Non-Hebbian plasticity produces long-lasting associative memories

Islam Faress1,2,3,4, Valentina Khalil1,3,4, Wen-Hsien Hou2, Andrea Moreno1,3,4, Niels Andersen1,3,4, Rosalina Fonseca5, Joaquin Piriz6, Marco Capogna2,4,7, and Sadegh Nabavi1,3,4,*

Hebbian plasticity, widely regarded as the cellular mechanism for learning and memory, posits that the formation of a long-lasting memory requires a tight temporal co-activation of pre- and postsynaptic inputs encoding that memory. Here we demonstrate that forms of synaptic manipulation deviating from Hebbian rules can produce a long-lasting memory. To this end, we optogenetically manipulate independently two inputs to the lateral amygdala (LA), a region known to mediate fear memories. We focused on the association of one input to the LA with a foot shock, which does not form a detectable memory. This experience can be converted to a long-lasting memory by induction of synaptic potentiation of the input alone, delivered minutes before, minutes after, or even 24 hours later. Notably, a similar conversion to a long-lasting memory is achieved by potentiating an independent input to the LA delivered minutes, but not 24 hours after the experience. Surprisingly, in a non-associative conditioning paradigm, strong stimulation of an independent input uncovers the aversive memory of the shock. Our results indicate that different forms of plasticity can proactively as well as retroactively impact the persistence of memories, an effect with computational and behavioral implications. It is important to note that the effect of heteroLTP is not limited to the synapses that are already potentiated; two-photon glutamate uncaging experiments in slices have shown that heteroLTP can be induced in non-potentiated synapses as long as they receive subthreshold stimuli (Murakoshi, Wang, and Yasuda 2011; Hedrick et al. 2016; Harvey et al. 2008; Harvey and Svoboda 2007). Electrophysiological and imaging studies have further provided a temporal window, ranging from minutes to tens of minutes, within which a heteroLTP can be induced. Based on these experimental works, it has been speculated that synaptic potentiation at independent inputs may influence the strength of a memory, provided it occurs within a short window around the time of the learning (up to tens of minutes) (Kastellakis and Poirazi 2019; Kastellakis, Silva, and Poirazi 2016; Redondo and Morris 2011; Clopath et al. 2008; Govindarajan, Kelleher, and Tonegawa 2006; Bear 1997; O’Donnell and Sejnowski 2014).

The capacity to form associative learning and memory is highly conserved across animals. Equally conserved is the cellular mechanism underlying the learning, which is believed to be the experience-dependent change in synaptic strength; that is synaptic plasticity. In this regard, Hebbian forms of synaptic plasticity are considered the dominant mechanisms by which a transient experience is transformed into a long-lasting memory (Squire and Kandel 2009; Kandel, Dudai, and Mayford 2016; Mayford, Siegelbaum, and Kandel 2012), but see, (Gallistel and King 2009). A main feature of Hebbian plasticity, as well as its appeal, is the concept of synapse specificity by which plasticity is restricted to the active synapses, a property essential for specificity of memories (Maxwell Cowan et al. 2003; Malenka and Bear 2004). The most studied form of Hebbian plasticity is homo-synaptic long-term potentiation (homoLTP), as commonly known, LTP (Maxwell Cowan et al. 2003; Malenka and Bear 2004). Since an LTP protocol can produce synaptic potentiation onto the stimulated synapses (homoLTP) as well as modulate plasticity at other synapses converging onto the same neuron (heteroLTP), the phenomenon of heteroLTP is more widespread than it has been appreciated. This has motivated us to examine the impact of LTP stimuli to one set of synapses on memories formed by a second set of synapses. Specifically, we ask whether the two forms of plasticity, Hebbian homoLTP and non-Hebbian heteroLTP, differ in their efficacy in producing a long-lasting memory of a fleeting experience; and whether the time window between the experience and the induction of the plasticity influences the efficacy. In answering these questions, we must fulfill a set of criteria:

1Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
2Department of Biomedicine, Aarhus University, Aarhus, Denmark
3DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
4Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
5Cellular and Systems Neurobiology, Universidade Nova de Lisboa, Portugal
6Instituto de Fisiología Biológica Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
7Deceased
*Corresponding author
To gain synapse-specific access to the CS input, we replaced a Lüthi 2015a; Herry and Johansen 2014; Janak and Tye 2015). ok, and Lüthi 2008; Pape and Pare 2010; Tovote, Fadok, and ing memory of the aversive experience (LeDoux 2000; Fanses-

The defensive circuit in the amygdala is ideal in regard to the conditioning of thalamic inputs can be modified by selective activation of thalamic inputs to the LA paired with a footshock) using a dual color optogenetic approach, we show that weak optical induction of LTP on LA-projecting cortical inputs. This produces a CR if a homoLTP induction protocol is delivered that produces no detectable CR when tested at 24 hours can produce a CR if a homoLTP induction protocol is delivered minutes before or after, or even as late as the next day. Next, using a dual color optogenetic approach, we show that weak conditioning of thalamic inputs can be modified by selective optical induction of LTP on LA-projecting cortical inputs. This form of heterosynaptic LTP induction protocol was as effective as a homoLTP protocol in producing a long-lasting CR, if it followed the weak conditioning protocol within a short-, but not long-time, window. Intriguingly, a non-associative form of conditioning can elicit a long-lasting CR when followed by homo- and heteroLTP protocols. Altogether, we show that weak

In general, to establish a causal link between changes in synaptic weight to the memory strength, as a prerequisite, one must know which synapses encode the memory (Stevens 1998). For this, it is necessary to probe the synaptic inputs for which the strength can be measured and modified. This, however, is not sufficient. One must further show that upon modification, these inputs produce quantifiable behavioral readout (Nabavi et al. 2014; Kim and Cho 2017; Jeong et al. 2021).

Moreover, the functionally diverse and physically segregated thalamic and cortical inputs onto the LA largely converge onto the same LA neurons (Humeau et al. 2005; Choi et al. 2021).

Additionally, to test the effect of heteroLTP, converging but independent synaptic inputs should undergo changes that modify behavior. This, in turn, requires a means to activate the converging synaptic inputs, selectively and independently- a nontrivial task in an in vivo preparation (Klapoetke et al. 2014).

The defensive circuit in the amygdala is ideal in regard to the first two requirements (Stevens 1998). It is the locus of plasticity for associative learning wherein pairing a conditioned stimulus (CS) such as a tone with an aversive unconditioned stimulus (US) results in a CS-driven conditioned response (CR) indicating memory of the aversive experience (LeDoux 2000; Fanselow and Poulos 2005; Maren and Quirk 2004; Sah, Westbro, and Lüthi 2008; Pape and Pare 2010; Tovote, Fadok, and Lüthi 2015a; Herry and Johansen 2014; Janak and Tye 2015). To gain synapse-specific access to the CS input, we replaced a tone with optogenetic stimulation of thalamic inputs to the lateral amygdala (Nabavi et al. 2014). This has the advantage that a set of synapses controlling a memory can be stimulated with spatio-temporal precision and electrophysiologically monitored (Nabavi et al. 2014; Kim and Cho 2017; Jeong et al. 2021). Moreover, the functionally diverse and physically segregated thalamic and cortical inputs onto the LA largely converge onto the same LA neurons (Humeau et al. 2005; Choi et al. 2021). This provides a reliable platform to study the impact of heterosynaptic plasticity on a memory (Fonseca 2013).

Here we show that a weak conditioning protocol (optical activation of thalamic inputs to the LA paired with a footshock) that produces no detectable CR when tested at 24 hours can produce a CR if a homoLTP induction protocol is delivered minutes before or after, or even as late as the next day. Next, using a dual color optogenetic approach, we show that weak conditioning of thalamic inputs can be modified by selective optical induction of LTP on LA-projecting cortical inputs. This form of heterosynaptic LTP induction protocol was as effective as a homoLTP protocol in producing a long-lasting CR, if it followed the weak conditioning protocol within a short-, but not long-time, window. Intriguingly, a non-associative form of conditioning can elicit a long-lasting CR when followed by homo- and heteroLTP protocols. Altogether, we show that weak

Figure 1. Homosynaptic LTP stimulus minutes before, after, or 24 hrs after a weak associative conditioning produces long-lasting memory. a) Diagram showing the experimental timeline. b) Left: High frequency stimulation (HFS) of the thalamic inputs (Th) to the lateral amygdala (LA) applied either 24 hours (WTh +24hHFSTh , corresponding to panel a, top branch), or immediately after a weak thalamic associative conditioning (WTh +HFSTh , corresponding to panel a, middle branch), significantly increased the CS-evoked freezing (n=9; One-way ANOVA, F (2, 23) = 8.202, p-value=0.0020). Right: HFS of the thalamic input immediately before (HFS +WTh , corresponding to panel a, bottom branch) (n=6) or after a weak associative conditioning (n=8) (WTh +HFSTh , corresponding to panel a, middle branch) is equally effective in increasing the CS-evoked freezing. Colors of the bar graphs represent the experimental protocols for each group of mice (colored boxes in panel a). Subscripts with blue font indicate stimulation of the blue-shifted channelrhodopsin oChIEF using the selective procedure. c) Diagram showing the experimental setup of the in vivo electrophysiology recording (Rec) in anesthetized mice. Evoked field EPSP was produced by blue light stimulation (450nm) of thalamic inputs expressing oChIEF. d) Plot of average in vivo field EPSP slope (normalized to baseline period) in the LA before and after HFS (n=5). Right inset: Superimposed traces of in vivo field responses to single optical stimulus before (dashed line) and after (solid line) HFS. Scale bar, 0.1 mV; 5ms. Results are reported as mean ±S.E.M. **, p<0.01. Ctx: Cortical input; Th: Thalamic input; LA: lateral amygdala; HFS: High Frequency Stimulation; EPSP: excitatory postsynaptic potential; WTh: Recall session after a weak thalamic associative conditioning.
We injected an AAV virus expressing a fast, blue-shifted variant of channelrhodopsin, oChIEF (Lin et al. 2013), in the lateral thalamus. To optically activate the thalamic inputs to the LA, we implanted a fiber optic above the dorsal tip of the LA (Fig. 1a, Extended Data Fig. 1). An optical CS alone did not produce a CR (Extended Data Fig. 1b), whereas temporal (but not non-temporal) multiple pairings of the optical CS with a footshock produced a freezing response (CR) measured 24hrs later (60%±7), indicating the formation of a long-term associative memory (Extended Data Fig. 1b). Importantly, reducing the number of pairings with shorter US duration resulted in a significant reduction in the CR 24hrs following the conditioning (7%±2) (Fig. 1a,b, Extended Data Fig. 1b).

HomoLTP stimulus produces a long-lasting memory in weak associative conditioning

We next examined the efficacy of the LTP protocol in producing a long-term memory at different time points from the weak conditioning protocol. Delivering an optical LTP stimulus immediately before or after such a conditioning protocol on the same inputs (homosynaptic LTP, homoLTP), however, produced a long-lasting CR (Fig. 1b). Remarkably, a homoLTP stimulus, even when delivered 24hrs after the conditioning, could produce a CR comparable in magnitude to that obtained with immediate homoLTP. (Fig. 1b). The behavioral effect of homoLTP conditioning was rapid (Fig. 1a,b). It is notable that a homoLTP stimulus in naïve animals failed to produce a CR (Extended Data Fig. 1b); whereas in these animals, homoLTP did produce a CR as long as the animals received the conditioning protocol (Fig. 1b).

To confirm that optical homoLTP protocol was producing the expected effect on synaptic strength, we performed an in vivo recording from the LA in anesthetized mice expressing oChIEF in the thalamic inputs. Brief light pulses at the recording site produced in vivo field potentials which were potentiated by optical homoLTP stimulus (Fig. 1c,d).
A previous study demonstrated that prolonged illumination of axons expressing a red-shifted ChR2 reversibly renders the axons insensitive to further light excitation (Hooks et al. 2015). We therefore tested whether thalamic axons expressing ChrimsonR can become transiently non-responsive to blue light by the co-illumination with a yellow light. It must be noted that yellow light minimally activates the blue shifted Chr2, oChIEF, (data not shown) the opsin that was later combined with ChrimsonR for independent optical activation of the thalamic and cortical axons. While activation of the thalamic axons expressing ChrimsonR by short pulses of blue light (10-15mW) was effective in evoking a field potential, the light failed to produce a discernible response when the illumination coincided with a 500ms yellow light of submilliwatt intensity. This was evident in whole cell recording from slices (Fig. 2a-c) as well as in the evoked field potential in vivo (Fig. 2d-f). With the co-illumination, fiber volley and excitatory postsynaptic potential (the pre- and postsynaptic components) largely disappeared (Fig. 2d). The responses gradually recovered to their original values within hundreds of milliseconds (Fig. 2e). These data indicate that the observed insensitivity of ChrimsonR to blue light is more likely caused by the transient inactivation of the opsin rather than by the transmitter depletion or subthreshold depolarization of the axons. With an effective dual-color optical activation system at our disposal, we proceeded to investigate the effect of heteroLTP on the memory strength.

Immediate heteroLTP stimulus produces a long-lasting memory in weak associative conditioning

Mice were injected with AAV-ChrimsonR in the thalamic inputs and AAV-oChIEF in the cortical inputs to the LA (Fig. 3a,b, Extended Data Fig. 2a). To optically activate either thalamic or cortical inputs, we implanted a fiber optic above the dorsal tip of the LA (Extended Data Fig. 2a,b). Five minutes after weak conditioning on thalamic inputs, we delivered an optical LTP protocol on the cortical inputs (heterosynaptic LTP, heteroLTP), while blocking the activation of the thalamic inputs using the co-illumination. Mice were tested for their long-term memory retention, 24hrs later (Fig. 3a,b). Similar to homolTP, the induction of heteroLTP protocol immediately after the weak conditioning produced a long-term CR (Fig. 3c). In mice expressing opsin only in the thalamic inputs, the same manipulation failed to produce a CR (Fig. 3c). This demonstrates that the observed CR is caused by the heteroLTP.

this problem by pairing blue-light sensitive anion channels with red-shifted ChR2, where red light derives action potentials, while blue light, through shunting inhibition, nullifies the effect of the red-shifted ChR2 (Vierock et al. 2021; Mermet-Joret et al. 2021). However, this approach, which is based on chloride influx, is not suitable for axonal terminal activation, where the chloride concentration is high (Mahn et al. 2018, 2016).

Figure 3. Heterosynaptic LTP stimulus produces long-lasting memory if delivered within minutes after a weak associative conditioning.

a,b) Diagram showing the experimental timeline of the heterosynaptic LTP protocol manipulation following a weak thalamic associative conditioning. HFS with yellow upperline indicates that the delivery of high frequency stimulation with blue light overlapped with long pulses of yellow light. This co-illumination prevents the activation of ChrimsonR-expressing thalamic inputs (Th) by blue light, while the oChIEF-expressing cortical inputs remain unaffected. Note that yellow light specifically renders ChrimsonR, and not oChIEF, insensitive to blue light. c) Left: High frequency stimulation (HFS) of the thalamic input expressing ChrimsonR immediately following a weak associative conditioning on the same input (WTh+HFSTh, corresponding to panel b) (n=9) was ineffective in producing the CS-evoked freezing. HFS with yellow upperline indicates that HFS with blue light overlapped with long pulses of yellow light. This was to prevent the activation of ChrimsonR-expressing thalamic inputs by blue light, as described above and detailed in figure 2. The same HFS protocol in mice that additionally, expressed oChIEF in the cortical inputs (WTh+HFSCTX, corresponding to panel a, bottom branch) (n=10), significantly increased the CS-evoked freezing (heterosynaptic LTP) (Unpaired t-test, p-value=0.0100). Middle: HFS on the cortical input, induced 24 hours after a weak associative conditioning (WTh+24hHFSCTX, corresponding to panel a, top branch) was ineffective in producing the CS-evoked freezing. (n=9; Paired t-test, p-value=0.2193). Right: Comparison of the effect of homosynaptic LTP protocol (WTh+HFSTh) (same dataset from figure 1b) and heterosynaptic LTP protocol (WTh+HFSCTX) (same dataset from panel c, left) (Unpaired t-test, p-value=0.9740). Results are reported as mean ±S.E.M. **, p<0.01. Subscripts with red font and blue font indicate stimulation of the red-shifted channelrhodopsin ChrimsonR and the blue-shifted channelrhodopsin oChIEF, respectively.
the thalamic and cortical inputs received a weak conditioning protocol, followed 24 hrs later by an LTP protocol on the cortical inputs (heteroLTP) (Fig. 3c). In this condition, heteroLTP protocol, in contrast to homoLTP protocol, failed to produce a significant CR (Fig. 1b and 3c).

Figure 4. Homosynaptic and heterosynaptic LTP protocols produce long-lasting memory when applied within minutes after a non-associative conditioning. a) Diagram showing the experimental timelines for fiber photometry from thalamic inputs (Th) expressing GCaMP7s. b) Averaged trace of the thalamic input activity in response to footshock (onset indicated by the dotted line), n=5. c) Diagram showing the experimental timelines for fiber photometry from the lateral amygdala (LA) neurons expressing GCaMP8m with intact or lesioned thalamic inputs. d) Averaged trace of the LA neurons activity in response to footshock (onset indicated by the dotted line) in mice with lesion (dash line) or no lesion (solid line) in the lateral thalamus (Th), n=6 per group. e) Diagram showing the experimental timelines of the homosynaptic LTP protocol manipulation following an unpaired thalamic conditioning. f) Unpaired conditioning on the thalamic inputs (UTh, corresponding to panel e, top branch) produced no CS-evoked freezing, while if unpaired conditioning was immediately followed by high frequency stimulation (HFS) on the same inputs (UTh + HFSTh, corresponding to panel e, bottom branch) it significantly increased the CS-evoked freezing (homosynaptic LTP), (n=11 per group; Mann-Whitney test, p-value=0.0002). Subscripts with blue font indicate stimulation of the blue-shifted channelrhodopsin oChIEF using the selective procedure. g) Diagram showing the experimental timelines of the heterosynaptic LTP protocol manipulation following an unpaired thalamic conditioning. h) High frequency stimulation (HFS) of the thalamic input expressing red-shifted channelrhodopsin ChrimsonR immediately following an unpaired conditioning on the same input (UTh + HFSTh, corresponding to panel g, top branch) was ineffective in producing the CS-evoked freezing, while the same protocol in mice that, in addition, expressed oChIEF in the cortical inputs (UTh + HFSCtx, corresponding to panel g, bottom branch), significantly increased the CS-evoked freezing (heterosynaptic LTP) n=11 per group; Mann-Whitney test, p-value=0.0002). During HFS, blue light pulses overlapped with long pulses of yellow light. This co-illumination prevents the activation of ChrimsonR-expressing thalamic inputs (Th) by blue light, while the oChIEF-expressing cortical inputs remain unaffected. Note that yellow light specifically renders ChrimsonR, and not oChIEF, insensitive to blue light. Subscripts with red font and blue font indicate stimulation of the red-shifted channelrhodopsin ChrimsonR and the blue-shifted channelrhodopsin oChIEF, respectively. i) Diagram showing the experimental setup of the in vivo electrophysiology recordings (Rec) in anesthetized mice where the thalamic input expressing ChrimsonR and/or cortical input expressing ChrimsonR were optically activated independently. j) Left: Plot of average in vivo field EPSP slope (normalized to baseline period) in LA evoked by optical activation of thalamic inputs, before and after footshock delivery (n=5; Paired t-test, p-value=0.2916). Middle: Plot of average in vivo field EPSP slope (normalized to baseline period) in LA evoked by optical activation of cortical inputs (Ctx), before and after high frequency stimulation (HFS) of these inputs (n=6; Paired t-test, p-value=0.0031). Right: Plot of average in vivo field EPSP slope (normalized to baseline period) in LA evoked by optical activation of thalamic inputs (Th), before and after HFS delivery on the cortical inputs (heterosynaptic LTP) (n=5; Paired t-test, p-value=0.0074). HFS with yellow upperline indicates that the delivery of high frequency stimulation with blue light overlapped with long pulses of yellow light. This co-illumination prevents the activation of ChrimsonR-expressing thalamic inputs (Th) by blue light, while the ChrimsonR-expressing cortical inputs remain unaffected. Superimposed traces of in vivo field response to single optical stimulus before (dash line) and after (solid line) the induced protocols. Results are reported as mean ±S.E.M. **, p<0.01; ***, p<0.001.
Homo- and heteroLTP stimuli produce a long-lasting memory in non-associative conditioning

It has been shown that the thalamic→LA pathway, in addition to its role in the auditory-cued fear learning, is required for the formation of contextual fear memory (Barsy et al. 2020). This can be explained by the fact that the lateral thalamus, the thalamic gateway to the LA, collects signals from different brain regions of diverse modalities (Ledoux et al. 1987; Linke et al. 1999; Barsy et al. 2020). We, therefore, asked if, in addition to cued associative conditioning, an LTP protocol can produce CR in a non-associative form of conditioning on the thalamic→LA pathway. First, we tested whether the thalamic inputs convey a footshock signal to the LA, which is a prerequisite for this paradigm. For this purpose, we took advantage of fiber photometry in freely moving mice. AAV virus expressing the genetically encoded Ca2+ indicator GCaMP7s (Dana et al. 2019) was expressed in the thalamic inputs. GCaMP signal was collected through a fiber optic implanted above the tip of the LA (Fig. 4a, Extended Data Fig. 3a,b). The time-locked GCaMP activity of the thalamic projections to the onset of the footshock was evident, demonstrating that the thalamic inputs convey the footshock signal to the LA (Fig. 4b). To further confirm this, we recorded the activity of the LA during footshock in mice with ablated lateral thalamus. This was done by the co-injection of AAV vectors expressing DIO-taCas3 and Cre recombinase in the lateral medial thalamus and GCaMP8m (Zhang et al. 2023) postsynaptically in the basolateral amygdala (Fig. 4c, Extended Data Fig. 3c,d). The control group underwent the same procedure, but the thalamus was spared (no Cre-recombinase was injected). In the thalamic-lesioned mice, the footshock-evoked response in the LA was significantly reduced (Fig. 4d). This further demonstrates that the aversive stimulus to the LA is conveyed largely through the thalamic inputs.

Next, we asked whether the induction of synaptic potentiation in this pathway following a non-associative conditioning, where footshock is not paired with the CS, would produce a long-term CR. It must be noted that previously we have shown that this protocol does not produce a post-conditioning synaptic potentiation (Nabavi et al. 2014). Mice expressing AAV-oChIEF in the thalamic inputs received optical homoLTP stimulus on these inputs either immediately or 24 hrs after the non-associative conditioning (Fig. 4e). Immediate homoLTP stimulus, indeed, proved to be effective in producing a long-lasting CR even for the non-associative form of conditioning (Fig. 4f); it must be noted that neither non-associative conditioning alone, nor optical homoLTP stimulus in naive animals produced a CR (Extended Data Fig. 4a). HomoLTP protocol when delivered 24hrs later, on the other hand, failed to produce a significant CR (Extended Data Fig. 4b). This observation is consistent with a previous report using only the unconditioned stimulus.
footshock (Li et al. 2020). This phenomenon is distinct from the cued form of conditioning which is receptive to homoLTP manipulation irrespective of the time of the delivery (Fig. 1b).

Next, we investigated the behavioral consequence of heteroLTP stimulus on the non-associative form of the conditioning. Mice expressing AAV-ChrimsonR in the thalamic and AAV-oChIEF in the cortical inputs received optical LTP stimulus on the cortical inputs immediately after footshocks (Fig. 4g). In this group, heteroLTP protocol produced a CR, which was comparable in magnitude to the paired conditioned animals (compare Fig. 4h with Fig. 3c).

Based on this observation, we asked whether heteroLTP stimulus can induce potentiation in the thalamic synaptic inputs which were activated merely by footshock. To our surprise, we observed that following footshocks optical LTP delivery on the cortical inputs induced long-lasting potentiation on the thalamic pathway despite the fact that footshock on its own did not produce any detectable form of postsynaptic potentiation (Fig. 4i,j).

HeteroLTP stimulus produces long-lasting potentiation of synaptic inputs encoding memory in weak associative conditioning

We and others have shown that optical LTP protocols produce expected behavioral changes (Nabavi et al. 2014; Zhou et al. 2017; Roy et al. 2016), such as strengthening a memory (Fig. 1, 3, 4). However, we considered these approaches insufficient to establish a direct behavioral correlate of synaptic changes. To determine if synaptic potentiation accompanies increased fear response following heteroLTP induction, we resorted to in vivo recording in freely moving mice. We expressed AAV-ChrimsonR in the thalamic inputs, and AAV-oChIEF in the cortical inputs (Extended Data Fig. 5a). Six weeks after the injection, a customized optrode was implanted in the LA, which allows for the stimulation of the thalamic and cortical inputs as well as to detect the optically evoked field potential (Fig. 5a, Extended Data Fig. 5b).

The baseline for the evoked field potential and the input-output curve of both pathways were recorded prior to the conditioning (Extended Data Fig. 5c). Blue light pulses produced smaller evoked responses when coincident with submilliwatt long pulses of yellow light (data not shown). This further supports the efficacy of the dual optical activation approach that we adopted (Fig. 2), which permits independent activation of the converging thalamic and cortical inputs in behaving mice. To induce a weak conditioning protocol on the thalamic inputs, mice received red light stimulation co-terminated with a footshock (Fig. 5a). Five minutes later, we delivered an optical LTP protocol on the cortical inputs, while blocking the activation of the thalamic inputs using the co-illumination.

On the following day (recall day), we recorded evoked field responses prior to the memory retrieval. We observed a left shifted input-output curve as well as long-lasting potentiated field responses in both thalamic and cortical pathways (Fig. 5b, Extended Data Fig. 5c). Fifteen minutes later, mice were moved to a new context and tested for their memory recall by activating their thalamic inputs. Mice showed significantly increased freezing response during optical stimulation compared to either pre- or post-stimulation freezing levels (Fig. 5c).

HeteroLTP stimulus stabilizes a decaying form of synaptic potentiation in slices

Up to this point, we have shown that a memory and the underlying synaptic weight can be strengthened by the induction of LTP on an independent pathway. However, the notion of change in synaptic strength using an independent pathway was originally observed in slices (Frey and Morris 1997; Fonseca 2013). We therefore tested if the two pathways which we used for our behavioral manipulations can undergo similar changes in synaptic weight in a slice preparation where we have a more precise control on the activation and monitoring of synaptic plasticity. In slice preparations, we stimulated the thalamic inputs with a weak induction protocol (Fig. 5d), resulting in a transient form of potentiation that regressed to the baseline within 90 minutes (Fig. 5e). However, when the weak conditioning protocol was followed by a strong conditioning protocol on the converging cortical inputs, it produced a stable form of potentiation that lasted for the entire duration of the recording (Fig. 5c,f).

Discussion

Numerous forms of synaptic plasticity, such as long-term potentiation (LTP) have been described but their relation to long-term memory is poorly understood. Here, we investigated the temporal and input specificity learning rules by which Hebbian and non-Hebbian forms of synaptic potentiation (homo- and heteroLTP respectively) modify the strength of a memory. We found that the strength of a memory can be enhanced by potentiating the synaptic inputs encoding that memory (homoLTP) prior to or after an aversive conditioning. Importantly, we show that potentiation of an independent synaptic input (heteroLTP) minutes after the conditioning is as effective in strengthening the memory.

Our in vivo electrophysiology recordings from freely moving animals showed a strong correlation between synaptic potentiation and the successful recall of the aversive memory, as late as 24hrs after the induction of heteroLTP; all the mice with the successful recall had a successful potentiation of the synaptic input (Fig. 5b,c). This was accompanied by a long-lasting potentiation of the cortical input- the input that was used to induce heteroLTP in the thalamic inputs (Fig. 5b). Such a long-lasting behavioral or electrophysiological consequence of heteroLTP
has not been reported before.

The efficacy of heteroLTP stimulus when delivered 24hrs after the conditioning, on the other hand, drops considerably, whereas homoLTP retains its capacity to strengthen the memory. These data are consistent with the Synaptic Tagging and Capture model, which predicts that a heteroLTP protocol when induced minutes, but not hours, prior to or after a weak LTP protocol can stabilize the potentiation (Redondo and Morris 2011; Rogerson et al. 2014).

Perhaps the most surprising finding in this work is that homoLTP as well as heteroLTP effectively uncover an aversive memory in a non-associative conditioning: this form of conditioning on its own does not produce a detectable memory, as predicted by Hebbian models of plasticity (Extended Data Fig. 4a). It is important to note that previously we have shown that non-associative conditioning not only fails to produce a CR, but also does not induce synaptic potentiation (Nabavi et al. 2014). Similarly, in our in vivo recording, where anesthetized mice received multiple footshocks, no synaptic potentiation of thalamic inputs was detected (Fig 4j). The same protocol, however, when followed by heteroLTP stimulus, resulted in a synaptic potentiation that lasted for the entire duration of the recording (Fig. 4j). This is not predicted by the STC model in which heteroLTP works only on the already potentiated synaptic inputs. In this respect, this phenomenon is more in line with the Cross Talk model, which predicts heteroLTP can result in potentiation of synapses that have undergone subthreshold stimulation but no potentiation (Harvey and Svoboda 2007; Harvey et al. 2008). In the present context, the subthreshold could be the result of activation, and hence priming of the thalamic inputs by footshock. This is supported by the fact that in the absence of a footshock, LTP stimulus produces no CR (Extended Data Fig. 4a). As such, it appears that the mere potentiation of thalamic inputs is not sufficient to produce a memory, and some form of priming through associative or non-associative conditioning is essential.

Since we show that the thalamic inputs convey the footshock signal, the recovery of the CR following the LTP protocol on the same inputs (homoLTP) could be considered as a form of reinstatement, a well-known phenomenon where the mere presentation of a footshock after an extinguished CR, reinstate the CR (Bouton 2016; Bouton and Bolles 1979). We think this is unlikely. First, we show that homoLTP is equally effective before the formation of the association. Additionally, we have shown previously that an LTP protocol is ineffective in restoring an extinguished CR (Nabavi et al. 2014).

It must be noted that computational models simulating a circuit with comparable pre- and postsynaptic layouts to ours yield similar results; that is heteroLTP stabilizes a weak memory. However, according to these models, heteroLTP in brain circuits with different pre- and postsynaptic arrangements, may produce different physiological and behavioral outcomes (O’Donnell and Sejnowski 2014).

What cellular mechanisms could underlie the electrophysiological and behavioral phenomena we observed here? We believe some forms of postsynaptic intracellular diffusion from strongly stimulated cortical inputs to weakly stimulated neighboring thalamic inputs, as proposed by the Cross Talk and STC models. Although we cannot exclude the possibility of extracellular communication (Engert and Bonhoeffer 1997) such as glutamate spillover, we think this is unlikely. Extracellular communication is mainly reported in the circuits at early developmental stages which lack a tight extracellular matrix sheath (Asztely, Erdemli, and Kullmann 1997). Additionally, LTP induction on the cortical input produces no heterosynaptic effect on the naive thalamic inputs (Doyère et al. 2003). Taken together, our data point to an intracellular mechanism, which requires a prior priming but not necessarily a prior synaptic potentiation.

Consistent with this notion and complementary to our work, several studies have investigated the molecular and neuromodulatory mechanisms underlying endurance of memories. For example, it has been shown that exposure to a novel experience strengthens memory encoding in appetitive and aversive learning paradigms (Takeuchi et al. 2016; Ballarini et al. 2009). Similarly, activation of dopaminergic inputs to the hippocampus after memory encoding enhances memory persistence, mimicking the effect of environmental novelty (Takeuchi et al. 2016; Rossato et al. 2009). De novo protein synthesis dependence and/or neuromodulator-signaling were suggested to be essential for this phenomenon.

At this stage, we have no ground to speculate about the molecular mechanisms underlying our observations. Further studies are needed to reveal the molecular machinery that enables Hebbian and non-Hebbian forms of plasticity, which modify a memory and its synaptic strength across time and synapses.

Materials and Methods

Animals. Male mice of the strain C67BL/6JRj were purchased from Janvier Labs, France. Mice are purchased at the age of 6-8 weeks. All mice were housed in 12 hours light/dark cycle at 23 degrees Celsius and had ad libitum food and water access. Mice were housed 4 per cage. All procedures that involved the use of mice were approved by the Danish Animal Experiment Inspectorate.

Viruses. Recombinant adeno-associated viral vectors (AAV) were purchased from the viral vector facility VVF, at the University of Zurich, Switzerland. Serotype 8, AAV-2-hSyn1-oCHIEF_tdTomato(non-c.d.)-WPRE-SV40p(A) had physical titer of 6.6 x 10E12 vg/mL. Serotype 5, AAV-1/2-hSyn1-chI-
Mice were anesthetized with isoflurane and maintained at 1% slicing. For optimal optic fiber tract marking, the whole head of brain stimulation location was performed after PFA fixation and slicing. After each experiment, the verification of the freely moving experiments were done with a rotary joint (Doric Laser Technology, USA) at the intensity of 1 mW for co-illumination when performing independent optical activation. All the experiments were done with a light intensity of 10-15 mW. In the experiments that involved drug application, approximately 1μL of the drug (TTX: 10 ng or NBQX: 1 μg) was applied onto the shank of the silicone probe and was inserted again. After each experiment, the brain recording location was verified through a stereoscope after PFA fixation and slicing.

For in vivo electrophysiological recordings from freely moving mice, a customized microdrive was designed to enable concurrent optical stimulation and recording of neuronal activity (modified from (Kvitsiani et al. 2013)). The microdrive was loaded with a single shuttle driving a bundle of 3 tetrodes (Sandvik) and one 200 μm-diameter optical fiber (Doric lenses). For Microdrive implantation, after anesthesia (F.M.M., I.P.), the craniotomies were drilled through the skull at the sites of viral injection and screw placement. (AP, −1.8 mm; ML, +3.4 mm). The protocol consisted of 20 trains of 200 pulses of 2 ms, 450 nm light at 85 Hz with a 40-second inter-train interval. Immediately after the HFS, the light-evoked fEPSP was measured for at least 45 minutes to ensure the stability of the outcome of the LTP. All the LTP experiments were preceded by delivering 3 mild foot shocks to the mouse right before the HFS protocol.

In the experiment that involved drug application, approximately 1μL of the drug (TTX: 10 ng or NBQX: 1 μg) was applied onto the shank of the silicone probe and was inserted again. After each experiment, the brain recording location was verified through a stereoscope after PFA fixation and slicing.

Surgery. Mice were 7-9 weeks at the time of stereotaxic surgery. Mice were anesthetized with isoflurane and maintained at 1% throughout the surgery in the stereotaxic setup (Kopf 940) and a heating pad maintained body temperature at 37 degrees Celsius. Viruses were injected with a volume of 500-700 nL over 3-4 minutes. Cortex coordinates (all in mm and from Bregma) are (-2.85 AP, -4.4 ML and +1.6 DV (from the skull surface)). Lateral thalamus coordinates are (-3.15 AP, -1.85 ML and +3.5 DV (from the skull surface)). LA coordinates are (-1.65 AP, -3.45 ML and +3.45 DV (from the skull surface)). Optic fiber cannulas were cemented with dental cement, Superbond (SUN MEDICAL, Japan).

Optogenetics. ChR expressing AAVs were injected into the thalamic and the cortical regions projecting to the LA, and a 6-8 week expression time was given to allow for a high and stable expression in the axons. In freely moving mice, a 200 micrometer (Thorlabs 200 EMT, NA 0.39) optic fibers cannulae were implanted in the same surgery to target LA. The optic fiber cannulae were fabricated manually. The optic fiber was scored with an optic fiber scribe (Thorlabs s90 carbide scribe) and then pulled to break. Next, the optic fiber was inserted into the ferrule, and the output was measured with a power meter (Coherent Laser Check); 10 percent loss was the maximum allowed loss after coupling to the patch cord (Thorlabs 200 um NA 0.39). Afterward, the length was adjusted to 4mm (the exposed optic fiber) and glued with a UV curable glue. After gluing, the opposite end was scored and cut, and the output was measured again. The light output was confirmed to have a concentric-circle pattern.

In experiments with oChIEF, a 450 nm laser diode (Doric) was used with a light intensity of 10-15 mW. In the experiments with ChRimsonR_tdT彼Ome-WPRE-SV40p(A) had physical titer of 5.3 x 10E12 vg/mL. Serotype 5, AAV-2-mCaMKIIα–jGCaMP8m–WPRE-bGHP(A) had physical titer of 6.6 x 10E12 vg/mL. Serotype 5, AAV-2-hSyn1-chi–jGCaMP7s–WPRE-SV40p(A) had physical titer of 7.7 x 10E12 vg/mL. Serotype 5, ssAAV-2–hEF1α–dlox–(pro)tcasp3_2A–TEYp(rev)–dlox–WPRE–hGHP(A) had physical titer of 4.7 x 10E12 vg/mL. Serotype 1, scAAV-1/2–hCMV-chi–Cre–SV40p(A) had physical titer of 1.0 x 10E13 vg/mL. Serotype 8, AAV-2-hSyn1–hM4D(Gi)–mCherry–WPRE–hGHP(A) had physical titer of 4.8 x 10E12 vg/mL.

Electrophysiological recordings were performed using a Neuralynx Cheetah 32 system. The electrical signal was sampled at
Ex-vivo slice electrophysiology (related to Fig. 2a-c). Experimental procedures were approved by the Animal Care and Use Committee of the University of Buenos Aires (CICUAL). Briefly, 4-week old C57 mice (n = 4) were injected with 250 nl of AAV-1/2-hSyn1-chl-ChromosomR_tdTomato-WPRE-SV40 cop at the MGN. After 3 weeks of expression, the animals were sacrificed and the brain removed and cut in 300 µm coronal slices in a solution composed of (in mM): 92 N-Methyl-D-glucamine, 25 glucose, 30 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 20 HEPES, 2 Thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 10 MgCl2, and 0.5 CaCl2 (equilibrated to pH 7.4 with 95% O2–5% CO2); chilled at 4°C. Slices containing the BLA were transferred to a 37°C warmed chamber filled with the same solution and incubated for 10 minutes. After this period slices were transferred to a standard ACSF solution of composition (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2 and 10 Glucose (pH 7.4), at room temperature. Recordings started 1 hour later and were performed in this same ACSF solution.

Patch-clamp recordings were done under a microscope (Nikon) connected to a Mightex Illumination system for 470 nm, and 532 nm light delivery. Whole-cell patch-clamp recordings were done using a K-glucurate based intracellular solution of the following composition (in mM): 130 K-glucurate, 5 KCl, 10 HEPES, 0.6 EGTA, 2.5 MgCl2-6H2O, 10 Phosphocreatine, 4 ATP-Mg, 0.4 GTP-Na3. Glutamatergic AMPA mediated synaptic responses were recorded at -60 mV holding potential under blockage of GABAa and NMDA receptors (Picrotoxin 100 µM and APV 100 µM). Light stimulation consisted in 2 ms pulses of 470 nm light at 10 mW; co-illumination consisted in 450 ms of 532 nm light at 1 mW that co-terminated with stimulation light.

Ex-vivo slice electrophysiology (related to Fig. 4d-f). A total of 15 slices prepared from 10 Black6/J mice (3-5 week old) were used for electrophysiological recordings. All procedures were approved by the Portuguese Veterinary Office (Direcção Geral de Veterinária e Alimentação - DGAV). Coronal brain slices (300 µm) containing the lateral amygdala were prepared as described previously (Fonseca, 2013). Whole-cell current-clamp synaptic responses were recorded using glass electrodes (7-10 MΩ; Harvard apparatus, UK), filled with internal solution containing (in mM): K-glucurate 120, KCl 10, Hepes 15, Mg-ATP 3, Tris-GTP 0.3 Na-phosphocreatine 15, Creatine-Kinase 20U/ml (adjusted to 7.25 pH with KOH, 290mOsm). Putative pyramidal cells were selected by assessing their firing properties in response to steps of current. Only cells that had a resting potential of less than -60mV without holding current were taken further into the recordings. Neurons were kept at -70mV with a holding current below -0.25nA. In current clamp recordings, the series resistance was monitored throughout the experiment and ranged from 30MΩ-40MΩ. Electrophysiological data were collected using an RK-400 amplifier (Bio-Logic, France) filtered at 1 kHz and digitized at 10kHz using a Lab-PCI-6014 data acquisition board (National Instruments, Austin, TX) and stored on a PC. Offline data analysis was performed using a customized LabView-program (National Instruments, Austin, TX). To evoke synaptic EPSP, tungsten stimulating electrodes (Science Products, Gmbh, Germany) were placed on afferent fibers from the internal capsule (thalamic input) and from the external capsule. Pathway independence was checked by applying two pulses with a 30ms interval to either thalamic or cortical inputs and confirming the absence of crossed pair-pulse facilitation. EPSPs were recorded with a test pulse frequency for each individual pathway of 0.033 Hz. After 15 min of baseline, transient LTP was induced with a weak tetanic stimulation (25 pulses at a frequency of 100 Hz, repeated three times with an interval of 3 sec) whereas long-lasting LTP was induced with a strong tetanic stimulation (25 pulses at a frequency of 100 Hz, repeated five times, with an interval of 3 sec).

As a measure of synaptic strength, the initial slope of the evoked EPSPs was calculated and expressed as percent changes from the baseline mean. Error bars denote SEM values. For the statistical analysis, LTP values were averaged over 5 min data bins immediately after LTP induction (T Initial) and at the end of the recording (T Final 95-100 minutes). LTP decay was calculated by [(T Initial –T Final)/T Final*100].

Fiber Photometry. GCaMP fluorescent signal was acquired by Doric fiber photometry system and through an optic fiber that is identical to the optogenetics ones described above. A pigtailed rotary joint (Doric) was used for all fiber photometry experiments in freely moving mice. Doric Lenses single site Fiber Photometry Systems with a standard 405/465 nm system fluorescent minicube iFMCMG2_E((460-490)_F(500-540)_O(580-680)_S. The 405 nm was modulated at 208.616 Hz, and 465 nm was modulated at 572.205 Hz through the LED module driver. When the fiber photometry experiments were combined with optogenetics and/or electrophysiology recordings, the 638 nm laser diode was used to deliver the red light. A TTL generator device (Master 9) was used to time stamp the signals. The data was acquired through Doric Studio and analyzed in Doric studio and by a custom MatLab script.

The code used for the analysis is freely available at the following link: https://github.com/NabaviLab-Git/Photometry-Signal-Analysis. Briefly, the signals were downsamped to 120 Hz using local averaging. A first order polynomial was fitted onto the data, using the least squares method. To calculate the relative change in fluorescence, the raw GCaMP signal was normalized using the fitted signal, according to the following equation: \(\text{deltaF/F} = \frac{\text{GCaMP signal} - \text{fitted signal}}{\text{fitted signal}} \). Behavioural events of interest were extracted and standardized using the mean and standard deviation of the baseline period.
Behavior. Eight weeks after the AAV injection, around 2 p.m., the mice were single-housed 20 minutes before the conditioning in identical cages to the home cages. Ugo Basile Aversive conditioning setup was used for all the experiments. The conditioning protocol was preceded by a pre-test, optical stimulation at 10 Hz for 30 seconds testing optical CS, identical to the one used in the 24-hours test. This step ensured that optical stimulation before conditioning and HFS does not cause any freezing or seizures. The strong conditioning protocol consisted of 5 pairings of a 2-seconds long optical CS at 10 Hz, 20 pulses, co-terminated (last 15 pulses) with a 1.5-second foot shock 1 mA. The weak conditioning protocol was composed of 3 pairings of a 1.5-seconds long optical CS at 10 Hz, 15 pulses, co-terminated (last 10 pulses) with a 1-second foot shock 1 mA. Twenty-four hours later, the mice were tested in a modified context with bedding on the context floor, and chamber lights switched off. The mice were given a 2-minute baseline period or until they maintained a stable movement index and did not freeze at least 1 minute before the delivery of the testing optical CS. The testing optical CS was delivered twice, 2 minutes apart. Freezing was automatically measured through Anymaze (Stoelting, Ireland; version 5.3). Freezing percentages indicated the time the mouse spent freezing (in the 2 CSs) divided by 60 and multiplied by 100. The unpaired conditioning had the same number of pairings and parameters of the optical CS and the foot shock, as the weak conditioning protocol, with the difference that they were never paired, separated by 1 to 3 minutes. Depending on the experiment, the HFS protocols were either delivered in the conditioning chamber or testing.

Drugs. All drugs were dissolved in sterile PBS from stock solutions. NBQX at 50 micronolar (Sigma) and TTX 0.5 micromolar (HelloBio) were added to the silicone probe's shank (5 microlitres). NBQX was added before the TTX.

Immunofluorescence. The mice were anesthetized with Isoflurane and euthanized by cervical dislocation. The heads were collected and stored for 7 days in 10% formalin at room temperature. Then, the brains were sliced into 100-120 µm thick slices in PBS on Leica Vibratome (VT1000 S).

To exclude any virus-mediated toxicity, the brains were stained for NeuN. Slices were permeabilized with PBS-Triton X 0.5% plus 10% of Normal Goat Serum (NGS;Thermo Fisher Scientific, 16210064) and blocked in 10% Bovine Goat Serum (BSA; Sigma, A9647) for 90 minutes at room temperature. Subsequently, the slices were incubated with anti-NeuN antibody mouse (Merk Millipore, MAB377; 1:500) in PBS-Triton X 0.3%, 1% NGS, and 5% BSA. The incubation lasted for 72 hours at 4°C. At the end of the 72h incubation, the slices were washed three times in PBS at room temperature. Next, the slices were incubated in Cyanine 3 (Cy3) goat anti-mouse (Thermo Fisher Scientific, A10521, 1:500) in PBS-Triton X 0.3%, 1% NGS, and 5% BSA for 24 hours at 4°C. Finally, nuclear staining was performed using 1:1000 of DAPI (Sigma, D9542) for 30 minutes at room temperature. Brain slices were mounted on polylsyne glass slides (Thermo Scientific) with coverslips (Housein) using Fluoromount G (Southern Biotech) as mounting media.

Imaging. Imaging was performed by using a virtual slide scanner (Olympus VS120, Japan). Tile images were taken by the whole brain slices by using 10X (UPLSAPO 2 10x / 0,40) or 20X objective (UPLSAPO 20x / 0,75). The emission wavelength for Alexa 488 was 518 nm with 250 ms of exposure time. For Cy3, the emission wavelength was 565 nm with 250 ms of exposure time. The brain slices were visually inspected to confirm the virus expression in the thalamic and cortical regions projecting to the LA and to determine the optic fiber location in the LA.

Statistics. Statistical analyses were done via Prism 8.01 (Graph-Pad Software, San Diego, CA, USA). All the data are represented as mean ± SEM. Before choosing the statistical test, a normality test (Shapiro-Wilk and D'Agostino-Pearson normality test) was done to all data sets. If the data presented a normal distribution, then a parametric test was used to calculate the statistical differences between groups. The statistical methods and the P values are mentioned in the figure legends.

Acknowledgements

We thank R. Malinow and the current and previous members of Nabavi laboratory for their suggestions during the progress of this project and their comments on the manuscript. We also thank R. Morris for his comments on the manuscript. This study was supported by an ERC starting grant to SN (22736), by Lundbeck NIH Brain Initiative grants to SN (R360-2021-650 and R273-2017-179) by the Danish Research Institute of Translational Neuroscience to S.N (19958), by PROMEMO (Center of Excellence for Proteins in Memory funded by the Danish National Research Foundation) to S.N (DNRF133). Figures were Created with BioRender.com.

Contributions

SN conceived the project. SN and I.F designed the experiments. IF, VK, WHH, AM, NA, RF, and JP performed the experiments. AM and VK made the figures.

Reference

Nabavi, Sadegh, Rocky Fox, Christophe D. Proulx, John Y. Lin, Roger Y. Tsien, and Roberto Malinow. 2014. “Engineer-
ing a Memory with LTD and LTP.” *Nature* 511 (7509): 348–52.

Tovote, Philip, Jonathan Paul Fadok, and Andreas Lüthi. 2015a.

Extended data 1. a) Representative image of a coronal section of mice expressing AAV-oChIEF-tdTomato in the lateral thalamus (Left). Scale bars, 1 mm. Axonal expression of AAV-oChIEF-tdTomato in lateral amygdala (Right). Scale bars, 500 μm. b) The CR is significantly higher after strong conditioning (n=8) compared to weak conditioning (n=9), and unpaired conditioning (n=7). Optical CS alone did not elicit any CR (n=4; Two-way ANOVA, F (3, 16) = 34.68, p-value<0.0001). c) Optic fiber placement of individual mice from figure 1. Results are reported as mean ±S.E.M. ****, p<0.0001.
Extended data 2. a) Representative image of a coronal section of mice expressing AAV-oChIEF-tdTomato in the LA-projecting cortical region and AAV-ChrRmsonR-tdTomato in the LA-projecting thalamic region. Scale bars, 1 mm. Axonal expression of AAV-oChIEF-tdTomato and AAV-ChrRmsonR-tdTomato in lateral amygdala. Scale bars, 500 μm. b) Optic fiber placement of individual mice from figure 2.
Extended data 3. a) Representative image of a coronal section of mice expressing AAV-GCaMP7s in the lateral thalamus (Left). Scale bars, 1 mm. Axonal expression of AAV-GCaMP7s in lateral amygdala. Scale bars, 500 μm. b) Optic fiber placement of individual mice from figure 3. c) Overlay of the maximum extent of the lesion in the thalamic-lesioned group (n=6). d) Optic fiber placement of individual mice from figure 3 f,h.
Extended data 4. a) Comparison of the freezing levels evoked by high frequency stimulation of the thalamic input in naïve mice (HFSTh, n=4) compared to mice subjected to unpaired conditioning (U; n=11) and to unpaired conditioning filled by HFS (U + HFSTh, n=11; Two-way ANOVA, F (2,12)= 10.04, p-value=0.0027). b) A paired comparison of the freezing levels evoked by thalamic axons activation when the thalamic LTP is applied 24 hours after the unpaired conditioning, the (n=7, Wilcoxon test, p-value=0.0625). c) Optic fiber placement of individual mice from figure 3. Results are reported as mean ± S.E.M.
Extended data 5. a,b) Diagram and histology of the brain sections showing the AAVs injection sites, and the optetrode implantation sites. c) Representative example of the EPSP amplitude recorded in the LA by stimulation of cortical axons (left), and thalamic axons (right) before and after the weak conditioning and cortical LTP.