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1 Abstract

Accurate identification of cell classes across the tissues of living organisms is central in the analysis of growing atlases
of single-cell RNA sequencing (scRNA-seq) data across biomedicine. Such analyses are often based on the existence of
highly discriminating “marker genes” for specific cell classes which enables a deeper functional understanding of these
classes as well as their identification in new, related datasets. Currently, marker genes are defined by methods that
serially assess the level of differential expression (DE) of individual genes across landscapes of diverse cells. This serial
approach has been extremely useful, but is limited because it ignores possible redundancy or complementarity across
genes, that can only be captured by analyzing several genes at the same time. We wish to identify discriminating
panels of genes. To efficiently explore the vast space of possible marker panels, leverage the large number of cells
often sequenced, and overcome zero-inflation in scRNA-seq data, we propose viewing panel selection as a variation
of the “minimal set-covering problem” in combinatorial optimization which can be solved with integer programming.
In this formulation, the covering elements are genes, and the objects to be covered are cells of a particular class,
where a cell is covered by a gene if that gene is expressed in that cell. Our method, CellCover, identifies a panel of
marker genes in scRNA-seq data that covers one class of cells within a population. We apply this method to generate
covering marker gene panels which characterize cells of the developing mouse neocortex as postmitotic neurons are
generated from neural progenitor cells (NPCs). We show that CellCover captures cell class-specific signals distinct
from those defined by DE methods and that CellCover’s compact gene panels can be expanded to explore cell type
specific function.Transfer learning experiments exploring these covering panels across in vivo mouse, primate, and
human scRNA-seq datasets demonstrate that CellCover identifies markers of conserved cell classes in neurogenesis,
as well as markers of temporal progression in the molecular identity of these cell types across development of the
mammalian neocortex. The gene covering panels we identify across cell types and developmental time can be freely
explored in visualizations across all the public data we use in this report at [1] with NeMo Analytics [2]. The code
for CellCover is written in R and the Gurobi R interface and is available at [3].

2 Introduction

scRNA-seq technologies provide measurements of RNA molecules in many thousands of individual cells, a rich source
of information for determining attributes of cell populations, such as cell types and the variation in gene expression
from cell to cell, which are not available from bulk RNA sequencing data [4, 5, 6, 7, 8]. After standard preprocessing
and normalization, a core challenge in the analysis of scRNA-seq data is to annotate the cells in a given dataset with
a label indicating cell class, type or state. This usually involves multiple phases of processing, notably dimension
reduction, clustering, and finding “marker genes” for the labels of interest. Markers are usually selected by first
ranking the genes based on a statistical test for differential expression (DE) across labels and then selecting a panel
of top-ranking genes based on manual curation, estimates of predictive capacity, a priori information (e.g., cell-surface
proteins), or panel size [9, 10, 11, 12, 13, 14, 8, 15]. Importantly, the construction of such marker panels incorporates
data from only one gene at a time, i.e. the panel is assembled “gene by gene,” and does not take into account possible
gene combinations that could better distinguish among cell classes.

Complications arise because scRNA-seq data are high-dimensional [16], highly heterogeneous, generally noisier
than bulk RNA-seq, and stochastically zero-inflated. Complex pipelines with many choices require manual in-
tervention [9, 17], and raise issues of bias and reproducibility [18, 19]. In order for downstream analyses to be
computationally feasible, restricting dimension, such as using small panels of marker genes, is necessary. Analysis
of scRNA-seq data is generally done at the univariate (single gene) level, even though the relevant biology is often
decidedly multivariate. In particular, probability distributions, when proposed, are for the expression of individual
genes (i.e., marginal distributions) not for gene panels (i.e., higher-order marginals). These analyses do not take into
account how the individual marker genes may be cooperating to determine cell labels, i.e., what are the statistical
interactions among the marker genes which characterize the label.

To avoid these limitations, we formulate marker gene selection as a variation of the well-known “minimal set-
covering problem” in combinatorial optimization. In our case, the “covering” elements are genes, and the objects to
be covered are the cells in some class or population. A cell is covered at depth d by a gene panel if at least d genes in
this panel are expressed in the cell. A set of genes is then a depth d marker panel for a population if nearly all cells are
covered at depth d; the fraction of uncovered cells can be interpreted as a false negative rate; see Methods (section 5)
The optimal marker panel then minimizes a performance measure, described in Methods, based on the discriminative
power of each gene. Moreover, this can be found by integer linear programming. Consequently, our method only uses
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binarized raw mRNA counts, separating genes into those which are “expressed” (positive count) or “not expressed”
(zero count). We are then covering (nearly) all cells of a class with a panel of genes such that for every cell in the class,
at least d genes in the panel are expressed. In addition to enabling the link to set covering, binarization facilitates the
biological interpretation of marker genes and the manner in which they characterize and discriminate among types of
cells. Using simple and transparent cell functions, such as the number of covering panel genes expressed in a cell, the
covering paradigm enables the transfer of covering marker panels to related expression datasets for the identification
of conserved cell classes and shared cellular processes across diverse datasets. Additionally, binarization obviates
the need for complex data normalization that is often necessary in exploring continuous scRNA-seq data (especially
across differing technologies), and we show evidence that binarization may also mitigate noise and batch/artefactual
effects.

The minimal covering approach in CellCover is designed specifically to leverage the high number of cells routinely
observed in scRNA-seq data in order to be robust to the zero-inflation known to be rampant in this data modality.
Because the covering algorithm optimizes a set of genes (rather than individual markers) and different true marker
genes will have drop-outs in different cells, this stochastic zero-inflation can be overcome if many cells of a class
are sequenced. In contrast, standard methods, based on selecting the markers to be those genes for which the p-
value associated with a Wilcoxon Rank Sum (or some other test statistic) falls below a threshold, cannot borrow
strength across genes in a marker panel when selected gene-by-gene. CellCover searches for small panels of covering
marker genes that precisely define cell classes together as a set, and are also expandable, i.e., can be readily linked
to additional related genes for the deeper exploration of cell-type specific function. In addition, CellCover includes
user-adjustable constraints to promote specificity at high sensitivity, as well as tools to facilitate gene set over-
representation analysis and the exploration of heterogeneity within individual cell classes. Here we use CellCover to
explore cell classes across neurogenesis in the excitatory neuronal lineage of the neocortex in mammals.

3 Results

3.1 scRNA-seq datasets in mammalian neocortical neurogenesis

We illustrate the use of CellCover in the context of dorsal pallial neurogenesis during mid-gestation, when the
majority of excitatory neurons in the neocortex are produced. The mature neocortex in mammals is made up of
6 layers of post-mitotic neurons. Neurons of each new layer are produced in succession, with neurons of the new
layer migrating past previously created layers, leading to an “inside-out” arrangement of neurons by birthdate [20],
with deep layers (VI-V) being born first and superficial layers (II-IV) born last. Neurons are generated sequentially
from radial glia (RG), the neural stem cells of the telencephalon, and intermediate progenitor cells (IPCs) through
both symmetric and asymmetric cell division [21]. The number and diversity of neural stem and progenitor cells
in the cortex have been greatly expanded in the evolution of the primate lineage. In particular, the appearance of
the outer subventricular zone (OSVZ) in primates appears to underly the development of the supragranular layers
of the cortex (layers II and III) which contribute to higher cognition through extensive cortico-cortico connections
[22]. Notably, this includes greater proliferative capacity of neural stem cells and the expansion of outer radial glia
(oRG, or basal radial glia, bRG), which are rare in rodents but numerous in primates and especially in humans [23].
As each cortical layer is generated, newborn neurons arise contemporaneously from progenitor cells in the germinal
zones (GZ) and migrate radially along processes of the RG, outward toward the surface of the cortex to the cortical
plate (CP), coming to rest together at their characteristic position in the developing cortex [24]. Neurons arising at
the same time and place, and therefore from precursors with common molecular features, share unique morphological
and functional characteristics. We are interested both in the general process by which neural precursor cells yield
post-mitotic neurons, and in the more nuanced dynamics by which specific properties are imparted to neurons which
are born together and which come to rest in the same cellular microenvironment, i.e., cortical region and layer.

How the molecular dynamics of neural progenitor identity across this progression impact the fate and function of
the neurons being produced is not fully understood. To explore both the principal cell identities and the developmental
progression within cell types, we first focus on scRNA-seq data (Telley et al. [25]) from cells extracted during
neocortical neurogenesis in the mouse, and for which highly precise temporal labels are available. This dataset,
referred to as the “Telley dataset” from now on, contains expression data from cells produced across four days of
mid-gestational embryonic development during the peak of excitatory neocortical neurogenesis spanning embryonic
days E12, E13, E14, E15 and sequenced using Fluidigm C1- based methods. Using a technique to specifically label
ventricular neural progenitor cells during their final cell division as post-mitotic neurons are produced, cells born on
each of the four embryonic days were sampled at one hour, one day, and four days after this terminal division, yielding
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a two-dimensional temporal indexing of the data based on age and embryonic date. We define covering marker gene
panels in this dataset and validate their ability to capture conserved cell-type specific signals in additional scRNA-seq
data from developing mouse [26], primate [27], and human [28, 29, 30] cortical tissue.

3.2 Binarizing scRNA-seq count data

Binarization of gene expression data is the first step in exploring minimal coverings of cell types with CellCover,
and has been proposed in several contexts, including the exploration of cell-type specific transcriptional dynamics
[31]. Before moving on to the definition of marker genes with CellCover, we use the Telley dataset [25] to show
that binarization (where zero counts remain zero and all positive counts map to 1) of scRNA-seq data preserves
key cell type specific structure in the expression data. The Telley data contain ground truth cell class labels based
on the precise time since a progenitor cell’s terminal division (1, 24, or 96 hours prior to sequencing) and the age
of the pup at the time of that terminal division (Embryonic days 12, 13, 14, or 15). Hence, the scRNA-seq data
contain progenitors (1H) and neurons (96H), as well as cells transitioning between these states (24H) across a range
of developmental ages (E12-E15). We evaluated the capacity of binarized data to distinguish among the 12 classes,
namely 3 (times since final division) × 4 (pup ages) using two methods:

(1) prediction/recovery of ground truth cell labels using supervised machine learning (Table 1 and Supplementary
Table 1) and

(2) unsupervised dimension reduction and cell clustering (Supplementary Figure 1 and Supplementary Table 2).

XGB XGBb XGBPCA XGBPCA
b NN1 NN1b NN2 NN2b NN3 NN3b

95.0 93.6 86.5 91.2 93.8 97.1 93.3 96.4 87.9 94.9

Table 1: Average accuracies of different data types and supervised classifiers in recovering the 12 time-
based cell labels in the Telley data. Subscript “b” indicates binary data; all other trials used normalized log2
count level data. XGB = XGBOOST [32]. “PCA” indicates using only the 1st 100 principal components. NNx refers
to a neural network with x hidden layers and 64 total nodes in the network. The size of the training set is 2342, and
the size of the test set is 414.

Among the combinations of data type and prediction model, the PCA-processed binarized data, trained with
a one-layer neural network, achieves the highest average accuracy in predicting the 12 developmental stages in the
Telley data [25] (Table 1). Similar results are observed in the dataset from Polioudakis et al. [28], where binarized
data consistently outperform the log2 count level data in predicting the cell location (germinal zone vs. cortical
plate). We also assessed the impact of binarization as input to non-linear embedding algorithms such as t-SNE [33]
or UMAP [34], followed by cell type clustering [35]. Using the popular Seurat package in R [36], we calculated the
PCs, t-SNE embeddings, and Louvain cell clusters in the Telley dataset with 12 ground truth developmental cell
labels. Supplementary Figure 1 shows the results of this analysis using count level data versus binarized expression
data in a standard Seurat [36] pipeline analysis. Strikingly, the binary data achieve clearer separation of cells based
on both the time since terminal division and the pup age at the time of that division. This is shown quantitatively
in Supplementary Table 2 using adjusted Rand indices (ARIs [37]) as a measure of concordance between the ground
truth labels and the unsupervised clusters obtained with continuous or binary data.

3.3 Marker gene panels for stages in mammalian neocortical development

We apply the concept of minimal covering to binarized scRNA-seq data, and show that cell developmental stages can
be inferred by simply counting how many marker genes are “on” (expressed) in one stage and “off” (zero counts) at
other stages. In contrast to standard gene marker identification in scRNA-seq [17, 36], which assesses the utility of
each gene individually, our approach identifies an optimal panel of genes which functions together to most precisely
discriminate one stage from the others. We formulate this search as a constrained optimization problem amenable to
integer programming (Ke et al. [38]; see Methods). In this example, the objects to be covered are the cells of some
stage of neural development and a cell is covered by a marker gene if that gene is expressed, i.e., has a non-zero raw
count, in that cell. Two basic parameters define admissible coverings: the depth, denoted d, which is the minimum
number of genes in the marker panel for a stage that we expect to be expressed; and the false negative covering rate,
denoted α, which is the proportion of cells in the class of interest (here stages) which are not covered at depth d.
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Hence, the algorithm aims to optimize a performance measure over gene sets for which the fraction of cells expressing
at least d genes in the panel is at least 1− α.

Using this approach, we define marker gene panels which cover the primary cell stages across neurogenesis in the
excitatory neuronal lineage of the mouse neocortex using data visualized in Figure 1A [25]. Only cells undergoing
their terminal division at the ventricular surface were sequenced in this study, and the exact timing of this division
is annotated for each cell, enabling the precise staging of cells through the progression of NPCs to postmitotic
neurons. Therefore, rather than using scRNA-seq data-driven clustering, or biologist-annotated cell labels, we employ
experimental timing variables to define cell classes. Accordingly, all cells have one of the three labels “1H”, “24H”,
“96H” representing the number of hours since terminal division, which we use as ground truth cell class labels for
defining covering marker gene panels. Figure 1A depicts the proportion of cells in each class which express the
derived marker genes at non-zero levels. The original authors noted heterogeneity in the 24H cell class, which can
be seen as more frequent expression of the 24H cell markers in the other time classes (Figure 1A, 24H marker panel
in center).

These covering marker gene panels contain canonical markers of neural progenitors, intermediate progenitors and
neurons, including Sox3, Neurod1, and Mef2c in 1H, 24H, and 96H cells, respectively. The panels also contain many
lesser known genes (Gm . . . ), pseudogenes (. . . -ps), and mitochondrialy encoded genes (mt-. . . ) which are expressed
at much lower levels, but together precisely distinguish these neurogenic cell classes. Mitochondrial transcripts, and
tRNAs in particular, are often disregarded as uninformative “housekeeping” genes or even indications of low-quality
RNA samples. These are dangerous assumptions, especially when exploring neurogenesis where the mitochondrial
content of cells changes dramatically as cells transition from stem and progenitor states to post-mitotic neurons.
The expression of mt-Tv, for example, is highly specific to 96H cells (Figure 1A), and while often disregarded as a
housekeeping tRNA, it also forms a structural component of the mitochondrial ribosome [39] and is transcribed in
higher abundance as energy demands of nascent neurons increase. This suggests that many genes not often selected
by conventional marker gene finding methods (and often intentionally filtered out by biologists) hold significant
cell-type specific information. To assess this possibility and the utility of covering marker gene panels in general, we
examine the ability of these panels to define cell types in additional datasets in mammalian neocortical neurogenesis.

3.4 Transfer of covering marker gene panels #1: Conserved cell type markers in
mammalian neocortical neurogenesis

To assess the ability of covering marker gene panels to capture consistent cell-type specific signals in murine neu-
rogenesis we explored additional in vivo data from the dorsal mouse telencephalon. We examined the expression of
covering panels derived from the Telley mouse dataset in a recent atlas of the developing mouse brain (La Manno
et al. [26]; Figure 1B and 1C). For both these mouse scRNA-seq datasets the precise gestational age of the mouse pup
of origin is known for all cells collected. However, while there are ground truth labels of the time from ventricular
progenitor terminal cell division in the Telley data, in the atlas we must rely on cell type annotation provided by the
researchers, which include radial glia, neuroblast, and neuron classes sequentially along the neurogenic trajectory. As
expected, marker genes derived from progenitors labeled one hour after their terminal cell division in the Telley data,
i.e., while still in the progenitor state, were most frequently expressed in the progenitors (i.e., radial glia cells) of the
mouse dorsal forebrain atlas. Correspondingly, markers of 24H cells were most frequently expressed in neuroblasts
(and some neurons, as noted by original authors) and markers of 96H cells in neurons of the LaManno dataset. These
observations across datasets indicate that the covering marker gene panels in the Telley data accurately define the
primary cells states traversed during neocortical neurogenesis in the mouse.

To explore if these gene panels define cortical cell types conserved across species in mammalian neurogenesis,
we also examined expression of the panels derived from the mouse in scRNA-seq data from human mid-gestational
cortical tissue (Polioudakis et al. [28]; Figure 1D and 1E). Markers of 1H mouse cells are most frequently and
specifically expressed in the progenitor cells of the human neocortex. Markers of 24H cells are most frequently
expressed in intermediate progenitor cells (IPCs) and earliest neurons that have not migrated out of the germinal
zone, while 96H markers show greatest frequency in later neurons resident in the cortical plate. This clear mapping
of the murine covering markers onto human cortical data demonstrates that these gene panels capture neurogenic
cell states conserved across mammalian neocortical development.

These transfers of the Telley 1H, 24H, and 96H covering marker gene panels into single-cell data of the mouse
and human neocortex provide a cell-type level perspective on the marker panels. To further understand the signals
captured in these panels, we transferred them into additional data with much less cell resolution but greater temporal
and anatomical resolution. In bulk RNA-seq of human postmortem prefrontal cortical tissue [30], we observed a
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Figure 1: Transfer of CellCover marker gene panels to additional data in the developing mammalian
neocortex. A. Dot plot of empirical conditional expression probabilities of covering marker panels of each cell age.
The marker genes of each cell age are grouped along the horizontal axis and sorted by expression frequency in the
cell class of interest. The color of the dots represents the expression probability of covering markers conditioned
on time since a cell’s terminal division, i.e., the proportion of cells within a class expressing the marker gene. For
this analysis, cells of each time point were pooled across embryonic ages (E12-15). The panel is obtained using
the CellCover with α = 0.02 and d = 5. B. Transfer of covering marker gene panels from the Telley data [25] to
a second mouse neocortex dataset shows consistent identification of the primary cell types in mouse neurogenesis.
Left: UMAP representations of cells from the dorsal forebrain excitatory lineage in the LaManno atlas of mouse
brain development [26], colored by cell labels assigned by the original authors. This is followed by the same UMAPs,
now showing the proportion of gene panels derived from the Telley dataset, labeled 1H, 24H and 96H, expressed at
non-zero levels in each individual cell. These last three plots illustrate the transfer of covering marker gene panels
derived from the Telley data to the LaManno data. C. Box plots of these same proportions broken down by cell-type
labels provided by the original authors. D. Transfer of covering marker gene panels from the Telley data in mouse to
data in the developing human neocortex from Polioudakis et al. [28], shows the identification of conserved cell types
in neurogenesis across mammalian species. Left: tSNE map of cells from the dorsal forebrain excitatory lineage in
the Polioudakis data. This is followed by the same tSNE maps, now showing the transfer of covering marker gene
panels derived from progenitors labeled 1, 24, and 96 hours after terminal cell division in the Telley data. The map is
colored by the proportion of each gene panel that is expressed at non-zero levels in each individual cell of the human
Polioudakis dataset. E. Box plots of these same proportions broken down by cell type labels and microdissection
information provided by the original authors. The final two boxes indicate expression in neuronal subtypes segregated
by physical location: germinal zone (GZ) or cortical plate (CP) microdissection.

decrease in the expression of 1H covering markers across human neocortical development in utero (Figure 2A).
This is consistent with the progressive disappearance of neural progenitors as post-mitotic neurons are generated
during peak neurogenesis in mid-gestation. The expression of 24H markers appears to peak around GW12. Covering
markers of 96H cells increase in expression during fetal development, plateauing around GW16, consistent with the
progressive accumulation of newly born neurons in the developing cortex during this period.

Cell states across mammalian neurogenesis are tightly linked to the position in the developing cortex. To explore
the precise positional association of signals captured by covering panels from the developing mouse cortex, we
transferred the markers derived from the Telley data into expression data from hundreds of laser microdissected
regions of the developing primate cortex (Bakken et al. [27]; Figure 2B). Markers of the 1H mouse neural progenitor
cells show the highest expression in the ventricular zone (VZ) of the macaque and decrease over fetal development
(Figure 2B left panel), consistent with the widely held notion that ventricular radial glia are the earliest and most
conserved neural progenitor state in the developing mammalian cortex. In contrast, markers of 24H cells in the
mouse are most highly expressed in the cells of the inner subventricular zone (iSVZ) of the primate (Figure 2B center
panel), indicating a progression from the ventricular zone state to delaminated intermediate progenitor (IPCs) /
basal progenitor (BPs) states, but not reaching the primate-specific outer subventriclar zone (oSVZ) [22] / outer
radial glial (oRG) states [23]. Genes marking 96H cells are most highly expressed in the post-mitotic neurons of the
fetal cortex and decrease following birth, indicating that some of the genes in the 96H panel are specific to newborn
neurons. It is of interest that in the VZ, the 1H signal is high and falling while the 96H signal is low but rising. These
opposing dynamic signatures within mammalian neural progenitors appear to indicate that progenitor and neuron
states begin to converge over development. Elements of this have been noted elsewhere [25, 40] and become clearer
later in this report as we perform additional transfers of covering marker gene panels at higher resolution (Figures 5
and 6).

3.5 Using deeper covering analysis to more broadly explore cell function

We propose an additional method in section 5.2 to leverage the cell type specific signals captured by CellCover in
order to extend the exploration of what cells are (classes) to include what cells are doing (cell type specific functions).
From a small covering panel, this will create a broader list of genes that can be used to explore cell-type specific
function via gene set over-representation analysis and more complex transfer learning experiments. To expand a
covering gene marker panel for a particular cell class, the CellCover algorithm is simply run again, taking the initial
covering set as a starting point along with new, broader covering constraints (depth, d and proportion of uncovered

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535943doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535943


Figure 2: A. Transfer of covering marker gene panels from the Telley data in mouse [25] into bulk RNAseq from
human fetal cortical tissue [30]. Because we cannot calculate covering rates as we did in single-cell data, here,
the transferred values of covering panels were assessed as the sum of covering panel gene expression levels in each
individual sample divided by the maximum sum observed in the samples. Hence, there is always a single maximum
transfer value of 1 unit in each set of Y-axis values. B. Transfer of covering marker gene panels from the Telley data
in mouse into microarray data from laser microdissected regions of the developing macaque neocortex [27]. Nonlinear
fits in 1H, 24H, and 96H panels are to VZ, iSVZ, and Ctx data, respectively. X-axis ages are expressed as embryonic
(E) days after conception and months (mo) after birth. Transferred covering panel levels were calculated as in panel
A. VZ = ventricular zone, iSVZ= inner subventricular zone, oSVZ = outer subventricular zone, subP = subplate,
CP = cortical plate, Ctx = cortex.
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cells, α) as input. Enforcing the inclusion of the previously defined covering panel in this nested run ensures the
original compact list of genes for cell identity will be a subset of the expanded panel to be used in the exploration
of cell function and also reduces the CellCover run time (compared to a de novo run with the same expanded
constraints).

Supplemental Table 4 lists expanded covering marker gene panels for each of the three cell ages in the Telley data
that we have been exploring. The original covering gene marker panels of depth 3 were expanded to depths of 7, 15,
20, 25, 30, 35, and 40. To assess the capacity of the covering marker gene panels of differing size to characterize cell
type specific function, we performed over-representation analysis using Gene Ontology (GO) on all these covering
panels in addition to marker panels of equal size derived from conventional DE marker selection (Figure 3). In
all cases, increasing panel sizes resulted in the detection of increasing numbers of significantly enriched gene sets.
The one exception to this is in the 24H panels where, after an initial increase, a reduction in the number of hits is
observed in both methods, before hits again begin to rise with increasing panel size. Strikingly, as the number of
significant hits for both methods grows with increasing panel sizes, the specific gene sets found to be enriched by the
two methods are quite distinct: 40-50% of the gene sets detected by one method are not found to be significant by
the other. This is consistent with our other observations indicating that the two methods of gene marker definition
extract fundamentally different signals from single-cell data.

3.6 Covering marker gene panels in mammalian neocortical development #2: Tem-
poral Progression

Aiming to define cell type specific dynamics at higher resolution, we extended our previous covering analysis of the
Telley data from the level of three cell ages (1, 24, and 96 hours) aggregated across embryonic days (E12-15), to 12
cell class labels, each representing a single cell age from one embryonic day (3 cell ages × 4 embryonic days = 12 cell
classes). Supplementary Figure 4 depicts the individual genes in each of these 12 covering marker gene panels and
the proportion of cells of each type which express them. Within each cell age (1H, 24H, or 96H), there is appreciable
expression of marker genes across embryonic days. That is, markers for cells of one age at one embryonic day are
often expressed in cells of the same age at other embryonic days. This indicates common molecular dynamics in
progenitors following their terminal division at the ventricle, regardless of the embryonic day on which that division
took place. These shared elements are most clear in E13 cells of all ages. At E14, 24H cells begin to become distinct
from 24H cells of other embryonic ages, while 1H and 96H cells at E14 share dynamics across embryonic days. In
contrast, at E12, 1H cells are most distinct from other 1H cells. This E12 1H panel includes Crabp2, which also
marks a specific early NPC state in the primate: [41]). At E15, 24H and 96H cells are most distinct, paralleling the
shift from deep to upper layer neuron generation (in section 3.8 we gain more granular insight into these observations
as we use the transfer of the marker gene panels into additional primate and human data).

3.7 Genes in covering panels and marker genes defined by differential expression (DE)
capture distinct elements of cell-type specific gene expression

Currently, the vast majority of cell type markers derived from scRNA-seq data are selected from the top of a ranked
list of genes differentially expressed between a cell class of interest versus other cell types [17, 36]. This approach has
yielded many insightful results across tissue systems and species. While this method optimizes individual genes as
cell type markers (by their DE rank) and creates a set of markers by selecting top individual genes that distinguish
a cell type, CellCover optimizes a panel that functions together to define a cell class. This fundamental difference
in the search for marker genes results in the capture of distinct cell-type specific signals. Therefore we put forth
CellCover as a complementary approach to conventional DE marker gene finding, rather than an optimized method
for cell-type marker gene discovery.

Notable among the additional differences in these marker-finding methods is that CellCover (1) obviates the
need for normalization, scaling or feature selection (as a function of utilizing binarized expression data), and (2) can
directly capture heterogeneity within a cell class of interest. We show the latter empirically by comparing markers
derived from CellCover and DE methods in the Telley data. Figure 4 summarizes the overlap of covering marker
gene panels and the Seurat DE ranked genes for all 12 cell classes. In the majority of cell classes, there is appreciable
divergence in the marker genes that the two methods identify as cell-type specific (represented by vertical gaps
between the red and blue lines in each plot). Concordance between 96H cell markers is greatest (perhaps indicating
lower within-class heterogeneity in neurons), with the shortest list of top DE selected markers that include an entire
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Figure 3: Over-representation analysis in gene marker panels of differing size and methodology, using the GO
database. A. The number of GO gene sets found to be significantly enriched in the gene marker panels derived
from CellCover and DE methods across different matched panel sizes. The X-axis indicates the depth parameter
d that was set for the CellCover run (preceding the numbers on the X-axis, “d” indicates the depth in de novo
CellCover runs, “e” indicates expanded runs that use marker panels from the preceding CellCover run as a starting
point). Corresponding numbers of DE markers were selected for each depth so that marker panels of equal size were
compared across CellCover and DE methods. Numbers in parentheses indicate the number of genes in each marker
panel. B. The proportion of gene sets that were found to be significant by one method and not the other.
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Figure 4: Overlap and discordance between marker genes selected by CellCover and DE methods.
For each of the 12 CellCover gene panels defined in the Telley mouse data (depicted in Figure 4), the number of
overlapping genes found by DE methods was quantified. In each panel, the red line indicates the number of genes
in the CellCover gene panel for that cell class. The blue line indicates the cumulative number of genes also found in
the ranked DE gene marker list as increasingly large DE gene lists are considered (X-axis; using the Seurat marker
pipeline). The X-axis value where the red and blue lines meet indicates the number of Seurat markers that would
need to be selected to include all the CellCover markers.

covering marker gene panel at 40 genes in length (E13.96H). These observations indicate that in practice, the two
methods of marker gene discovery produce quite divergent results.

To further explore the discordance in marker genes selected by the two methods, we visualized expression levels
of E12.1H covering markers with high p-value rank in the DE (Supplementary Figure 5 top panel) and those that
are in the CellCover panel, but rank lowly in the DE ranked list (Supplementary Figure 5 bottom panel). Markers
appearing in both lists are frequently expressed in E12.1H cells and are clearly expressed in other cell types, though
less frequently. In contrast, some genes appearing in the CellCover solution but ranking lowly in the DE are less
frequently expressed but are more specific to the E12.1H class. For example, genes Nptx2, Pctp2, and Clnd9 are
not as frequently expressed in E12.1H cells as other markers. However, these genes are rarely expressed in other cell
classes. These marker genes with high specificity are very discriminative for the purpose of defining cell classes when
used together but may be omitted by DE marker selection methods in the feature selection or DE calculation steps
due to low and/or less frequent expression, i.e., low sensitivity as an individual marker. By optimizing the panel of
marker genes rather than individual markers, CellCover can borrow power across multiple genes that show greater
specificity but which individually do not identify all cells in a class.

To show this more systematically, we ran differential expression analysis on the 1H, 24H, and 96H cells in the
Telley data [25] and showed the rank of the CellCover markers (Figure 1A) based on the p-values returned from the
DE analysis in Supplementary Figure 6. We found that across all the cell ages, the CellCover markers that have low
sensitivity also have a lower rank in the DE. For example, in the 1H, the CellCover marker Hspa1a has the lowest
sensitivity among all markers, expressed only near 13% percent of the time in this cell age, but its rank from DE is
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more than 500 (Supplementary Table 3). Although this gene has low sensitivity, it has high specificity, rendering it
a good candidate for a marker gene when used with other complementary genes. Genes with these properties appear
at much lower ranks in DE and are hence not selected when using that method.

3.8 Transfer of covering marker gene panels #2: Conserved cell type specific temporal
progression in mammalian neocortical development

Using covering marker gene panels for the three principal cell ages in the Telley data, we have shown that CellCover
can precisely define the major cell classes in mammalian neurogenesis across multiple scRNA-seq data sets (Figures
1 and 2). To evaluate the ability of covering marker gene panels to delineate temporal change within these cell
types across cortical development, we have conducted similar transfer experiments using CellCover marker panels
for all 12 cell classes in the Telley data as described above (Figures 1-2). Figure 5A shows the transfer of these 12
covering panels into the LaManno mouse brain atlas data [26]. As expected for each of the three main cell types
across neurogenesis: (1) radial glia in the LaManno data show the highest covering rates of gene panels derived from
1H cells in the Telley data (Figure 5A, left panel, in blue), (2) neuroblasts in LaManno have highest covering rates
of 24H markers (Figure 5A, center panel, in green), (3) neurons have the highest rates of 96H markers (Figure 5A,
right panel, in red).

Importantly, in the radial glia of the LaManno data, the four 1H cell class panels spanning E12-E15 display
sequentially ordered temporal patterns across developmental ages (sequential peaks of blue lines in Figure 5A, left
panel). Notably, radial glia beyond E15 in the laManno data begin to express neuronal (96H) markers. This is
consistent with conclusions of Telley et al. [25] and and a previous report of ours [40], which note that late NPCs
begin to express markers of postmitotic neurons. Here, we extend this observation by showing that this is not the
emergence of a non-specific neuronal identity but rather that late NPCs specifically begin to express markers of the
later-born neurons they are about to produce (Figure 5A, left panel, E15.96H markers in the red dotted line).

While 24H markers show highest covering rates in neuroblasts of the laManno data (Figure 5A, center panel, in
green), neurons also show notable levels of these markers (Figure 5A, right panel, in green). This is consistent with
the annotation by Telley et al. [25] of both progenitor and neuronal sub-populations within their 24H cells. That
is, 24 hours following terminal division, some NPCs have progressed to an early neuronal state, while others have
not fully exited the progenitor state (denoted as basal progenitors by Telley et al. [25]). It is also important to note
in this analysis that Eday labels from the Telley data indicate the age of animals when cells were labeled. Hence
E12.96H cells were labeled on E12 but harvested and sequenced on E16. This explains the later, and still clear,
temporal progression of the Telley 96H covering marker gene panels in the neurons of the laManno data (Figure 5A,
right panel, in red).

We also transferred the CellCover marker panels from the twelve Telley cell classes into bulk RNA-seq data from
the developing human neocortex [30] (Figure 5B). Levels of the 1H covering panels from E12-14 are highest at the
earliest time point (at GW8) and descend through the second trimester, indicating peak expression of these panels
lies prior to the window of human cortical development studied here (Figure 5B, top row of panels). The gene panel
from 1H cells derived from E15, in contrast, peaks at GW14, indicating that the progenitor state captured in the
mouse E15.1H cells is conserved as a more advanced state in the human, potentially indicating a shift to gliogenesis.
Transferred expression levels of the 24H covering panels all peak in the window of development captured in the
human data, with panels from E12 and E13 peaking (at GW12) before the E14 and E15 panels (at GW16; Figure
5B middle row of panels). These sequential dynamics demonstrate a parallel between the temporal progression of
delaminating ventricular progenitors or basal progenitors (BPs) in the mouse and human which map to specific ages
in both species: the shift from E12/13 to E14/E15 BPs in the mouse corresponds to a change in human BPs that
occurs between GW12 and GW16. In a trend inverse of that observed in the transfer of the 1H covering panels,
the 96H panels show coordinated increases from GW12-16 and appear to begin to plateau after GW16 (Figure 5B,
bottom row of panels). Consistent with a later peaking state, there is less plateauing of the E15.96H covering panel
signal in the human data.

Transfer of the twelve mouse covering panels into laser microdissected tissue from the developing macaque [27]
also revealed conserved temporal elements of neocortical development (Figure 6A). As we observed in the transfer of
the aggregated covering panels (Figure 2B), here we see the 1H panels with high expression in the cells of the VZ,
24H panels highest in the iSVZ, and 96H panels in the cortex (Ctx). Examination of the temporal patterns of these
covering panels in their corresponding cortical laminae shows that the temporal progression of these cell types that
were captured in the mouse is conserved in the macaque (Figure 6A, note the progressively later shifts in nonlinear
fits within each lamina). This definition of conserved molecular progression in shared mammalian neural progenitors
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populations may help elucidate how neurons sharing defining molecular, morphological, and physiological features
are produced contemporaneously in the mammalian cortex.

The E15.96H panel has a particularly distinct pattern, not neuron-specific like the earlier 96H panels, but rather a
pan-cellular signature of the maturing cortex (Figure 6A, far right in bottom row of panels). Transfer of this E15.96H
panel into additional late fetal and postnatal human cortical data shows that, unlike the earlier E12-E14.96H panels,
expression of this panel continues to increase dramatically in the third trimester and after birth (Figure 6B). Together,
these observations may reflect the shift from neurogenic-only states in earlier 96H cells to E15 when gliogenesis has
begun in addition to neurogenesis. Further supporting this conclusion, levels of E12, E13 and E14 96H covering
panels are lowest in white matter, while the E15.96H panel shows quite high levels in white matter, indicating that
this latest covering panel has captured the beginning of gliogenesis (Figure 6C, gray points). Also striking are the
elevated levels of this E15.96H panel specifically in layer I (containing the most superficial and latest-born neurons
of the cortex), which contrast with the deep layer enriched signal of the E12.96H panel (Figure 6C, nonlinear fits).
These transfers of the covering gene marker panels map the timing of cell identities we have learned from the mouse
data onto the temporal progression of cortical development in the primate and human. We propose CellCover coupled
with transfers of this kind as a general tool in mapping cell states across experimental systems and species.

4 Discussion

CellCover represents a novel algorithm for the identification of cell type marker gene panels in scRNA-seq data. Here,
using data from the developing mammalian neocortex, we have shown that CellCover captures cell type specific
signals in mouse that are conserved across primate and human cortical development. Additionally, using ground
truth temporal labeling of cells in the mouse cortex, we have mapped temporal progressions of murine neocortical
development onto the non-human primate and human developmental time courses.

We invite researchers to interrogate all the public data resources we examine here in the NeMO Analytics multi-
omics data exploration environment that is designed to provide biologists with no programming expertise the ability
to perform powerful analyses across collections of data in brain development: [1]. Users can visualize individual
genes or groups of genes simultaneously across multiple datasets, including automated loading of the CellCover gene
marker panels of murine cell types we have defined here. The code for CellCover is written in R and the Gurobi R
interface and is available at [3].

5 Methods

5.1 Computing marker sets

5.1.1 Goals

The goal of our method is to find a relatively small set of genes for each cell type that is sufficient to label each
individual cell. We associate to the observation of a (random) cell of a certain tissue a random variable X = (Xg, g ∈
G) where Xg denotes the expression level of gene g. We denote the cell type labels of cells by a categorical random
variable Y ∈ {1, 2, . . .K}.

Fix a target cell type, say, k. We will declare that a set of genes, say, M , provides a good marker set for this
cell type if (1) with high probability, a sufficient number of genes in M are expressed if the cell type is k, and (2)
genes in M are expressed with low probability if the cell type is not k. We note that specifying M is equivalent to
specifying a family of binary variables z = (zg, g ∈ G), taking M = {g : zg = 1}.

We will dedicate most of this discussion to the formulation of optimization problems that quantify conditions (1)
and (2). But we can already note that these conditions differ from what is most often accepted as a definition of a
marker gene, as a gene which is expressed with a significantly larger probability in type k than in any other type,
or, alternatively, as a gene whose expression is significantly larger in type k than in any other type. Such definitions,
leading, e.g., to marker genes having large differential expression, define an individual gene as marker or not. Our
definition, however, defines marker sets, i.e., relies on the collective behavior of the genes selected in M .

We now make more precise our definition of marker sets, which will take us to an integer linear problem (ILP).
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Figure 5: Transfer of 12 cell class covering panels from the Telley data into additional mouse, human
and macaque developing cortex data. A. Transfer of Telley covering gene panels into the radial glia (left panel),
neuroblasts (center panel) and neurons (right panel) from the developing mouse brain atlas (La Manno et al. [26]).
In all cases, covering rates of transferred panels from 1H cells are depicted in blue, 24H in green, and 96H in red.
Transferred levels were calculated as the proportion of cells of each type expressing more than 3 marker genes in
the covering panel. B. Transfer of the 12 covering gene panels into bulk RNA-seq data from the human fetal cortex
[30]. Transferred values of covering panels were assessed as the sum of covering panel gene expression levels in each
individual sample divided by the maximum sum observed in the samples (as in Figure 2).
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Figure 6: A. Transfer of the 12 covering panels into microarray data from microdissected regions of the developing
macaque neocortex [27]. X-axis ages are expressed as embryonic (E) days after conception and months (mo) after
birth. Transferred covering panel levels were calculated as in Figure 2. VZ = ventricular zone, iSVZ= inner
subventricular zone, oSVZ = outer subventricular zone, subP = subplate, CP = cortical plate, Ctx = cortex. B.
Repeated transfer of the 96H covering panels into the human cortex data [30], showing additional late fetal and early
postnatal samples in postnatal development. C. Repeated transfer of the 96H covering panels into the microdissected
macaque data, using additional labeling of dissections by cortical layer.
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5.1.2 Binarization

We use a very simple definition of a gene being expressed, namely g is expressed if and only if Xg > 0. This
operation can be refined by replacing the zero threshold by some low activity number θ (or θg), but our experiments
with single-cell data that typically contains a high proportion of zeros show that this simple binarization rule already
retains a large quantity of relevant information (see section 3.2). For convenience, we introduce the random variable
Ug equal to 1 if Xg > 0 and to 0 otherwise.

5.1.3 First condition

We now formulate condition (i) as a constraint on the set M and introduce two parameters of our method, namely
an integer d (or “depth”) and a scalar 0 ≤ α ≪ 1 to quantify this condition as “the probability that at least d genes
in M are expressed given that the cell type is k is larger than 1− α,” or

P

( ∑
g∈M

Ug ≥ d
∣∣∣Y = k

)
≥ 1− α. (1)

The left-hand side of the inequality (1) is the rate at which the set M covers the class k, or covering rate. Obviously,
this constraint can be satisfied for some M ⊂ G if and only if it is satisfied for M = G, so that α needs to be chosen
such that

P

(∑
g∈G

Ug ≥ d
∣∣∣Y = k

)
≥ 1− α.

Note also that, using the notation introduced in the previous section,∑
g∈M

Ug =
∑
g∈G

Ugzg.

This condition can also be interpreted in terms of a classification error. Indeed, define ΦM,d as the binary classifier
equal to one if

∑
g∈M Ug ≥ d and to 0 otherwise. Then (1) expresses the fact that this classifier’s sensitivity is at

least 1− α.

5.1.4 Second condition

Having expressed the first condition as a constraint, we now express the second one as a quantity M 7→ F (M) to
optimize. Ideally, one would like to minimize the probability that, conditionally to Yk = 0, there exists at least one
active gene in M , namely

P

( ∑
g∈M

Ug ≥ 1
∣∣∣Y ̸= k

)
.

This quantity, however, is not straightforward to minimize, but its Bonferroni upper bound

F0(M) =
∑
g∈M

P (Ug = 1|Y ̸= k) =
∑
g∈G

P (Ug = 1|Y ̸= k)zg

is linear in the binary vector z and will be amenable to an ILP formulation. (F0(M) is also equal to the expectation
of

∑
g∈M Ug given Y ̸= k.)

Note that, obviously

P

( ∑
g∈M

Ug ≥ r
∣∣∣Y ̸= k

)
≤ P

( ∑
g∈M

Ug ≥ 1
∣∣∣Y ̸= k

)
≤

∑
g∈G

P (Ug = 1|Y ̸= k)zg

so that 1− F0(M) controls the sensibility of the previous classifier ΦM,r.
If the variables Ug are independent (conditionally to Y ), then

P

( ∑
g∈M

Ug ≥ 1
∣∣∣Y ̸= k

)
= 1−

∏
g∈M

(1− P (Ug = 1|Y ̸= k)),

which suggests using
F1(M) = −

∑
g∈M

log(1− P (Ug = 1|Y ̸= k))

as an alternative objective.
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5.1.5 Margin weights

More generally, we will consider objective functions F taking the form

F (M) =
∑
g∈G

wgzg

for some choice of weights (wg, g ∈ G). The function F0 above uses wg = P (Ug = 1|Y ̸= k), and F1 uses wg =

− log(1 − P (Ug = 1|Y ̸= k)), but other choices are possible. We will in particular work with weights reflecting the
ability of the variable Ug to identify class k, such as

wg =

∑
l ̸=k P (Ug = 1|Y = l)/(K − 1)

P (Ug = 1|Y = k)
. (2)

or
wg =

maxl ̸=k P (Ug = 1|Y = l)

P (Ug = 1|Y = k)
. (3)

where K is the total number of classes. Small values of wg reflect a large sensibility of the variable Ug, when
differentiating type k from any other type. In our algorithm, we implement Equation (2) as the default while offering
users the flexibility to choose their desired weight schemes. Going further, it is natural to eliminate genes for which
one of the ratios above is larger than 1, which is achieved by enforcing zg = 0 if wg > 1 (or, equivalently, replacing
wg by +∞ when wg > 1). This choice has, in addition, the merit of reducing the number of free variables zg and
accelerating the optimization process. Note that these margin weights ensure that F (M) ≥ F0(M) and therefore
also control sensibility.

5.1.6 Marker set estimation algorithm

We can now conclude our discussion with the description of our algorithm, based on the observed training data,
provided by a collection of N cells, with expressions (x(c)

g , g ∈ G) for c = 1, . . . , N , yielding binary variables (u(c)
g , g ∈

G), and types y(c) for c = 1, . . . , N . The following returns a marker set for type k, with parameters d and α. Let Sk

be the set of cells with type k.

(1) Estimate empirical probabilities P̂ (Ug = 1|Y = l) for g ∈ G and l = 1, . . . ,K based on training data.

(2) Compute weights wg, g ∈ G, using equation (2) (or use user-supplied weights).

(3) Let Gk = {g : wg ≤ 1} ∩ {g : P (Ug = 1|Y = k) ≥ ρ} .

(4) Use an ILP software to minimize, with respect to binary variables zg, g ∈ G0 and s(c), c ∈ Sk, the function∑
g∈G0

wgzg subject to the constraints ∑
g∈Gk

zgu
(c)
g ≥ d(1− s(c)), c ∈ Sk

and ∑
c∈Sk

s(c) ≤ α|Sk|.

(5) Return the set Mk = {g ∈ Gk : zg = 1}

5.2 Nested marker set expansion

Step (4) can be modified to estimate a covering as a superset of a previous one (obtained e.g., with a smaller depth):
Let (z

(0)
g ) be a vector of binary variables (fixed below). To extend this set to a covering at depth d, one only needs

to replace step (4) by the following:

(4’) Use an ILP software to minimize, with respect to binary variables zg, g ∈ G0 and s(c), c ∈ Sk, the function∑
g∈G0

wgzg subject to the constraints
zg ≥ z(0)g , g ∈ Gk∑

g∈Gk

zgu
(c)
g ≥ d(1− s(c)), c ∈ Sk

and ∑
c∈Sk

s(c) ≤ α|Sk|.
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5.2.1 Remarks

(a) Even though it was not designed with this intent, our marker set estimation algorithm can be interpreted as an
asymmetric classification method to separate type k from all other types. In an approach akin to classical statistical
testing, we determine a classifier with some free parameters (here, the gene set M) that we require to have a minimal
sensitivity, 1 − α (so that α is reminiscent of a type I error). The free parameters are then optimized in order to
minimize an objective function that controls (among other things) the sensibility of the classifier.

(b) If we take wg = 1 for all g, the previous algorithm only depends on training data associated with cell type k. The
resulting algorithm provides a minimal gene set that covers the considered population, in the sense that all cells in
that population (except a fraction α) has at least d active genes in the selected set. With a suitable definition of what
is meant by being active, this covering algorithm was introduced in Ke et al. [38] and applied to the determination
of important gene motifs in a population of tumor cell associated with a specific phenotype.

5.3 Over-representation Analysis

Over-representation analysis was performed using the Fisher’s exact test using gene sets from the GO database.
Over-represented gene sets were marked as significant by a FDR<0.1 cutoff using the Benjamini-Hochberg method.
The background gene list was defined as all the genes present in the Telley dataset.
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