0 to 

392 the frames labeled “Run” and “Rest,” respectively. The input data of deep learning was 

393 31 frames of the preprocessed dF/F, which localized from 15 frames before to 15 frames 

394 after a behavior-labeled frame, and a one-frame sliding window was used to cover all 

395 except for the first and last 15 frames. This period ranged up to 0.5 s after the behavioral 

396 expression had been used in the previous study (Pan et al., 2018). Each input data was 

397 normalized by Min-Max Scaling. We used six RNN architectures of deep learning 

398 (simple RNN, LSTM, GRU, and their bidirectional counterparts) for behavior 

399 classification in the same manner. The deep learning was trained with the random batches 

400 of size 256 using Adam optimizer (Kingma and Ba, 2017) and binary cross-entropy loss 

401 function. The unit number of RNN was set to 32. The hyperbolic tangent function was 

402 used as an activation function. The RNN is followed by a one-node fully connected layer. 

403 The activation function of the last classification node was set to sigmoid for the binary 

404 classification of behavior labels, and the label smoothing was set to 0.01. The number of 

405 epochs was set to 30, in which the models reached a stable loss and accuracy for the 

406 training and validation data. The model in the epoch with the lowest loss in the validation 

407 data was adopted. As a control, we generated the models trained with the behavioral labels 

408 permuted randomly (Random) and the models trained with non-preprocessed dF/F (Raw). 
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409 The decoder performance was evaluated by the AUC for the classification of the test data.

410

411 Analysis of temporal differences in the input window using RNN decoders

412 To investigate the optimal conditions, we compared GRU decoders trained using the 

413 different lengths of the input time window and the temporally shifted target labels of 

414 behavioral classification (Fig 5). The target labels have temporally shifted the position 

415 from the center of the time window in the ranges from −2 to 2 s (from −60 to 60 frames) 

416 at 10-frames steps. The lengths of time window size 5, 10, 15, 20, 25, and 30, and the 

417 shifts of target label -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, and 60 were analyzed. 

418

419 Deep SHAP

420 We used Deep SHAP (the SHAP Python package in GitHub 

421 (https://github.com/slundberg/shap)) to visualize the basis for deep learning 

422 classifications. Deep SHAP is one of the feature attribution methods designed by 

423 combining SHAP (SHapley Additive exPlanation), which assigns each feature an 

424 importance value for machine learning predictions, with DeepLIFT, which is an additive 

425 feature attribution method that satisfies local accuracy and missingness (Lundberg and 

426 Lee, 2017). In this analysis, we randomly selected 10,000 frames from the test data (total 
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427 198,000-270,000 frames/test) to calculate SHAP values of each ROI, indicating the extent 

428 of contribution to the model output. The absolute SHAP values were averaged and 

429 represented as the overall importance of each ROI.

430

431 Statistics

432 All statistical analyses were conducted in MATLAB (MathWorks). All bar plots with 

433 error bars represent mean ± SD. All box plots represent the median with interquartile 

434 range (IQR) (box) and 1.5 × IQR (whiskers), gray lines indicate the line plot of individual 

435 results, and 'o' symbols indicate the outlier. For all statistical tests, the normality of the 

436 data and equal variance of groups were not assumed, and non-parametric tests were used 

437 for group comparisons. Wilcoxon rank-sum test with Holm correction was used. The 

438 significance level was set to P < 0.05.

439
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553 S1 Fig. Importance scores in each session. 

554 S2 Fig. Fluorescent calcium signals and corresponding cortical areas.

555 S3 Fig. Preprocessing of the fluorescent signals for deep learning classification. 

556 S4 Fig. Correlation between fluorescent signals and locomotor activity. 
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558 Fig 1. Cortical activity and behavioral states in behaving mice.

559 (A) A schematic illustration of the experimental setup for measuring mesoscopic cortical 

560 calcium imaging and locomotor activity. 

561 (B) Images were obtained at 30 frames per second during a 600 s session. The label of 

562 behavioral state was based on locomotion speed (>0.5 cm/s) at the corresponding frame.

563 (C) Proportions of the behavioral states in each mouse (n = 11–14 sessions from 5 mice).

564 (D) The data allocation on a per-mouse basis. The data of each mouse was assigned at the 

565 ratio of 3:1:1 for training (Train), validation (Valid), and testing (Test). 

566
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567
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568 Fig 2. Behavioral state classification using deep learning with CNN. 

569 (A) Image preprocessing for deep learning with CNN. An image at frame t with images 

570 at neighboring frames (frame t −1 and t +1) was converted to an RGB image (image It) 

571 labeled with the behavioral state. 

572 (B) Schematic diagram of the CNN decoder. CNN was trained with individual RGB 

573 images. Then, CNN outputs the probability of running computing from the 1,820 

574 extracted features for each image. 

575 (C) Schematic diagram of the CNN-RNN decoder. The pre-trained CNN extracted 1,820 

576 features from individual RGB images in the first step. In the second step, a series of 1,820 

577 extracted features obtained from consecutive images (e.g., eleven images from It −5 to It 

578 +5 (= input window, length ±0.17 s)) were input to GRU-based RNN. Then, the RNN 

579 output probability of running.

580 (D) Loss of CNN and CNN-GRU during training and validation across three epochs. 

581 (E) The area under the receiver operating characteristic curves (AUC) was used to 

582 indicate the accuracy of decoders. The performance of decoders with CNN, CNN-LSTM, 

583 and CNN-GRU. ***P < 0.001, Wilcoxon rank-sum test with Holm correction, n = 20 

584 models. 

585 (F) The performance of CNN-GRU decoders was not significantly different between 
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586 different lengths of the input window. N.S., not significant, Wilcoxon rank-sum test with 

587 Holm correction, n = 20 models.

588
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589 Fig 3. Visualization of essential features in CNN-RNN decoder. 

590 (A) An importance score was calculated by averaging differences from classification 

591 accuracy using a 1/16 masking area in each image (see Methods for details).

592 (B) Importance scores in each subdivision (mean ± SD, n = 20 models).

593 (C) Overlay of importance scores on the cortical image with ROI positions. See S2 Fig 

594 for ROIs 1–50.

595
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596 Fig 4. Behavioral state classification from cortical activity using deep learning with 

597 RNN.

598 (A) Schematic overview of the RNN decoder for the behavioral state classification. Input 

599 is the cortical activities ranging from 0.5 s before (t−15 frames) to 0.5 s after (t+15 frames) 

600 the target frame t, which is labeled with a behavior state (1: run, 0: rest). The RNN decoder 

601 outputs the probability of behavioral states for all frames of testing data. 
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602 (B–D) Example of the GRU decoder performance. (B) Learning curve during training 

603 and validation across 30 epochs. Loss indicates the cross entropy loss between the outputs 

604 and behavioral labels. Accuracy was the percentage of agreement with the label when the 

605 output was binarized at a 0.5 threshold. Mean ± SD, n = 20 models. (C) A trace of the 

606 output values of a representative decoder and actual behavioral labels in the first 33.3 s 

607 of testing data. (D) The receiver operating characteristic curves in the training, validation, 

608 and testing data. 

609 (E) The performance of GRU decoders trained with preprocessed data (GRU), non-

610 preprocessed data (Raw), and randomly shuffled data (Random). *P < 0.05, Wilcoxon 

611 rank-sum test with Holm correction, n = 20 models. 

612 (F) The decoder performance using six types of RNN architectures. LSTM, GRU, simple 

613 RNN (Simple), and their bidirectional ones (Bi-). *P < 0.05, Wilcoxon rank-sum test with 

614 Holm correction, n = 20 models.

615
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616 Fig 5. Comparison of input window length and target label's temporal position. 

617 (A) Examples of input window and position of the target labels for behavior classification 

618 were shown. “Length” defines the duration of the input window, which ranges arbitral 

619 time (e.g., 0.5 s) before and after the center of the input window (0 s). “Shift” defines the 

620 temporal location of the target label of behavior classification from the center of the input 

621 window. The length 0.5 s and the shift 0 s were used for the criteria for evaluation. 
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622 (B) The decoder performance of different lengths using a fixed shift 0 s. *P < 0.05, **P 

623 < 0.01, Wilcoxon rank-sum test with Holm correction, n = 20 models. 

624 (C) The decoder performance of different shifts using a fixed length of 0.5 s. N.S., not 

625 significant, *P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank-sum test with Holm 

626 correction compared with shift 0 s, n = 20 models.
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627 Fig 6. The forelimb and hindlimb areas of the somatosensory cortex contribute to 

628 behavioral state classification.

629 (A) The absolute SHAP values at each ROI during the input window across all GRU 

630 decoders (50 ROIs × 31 frames (−0.5 ~ 0.5 s) on 20 models average). 
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631 (B) The absolute SHAP values for all frames at each ROI in GRU decoders with 

632 preprocessing data (GRU) and randomly shuffled data (Random). *P < 0.05, **P < 0.01, 

633 ***P < 0.001, Wilcoxon rank-sum test with Holm correction, n = 20 models. See S2 Fig 

634 for ROIs 1–50.

635 (C) Red ovals indicate the position of the somatosensory cortex anterior forelimb and 

636 hindlimb areas (ROIs 6, 8, 31, and 33).

637 (D) Decoder performance using fluorescent signals from all cortical areas (All), 

638 somatosensory cortex anterior forelimb and hindlimb areas (FLa&HLa, ROIs 6, 8, 31, 

639 and 33), and the other 46 ROIs (Other). ***P < 0.001, Wilcoxon rank-sum test with Holm 

640 correction, n = 20 models. 

641 (E) The ROIs were divided into five parts: motor areas (M2&M1, ROIs 1–4 and 26–29), 

642 somatosensory limb areas (FL&HL, ROIs 6–9 and 31–34), parietal and retrosplenial areas 

643 (PT&RS, ROIs 14–17 and 39–42), primary visual and visual medial areas (V1&Vm, 

644 ROIs 18–21 and 43–46), and visual lateral and auditory area (Vl&A1, ROIs 22–25 and 

645 47–50).

646 (F) Decoder performance using fluorescent signals from M2&M1, FL&HL, PT&RS, 

647 V1&Vm, and Vl&A1. ***P < 0.001, Wilcoxon rank-sum test with Holm correction, n = 

648 20 models. 
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