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ABSTRACT  1 

 2 

The plasma cell cancer multiple myeloma (MM) varies significantly in genomic characteristics, 3 

response to therapy, and long-term prognosis. To investigate global interactions in MM, we 4 

combined a known protein interaction network with a large clinically annotated MM dataset. We 5 

hypothesized that an unbiased network analysis method based on large-scale similarities in gene 6 

expression, copy number aberration, and protein interactions may provide novel biological 7 

insights. Applying a novel measure of network robustness, Ollivier-Ricci Curvature, we examined 8 

patterns in the RNA-Seq gene expression and CNA data and how they relate to clinical outcomes. 9 

Hierarchical clustering using ORC differentiated high-risk subtypes with low progression free 10 

survival. Differential gene expression analysis defined 118 genes with significantly aberrant 11 

expression. These genes, while not previously associated with MM, were associated with DNA 12 

repair, apoptosis, and the immune system. Univariate analysis identified 8/118 to be prognostic 13 

genes; all associated with the immune system. A network topology analysis identified both hub 14 

and bridge genes which connect known genes of biological significance of MM. Taken together, 15 

gene interaction network analysis in MM uses a novel method of global assessment to demonstrate 16 

complex immune dysregulation associated with shorter survival. 17 

 18 

STATEMENT OF SIGNIFICANCE 19 

Multiple myeloma has heterogenous clinical outcomes which are not well predicted by current 20 

prognostic scoring systems. Global assessment of gene-protein interactions using Ollivier-Ricci 21 

Curvature produces clusters of patients with defined prognostic significance, with high-risk groups 22 

harboring complex gene dysregulation impacting immune function.  23 
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4 

INTRODUCTION 1 
 2 
The plasma cell cancer multiple myeloma (MM) has highly heterogenous clinical outcomes, with 3 

a key determinant of response to treatment being genomic driver events. The most common 4 

recurrent genomic events are hyperdiploidy, with a predominance of gains in chromosomes 3, 5, 5 

7, 9, 11, 15, 19, and 21, and canonical chromosomal translocations affecting the immunoglobulin 6 

heavy chain on chromosome 14 (1). MM harbors relatively few recurrent point mutations 7 

compared with many other cancers, with only NRAS, KRAS, TP53, FAM46C and DIS3 having a 8 

prevalence above 10% (2). 9 

 10 

Prognostic scoring updates have expanded the International Staging System (ISS) to incorporate 11 

several chromosomal translocations [t(4;14), t(14;16)] and copy number aberrations (CNA; 12 

deletion17p, gain/amplification1q), with each feature being considered as an individual event 13 

(3,4). It has been recognized, however, that neither these features nor somatic mutations are 14 

sufficient to define prognosis, with more extensive genomic assessments required to accurately 15 

predict biological behavior.  16 

 17 

Previous studies have described various genomic subtypes of MM using RNA-sequencing (RNA-18 

Seq) and/or CNA data (5–10). The subtypes identified by these methods tend to be dominated by 19 

a single genomic event (i.e., hyperdiploidy, t(11;14), t(4;14), high proliferation index) or a 20 

combination of previously described events (i.e., complex hyperdiploidy with gain1q and 21 

monosomy 13) (9).  22 

 23 
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5 

Here, we consider that integrating data from a comprehensive systems view, incorporating 1 

complex interactions between multiple genes in a network, may define patterns of biological 2 

behavior not captured by individual genomic events. Recently, a novel measure of network 3 

robustness, Ollivier Ricci curvature (ORC), has been used to characterize breast and ovarian 4 

cancers (11,12) and other pathological states (13). ORC measures the ability of a given connection 5 

or interaction, between a pair of nodes — here being genes — to withstand perturbation, 6 

considering both local and global connectivity in assessing the robustness of each pathway (see 7 

Methods for a detailed description). In the context of cancer genomics, positive curvature implies 8 

that there are multiple, robust active pathways for communication between the two genes. This 9 

edge, or connection, can be described as “hub-like”. Negative curvature implies that if the 10 

connection between two genes is impacted, the effect is relatively greater because of lack of direct 11 

feedback controls; this edge can be considered “bridge-like”. Therefore, ORC analysis predicts the 12 

effect of changes in gene expression within a wider network as opposed to just the individual gene.  13 

 14 

We utilize the ongoing Multiple Myeloma Research Foundation (MMRF) multi-site longitudinal 15 

clinical registry study, which follows patients newly diagnosed with MM and collects both clinical 16 

and genomic information periodically (9,14). The project, entitled CoMMpass (Relating Clinical 17 

Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile), has over a thousand 18 

patients enrolled in the latest interim analysis (IA19), and represents the largest publicly available 19 

MM genomic data repository. The dataset includes clinical information, RNA sequencing (RNA-20 

Seq) information, copy number aberration (CNA), among others. To understand the relationship 21 

between genes, we used a gene interactome derived from the Human Protein Reference Database 22 

(HPRD) (15).  23 
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 1 

In this study, we apply an innovative geometric network analysis that integrates complex gene-2 

product interactions to characterize global patterns of MM biological behavior. Hierarchical 3 

clustering defined groups of patients having different survival times, despite similar ISS 4 

distributions. We identified 118 genes having significantly aberrant expression, most of which are 5 

previously unassociated with MM, and 8 genes with prognostic capabilities which are part of the 6 

immune system. These genes are not just hub genes, but bridge genes which help modulate 7 

connections between two larger hub genes. Here, we demonstrate that protein-gene interaction 8 

network analysis in MM demonstrates complex immune dysregulation which associates with 9 

shorter survival. 10 

 11 
 12 
METHODS 13 
 14 
In this study, we perform a comprehensive geometric network analysis that integrates complex 15 

gene-product interactions to characterize patterns in biological states. The methodology is 16 

mathematically well-defined and has no fitting parameters, with an outline of the process 17 

illustrated in Figure 1.  18 

 19 
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 1 
Figure 1. Overview of the data processing pipeline. This study uses a novel measure of network 2 
robustness, Ollivier-Ricci curvature, to examine genes associated with shorter progression free 3 
survival in multiple myeloma. RNA-Seq: RNA-sequencing; HPRD: Human Protein Reference 4 
Database; CNA: copy number aberration; ORC: Ollivier-Ricci curvature; GSEA: gene set 5 
enrichment analysis.  6 
 7 
Genomic data  8 

The MMRF CoMMpass dataset (release iteration: IA19), available to all researchers at 9 

www.research.mmrf.org, includes clinical information, RNA-Seq gene expression, and CNA data 10 

collected over time. Further information on the data collection and curation methods has 11 

previously been published (9). For inclusion in this study, subjects must have RNA-Seq and CNA 12 

data extracted from the bone marrow prior to the start of treatment and both demographic and 13 

survival information. For the RNA-Seq data, the data provided by the MMRF was preprocessed 14 

using the SALMON toolbox (16), included filtering unstranded immunoglobulin values, and was 15 

normalized as transcripts per million (TPM) and log-transformed. For the CNA data, the data 16 

provided by the MMRF was preprocessed using GATK (9).  17 
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 1 

Hyperdiploidy defined by more than 2 gains involving >60% of the chromosome affecting 2 

chromosomes 3, 5, 7, 9, 11, 19 or 21. Mutational signatures were assessed using mmsig 3 

(https://github.com/UM-Myeloma-Genomics/mmsig), a fitting algorithm designed specifically for 4 

MM, to estimate the contribution of each mutational signature in each sample. APOBEC-5 

mutational activity was calculated by combining SBS2 and SBS13, with the top 10% being defined 6 

as hyper-APOBEC (https://cancer.sanger.ac.uk/signatures/sbs/). The complex structural variant 7 

chromothripsis was defined by manual curation according to previously published criteria (17).  8 

 9 

Gene-product interaction data 10 

For network analysis on gene-product interactions, we used the curated network given by the 11 

Human Protein Reference Database (HPRD) (15). The database consists of 9,600 genes and 12 

notates 36,822 interaction pairs. We used the largest connected component of shared information 13 

among the HPRD, RNA-Seq, and CNA data sets, which included 8427 of 9600 potential genes. 14 

  15 

Ollivier Ricci curvature  16 

ORC integrates both local and global connectivity in assessing the robustness of each interaction 17 

as characterized by the numerous feedback loops in a network modeled by a weighted graph or 18 

Markov chain (18). Robustness, in this context, is defined as the ability of a system to return to its 19 

original state following a perturbation. The ORC calculation is based on the ratio of an intrinsic 20 

graph distance, capturing the metric properties of the network, to a distance defined via optimal 21 

transport theory between the distributions of neighboring genomic values connected to a given 22 

node. Capturing the sample-dependent pattern of curvature weighted edges provides a powerful 23 
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9 

network-wide signature that integrates non-local information; illustrated in Figure 2, examples 1 

zero, positive and negative curvature. ORC was calculated as per previous descriptions (11) and is 2 

defined below.  3 

 4 
Formally, ORC is defined as follows:  5 
 6 

 7 
where  is the Wasserstein distance, also known as the Earth Mover’s distance (EMD), between 8 

the probability distributions, μi , μj. The probability distribution around a given node (gene), μi , 9 

is defined by the edge weights originating from the given node i to adjacent nodes as follows:  10 

 11 

 12 
 13 
 14 
Where rk indicates either RNA-Seq or CNA values in node k connected to node i. The 15 

denominator d(i, j) is the weighted shortest path between the two nodes, where the edge weights 16 

of the weighted graph are derived from nodal values (RNA-Seq or CNA) quantifying the 17 

information between two nodes and is formally defined below.  18 

 19 

 20 
 21 
 22 
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 1 
Figure 2. Ollivier Ricci curvature on example networks. Gray edges indicate zero curvature 2 
between nodes, blue edges indicate positive curvature, and red edges indicate negative curvature. 3 
In the center image, there are multiple paths that can be traced out between any pair of nodes; 4 
therefore, the curvature is positive. Conversely, the red edges in the right-most figure show 5 
negative curvature values since the removal of any edge would bisect the graph.  6 
 7 
 8 
Clustering analysis  9 

To explore the potential subtypes in the cohort, we used a hierarchical agglomerative clustering 10 

method. For each data type, the RNA-Seq, CNA, and ORC matrices were separately clustered. 11 

The number of clusters was determined by the silhouette score (19), a measure which takes into 12 

account both the average intra-cluster distance and average nearest-cluster distance to determine 13 

the optimal number of clusters. Survival analysis for progression free survival (PFS) was 14 

performed using the Kaplan-Meier method and log-rank tests were used to determine statistical 15 

significance. Multiple comparisons were corrected using the Benjamini Hochberg false discovery 16 

rate (BH-FDR) (20).  17 

 18 

Differential gene expression analysis  19 

To investigate biological differences between the identified subtypes, we conducted a differential 20 

gene expression analysis between high and low-risk groups, as identified in prior steps, using RNA 21 

sequencing read counts with DESeq2 (21). The p-values from this analysis were then BH-FDR 22 
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11 

corrected. Genes with a corrected p-value less than 0.05 and an absolute log2 fold change greater 1 

than 3.5 were considered significant.  2 

 3 

Pathway analysis 4 

Pathway analysis was performed using the Broad Institute’s Gene Set Enrichment Analysis 5 

(GSEA) tool (22,23). The utilized pathways are from the hallmark gene set collection from the 6 

human molecular signatures database (MSigDB) (24). The fifty gene sets present different 7 

biological states and processes identified using manual curation. Gene association with the 8 

immune system was determined using ImmuneSigDB, an immune system pathways database 9 

provided by GSEA (25). 10 

 11 

Prognosis analysis  12 

To test whether or not an individual gene was prognostic, we used a Cox’s proportional hazards 13 

model (26) with the RNA-Seq data. The p-values from this analysis were corrected for multiple 14 

hypothesis testing using BH-FDR. For genes that were significant with RNA-Seq, we repeated the 15 

modeling analysis using CNA data.  16 

 17 

Network topology analysis  18 

To understand how genes are connected to each other, a given gene’s immediate neighbors are 19 

visualized as a ‘1-hop plot.’ Furthermore, a ‘2-hop plot’ shows not only a gene’s immediate 20 

neighbors but also the nearest neighbors of the immediate neighbor genes, in order to contextualize 21 

the relative portion of the overall network a given gene occupies. Bridge genes connect with 22 
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relatively few genes in the network, while hub genes form many connections relative to the rest of 1 

the genes in the network.  2 

 3 

Data and code availability  4 

The methods and instructions for how to use them are available for download at 5 

www.github.com/aksimhal/mm-orc-subtypes. All data is available for download at 6 

www.research.mmrf.org. 7 

 8 
 9 
 10 
RESULTS 11 
 12 
Patient cohort 13 
 14 
CoMMpass IA19 RNA-Seq and CNA data were available for 659 patients. The mean age in the 15 

dataset was 62.5 ± 10.7 years; 60% were male, and the ISS distribution was 35% stage I, 35% 16 

stage II, and 30% stage III. For the cohort, the five-year PFS rate was approximately 32%, with 17 

the longest survival time listed at eight years. An overview is presented in Supplementary Table 18 

1.  19 

 20 

Hierarchical clustering using Ollivier-Ricci curvature differentiates subtypes with low 21 

progression-free survival rates 22 

 23 

The largest connected network component from shared information between the HPRD, RNA-24 

Seq, and CNA data consisted of 8,468 nodes and 33,695 edges. ORC, a correlate for robustness of 25 

strength between gene interaction pairs, was computed for each of the 33,695 interaction pairs in 26 

each individual patient. Hierarchical clustering of the resultant ORC matrix together with CNA 27 
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13 

data produced 8 clusters (Supplementary Figure 1A, Figure 3A), while clustering based on 1 

RNA-Seq produced 6 clusters (Supplementary Figure 1B, Figure 3B); both methods being 2 

significant for PFS (CNA; p=0.0082, RNA-Seq; p=0.0016, log-rank test). Interestingly, the 3 

clustering appears to be defining biological differences not captured by the ISS prognostic score, 4 

with a relatively even distribution of ISS stages in each cluster.  5 

 6 

Considering the dominant impact of hyperdiploidy on CNA analyses, we repeated hierarchical 7 

clustering on the non-hyperdiploid samples and found PFS prediction remained significant 8 

(p=0.0002, log-rank test). Of note, analyzing CNA via ORC produced a cluster representing 10% 9 

of patients with a markedly inferior PFS when compared to the remaining clusters (Figures 3A, 10 

3C); median PFS was 1.7 years, despite only 35% of patients being ISS III. When assessing 11 

previously described copy number risk factors (Supplementary Table 2), patients in this cluster 12 

almost universally contain aberration in chr1q (gain; 57%, amplification; 29%, diploid 3%), while 13 

also harboring the highest proportion of the complex structural variant chromothripsis (43% of 14 

patients, p<0.0001 compared with the remaining clusters, Fisher’s exact test). This finding is 15 

congruent with previously published data demonstrating chromothripsis to be an independent 16 

prognostic factor in MM (17), and with an increasing body of knowledge demonstrating that 17 

multiple genomic insults compound to worse survival (17,27). 18 

  19 
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 1 
Figure 3. Hierarchical clustering using Ollivier Ricci Curvature (ORC) predicts progression-2 
free survival (PFS) in multiple myeloma. Kaplan-Meier analysis of PFS based on ORC 3 
according to (A) copy number aberration, and (B) RNA sequencing. To better understand the 4 
differences between the high risk and low risk cohorts, clusters with similar outcomes were 5 
grouped. C) For CNA based clustering, clusters 1-6 and 8 were combined into the low-risk group. 6 
Cluster 7 was the high-risk group. D) For RNA-sequencing data, clusters 4 and 6 were combined 7 
into a high-risk group. Clusters 1 and 3 were combined into a low-risk group.  8 
 9 
Clustering of the ORC matrix with RNA-Seq data produced more variation in PFS between 10 

clusters (Figure 3B). Of note, clusters 2 and 3 contain the majority of t(11;14) patients 11 

(Supplementary Table 3). Considering the dominant role of CCND1 in MM pathophysiology, 12 

we repeated hierarchical clustering in the non-t(11;14) samples, which remained significant for 13 

PFS-prediction (p=0.0002, log-rank test). When clustering with all patients; 98% of those in cluster 14 

4 harbor t(4;14), and 81% of those in cluster 6 have a translocation affecting MAF,MAFA or 15 

MAFB, with 72% having increased APOBEC-mutational activity. Clusters 1 and 5 are more 16 

heterogenous, with a combination of hyperdiploidy, canonical translocations, gain/amp1q, TP53 17 
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aberration and chromothripsis. While a high proportion of patients in the 2 clusters with the 1 

shortest PFS (4 and 6) carry a previously described genomic risk factor, the other clusters (1 and 2 

3) demonstrate a longer PFS despite 29.2% being ISS III, and 34% harboring a risk factor included 3 

in R-ISS / R2-ISS. Given that clustering with ORC using RNA-Seq demonstrated better 4 

discrimination of PFS compared with CNA, we have elected to focus on RNA-Seq for the 5 

remainder of the current study. We hypothesized that expanding on the ORC analysis with gene 6 

set enrichment analysis (GSEA), prognostic modeling, and network topology analysis will provide 7 

further biological insights.  8 

 9 

Expression analysis using ORC-based risk groups demonstrates differential DNA damage and 10 

immune system signaling 11 

 12 

Differential gene expression analysis was conducted comparing high-risk (clusters 4 and 6) and 13 

low-risk (clusters 1 and 3) as defined by ORC analysis of RNA-Seq data. Gene sets enriched in 14 

the high-risk group includes inflammatory response, IL-6/JAK/STAT3 signaling and DNA 15 

damage response (DDR) signaling (P53 pathway, DNA repair and apoptosis, Table 1). Of note, 16 

there was no significant difference between the groups in p53 function by traditional methods 17 

(TP53 mutations and del17p), therefore our methods are capturing more global dysregulation in 18 

DNA damage signaling than is evident by standard mutation and copy number analysis. 19 

 20 
  21 
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16 

Table 1. Differential gene expression analysis according to ORC-based risk groups. 1 
Directionality indicates the gene-set expression in the high-risk group compared with the low-2 
risk group, with risk being defined by ORC of RNA-Seq data. 3 

Pathway Genes Q-value Directionality 

Mitotic spindle BIN1, GEMIN4, LATS1 5.15e-3 Underexpressed  

DNA repair ADA, CCNO, ERCC4, GTF2H5, 
NFX1, DCTN4 

9.16e-5 Overexpressed  

IL6 JAK STAT3 
signaling 

CCL7, JUN, IFNGR1, IL2RA 1.52e-3 Overexpressed  

Inflammatory response CCL7, KIF1B, MEP1A, PDPN, 
KCNJ2 

1.62e-3 Overexpressed  

P53 pathway ADA, JUN, SAT1, PLK2, NOL8 1.62e-3 Overexpressed  

Apoptosis JUN, IFNGR1, SAT1, PAK1 6.44e-3 Overexpressed 

 4 
Within these differentially expressed pathways, 118 genes were selected for further pathway 5 

analysis (having absolute log fold change > 3.5 and corrected p-value < 0.05, Supplementary 6 

Table 4). Of these 118 genes, 19 were under-expressed and 99 were overexpressed in the short 7 

survival group compared to the longer survival group in the poor survival group. In univariate 8 

analysis, 8/118 genes were predictors of PFS (BUB1, MCM1, NOSTRIN, PAM, RNF115, SNCAIP, 9 

SPRR2A and WEE1, Table 2), with 5 of these also being significant when analyzing based on 10 

CNA (NOSTRIN, PAM, RNF115, SNCAIP and SPRR2A). Interestingly, none of these genes feature 11 

in previously described lists of MM driver genes (27,28), suggesting that we are capturing novel 12 

aspects of MM biology. In addition to differential expression in the inflammatory response and 13 

IL-6/JAK/STAT3 signaling gene sets, interrogation of the ImmuneSigDB database demonstrated 14 

110 /118 genes to overlap with ImmuneSigDB pathways, including all 8 of the independently 15 

prognostic genes (Table 2). Taken together, these findings suggest that global assessment of gene 16 

interactions can detect complex immune dysregulation. 17 

 18 
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Table 2. Gene expression in 8 novel immune-network genes associate with survival. 1 
Coefficients less than 1 indicate a protective effect — associated with longer PFS. Coefficients 2 
greater than 1 indicate a detrimental effect — associated with a shorter PFS.  3 

Gene Coefficient 95% - 105% Range Q-value Gene description Number of 
ImmunoSigDB 

gene sets 

BUB1 1.36 ± 0.05 1.22-1.51 1.71e-8 BUB1 mitotic checkpoint 
serine/threonine kinase 

5 

MCM6 1.45 ± 0.07 1.27-1.66 6.19e-8 Minichromosome 
maintenance complex 
component 6 

4 

NOSTRIN 1.58 ± 0.11 1.27-1.98 4.49e-5 Nitric oxide synthase 
trafficking 

1 

PAM 0.72 ± 0.08 0.62-0.83 1.34e-5 Peptidylglycine alpha-
amidating monooxygenase 

7 

RNF115 1.42 ± 0.11 1.14-1.77 1.72e-3 Ring finger protein 115 6 

SNCAIP 1.40 ± 0.09 1.17-1.67 2.03e-4 Synuclein alpha interacting 
protein 

1 

SPRR2A 1.34 ± 0.05 1.22-1.46 1.43e-10 Small proline rich protein 
2A 

3 

WEE1 1.32 ± 0.04 1.23-1.41 6.19e-15 WEE1 G2 checkpoint 
kinase 

9 

 4 
 5 
Local neighborhood 1-hop and 2-hop gene networks demonstrate differential DNA damage 6 

and immune system signaling 7 

 8 

A key feature of gene network analysis is the ability to capture a wide range of gene-pair 9 

interactions, above and beyond the expression levels of a single gene. While this analysis may be 10 

difficult to interpret in the context of highly connected genes, it can detect complex patterns (i.e., 11 

an overall increase or decrease in network robustness) or specific individual interactions (i.e., a 12 

gene-pair demonstrating an increase in robustness while all other local connections become more 13 

fragile).  14 
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 1 

Comparing high-risk and low-risk clusters as defined by ORC analysis of RNA-Seq data, we note 2 

several interesting network expression patterns. Within DDR-signaling, TP53 and ATM signaling 3 

pathways overwhelming become more robust in the high-risk group (Figures 4A, 4B), with more 4 

robust pathways generally expected to exert increased effects. While we typically associate loss of 5 

p53 function with poor prognosis in cancer, global network analysis is detecting global changes in 6 

expression that may not fully capture functional protein levels. The same analysis performed on 7 

the basis of CNA demonstrates a mixture of TP53 connections becoming more robust and more 8 

fragile, possibly reflecting the impact of del17p (Supplementary Figure 2A). 9 

 10 

In addition to DDR-signaling, networks centered on CCND1 and MYC become more robust overall 11 

(Figures 4C, 4D), which suggests these signaling and transcriptional hubs remain dominant in the 12 

context of high-risk disease. In contrast to the above networks showing a clear signal of robustness, 13 

the effect on RAF / RAS / MAPK and NFKB signaling are more heterogenous (Supplementary 14 

Figure 2B-D), suggesting that some parts of this network may play an oversized role in MM 15 

biology compared with the other interactions. 16 

 17 

Considering the immune dysregulation observed on GSEA analysis, signaling through some 18 

cytokines and receptors become more fragile (i.e., IL-6, IFNg; Figures 4E, 4F), while others 19 

demonstrate a more heterogenous effect (i.e., TNF, IFNa; Supplementary Figures 2F, 2G). In 20 

this context, pathways becoming more fragile would be expected to exert less than normal control. 21 

Interestingly, multiple networks involving therapeutic targets for MM immune-based therapies 22 

become more fragile, suggesting potential therapeutic vulnerabilities. This included TNFRSF17 23 
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(encoding for BCMA, a cellular-therapy target), CD38 (the target of monoclonal antibody 1 

daratumumab), IZKF3 (a target of immunomodulatory agent lenalidomide) and SLAMF7 (the 2 

target of monoclonal antibody elotuzumab) (Figures 4G-I, Supplementary Figures 2H, 2I).  3 

 4 
 5 
  6 
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 1 
Figure 4. Local neighborhood of selected genes relevant to MM biology and the immune 2 
system. Each line or edge represents the interaction between a gene-pair in a network, comparing 3 
the median interactions observed in the high-risk group compared with those in the low-risk group. 4 
Blue edges indicate that the connections are more robust in the high-risk group, while orange edges 5 
are more fragile, risk being defined by the RNA-Seq-based clustering analysis. Higher resolution 6 
images are available at www.github.com/aksimhal/mm-orc-subtypes. 7 
 8 
 9 
 10 
 11 
 12 
 13 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535155
http://creativecommons.org/licenses/by-nc/4.0/


21 

 1 
From the list of 8 novel genes having expression associated with PFS in MM, all have a recognized 2 

role in immune regulation (Table 2). In contrast with the other genes, only WEE1, (encoding for 3 

a tyrosine kinase which affects G2-M transition), has been previously implicated in MM biology 4 

(29). In the HPRD, WEE1 acts as a hub gene, forming an above average number of connections 5 

with its immediate neighbors (18 versus 8.4 for the whole graph). Interestingly, within the 8 6 

prognostic genes, BUB1 and WEE1 connect to each other in a 2-hop analysis via PLK1, CDK1, 7 

and CRK. From the genes with significantly different expression between risk groups, 24/118 8 

(20.3%) connect to the 8 prognostic genes within the two-hop analysis.  9 

 10 

The 8 genes identified play different roles in their local neighborhoods (Figure 5); NOSTRIN, (a 11 

nitric oxide synthase trafficker), RNF115, (an E3 ubiquitin ligase), and SPRR2A (induced by type-12 

2 cytokines in response to infection) form bridge-like connections to a single other gene. NOSTRIN 13 

connects to another nitric oxide gene, NOS3, RNF115 to the RAS oncogene family member 14 

RAB7A, while SPRR2A connects with EVPL (associated with squamous cell cancer and 15 

autoimmune disease). Four genes act as bridges for their local neighborhood: BUB1, MCM6, PAM, 16 

and SNCAIP (Figures 5, 6). While these genes are not hub genes per se, they connect to multiple 17 

hub genes and could therefore play a modulating role.  18 

 19 
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 1 
Figure 5. Local neighborhood of the eight genes identified as being predictive of PFS. Each 2 
line or edge represents the interaction between a gene-pair in a network, comparing the median 3 
interactions observed in the high-risk group compared with those in the low-risk group. Blue edges 4 
indicate that the connections are more robust in the high-risk group, while orange edges are more 5 
fragile, risk being defined by the RNA-Seq-based clustering analysis.  6 
 7 
 8 
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 1 
Figure 6. ‘Two-hop’ neighborhood of the eight genes identified as being predictive of PFS. 2 
Each line or edge represents the interaction between a gene-pair in a network, comparing the 3 
median interactions observed in the high-risk group compared with those in the low-risk group. 4 
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Blue edges indicate that the connections are more robust in the high-risk group, while orange edges 1 
are more fragile, risk being defined by the RNA-Seq-based clustering analysis. Higher resolution 2 
images are available at www.github.com/aksimhal/mm-orc-subtypes. 3 
 4 
 5 
For example, in the 2-hop analysis, the mitotic checkpoint kinase BUB1 connects to HDAC1 6 

(Figure 6A), a histone deacetylase commonly upregulated in MM cells with a well-defined impact 7 

on prognosis (30). We note multiple network connections between BUB1 and HDAC1, as well as 8 

connections between BUB1 and each of CDK1 (cell-cycle transition regulator) and APC (a tumor-9 

suppressor protein within the Wnt signaling pathway). PAM, encoding for a protein with multiple 10 

functions described, connects to PRKCA, a protein kinase involved in regulation of proliferation, 11 

tumorigenesis, and inflammation. Interestingly, the network connections around PRKCA are 12 

predominantly more robust in the high-risk group. SNCAIP, (which inhibits ubiquitin ligase 13 

activity), connects with PTN (Figure 6F; a hub gene encoding for a protein having a role in cell 14 

survival, angiogenesis and tumorigenesis), previously noted to be elevated in MM patients (31). 15 

Our analysis finds that the connection between SNCAIP and PTN becomes more robust in the high-16 

risk group. Interestingly, when comparing the 1- and 2-hop networks between RNA-Seq and CNA 17 

data, several gene networks were highly analogous between the two methods (Supplementary 18 

Figure 3). 19 

 20 

Overall, the complex gene interactions captured through ORC analysis have the capacity to 21 

significantly improve our understanding of biological differences between patients have short and 22 

long survival, extending on what we understand from traditional mutation and copy number 23 

analysis.  24 

 25 

 26 
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DISCUSSION 1 
 2 
In order to investigate global gene-protein interaction networks in MM and their impact on 3 

prognosis, we combined a known protein interaction network, HPRD, with a large MM dataset; 4 

CoMMpass. We applied a novel measure of network robustness, ORC, to examine patterns in the 5 

RNA-Seq gene expression and CNA data and how they relate to clinical outcomes. Hierarchical 6 

clustering using ORC produced 6 clusters based on RNA-Seq and 8 clusters based on CNA data, 7 

with both data sources predictive of PFS. Previously published genomic classifications in MM 8 

based on RNA-Seq and/or CNA data have defined between four to twelve clusters, depending on 9 

the data and analytical approach (5–10). To date, no study has integrated genomic information 10 

with known protein interaction information in an analysis able to simultaneously integrate local 11 

and global network information. By using techniques previously shown to uncover differences in 12 

network strength in other domains, such as ovarian cancer and autism spectrum disorders (12,13), 13 

we were able to demonstrate a new way of characterizing MM genomic data.  14 

 15 

Our results demonstrate fidelity with known genomic risk factors (i.e., t(4;14), gain 1q, TP53 16 

aberration) as well as emerging factors not yet in clinical use (i.e., APOBEC mutational activity 17 

and the complex structural variant chromothripsis (17,32,33). While some genomic subgroups 18 

were defined by a single event (i.e., 98% of RNA-Seq cluster 4 harboring t(4;14), the network 19 

analysis approach produced other groups not previously described, with a combination of genomic 20 

events defining prognostically significant clusters. It is notable that the cluster having the shortest 21 

PFS was defined not by ISS, R-ISS, hyperdiploidy or IgH translocations but associated with the 22 

combination of gain/amp 1q and chromothripsis. This finding supports the hypothesis that more 23 

comprehensive, global genomic characterization is able to better define MM prognosis. 24 
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 1 

As ORC measures relative robustness between genes, GSEA analysis comparing high-risk and 2 

low-risk groups as identified by ORC analysis of RNA-Seq data allowed exploration of gene-pair 3 

interaction changes in robustness associated with survival differences between groups. GSEA 4 

located 118 differentially expressed genes associated with six key biological pathways, five of 5 

which were overexpressed in the group with the poor survival. The underexpressed pathway, 6 

mitotic spindle assembly, has previously been reported to be associated with poor prognosis in 7 

MM (34), while the overexpressed pathways were all associated with DNA damage response 8 

(DDR) and acute phase inflammation / immune response. While del 17p is included in the R-ISS 9 

prognostic score, and genomic complexity and instability are recognized features of high-risk MM 10 

biology (35–38), there is not currently any immune component to routine prognostication of 11 

NDMM patients. Furthermore, there is likely a biological link between the pathways we describe, 12 

with an inflammatory hypoxic microenvironment potentially contributing to aberrant DDR (39), 13 

and functional high-risk patients who relapse within 12 months described to harbor both mutations 14 

affecting the IL-6/JAK/STAT pathway and abnormal gene expression associated with mitosis / 15 

DDR (40).  16 

 17 

Univariate analysis of the 118 differentially expressed genes identified 8 prognostic genes which 18 

are all associated with immune function according to ImmunoSigDB. Network topology analysis 19 

identified most of these 8 to be bridge genes, connecting to genes known to have biological impact 20 

in MM (i.e., HDAC1, CDK1, PRKCA and PTN). The near-neighbor and 2-hop gene topology 21 

networks capture more global gene dysregulation, potentially missed in single-gene expression 22 
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analysis. Our results may also suggest a new set of therapeutic targets to further investigate in 1 

high-risk MM patients.  2 

 3 

Considering possible limitations; while CoMMpass represents the largest multi-site, international 4 

genomic MM dataset compiled to date, it does contain patients who received drug regimens no 5 

longer in common usage, and a low proportion of patients receiving the most potent modern 6 

regimens. Ideally our methods would be applied to datasets including daratumumab- based 7 

induction therapy. Considering possible extension of our analytical methods: while the choice of 8 

using the HPRD as the protein interaction network is common in literature (41), other networks, 9 

such as STRING (42), may provide complementary results. Finally, no network analysis method 10 

represents the ‘gold standard’, and it is plausible that other clustering and network analysis 11 

methods may provide alternative results. Future studies may consider whether or not the 118 genes 12 

associated with high-risk individuals are dysregulated at precursor MM stages, and how the 13 

expression of these genes is altered in response to treatment.  14 

 15 
  16 
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