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Highlights 19 

 20 

M1 neuronal activity is jointly tuned by reach direction and target motion 21 

during flexible manual interception. 22 

 23 

Neural states of single trials form an orbital neural geometry at movement 24 

onset.  25 

 26 

Neural geometry emerges in a recurrent neural network for predictive 27 

spatiotemporal transformation. 28 

 29 

Movement-related neural structures tilted by target motion result from mixed 30 

sensorimotor selectivity at the single-neuron level. 31 
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Summary 33 

Although recent studies have shown that activity of the motor cortex conveys 34 

substantial information regarding sensory inputs in addition to motor outputs, it is 35 

unclear how sensory inflows and motor outflows interplay to issue motor 36 

commands. Here, we recorded population neural activity in the motor cortex via 37 

microelectrode arrays while monkeys performed flexible manual interception of 38 

moving targets, in a task that required predictive sensorimotor control. For such a 39 

dynamic sensory-motor task, the activity of most neurons in the motor cortex not 40 

only encoded upcoming movements, but was also modulated by ongoing target 41 

motion. Dimensionality reduction at movement onset demonstrated a latent 42 

orbital neural geometry with neural states clustered by reach directions, and tilted 43 

in ellipses corresponding to target speed. Such neural geometry also emerged in 44 

a recurrent neural network (RNN) with task-specific input-output mapping. We 45 

propose that neural computation through sensorimotor dynamics is based on 46 

neuronal mixed selectivity, and acts like a state evolution. 47 

 48 

Keywords 49 

Reach, Population Decoding, Dimensionality Reduction, Recurrent Neural 50 

Network, Motor Cortex 51 
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Introduction  54 

Motor cortex, a central brain region generating motor commands, has been 55 

recently found to carry substantial sensory information (Hatsopoulos and 56 

Suminski, 2011; Sobinov and Bensmaia, 2021) in addition to movement 57 

kinetics (Evarts, 1968; Tanaka, 2016) and kinematics (Georgopoulos et al., 58 

1982; Omrani et al., 2017; Wang et al., 2022). Activity in the motor cortex is 59 

strongly influenced by reference frame (Pesaran et al., 2006), hand trajectory 60 

(Paninski et al., 2004), and stimuli for target selection (Cisek and Kalaska, 61 

2005); some neurons even respond to sensory stimuli alone during visual 62 

replay (Tkach et al., 2007). However, it is unclear how sensory inflows and 63 

motor outflows interact to form motor plans in the motor cortex. 64 

With recent advances in large-scale neural recording and population 65 

analysis, a dynamical systems perspective has emerged in motor control that 66 

posits the motor cortex as an autonomous dynamical machine (Churchland et 67 

al., 2012; Shenoy et al., 2013; Vyas et al., 2020). From this point of view, 68 

preparatory population activity is promoted toward a movement-specific 69 

optimal subspace to set initial states seeding the motor generation 70 

(Churchland et al., 2010; Churchland et al., 2006). However, it remains to be 71 

determined if behaviorally relevant sensory variables are also embodied in the 72 

movement-related neural subspace, or in a separate/orthogonal one 73 

(Kaufman et al., 2014; Stavisky et al., 2017).  74 

To reveal neural dynamics related to sensorimotor interplay, we recorded 75 

population activity in the primary motor cortex (M1) from monkeys performing 76 

a flexible manual interception task (Li et al., 2018; 2022). Unlike previous 77 

studies requiring interception at a fixed location (Merchant et al., 2004a; b), 78 

this flexible interception depends on predictive spatiotemporal mappings to 79 

displace a body effector to the right place at the right time. We found that the 80 

activity of most neurons was jointly tuned to both reach direction and target 81 

speed f as gain modulation, directional selectivity shifting, baseline 82 

adjustment, or their combinations. Strikingly, such mixed sensorimotor 83 

selectivity was exhibited throughout the entire trial, in contrast to the gradient 84 

of sensory-to-motor tuning from cue to movement epochs that we recently 85 

reported in posterior parietal cortex (PPC) (Li et al., 2022). Principal 86 
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component analysis (PCA) of the neural population revealed a clear orbital 87 

neural geometry in low-dimensional space at movement onset. Interestingly, 88 

the neural states were clustered by reach directions, and formed ringlike 89 

structures whose slopes were determined by target speed. A recurrent neural 90 

network (RNN) trained with proper input-output mappings demanded by the 91 

task could mimic such neural geometry. Further simulation indicated that 92 

these characteristics of neural population dynamics could be derived from the 93 

mixed sensorimotor selectivity of single neurons. We propose that neural 94 

computations through dynamics in latent space might provide deep insights 95 

into the sensorimotor interplay for predictive sensorimotor control. 96 

Results 97 

Behavioral task and performance 98 

Three macaque monkeys (Macaca mulata, C, G, and D, male 7-10 kg) were 99 

trained to perform a delayed manual interception task (Figure 1A) modified 100 

from the task employed by (Li et al., 2018). The monkey held a dot in the 101 

center for 600 ms to initiate a trial, and then a static or circularly moving target 102 

appeared at a random location on a circular track centered on that dot. The 103 

monkey was required to wait for a random delay (400-800 ms) until the central 104 

dot went dark (GO signal), and then to immediately reach for the target. The 105 

target moved at one of five angular speeds either counterclockwise (CCW) or 106 

clockwise (CW) as -240 °/s, -120 °/s, 0 (static control), 120 °/s, and 240 °/s, 107 

interleaved trial by trial; it stopped once the monkey touched any peripheral 108 

location.  109 

For well-trained monkeys, the reach was launched directly toward the target 110 

location at interception, with little in-flight adjustment (Figure 1B; (Li et al., 111 

2018)). Behavioral performance across the five target-speed conditions was 112 

similar, with overlapped endpoint distribution (Figure 1B dot ellipses) and 113 

hand velocity profiles (Figure 1C, correlation coefficient 0.96±0.05, mean±114 

SD). In this flexible interception task, the predictive motor plans guaranteed by 115 

the interleaved design along with the consistent performance across different 116 

conditions, enabled an efficient dissociation between sensory modulation and 117 

motor planning.  118 
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 119 

Figure 1. Flexible manual interception task and behavioral performance 120 

(A) Diagram of interception task. The five target-speed conditions (-240 °/s, -120 °/s, 121 

static, 120 °/s, and 240 °/s) are indicated in five colors (red, yellow, green, blue, and 122 

purple). Target starting location was randomly distributed.  123 

(B) The condition-averaged hand trajectory. The mean trajectories from MO to touch in 124 

five target-speed conditions (monkey C, 772 correct trials in one session) were plotted as 125 

solid lines in the same color as (A). Reach direction was divided into eight zones each 126 

covering 45 degrees, and represented by the corresponding eight directions. The 127 

distribution of reach endpoints relative to target endpoints is shown by the dot ellipses. 128 

The shifted center-holding was likely due to individual preference. 129 

(C) The condition-averaged hand velocity. Hand velocity in the same session was 130 

averaged by both target speed and reach direction as in (B). The lines are in the same 131 

color as in (A) and the position of subplots corresponds to the reach direction denoted by 132 

gray inset. All profiles are aligned to GO (black dots) with marked movement onset (MO) 133 

and touch (interception) time (dots in colors). 134 
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Mixed sensorimotor selectivity of single neurons 136 

Our first question is whether the directional selectivity of neurons in the motor 137 

cortex would be modulated by target speed. We recorded 95, 107, and 55 single 138 

neurons with Utah arrays from monkey C, G, and D, respectively (implanted sites 139 

were shown in Figure 2A). Notably, we found that neuronal directional tuning was 140 

affected by target motion mainly in three ways: preferred direction (PD) shift, gain 141 

modulation, and baseline adjustment (Figures 2B and S1-S3, Methods). Some 142 

neurons showed shifted PDs during interception of moving targets relative to the 143 

PDs of static targets (Figure 2B, PD shift). In this case, the motion direction rather 144 

than the speed of the target dominated the PD shift, as illustrated by an example 145 

neuron: its PDs corresponding to CCW conditions (red and yellow) were clearly 146 

distinguished from those of CW conditions (blue and purple), while its tuning 147 

curves for conditions with the same direction, namely 240 °/s (red) and 120 °/s 148 

(yellow) as well as -240 °/s (purple) and -120 °/s (blue), were very similar. Some 149 

neurons exhibited reach-direction tuning with gain modulation by target speed 150 

(Figure 2B, gain). Here the PDs remained invariant; instead, the neuronal 151 

responses at PD differed across conditions. This modulation was dominated by 152 

the direction of target motion as well. The turning curves of the example neuron, 153 

which displayed higher responses at PD in CW conditions (blue and purple) than 154 

in others (green, yellow, and red), implied a varying strength of selectivity for 155 

reach direction. In addition, the baseline activity of some neurons changed with 156 

target speeds (Figure 2B, baseline). As the adjustment was distributed uniformly 157 

in almost all reach directions, the target speed seemed like a scaling factor of 158 

neuronal activity. 159 

It was difficult to classify these neurons with mixed sensorimotor selectivity into 160 

the three groups (PD shift, gain, and baseline) exclusively, because many of 161 

them exhibited mixed two or three of above modulations (Figure 2C). Moreover, 162 

there was no bias or clustering for neurons with certain combinations of 163 

modulations, making it hard to give an analytical description of single neurons. 164 

These results demonstrate heterogeneous patterns of sensorimotor interplay in 165 

M1 neurons, suggesting that the motor cortex is involved in complex 166 

sensorimotor computation.  167 

 168 
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 169 

Figure 2. Mixed sensorimotor selectivity of single neurons 170 

(A) Utah array locations in the motor cortex of the three monkeys. Neural data were 171 

collected with monkey using the hand contralateral to the recorded cortical regions. AS, 172 

arcuate sulcus; CS, central sulcus.  173 

(B) Three example neurons with PD shift, gain modulation, and baseline adjustment, 174 

respectively. The peristimulus time histograms (PSTH) shows the activity of example 175 

neurons when monkeys reached to upper areas in five target-speed conditions. The inset 176 

as radar plot shows the reach tuning curves in polar coordinate system around the 177 

movement onset (± 100 ms), with surrounding short bars pointing to the preferred 178 

directions. The shadow area of PSTH lines denotes the standard error. 179 

(C) The proportions of three types of modulation around MO of three monkeys. The small pie 180 

charts show the proportions of neurons with (gray) or without (shadow) sensory modulation. 181 

The large pie charts show the proportions of neurons with mixed sensorimotor selectivity 182 

specifically in PD shift (blue), gain modulation (red), baseline adjustment (yellow), or their 183 

mixture (overlapped). 184 
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Population decoding sensory and motor information 185 

To learn more about sensorimotor computation during interception, we 186 

investigated the relevant information embodied in population activity. First, we 187 

performed a decoding analysis. Neural data from a selected session was 188 

utilized to train two support vector machine (SVM) classifiers for target speed 189 

(one in five) and reach direction (one in eight), respectively (Methods). As 190 

Figure 3A shows, the decoding accuracy of target speed rose quickly and 191 

peaked at over 70% around GO, while the decoding accuracy of reach 192 

direction climbed and reached a plateau of over 80% before movement onset 193 

(MO). Supported by this decoding result, the simultaneous encoding of target 194 

speed and reach direction from preparatory to execution period was also 195 

reflected at population level. 196 

We wondered whether the encoding pattern varied with conditions, so we 197 

conducted a more detailed decoding analysis. In the resulting confusion 198 

matrices (Figure 3B), each patch denotes the decoding accuracy of a decoder 199 

trained by the row data and tested with the column data. It turned out that the 200 

reach-direction decoder could be generalized between static and interception 201 

conditions at GO and MO. This generalization, however, held for conditions 202 

with the same target motion direction (e.g., the -120 °/s trained classifier also 203 

worked for the -240 °/s condition), but not for conditions with opposite target 204 

motion directions (e.g., the -120 trained classifier was hard to decode 120 °/s 205 

or 240 °/s conditions). On the other hand, the target-speed decoder only 206 

showed temporal generalization between TO-GO and GO-MO, and was 207 

poorly generalized for the other reach directions. This result suggests that the 208 

population activity may reflect different coding strategies for reach direction 209 

and target speed.  210 

Therefore, to explore these rules and determine how sensory inflow and 211 

motor outflow might interact at population level, we performed PCA on the 212 

normalized population activity. Figure 3C shows the neural states of single 213 

trials in different time windows. As MO approached, neural states gradually 214 

clustered by reach direction. The first two principal components (PCs) of the 215 

neural states at MO explained the most variance ([24.8%, 13.8%]) and were 216 

most related with reach direction (the mean fitting goodness of reach 217 

direction, [𝑅𝑝𝑐1
2 , 𝑅2

𝑝𝑐2] = [0.93, 0.86]). Furthermore, the neural states tended 218 
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to form five ringlike structures corresponding to five target speeds at MO (the 219 

mean goodness of fitting ellipses, 𝑅2 = 0.67±0.06, 0.81±0.04, 0.93±0.01, and 220 

0.77±0.05, for the four time windows, mean ± sd., Figure 3C). This inspired us 221 

to consider the possibility that the motor cortex encodes both reach direction 222 

and target speed information in a subtly structured manner at MO.  223 

 224 

Figure 3. Features of encoding pattern at population level 225 

(A) The mean decoding accuracy (SVM with 10-fold cross-validation) of reach direction 226 

(black solid line) and target speed (blue solid line) for population activity (monkey C, 227 

n=95, 100-ms sliding window), aligned to target on (TO), GO, and MO, respectively. The 228 
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dash-dotted lines are chance levels for reach direction (black, one in eight) and target 229 

speed (blue, one in five). The shaded area is the standard deviation.  230 

(B) The decoding accuracy for reach direction and target speed in different conditions 231 

(the same dataset in Figure 3A). The left panel shows the decoding accuracy for reach 232 

direction among five target-speed conditions in three epochs: TO [200~400] ms, GO ± 233 

100 ms, and MO ± 100 ms (SVM with 10-fold cross-validation, and the chance level is 234 

one in eight). The five target-speed conditions are labeled in five colored squares. The 235 

abscissa is the training data in one target-speed condition during one epoch, and the 236 

ordinate is the test data arranged in a consistent order. For example, the framed patch 237 

corresponds to a classifier trained by data in 120 °/s during TO and tested by -120 °/s 238 

during MO. The decoding accuracy is shown by the color depth. The right panel shows 239 

the decoding accuracy for target speed in distinct reach directions and time windows 240 

(SVM with 10-fold cross-validation, the chance level is one in five) with arrows with 241 

different direction indicating the reach direction. 242 

(C) The neural states in different time windows. In the space spanned by the first two 243 

principal components (PCs), each point represents the neural state of a single trial and is 244 

colored in target speed (first row) or reach direction (second row). The corresponding 245 

explained variance of PCs and the R2 of fitting ellipses is marked for different time 246 

windows. 247 

  248 
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The orbital neural geometry in latent dynamics 249 

For a closer inspection, we focused on the newfound neural geometry in low-250 

dimensional space at MO to examine the latent sensorimotor interaction. 251 

Then, we projected all neural states into the three-dimensional subspace 252 

resulted from static condition (Figures 4A and S4). Similar to the above two-253 

dimensional results, the single-trial neural states clustered according to reach 254 

direction, and the projections of these clusters onto the PC1-PC2 subspace 255 

formed a ring in order (Figures 4A top and 4B right). Interestingly, the five 256 

ringlike structures of different target motion conditions, the ‘target-speed 257 

ellipses’ (𝑅2 = 0.92 ± 0.01, ellipse eccentricity = 0.59 ± 0.11, see Methods), 258 

exhibited organized nesting. They sloped with condition-dependent angles, 259 

which is particularly evident in the PC2-PC3 subspace (Figure 4A bottom and 260 

4B left). This spatial feature was further quantified by calculating the elevation 261 

and azimuth angles of their normal vectors, which revealed that the ellipses of 262 

target speeds in opposite directions inclined symmetrically relative to the 263 

static condition, like mirroring (Figure 4C). We also fitted the ‘PD’ of individual 264 

PCs with cosine functions to show the tuning properties of three dimensions 265 

(Figure 4D). While the PDs of the first two PCs were similar across five target 266 

motion conditions (dash and dotted lines), the PDs of PC3 were quite different 267 

(solid lines), hinting that sensory information may be mainly embodied in PC3. 268 

This distribution agrees with the possible geometric description with 269 

parametric equations (Figure S5).  270 

Given these results, we propose that this orbital neural geometry, including 271 

both the target-speed ellipses and the reach-direction clusters, epitomizes the 272 

sensorimotor interaction in the motor cortex at population level. This geometry 273 

maintained the principal and relatively robust neural coding of motor output 274 

during interception, even with different target speeds, via the reach-direction 275 

clusters ordered in the first two PCs. This geometry is also reflected in the 276 

target-speed ellipses, in which the sensory input can modulate the motor 277 

information in an orthogonal dimension (PC3), altering neural states without 278 

interfering with the generation of motor command.  279 
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 280 

Figure 4. The orbital neural geometry in latent dynamics 281 

(A) Three-dimensional neural state of M1 activity obtained from PCA. Similar to Figure 282 

3C, each point represents a single trial. The upper subplot is colored corresponding to 283 

five target speeds, while the bottom one is in colors corresponding to eight reach 284 

directions. The explained variance of the first three PCs is 25.6%, 14.7%, and 8.7%, 285 

respectively. 286 

(B) Fitted ellipses of neural states. The ellipses fitted in (A) are projected onto three two-287 

dimensional spaces, colored in target speeds (left column) or reach directions (right 288 

column). 289 

(C) Elevation and azimuth angle of normal vectors of the fitted ellipses in (A).  290 

(D) Fitted PDs of the first three PCs in five target-speed conditions. The goodness of 291 

fitting is shown by the arrow length. 292 
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Recurrent Neural Network for dynamic input-output mappings 293 

Even though the orbital neural geometry represents both sensory and motor 294 

information distinctly, it is notably a snapshot of dynamical evolution, rather 295 

than a constant representation (Figure 3C). We speculated that this neural 296 

geometry could be closely related to the initial states set in the optimal 297 

subspace. What kinds of external input may drive the neural dynamical 298 

system into such a state structure? 299 

A series of RNNs receiving different combinations of inputs were built 300 

(Figure 5A; see Methods). The candidate inputs were simplified as target 301 

location, motor intention, and GO-signal to cover sensory, motor and timing 302 

information, respectively. In the brain, motor intention could be provided by 303 

the PPC (Andersen and Buneo, 2002; Andersen and Cui, 2009), and must be 304 

predictive to compensate for sensorimotor delays (Cui, 2016). We also 305 

compared the simulation effect of RNN with various forms of inputs. Although 306 

most variant networks could output accurate hand velocity, their state 307 

structure around MO appeared to diversely rely on input. For instance, in the 308 

absence of motor intention input, there were no reach-direction clusters in the 309 

state structure of the resulting network (Figure S7A); but one-dimensional 310 

stable or two-dimensional updating motor intention would cause the clusters 311 

to distort or disperse (Figures S7B and S7C). Moreover, if target location was 312 

offered as two-dimensional Cartesian coordinates, then the sensory 313 

modulation would not occur at the third PC, leading to a stack of target-speed-314 

related state structures (Figure S7D). The network, whose state structure 315 

most resembled the orbital neural geometry, received target location in the 316 

real-time cosine of target direction, motor intention in stable two-dimensional 317 

Cartesian coordinates, and the GO signal in a step function (Figure 5B; see 318 

Methods). This is not by chance, but rather due to the angular distribution of 319 

target direction and the circular distribution of motor intention.   320 

   To verify that the orbital network geometry was indeed a computational 321 

structure rather than a training byproduct, we tested novel target speeds on 322 

the trained network. The result was that the network produced an 323 

extrapolating state geometry, where the new target-speed ellipses were 324 

interpolated between their ‘elders’ according to both direction and magnitude 325 

(Figure 5C). This generalization was also found in real neural states in several 326 
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additional sessions (Figure 5D). The reproduction of the orbital neural 327 

geometry by RNN suggests that this geometry can be derived from a specific 328 

input-output mapping, and incorporated into the dynamical systems 329 

perspective for motor control. 330 

 331 

Figure 5. The neural geometry in RNNs  332 

(A) RNN structure. The input of network contains different forms of motor intention, target 333 

location, and GO signal. The time flow for each input is also displayed. For each 334 

combination of inputs, the RNN with 200 hidden units is expected to output hand velocity 335 

for accurate interception.  336 

(B) Network state geometry. The PCA results of RNN node activity result in a similar 337 

orbital geometry with neural data. Each point represents a trial and is colored according 338 

to target speed or reach direction (similar to Figure 4).  339 

(C) The generalization to novel target speed in RNN. Network states are colored in 340 

target-speed conditions (color bar below). The ellipses for novel target speed are 341 

geometrically interpolated according to motion direction and speed magnitude of target.  342 

(D) The generalization to novel target speed of real neural states (monkey C).  343 

 344 
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Population neural geometry relies on neuronal tuning 345 

While the RNNs showed how special state geometry could dynamically 346 

emerge, another possibility was that the orbital geometry was also rooted in 347 

neuronal mixed sensorimotor selectivity. In this section, we probe whether a 348 

group of single neurons with some type of mixed sensorimotor selectivity can 349 

deliver the orbital neural geometry instantaneously, given motor intention and 350 

target speed.   351 

For this purpose, three models for single neurons were deduced from the 352 

three typical modulations described above (PD shift, gain, and baseline, see 353 

Figure 2 and S1-S3), along with a full model designed to contain them all 354 

(Methods). We found that the adjusted R2 of the full model (0.62±0.19) was 355 

larger than that of the PD shift model (0.2±0.19), gain model (0.55±0.19) and 356 

baseline model (0.47±0.24) for monkey C (n=95, rank-sum test, p<0.01, see 357 

examples in Figure 6A). The results were similar for the three monkeys 358 

(Figure S7B), again corroborating the mixture of patterns of sensorimotor 359 

selectivity on single neurons. Then, we ran a simulation with neuronal models. 360 

To clarify the effect of each modulation, we performed PCA on the activity of 361 

three groups of model neurons (Figure 6B). In the implementation, each group 362 

consisted of 200 model neurons with their PDs uniformly distributed, and was 363 

solely modulated by PD shift, gain, or baseline (Methods). The resulting 364 

neural geometry in the three simulation groups showed distinct features 365 

(Figure 6C): The five target-speed ellipses were inclined with condition-366 

dependent angles in PD shift group and gain group, similar to the real data, 367 

but the ellipses in baseline group were layered in parallel. The reach-direction 368 

clusters in the first two PCs were preserved in the gain and baseline group, 369 

but not in the PD shift group. Therefore, only the gain modulation group could 370 

reproduce the desired orbital neural geometry.  371 

The direct link of single-neuron selectivity with the shape of the population 372 

neural geometry, as suggested by our simulations, connects our 373 

understandings of sensorimotor interaction at different levels. From this, the 374 

gain modulation by sensory input on motor output appears to be a core 375 

characteristic, dominating the nonlinear sensorimotor interplay at movement 376 
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initiation during the dynamical process of interception.377 

 378 

Figure 6. The shape of neural dynamics determined by neuronal mixed 379 

selectivity  380 

(A) The activity of three example neurons with PD shift, gain, and baseline modulation 381 

(the same neurons as in Figure 2B). Dots and bars denote the average and standard 382 

error of firing rate under corresponding direction, colored in target-speed conditions. 383 

Lines show the fitted firing rates for corresponding models. 384 

(B) The tuning curves of the three simulated neurons fitted by PD shift, gain, and 385 

baseline model, respectively.  386 

(C) Neural states of population simulated neurons are shown in the space spanned by 387 

the first three PCs, colored by target speed or reach direction. Each population consists 388 

of 200 simulated neurons. The neural state in 180° reach direction is highlighted with a 389 

red marker. The first two PCs can explain more than 95% of the variance in the data. 390 

(Explained variance for the first three PCs, in PD shift: 50.1%, 47.1%, 1.6%; in Gain: 391 

49.5%, 46.6%, 2.0%; in Baseline: 50.8%, 47.9% & 1.4%) 392 

 393 
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Discussion 394 

To reveal how sensory inflows and motor outflows interplay in M1 to issue 395 

motor commands, we recorded population activity from monkeys performing a 396 

flexible manual interception that is highly dependent on predictive 397 

sensorimotor transformations. Single-neuron activity showed that the 398 

movement tuning of M1 neurons varied with target speeds in complicated 399 

ways, including PD shift, gain modulation, baseline adjustment, or their 400 

mixture. Dimensionality reduction on population activity revealed an orbital 401 

neural geometry with reach-direction clusters and tilted target-speed ellipses. 402 

Such a geometry, which also emerged in the RNN trained for appropriate 403 

input-output mappings, could be generalized to new target speeds. These 404 

results suggest that the neural mechanisms for predictive spatiotemporal 405 

transformation, especially during the interception in a dynamical context, stem 406 

from neuronal mixed sensorimotor selectivity, and can be visualized as a low-407 

dimensional neural geometry compactly representing the sensorimotor 408 

interaction. 409 

Dynamic sensorimotor interplay in the frontoparietal circuitry 410 

Our investigation of the neuronal mixed selectivity was largely based on the 411 

efficient and systematic separation between sensory modulation and motor 412 

generation afforded by the behavioral paradigm (Li et al., 2018). The resulting 413 

movement endpoints distributed over the entire circle in our task enabled 414 

further scrutiny of the interaction between sensory and motor information, 415 

compared to that limited to a fixed touch point (Merchant et al., 2003). In 416 

addition, the regular target motion in our task resulted in similar behavioral 417 

characteristics, as opposed to the winding hand trajectories in the random 418 

pursuit task (Tkach et al., 2007). Therefore, unlike the interaction between 419 

motor efferent variables such as reach direction and hand velocity (Inoue et 420 

al., 2018; Moran and Schwartz, 1999; Paninski et al., 2004), or between 421 

sensory afferent parameters like gaze and head direction (Zipser and 422 

Andersen, 1988), our paradigm highlights an input-output interaction in the 423 

mapping from time-varying sensory input to definite motor output. 424 
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  We speculate that this sensorimotor tuning reflects the ongoing flow of 425 

information in the frontoparietal network. The frontal and parietal areas are 426 

strongly interconnected and orchestrate many aspects of action planning 427 

(Andersen and Cui, 2009; Battaglia-Mayer and Caminiti, 2019). It is widely 428 

believed that the PPC plays a crucial role in the transformation from sensation 429 

to motor intention (Andersen and Buneo, 2002). In particular, area 7a has 430 

been reported to convey sensory information after the appearance of stimuli 431 

(Merchant et al., 2004a), while explicitly conveying intention about the 432 

forthcoming movement before interception (Li et al., 2022). In contrast, in this 433 

study, M1 encodes the reach direction in a sensory-modulated manner for 434 

almost entire trial (Figure 3). Taken together, these observations suggest that 435 

the sensorimotor integration occurs in circuits between the PPC and M1, as a 436 

part of the frontoparietal layered processing from intention to execution. 437 

Sensorimotor computation in neural dynamics 438 

In the orbital neural geometry, the sensory modulation seems to be presented 439 

in the third PC, whereas the motor information is captured by the first two PCs 440 

(Figure 4 and S5). This orthogonality of target speed relative to reach 441 

direction is consistent with the output-null hypothesis (Kaufman et al., 2014), 442 

which has also been supported by a study explaining how perturbation-443 

evoked response avoided affecting the ongoing movement (Stavisky et al., 444 

2017). Interestingly, it appears to be better explained in spherical coordinates 445 

than Cartesian coordinates, which is different from the previously described 446 

sensorimotor geometry (Remington et al., 2018). 447 

Moreover, the maintenance of this neural geometry for more than 200 ms 448 

(Figure 3C, neural states around GO and MO) can be attributed to evolution 449 

from different initial states. The initial states are set by the preparatory activity 450 

in the motor cortex, which is promoted towards a movement-specific optimal 451 

subspace (Churchland et al., 2010; Churchland et al., 2006). As the motor 452 

cortex can be treated as an autonomous dynamical system (Churchland et al., 453 

2012; Vyas et al., 2020), its evolution is hence influenced by initial states. In 454 

this case, the distribution of the initial states is hinted at by the orbital neural 455 

geometry, correspondingly featured by the reach-direction clusters and the 456 

tilted target-speed ellipses.  457 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.06.535795doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535795


20 

 

Neural geometry and neuronal mixed selectivity 458 

As mentioned above, we found both mixed sensorimotor selectivity and the 459 

population orbital geometry in predictive sensorimotor control, raising the 460 

question of their relationship. A recent study has discussed this issue, and it 461 

proposed that the collective dynamics are flexibly shaped by the constitution 462 

of neural subpopulations with different selectivity and mainly driven by the 463 

complexity of the input-output mapping requirement of the performed task 464 

(Dubreuil et al., 2022). This provides an explanation for the differences among 465 

the neural geometries of three monkeys: The larger eccentricity (Figure S6A) 466 

and the more compressed structure (Figure S6B) of the five target-speed 467 

ellipses might both be related to the relatively lower proportion of the recorded 468 

neurons with mixed selectivity (44% and 52% vs. 66%, see Figure 2C). 469 

Furthermore, as the simulation result directly shows (Figure 6), a 470 

subpopulation with certain mixed selectivity can give corresponding features 471 

to their low-dimensional neural geometry, which implies that the dominant 472 

neuronal properties in the population can be estimated in turn.  473 

Such neural geometry, however, may not be determined via pre-set 474 

computational procedures or by biological hierarchy, but may gradually 475 

emerge from the interplay between specific inputs and outputs (Pouget and 476 

Snyder, 2000). This can be evidenced by the reproduction of the orbital neural 477 

geometry in RNNs (Figure 5B). Thus, the motor plan for interception is likely 478 

to be generated from an interactive rather than hierarchical sensorimotor 479 

transformation.  480 

Conclusions 481 

A nonlinear sensorimotor interplay persistently occurs in the motor cortex 482 

during predictive sensorimotor control in dynamic circumstances, in this study 483 

in the form of an orbital neural geometry in population dynamics. Significant 484 

for the accomplishment of actions, such interaction comes from neuronal 485 

mixed selectivity and task-dependent input-output mapping. The present 486 

study adds to growing knowledge of dynamic sensorimotor processing; yet 487 

understanding more details may await the simultaneous recording of multiple 488 

cortical and subcortical regions and experimental interventions. 489 
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STAR Methods 505 

RESOURCE AVAILABILITY 506 

Lead Contact 507 

Further information and requests for the data and codes should be directed to 508 

and will be fulfilled by the Lead Contact, He Cui (cuihe@ion.ac.cn). 509 

Materials availability 510 

This study did not generate new unique reagents. 511 

Data and code availability 512 

The datasets and code supporting the current study have not been deposited in a 513 

public repository but are available from the corresponding author on request. 514 

 515 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 516 

Animals 517 

Three adult male rhesus macaques (monkey C, D, and G, Macaca mulatta, 7-518 

10 kg) were used in this study. The monkeys sat in a primate chair to perform 519 

the task. The stimuli were back projected onto a vertical touch screen (Elo 520 

Touch system, 19’’; sampling at 100 Hz, spatial resolution <0.1 mm) about 30 521 

cm in front of the monkeys. The hand trajectory was tracked by an optic 522 

camera (VICON Inc.) with an infrared marker on the fingertip. All the 523 

maintenance and procedures were in accordance with NIH guidelines and 524 

were approved by the CEBSIT Institutional Animal Care and Use Committee 525 

(IACUC). 526 

 527 

METHOD DETAILS 528 

Task and behavior 529 

The monkeys were trained to perform a flexible manual interception task in a 530 

dark room. The task paradigm was modified based on the visually guided 531 

reaching interception task in a previous study (Li et al., 2018). At the 532 

beginning, the monkey held the green center dot of a touch screen for 600 ms 533 
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to initiate a trial (Figure 1A). Then, a green target dot appeared in a random 534 

location on the surrounding circle (invisible to the monkey) and started to 535 

rotate around the center. The center dot turned dark as a GO cue after a 536 

random delay (600±200 ms), then the monkey could intercept the target at 537 

any moment within 150-800 ms after GO cue. Once any peripheral location 538 

was touched, the target stopped. The tolerance range of the touch endpoint 539 

for correct trials is less than 2.5 cm away from the target. The monkey would 540 

be rewarded with juice after each correct trial. The target speed of clockwise -541 

240 °/s, -120 °/s and counterclockwise 120 °/s, 240 °/s, as well as static, was 542 

pseudo-randomly interleaved trial by trial. More kinds of target speeds (-543 

360 °/s, -180 °/s, 180 °/s, 360 °/s added) were introduced in the additional 544 

sessions.  545 

Data collection 546 

After the monkeys were adequately trained for the interception task 547 

(successful rate > 90%). Head-posts were implanted stereotaxically under 548 

anesthesia (introduced by 10 mg/kg ketamine, then sustained by 2% 549 

Isoflurane). After few weeks of recovery and adaptation, the monkeys were 550 

implanted with Utah microelectrode arrays (Blackrock Microsystems, Salt 551 

Lake City, UT) in the motor cortex of the hemisphere contralateral to the 552 

handedness (Figure 2A, 128-channel array for monkey C, 96-channel array 553 

for monkey G and D). The location of recording area referred to Magnetic 554 

Resonance Imaging (MRI) and cortical sulcus features. The neuronal activity 555 

was recorded by Blackrock Microsystem 256-channel recording system, 556 

sampled at 30 kHz. In the selected sessions, we collected 95, 107, and 55 557 

well-isolate units of monkey C, G, and D, respectively. 558 

QUANTIFICATION AND STATISTICAL ANALYSIS 559 

Peri-stimulus time histograms (PSTHs)  560 

The spike rasters and PSTHs of single neurons are shown in Figures 2B and 561 

S1-S3. All firing rates were calculated with 50-ms bin and smoothed with a 562 

Gaussian kernel (standard deviation = 20 ms). The standard error of firing 563 

rates was estimated from the 10 bootstrap samples in the trials of 564 

corresponding condition.  565 
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Classification of neuronal tuning properties 566 

The preferred direction (PD) of each neuron for different target-speed 567 

conditions, in 100-ms bins, was calculated by the weighted sum of neuronal 568 

firing rates averaged in eight reach-direction conditions. The tuning depth of 569 

each neuron was determined by the range (max - min) of firing rates in 570 

corresponding condition. The baseline activity of each neuron was determined 571 

by the averaged neuronal firing rate in selected condition. 572 

Based on the PD, tuning depth and baseline activity of single neurons, a 573 

neuron was classified as ‘PD shift’, if its PDs were significantly different 574 

between interception and static condition (Watson-Williams test in circular 575 

data, CircStat by (Berens, 2009)); a neuron was classified as ‘gain’ if its tuning 576 

depths were significantly different between interception and static condition 577 

(two-tailed Wilcoxon signed rand test, p<0.05); a neuron was classified as 578 

‘baseline’ if its baseline activities were significantly different between 579 

interception and static condition (two-tailed Wilcoxon signed rand test, 580 

p<0.05).  581 

Population decoding  582 

The population activity of the motor cortex was used to decode target speed 583 

and reach direction by support vector machine (SVM). Neuronal firing rate 584 

was soft-normalized as  585 

𝐹𝑟𝑛𝑜𝑟𝑚.  =
𝐹𝑟𝑟𝑎𝑤

𝐹𝑟𝑚𝑎𝑥  –  𝐹𝑟𝑚𝑖𝑛  + 5
  586 

where raw firing rates was divided by the range of firing rates plus five 587 

(Churchland et al., 2012). We respectively trained two SVM classifiers 588 

(MATLAB function ‘fitcecoc’, 10-fold cross-validation) to decode reach 589 

direction (one in eight) and target speed (one in five) of single trials in 100-ms 590 

sliding window with 50-ms stride step. The temporal decoding procedure was 591 

repeated ten times to obtain the mean and standard deviation of decoding 592 

accuracy (Figure 3A). Then, we tested the generalization of groups of reach-593 

direction and target-speed decoders (SVM, MATLAB function ‘fitcecoc’, 10-594 

fold cross-validation) in different conditions. For this purpose, three epochs 595 

were selected as 200~400 ms after TO (TO + [200~400] ms), 200 ms around 596 

GO (GO ± 100 ms), and 200 ms around MO (MO ± 100 ms), and single-trial 597 

normalized population activity was averaged according to both conditions and 598 
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epochs. The reach-direction decoder, which was trained by a particular target-599 

speed condition in each epoch, was tested with trials from other target-speed 600 

condition trials in different epochs. Similarly, the target-speed decoder, which 601 

was trained by a given reach direction condition in each epoch, was tested 602 

with trials from other reach-direction condition trials in different epochs. The 603 

decoding accuracy for generalization is shown in confusion matrices (Figure 604 

3B). 605 

Neural state  606 

The population activity was stored in NKT datasets, where N was the number 607 

of neurons, K was the number of trials, and T was the number of time bins. 608 

Neural activity was normalized by Z-score (MATLAB function ‘zscore’). To 609 

obtain the neural states at a given time point, neural activity was averaged for 610 

relevant time bins (e.g. the two 50-ms bins around MO) to result in a K*N 611 

dataset. After preprocessing, we used PCA to reduce the dimension from K*N 612 

to K*C (C was the number of principal components). In the space spanned by 613 

the first three PCs, neural states of single trials were colored in target speed 614 

or reach direction (Figure 3C). All ellipse fitting was performed in three-615 

dimensional space. To show the condition-dependent neural structure more 616 

clearly, we also projected neural states into the space of static condition 617 

(Figure 4). 618 

RNN training 619 

In this procedure, motor intention appeared after GO and was represented as 620 

fixed variables in forms of two-dimensional coordinates, cosine of reach 621 

direction, or reach direction itself. We also tried an alternative form as 622 

updating two-dimensional coordinates, which changed with time. Target 623 

location was designed as real-time two-dimensional coordinates as well as 624 

cosine or angle of real-time target direction, while the Go-signal was a step 625 

function from 1 to 0 or a 10-ms pulse. The RNN in Figure 5 received motor 626 

intention as stable two-dimensional coordinates, target location as real-time 627 

cosine, and GO-signal as a step function. All trained RNNs were of 200 628 

hidden units and to output hand velocity for accurate interception.  629 

We built the three-layer RNNs with nodes according to standard dynamic 630 

differential equation:  631 

𝜏�̇� = −𝑥 + 𝐽𝑟 + 𝐵𝑢 632 
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where 𝑥 means the activity, 𝑟 means the firing rates, 𝜏 means time 633 

constant (50 ms). The connection matrix 𝐽 of hidden layer is initiated as 634 

random in a normal distribution and the matrix 𝐵 denotes the connection 635 

between inputs and hidden units. The output 𝑧 is obtained by 636 

𝑧 = 𝑊𝑟 637 

where 𝑊 is the read-out weight and is expected to reproduce the desired 638 

hand velocity generated by bell-shaped physical equation (Kao et al., 2021). 639 

During training, the loss function was:  640 

𝐸 = 𝑒 + 𝛼𝑟1 + 𝛽𝑟2 641 

where 𝑒 means the mean squared error of 𝑧 and training target. 𝑟1 and 𝑟2 642 

are regularities (Sussillo et al., 2015), 𝑟1 denotes the magnitude of input and 643 

readout weight and is calculated as their squared sum, while 𝑟2 denotes the 644 

magnitude of the nodes’ activity and is calculated as activity squared sum 645 

through time. For constants, 𝛼 = 1𝑒 − 3 and 𝛽 = 1𝑒 − 7.  646 

Single-neuron fitting and simulation 647 

We used PD shift, gain, baseline, and full models to fit neuronal activity, 648 

based on cosine tuning. The gain model introduces nonlinear target-speed 649 

effects on the amplitude of cosine tuning as:  650 

 𝐹𝑅 = (
𝑎1

1+𝑒−𝑎2(𝑠𝑝.) + 𝑐2) ∗ 𝑐𝑜𝑠(𝜃 − 𝜃𝑝𝑑) + 𝑐1  651 

where 𝐹𝑅 is the firing rate at movement onset (MO ± 100 ms). 𝜃 and sp. Is 652 

the reach direction and target speed, respectively. 𝜃𝑝𝑑 is the fitted preferred 653 

direction of the neuron. 𝑎1, 𝑎2, 𝑐1 are constants to be fitted. Neurons are fitted 654 

by single-trial data. 655 

In the PD shift model, the target-speed effects on PDs as:  656 

𝐹𝑅 = 𝑎1 ∗ 𝑐𝑜𝑠 (𝜃 − 𝜃𝑝𝑑 +
𝑎3

1 + 𝑒−𝑎2(𝑠𝑝.)
) + 𝑐1 657 

with the similar symbols to gain model and a new constant 𝑎3.   658 

In the baseline model, the target speed adjusts the baseline activity: 659 

 𝐹𝑅 = 𝑎1 ∗ 𝑐𝑜𝑠(𝜃 − 𝜃𝑝𝑑) +
𝑎3

1+𝑒−𝑎2(𝑠𝑝.) + 𝑐1  660 

with similar symbols to above models. 661 
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The full model integrates all the three above effects: 662 

𝐹𝑅 = 𝑎1 ∗ 𝑐𝑜𝑠(𝜃 − 𝑝𝑑𝑠𝑝) +
𝑎2

1 + 𝑒−𝑎2(𝒔𝒑.)
+

𝑎3

1 + 𝑒−𝑎2(𝒔𝒑.)
∗ 𝑐𝑜𝑠(𝜃 − 𝑝𝑑𝑠𝑝) + 𝑎4663 

∗ 𝑐𝑜𝑠 (𝜃 − 𝑝𝑑𝑠𝑝 −
𝑎5

1 + 𝑒−𝑎2(𝒔𝒑.)
) + 𝑐1 664 

with constants 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5.     665 

We fitted neuronal activity with these four models (MATLAB ‘fit’ function) 666 

and compared the fitting goodness with adjusted R-squares (𝑅𝑎𝑑𝑗.
2 =667 

(1−𝑟2)(𝑛−1)

𝑛−𝑝−1
 , where 𝑛 is the trial number, and 𝑝 is the degree of the 668 

polynomial). 669 

Simulation with model neurons were based on these models to investigate 670 

the relationship between neuronal tuning and population neural geometry.  671 

 672 

  673 
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