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Summary 28 

● Specialized or secondary metabolites (SMs) play a key role in plant resistance against 29 

abiotic stresses and defences against bioaggressors. For example, in sessile oaks 30 

Quercus petraea, phenolics contribute to reduce herbivore damage and improve 31 

drought resistance. Here, we explored the natural variation of SMs in nine European 32 

provenances of sessile oaks and aimed to detect its underlying genetic bases.   33 

● We sampled mature leaves from high and low branches on 225 sessile oak trees 34 

located in a common garden and used untargeted metabolomics to characterise the 35 

variation of 219 specialized metabolites. In addition, we used whole genome low-36 

depth sequencing to genotype individuals for 1.4M genetic markers. We then 37 

performed genome-wide association analyses to identify the genetic bases underlying 38 

the variation of leaf SMs.  39 

● We found that leaf SMs displayed extensive within-provenance variation, but very 40 

little differentiation between provenances. For ~10% of the metabolites we detected, 41 

most of this variation could be explained by a single genetic marker.  42 

● Our results suggest that genetic variation for most leaf SMs is unlikely to be locally 43 

adaptive, and that selective pressures may act locally to maintain diversity at loci 44 

associated with leaf SM variation within oak populations.   45 

 46 

Key words: genome-wide association study (GWAS), leaf specialized metabolites, European 47 

white oaks, biotic interactions, provenance trial, Quercus petraea, local adaptation, balanced 48 

selection  49 
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Introduction  50 

 51 

One of the crucial mechanisms developed by plants to interact with their environment is the 52 

production of thousands of molecules, known as specialized or secondary metabolites (SMs). 53 

Each plant species produces thousands of different molecules, which range from extremely 54 

specific to shared across the plant kingdom (De Luca & St Pierre, 2000). In leaves, certain 55 

compounds, including tannins, flavonoids and glucosinolates were shown to have defensive 56 

effects against herbivores, including insects but also vertebrates (see Dearing et al., 2005 for 57 

a review). Some compounds have become cues for specialist herbivores to find host plants 58 

(Wink, 2018) and others attract the predators of herbivores, hence reducing damage to the 59 

plant (McCormick et al., 2012). Beyond interactions with herbivores, some SMs have 60 

antimicrobial properties and influence the leaf microbial community (Bailey et al., 2005) like 61 

certain flavonoids in carnation (Galeotti et al., 2008) and tomato (Vargas et al., 2013). In 62 

addition, SMs production is also tightly linked to the plant immune system and 63 

phytohormones (Bednarek, 2012), making them key players in plant pathogen interactions 64 

and good candidates for quantitative resistance and even exapted resistance (Newcombe, 65 

1998; Bartholomé et al., 2020). Beyond the leaf, in root exudates, SMs including flavonoids 66 

help attract beneficial microbes and promote mycorrhizal symbiosis (reviewed in Walker et 67 

al., 2003; Sebastiana et al., 2021), hence enhancing growth and water-use efficiency.  68 

 69 

The effects of SMs reach beyond the plant boundaries and influence the local biotic 70 

environment. Differences were detected in insect communities in the canopies of tree species 71 

producing different tannins (Forkner et al., 2004), molecules which were also found to impact 72 

the litter microbial community (Schweitzer et al., 2008). Finally, plant SMs play important 73 

roles for the plant protection against abiotic stresses (Sardans et al., 2011). Many specialized 74 

compounds have antioxidant properties and may help scavenge reactive oxygen species 75 

(ROS) (Nakabayashi et al., 2014). Thus, certain SMs, in particular anthocyanins, protect 76 

plants from the negative effects of ionising UV light (Rozema et al., 2002), but can also 77 

enhance drought, heat and cold tolerance (Obata et al., 2015). 78 

 79 

Individuals within a plant species do not produce a homogeneous set of compounds and 80 

different chemotypes can emerge. Multiple studies have shown that the quantities and 81 

structure of SMs vary within species, either because they are plastic and respond to the 82 
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environment, or because of genetic differences between individuals. For example, in 83 

Arabidopsis and multiple members of the Brassicaceae family, glucosinolates and their 84 

metabolic pathways have been broadly investigated. Extensive genetic variation for 85 

specialized metabolites is present within species, with some compounds displaying broad 86 

geographical clines, suggesting adaptation to local herbivore communities (Zust et al., 2012; 87 

Brachi et al., 2015). In addition, length of the glucosinolate side-chain has been linked with 88 

interactions with insect herbivores (Burow et al., 2010).  89 

 90 

In pedunculate oaks (Quercus robur L.), the effect of specific compounds on defoliation 91 

Tortrix viridana was evidenced by a combination of metabolomics and transcriptomics and 92 

showed that within population variation in the production of defensive compounds largely 93 

influenced defoliation (Kersten et al., 2013). Despite overall differences in the metabolic 94 

profile of trees among natural oak stands, all stands included resistant or susceptible oak trees 95 

(Bertić et al., 2021). Leaves from resistant oak trees were enriched in defence-related 96 

polyphenolic compounds, while leaves from the susceptible oaks were enriched in growth-97 

related substances such as carbohydrates and amino-acid derivatives.  98 

These results are therefore consistent with both the adaptation of populations to local 99 

environmental conditions, but also the maintenance, within stands, of variation in the 100 

investment of trees in defence and growth.  101 

European white oaks cover a large portion of European temperate forests and the decline of 102 

many populations, likely accelerated by climate change, could have dramatic consequences 103 

for the ecosystem services they provide including biodiversity. Indeed, a recent study showed 104 

that oaks support a rich community of organisms with 2,300 species associated with oak 105 

forests in the UK, of which 326 are directly associated with oaks (Mitchell et al., 2019). 106 

Many of these interactions, and the central role of oak trees in forest ecosystems, could be 107 

partly mediated by SMs. With oak populations suffering from decline related to both abiotic 108 

and biotic stresses imposed by global change, studying the natural variation and genetic bases 109 

of leaf SMs is essential to better understand the evolutionary history of SMs variation in oak 110 

populations. In particular, quantifying how much of this variation is locally adaptive and how 111 

much is maintained within population, is an important addition to the study of traits adaptive 112 

to climate, such as phenology or drought tolerance (Sáenz-Romero et al., 2017; Torres-Ruiz 113 

et al., 2019), to estimate the adaptive potential of oak populations.  114 

 115 
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In this study, we investigated the natural variation and the genetic bases of non-volatile leaf 116 

SMs in nine European sessile oak (Quercus petraea (Matt.) Liebl.) provenances growing in a 117 

common garden, using untargeted metabolomics. We started by characterising the genetic 118 

structure of oak populations and examined the differentiation between provenances for leaf 119 

SMs. We then performed a genome-wide association study to identify the genetic bases and 120 

architectures of leaf SMs. We investigated candidate genes and molecular structures for 121 

metabolites presenting strong associations and interesting patterns of variation. Our analyses 122 

revealed very little differentiation among provenances for 83% of the metabolites quantified, 123 

with the vast majority of the phenotypic variation being present within provenances. Our 124 

genome-wide association study revealed that phenotypic variation for 63% of the metabolites 125 

was largely genetically determined, and displayed mono- to oligogenic architectures. 126 

Together our results indicated that the variation of the majority of the metabolites we 127 

quantified did not contribute to local adaptation among provenances, at a European 128 

geographical scale.  129 

Materials and Methods  130 

Sampling sessile oak leaves  131 

We sampled sessile oak trees grown in a common garden experiment located in Eastern 132 

France (Sillegny, 48°59′ 24″ N 06°07′ 56″ E). This common garden is one of the four 133 

common gardens of a large-scale (106 oak populations) and long-term provenance trial on 134 

sessile oak Quercus petraea Matt. Liebl. (Ducousso et al., 2022) 135 

 136 

Within the 106 populations, we selected nine populations that were previously gathered along 137 

a latitudinal gradient spanning from the South-West of France to the North of Germany (Fig. 138 

1a, Table S1) and leaves in the common garden on September 7th and 8th 2016 on 225 trees 139 

(22 to 28 trees per population). Trees were between 29-35 years old. For each tree, we 140 

sampled four to six fully developed leaves from branches at two heights: low branches, 141 

mostly protected from direct sunlight by the canopy, and high branches exposed to sunlight. 142 

Leaves were collected either using a pole pruner when possible, or with a shotgun whenever 143 

the branches were too high to reach.   144 

 145 
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Four to six leaves per branch were stored in 20 mL plastic vials and frozen on dry-ice upon 146 

harvest (see Supplementary Material and Methods S1).  147 

Sequencing and genotyping of sessile oak individuals  148 

Briefly, we extracted DNA from freeze dried leaf material and sequenced individuals to a 149 

depth of ~10X using the Illumina NovaSeq system. Details are provided in the 150 

Supplementary Material and Methods S2.  151 

 152 

We used a home-made bioinformatic pipeline, developed with Snakemake v5.8.1 workflow 153 

manager (Köster et al., 2021) and Singularity containers (Kurtzer et al., 2017). We removed 154 

Illumina TrueSeq adapters and trimmed reads using cutadapt v1.18 (Martin, 2011) and sickle 155 

v1.33 (Joshi & Fass, 2011). We aligned paired-end reads with bwa-mem2 v2.2.1 (Li, 2013) 156 

on Quercus robur reference genome (Plomion et al., 2018). We marked duplicated reads 157 

using GATK v4.2.4.0 and clipped overlapping read pairs using BamUtils v1.0.15 (Jun et al., 158 

2015), recommended in GATK best practices (Van der Auwera et al., 2013). We created 159 

mpileup files of the 224 individuals using samtools v1.9 (Danecek et al., 2021) and converted 160 

them into pro files using sam2pro v0.8. We detected bi-allelic SNPs using the Bayesian 161 

genotype caller (BGC) described in (Maruki & Lynch, 2017). We created a file summarizing 162 

nucleotide read quartets for the 224 individuals from the pro files using a genotype-frequency 163 

estimator (GFE) (Maruki & Lynch, 2015) and called genotypes with the BGC software. We 164 

discarded SNPs with a minor allele frequency (MAF) lower than 10%, with more than 5% of 165 

missing calls and located in regions annotated as transposable elements in the Q. robur 166 

reference genome. These filters were achieved with a combination of awk command lines and 167 

PLINK v1.9 (Chang et al., 2015). We discarded individuals with genome-wide genetic 168 

similarity above 95% (i.e., 95% of SNPs with identical genotypes between the two 169 

individuals) as they may have corresponded to the same individual sequenced twice.  170 

Population genomics analysis of sessile oak populations  171 

We estimated linkage disequilibrium (LD) decay along the oak genome using the r² function 172 

available in PLINK v1.9 with window size of 50kb.  173 

 174 

To study the genetic structure of Q. petraea populations we pruned the SNPs according to LD 175 

previously estimated and removed highly correlated markers (r² > 0.2) using the “--indep-176 
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pairwise” function of PLINK v1.9 (Chang et al., 2015) with a window size of 2 kb and a step-177 

size of 1. We computed an average Hudson FST (Bhatia et al., 2013) index between pairs of 178 

populations, estimated across all SNPs in the pruned dataset using the “--fst” PLINK v2.0 179 

(Chang et al., 2015) with default parameters. We computed FST (Weir & Cockerham, 1984) 180 

across populations using the “--fst” function in PLINK v2.0 for each SNP. To investigate 181 

global patterns of population structure and investigate whether our SNP set allowed source 182 

identification, we performed a principal component analysis using the “--pca” function in 183 

PLINK v1.9 (Chang et al., 2015).  184 

Metabolomics: extraction, data acquisition, processing and filtering 185 

Extraction and LC-MS analyses: Briefly, specialized metabolites were extracted using 70% 186 

methanol. For all methanolic extracts, the separation of extracts was achieved using reverse 187 

phase liquid chromatography with a C18 column over a 10mn gradient (see Supplementary 188 

Material and Methods S3). 189 

We performed mass-spectrometry analyses with different instruments and settings to generate 190 

two datasets. The first dataset will be dedicated to genome-wide association analyses and the 191 

second one for annotations of metabolites.  192 

 193 

The first dataset, hereafter the “GWAS set”, included all samples. For this analysis the 194 

chromatography flow was directed to an electrospray ionisation probe set to positive mode (-195 

500 V endplate offset, +3.5 kV capillary voltage, 2.4 bar nebulizer, dry gas flow of 8.0 L/min 196 

at 190˚ C) into a hybrid quadrupole time-of-flight (QTOF) mass spectrometer (Bruker, 197 

Bremen, Germany) with no collision energy. The mass-to-charge ratio ion scan was from m/z 198 

50 to m/z 1500 with an acquisition frequency of 2 Hz. The mass spectrometer was m/z-199 

calibrated with a 10 mM lithium formiate solution injected at the begin and the end of each 200 

chromatogram.  201 

 202 

The second dataset, hereafter the “annotation dataset”, was generated from 56 randomly 203 

selected samples in the nine populations. We used the data dependent mode of the LTQ-204 

Orbitrap Elite (ThermoScientific, Bremen, Germany), to generate MS² spectra for all 205 

sufficiently intense fragments. We ran this analysis on the plates of methanolic extracts twice, 206 

with the HESI electrospray ionisation probe operating in the positive and negative modes. 207 

Parameter details are provided in Supplementary Material and Methods S4.  208 
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 209 

Data treatment and filtering:  For the “GWAS dataset”, we converted raw proprietary files 210 

from the instrument to the mzML format using ProteoWizzard program (Chambers et al., 211 

2012). We removed files with no calibration peaks and filtered remaining files to keep only 212 

data between 80 and 570 s using msconvert (Chambers et al., 2012) to remove calibration 213 

peaks and column wash offs at the beginning and the end of the runs. Past these initial 214 

processing steps, all analyses were carried out in a home-made bioinformatic pipeline using 215 

Snakemake workflow manager, Singularity containers and R v4.1.1 (R Core team 2021) see 216 

(gitlab link). We used the IPO R package v1.18 (Libiseller et al., 2015) to optimise 217 

parameters for retention time (RT) correction and peak picking implemented in the R 218 

package XCMS v3.14 (Smith et al., 2006) (Table S2). We ran the “findChromPeaks” 219 

function to detect chromatographic peaks. Then, we ran the “adjustRtime” function to correct 220 

RT deviation and calculated adjusted retention times using a subset-based alignment based on 221 

the QC samples regularly injected. Finally, we ran the “PeakDensityParam” and 222 

“groupChromPeaks” function to match all the detected peaks between samples. We produced 223 

a table of peak intensities and identified pseudo-molecules, based on RT and intensity 224 

correlations among peak groups using the “groupFWHM” and “groupCorr” functions of the 225 

CAMERA R package v1.48.0 (Carsten Kuhl et al., 2021).  226 

 227 

After that step we filtered the dataset to remove sample outliers and peak outliers. Samples 228 

from the eighth plate were removed because the mass spectrometer failed to m/z-calibrate. 229 

First, we used the median peak intensity across all peak groups to remove samples that had 230 

values consistent with blanks and removed blanks that had median peak heights similar to 231 

regular samples. These rare cases probably arose from errors during the randomisation of 232 

samples into the 96 well plates. Second, we filtered the peak groups defined by XCMS using 233 

QCs and blanks, with the rationale that peaks had to be significantly higher in the QCs than in 234 

the blanks to be retained. We used a one-way variance analysis (ANOVA, p-value<0.05) on 235 

log-transformed intensity data for each peak to determine the average difference in intensity 236 

between blanks and QCs and assess significance. Because in this situation relaxing the 237 

threshold for significance resulted in a more conservative filtering, we did not apply 238 

correction for multiple testing (false discovery rate, FDR). In addition, we also removed peak 239 

groups with coefficients of variation above 20% in the QCs. The final step was to verify the 240 

quality of injection by checking that the internal standard included in the extraction buffer 241 

(quercetin) was still clearly present in the data set. QCs were not used to correct for intensity 242 
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drift and peak intensity was not corrected for the mass of material used in the extraction. (See 243 

Dataset S1)  244 

 245 

Metabolite annotations: We used the “annotation dataset” to annotate pseudo-molecules 246 

using an integrated metabolomic workflow (Fraisier-Vannier et al., 2020) (see 247 

Supplementary Material and Methods S5). We obtained annotations for the “annotation set” 248 

and created a correspondence table between the “annotation dataset” measured on the LTQ-249 

ORBITRAP- and the “GWAS-dataset” measured using the QTOF-MS with a m/z tolerance of 250 

0.03 and an RT tolerance of 0.6 min (Dataset S2). Then, we selected putative annotations for 251 

21 metabolites associated with genetic variation in oaks described below and manually 252 

validated annotations using MS2 spectra. 253 

Statistical analysis of leaf specialized metabolites variation  254 

Specialized metabolite variation analysis: We studied global patterns of leaf metabolic 255 

profiles using a principal component analysis with unit variance scaling on raw signal 256 

intensity values of representative peaks. 257 

To investigate the differentiation of phenotypic variation between populations at each branch 258 

height, we fitted models with a single random effect of the population on log transformed 259 

peak intensity (log(x+1)), and computed the proportion of variance explained by the 260 

population of trees at each branch height. We found that models using a student-t distribution 261 

yielded better fit to the data, thanks to greater tolerance for outliers. Specifically, the model is 262 

described below, along with the priors for each parameter.  263 

 264 

 265 
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 266 

Where  was the log(x+1) transformed phenotype (one pseudo-molecule, at one branch 267 

height) of the ith tree from the pth population,  is the intercept of the model,  is the mean of 268 

the log transformed phenotype, and  is the population effect added to the model intercept 269 

for the population of the ith tree from the pth population. The proportion of variance explained 270 

(PVE) by the provenance effect was calculated as:  271 

 272 

Models were fitted using the R package brms v2.18.0 and R v4.2.2 (Bürkner, 2018), running 273 

5 chains of 4000 iterations, including 2000 of warmup. We reported the mean of the posterior 274 

distribution for PVE and the associated 85% credible interval for each molecule.  275 

 276 

Specialized metabolite signal intensities correlation: We studied correlations among log-277 

transformed signal intensities of SMs. We used all samples, excluding technical replicates 278 

and QCs, in both heights, calculated Spearman correlation coefficients between pairs of 279 

pseudo-molecules using the “corr.test” function of the psych R Package v2.2.9 (Revelle, 280 

2022). We considered correlations above 0.5 and FDR corrected p-value <0.05 as significant 281 

(Perez De Souza et al., 2020). We represented correlation networks using Cytoscape v3.9.1 282 

(Shannon et al., 2003).  283 

Genome-wide association analysis  284 

Genome-wide association studies: The genome-wide association analyses were performed 285 

on the log transformed signal intensities of individual pseudo-molecules using a univariate 286 

linear mixed model implemented in GEMMA v0.98.3, which accounts for the genetic 287 

relatedness among individuals, estimated as a centred genome-wide kinship (K) using the 288 

function provided in GEMMA. 289 

 290 

We analysed both heights separately and controlled for multiple testing by applying a 291 

Benjamini-Hochberg correction to the p-values from the association tests. For this correction 292 

we considered the total number of tests performed (number of SNPs * number of phenotypes, 293 

equal to 607M) and a significance threshold of p-value<0.01. This resulted in considering 294 

associations as significant when -log10(p-value) > 6.79.  295 

 296 
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mQTLs regions: To facilitate the interpretation of significant association, we clustered SNPs 297 

by regions, hereafter mQTLs. We considered all significant associations (-log10(p-value) > 298 

6.79), across all metabolites, and, walking along the genome, we grouped consecutive 299 

significant SNPs in the same cluster if they were located less than 1 Mb apart. If the distance 300 

between consecutive significant SNPs was larger than 1 Mb a new cluster was created. For 301 

each mQTL, we counted how many SNPs, and metabolites segregated within the mQTL.  302 

 303 

Gene annotation of highly associated SNPs: We searched genes within regions near SNPs 304 

highly associated with metabolite variation. We used the estimated linkage disequilibrium 305 

decay distance (~3,000 bases) to create regions of 6,000 bases around SNPs with 306 

associations. We parsed the gene annotation file using the start and end position of regions to 307 

match with genes start and end position annotations and extract sequences using samtools 308 

faidx v1.6. Then we used BLAST+ v2.12.0 (blastx) (Camacho et al., 2009) with default 309 

parameters to find similarity matches between translated nucleotide regions of 6 kb or gene 310 

sequences against the Arabidopsis proteome (Berardini et al., 2015). 311 

Results 312 

Population genomics of sessile oak populations  313 

In this study we sampled 225 sessile oak trees originating from nine populations (Fig. 1a) and 314 

sequenced 224 of these trees to a depth of 10X (on average 36.5M paired-end reads per tree). 315 

After filtering, we were able to genotype trees for 1,408,029 SNPs with a minor allele 316 

frequency above 10%, a missing genotype rate of 10% and after excluding regions annotated 317 

as transposable elements on the Q. robur reference genome, the closest genome available. We 318 

obtained an average SNP density of 170 SNPs per window of 100 kb, ranging from 0 to 923 319 

SNPs, and 90% of 100 kb windows included over 9 SNPs (Fig. S1). Three pairs of 320 

individuals displayed genetic similarity above 95% and were removed from the dataset, 321 

bringing the total number of individuals genotyped to 218.  322 

 323 

Using these 1.4 million markers we estimated that linkage disequilibrium (LD, r²) decreased 324 

to values below 0.2 over 2.9 kb in our collection of 9 populations spanning a large fraction of 325 

the species distribution range (Fig. S2).  326 

 327 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536008doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536008
http://creativecommons.org/licenses/by/4.0/


 

12 

We then pruned the dataset down to 356,413 un-correlated SNPs (r²<0.2) in the 218 328 

individuals to investigate population differentiation and genetic structure. First, we 329 

investigated the genetic differentiation between pairs of provenances using the Hudson 330 

fixation index FST. We found that FST between pairs of populations was on average 0.008, 331 

ranging from 0.002 to 0.014 (Fig. 1b). We observed the highest differentiation (FST=0.0146) 332 

between two populations from France: Vachères and Saint-Sauvant (Fig. 1b). Second, we 333 

investigated patterns of population structure using a PCA. The first principal component (PC) 334 

explained 7.2% of total variance and separated the two populations from the South-East of 335 

France (Vachères and Grésigne) from the other provenances (Fig. 1c). The second PC 336 

explained 6.5% of total variance and mostly captured the difference between a group of 337 

individuals from Bezange from the other individuals included in the study (Fig. 1c). 338 

Inspection of kinship values shows that these individuals were likely half-sibs. Overall, the 339 

PCA showed clustering of individuals according to their population of origin (Fig. 1c,d).   340 

 341 

 342 

Fig.1 Structure and differentiation of sessile oak populations. (a) Map of sessile oak populations 343 

included in the study. The coloured dots on the map correspond to the geographical origin of the 9 344 

populations we sampled. The location of the common garden in which the trees are installed is 345 
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marked by the black triangle. (b) Hudson pairwise FST between populations. Populations are indicated 346 

along the x and y axes. FST between pairs of populations are indicated in the half-matrix. The cells in 347 

the matrix are coloured in darker shades of blue for low FST values. (c-d) Genetic variation of oak 348 

populations visualised using a PCA. Each point corresponds to trees growing in a common garden 349 

(N=218), projected in the plane defined by the first three components (c) PC1, PC2 and (d) PC2, PC3 350 

of a principal component analysis (scores plot) computed using 356,413 un-correlated (r2 < 0.2) SNPs 351 

markers. Points are coloured according to populations as in (a).  352 

 353 

Leaf specialized metabolites (LSMs) characterisation  354 

We measured leaf SMs within oak leaves for 225 trees at two heights using a high-throughput 355 

untargeted LC-MS approach. Our raw dataset contained 750,540 signal intensities. After 356 

filtering, we obtained intensity signals for 219 pseudo-molecules in leaves from low and high 357 

branches of 209 and 215 trees, respectively. Given our sampling and LC-MS protocols, the 358 

219 pseudo-molecules analysed in this study corresponded to non-volatile, moderately polar 359 

specialized metabolites.  360 

 361 

Based on MS2 data, we performed automatic annotation of the pseudo-molecules present in 362 

our leaf samples. We obtained putative annotations for 89 pseudo-molecules (out of 219) of 363 

the “GWAS set” (all samples, see material and methods) in negative and positive mode. 364 

These putative annotations were grouped in ontology classes, and included mostly 365 

flavonoids, terpenes, quinic acids and derivatives, hydrolyzable tannins, in addition to other 366 

rarer classes (Dataset S2).  367 

Variation of leaf specialized metabolites  368 

We visualised leaf SMs variation of individuals using a PCA on the signal intensity values of 369 

219 pseudo-molecules for 424 leaf samples. PC1 explained 18.3% of total variance and 370 

clearly separated leaves sampled from high branches from leaves sampled from low branches 371 

(Fig. 2a). While there was a large effect of branch height on pseudo-molecule intensities 372 

overall, variation of individual molecules was generally positively correlated between the two 373 

branch heights (Fig. 2c). Across all 219 pseudo-molecules, Spearman rank correlations 374 

coefficients computed between phenotypic variation in high and low branches ranged from -375 

0.03 to 0.91, with a median of 0.47. After FDR correction, we found significant positive 376 

correlations for 199 out of the 216 pseudo-molecules.  377 
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 378 

In contrast to patterns observed for the genetic variation, we found no differentiation of 379 

populations along the first two PCs in this analysis (Fig. 2b). This was generally true for 380 

individual metabolites. We estimated the proportion of variance explained (PVE) by a 381 

random population effect for each molecule at each branch height. We found that only 31 382 

pseudo-molecules displayed PVE by population effects with a low credible interval above 1% 383 

at both branch heights, and only 37 at, at least, one branch height. Point estimates (posterior 384 

means) for the PVE by population effects were below 10% at both branch heights for 165 385 

pseudo-molecules out of 219 (~75 %) (Fig. 2d). Metabolites displaying the largest 386 

provenance effects are represented in (Fig. S3). 387 

 388 

We studied pairwise correlations among pseudo-molecule signal intensities for leaves 389 

sampled on low and high branches separately. We used pairwise correlations above 0.5 and 390 

qFDR < 0.05 to build correlation networks. This analysis revealed that nearly all significant 391 

pairwise correlations were positive with only one and two negative correlations for leaves 392 

collected on high and low branches, respectively. In addition, pseudo-molecules with similar 393 

retention time were often more strongly correlated and clustered together in the networks 394 

(Fig. S4).  395 
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 396 

 397 

Fig. 2: Variation of leaf SMs in 225 oak trees from nine European populations. a. Phenotypic 398 

variation of leaf SMs visualised using a PCA. Each point corresponds to a sample in our study (424 399 

samples, 219 variables) projected in the PC1 x PC2 plane (scores plot) of a principal component 400 

analysis of the scaled peak intensities of 219 pseudo-molecules. The points are coloured according to 401 

the height (high and low) at which leaves were collected in the trees. b. Same as a. but points are 402 

coloured by populations. c. Distribution of phenotypic correlations between high and low branches. 403 

The x-axis represents Spearman correlation coefficients between peak intensities in high and low 404 

branches, for each pseudo-molecule (N=219). The y-axis represents counts of pseudo-molecules.The 405 

red dashed vertical line represents the lowest significant correlation coefficient observed between high 406 

and low branches (p-value ≤ 0.05 after FDR correction). d. Proportion of variance explained by a 407 

random population intercept for each pseudo-molecule in leaves from low (x-axis) and high (y-axes) 408 

branches. The vertical and horizontal segments are 85% credible intervals. Points coloured in blue 409 

correspond to pseudo-molecules with the lower bound of the credible interval above 1% (N=31) at 410 

both branch heights. The black line is the line of intercept 0 and slope 1. The variation of the 5 411 

pseudo-molecules with the largest provenance effects are represented in Figure S3.  412 
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Genetic basis of leaf specialized metabolites 413 

To investigate the genetic basis underlying the variation of leaf LSMs in sessile oaks, we 414 

used a univariate linear mixed model implemented in GEMMA accounting for population 415 

structure. We performed association analysis separately for each of the 219 pseudo-molecules 416 

and for the two branch heights (219 molecules * 2 branch heights = 438 scans). All trees were 417 

genotyped for 1,386,405 SNPs (MAF>10% and SNPs missingness < 5%) and we performed 418 

association analyses in panels of 204 and 208 trees, for low and high branches, respectively 419 

(Fig. 3). Considering the results from both branch heights, we obtained a total of 5,305 420 

significant associations (after the Benjamini-Hochberg correction filter,  p-value <0.01), 421 

corresponding to 2,272 individual SNPs associated with at least one of 138 pseudo-molecules 422 

(63% of pseudo-molecules) measured for at least one branch height. These significant 423 

associations clustered in 155 loci, or mQTLs hereafter, separated by at least 1 Mb (see 424 

Material and Methods). Note that we did not account for associated SNPs mapped to 425 

scaffolds not assigned to chromosomes.  426 

 427 

For downstream analyses, we applied a more stringent filter and focused on 35 mQTLs 428 

including highly significant associations (-log10(p-value) > 10) for at least one pseudo-429 

molecule. These 35 loci were distributed on all chromosomes of the oak genome except on 430 

chromosome 12, and had sizes ranging from 1 bp to 1.47 Mb (Fig. 3). For each of the 35 431 

mQTLs, we investigated candidate genes and selected the pseudo-molecule with the strongest 432 

association for structural annotation (N=21 pseudo-molecules Table 1, Dataset S3).  433 

 434 
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 435 

Fig. 3 Genome-wide association mapping of oak leaf specialized metabolites. Manhattan plot where 436 

each dot represents a genetic marker (N=1,386,405). The positions of genetic markers are given, 437 

along the 12 pseudo-chromosomes of the pedunculate oak reference genome, along the x-axis. The y-438 

axis indicates the best association score (-log10(p-value)) identified for each marker over the 219 439 

pseudo-molecules and the two branch heights investigated in our study. The red horizontal line 440 

represents the association score above which associations were considered significant (p-value < 0.01 441 

after Benjamini-Hochberg correction). The black horizontal line represents the threshold above which 442 

associations were considered highly significant (-log10(p-value)>10). The vertical grey lines represent 443 

the position of the 35 mQTLs. For clarity, only markers with association scores above 5 are 444 

represented.  445 

 446 

 447 

Among these 21 focal pseudo-molecules, 15 displayed associations (-log10(p-value) > 10) 448 

within one mQTL only. The rest displayed associated SNPs in two to six mQTLs. As 449 

expected from the correlation networks (Fig. S4), molecules with retention times within about 450 

a minute often displayed associations within the same mQTLs (Fig S4, Dataset S3). For 19 of 451 

the focal 21 pseudo-molecules, associations were detected within the same mQTL for both 452 

branch heights (Dataset S3). 453 

 454 
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The SNPs identified as associated with these 21 pseudo-molecules typically explained a large 455 

fraction of phenotypic variance (Fig. 4a, Fig. S5). We investigated the genotype distribution 456 

within the nine populations of those SNPs. For the 21 pseudo-molecules, we observed that 457 

the heterozygous and homozygous genotypes were distributed within the nine provenances 458 

without differentiation among populations (Fig. 4a, Fig. S5). Comparing the differentiation 459 

among populations for the genetic markers associated with the 21 pseudo-molecules to 460 

genome-wide patterns of differentiation revealed that only four out of these 21 markers 461 

displayed values above the 80th percentile (FST > 0.02) of the genome-wide FST distribution 462 

(Fig. S6). For five of the 21 pseudo-molecules, the heterozygous genotype was associated 463 

with higher signal peak intensities than the homozygous genotype (Fig. 4b, Fig. S5). In 464 

addition, the homozygous genotype was not present in our dataset for 16 SNPs associated 465 

with seven pseudo-molecules (Fig. S5). 466 

 467 
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 468 

 469 
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Fig. 4 Variation of many leaf SMs can be explained by genetic variation at a single genetic marker. In all panels, 470 

the plots represent the variation of the peak intensity (y-axis, log10(x+1)) for pseudo-molecules m269, m39, 471 

m76, m412 for leaves collected on high and low branches. In the eight panels in (a), points correspond to leaves 472 

of individual samples in high branches (top row) and low branches (bottom row), grouped by population along 473 

the x-axis. Note that a jitter was applied to the location of points along the x-axis for clarity and that populations 474 

are ordered by increasing latitude of origin. Points are coloured according to the genotype at the SNP most 475 

strongly associated with each pseudo-molecule as described in the legend at the top of the figure. “Hom. ref.” 476 

(red points) stands for “homozygous for the reference allele”, “Het.” (Blue points) stands for “heterozygous” 477 

and “Hom. alt.” (green points) stands for “homozygous for the alternative allele”. The coordinate of the SNP is 478 

given in the title of each panel. The red horizontal solid line represents the highest value observed in 479 

experimental blanks for each pseudo-molecule. Identical plots were produced for all pseudo-molecules for 480 

which we found significant associations and are presented in Fig. S5. In the eight panels of (b), violin plots 481 

represent the distribution of log intensity values for each genotype (x-axis), in leaves from high (top row) and 482 

low branches (bottom row), at the most strongly associated SNP for each pseudo-molecule.483 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536008doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536008
http://creativecommons.org/licenses/by/4.0/


 

21 

Table 1 Annotations of 5 pseudo-molecules (Mol) and their associations and candidate genes at the highest SNPs associated with the phenotype 484 

(when candidate genes were found within 6,000bp of the best association).  485 

Pseudo-

molecule 

ID 

Chemical Class Putative 

Name 

Chemical 

Formula 

PubChem 

CID 

MS-

FINDER 

Total 

score 

RT 

(min

) 

m/z+ Chr: 

Position 

Associ

ation 

score 

Quercus robur 

candidate gene 

Quercus 

robur 

gene name  

A. thaliana 

candidate gene  

A. thaliana 

gene name 

m216 Gallic acid and 

derivatives 

Norbergenin C13H14O

9 

90476206 6.0479 5.82 315.07 Chr01:3605

6531 

26.32   AT3G16520.2 

 

UDP-

GLUCOSYL 

TRANSFERAS

E 88A1 

m25 cinnamic 

derivatives; 

quinic acid 

derivatives 

Caffeoylqui

nic acid 

C16H18O

9 

1794427 7.8264 4.30 163.04 Chr11:4060

9749 

16.56 

 

    

m269 Quinic acid and 

derivatives 

Theogallin, 

3-

Galloylquini

c acid 

C14H16O

10 

442988 6.5784 3.38 345.08 Chr01:19760

198 

59.74 

 

Qrob_P0270670.

2 

serine 

carboxypep

tidase like 

clade I 

AT2G22990.6 

 

FPT2,SCPL8 

 

m39  Ferulic acid-

like 

C10H8O3 445858  5.05 177.05 Chr07:2751

4866 

48.42 

 

  AT2G36290.1 

 

alpha/beta-

Hydrolases 

protein 

superfamily 

m514 Flavonoid-3-O-

glycosides 

Kaempferol-

hexoside-

rhamnoside 

C30H26O

13 

21606527 7.7587 7.56 595.14 Chr02:6371

5454 

12.39   AT1G28570.3 

 

SGNH 

hydrolase-type 

esterase 

superfamily 

protein 
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Based on structural annotations, the pseudo-molecules were assigned to a chemical class and given a putative name. The RT column gives the retention time in min, the m/z+ 486 

column gives the mass to charge ratio (in positive mode) for the peak chosen as representative for the pseudo-molecule (which doesn’t always correspond to the protonated 487 

molecule). The columns “Chr.” and “Position” give the coordinates, on the Q. robur reference genome, of the genetic marker most strongly associated with the variation of 488 

each pseudo-molecule. The column “association score” is the highest association score (-log10(p-value)) observed for the genetic marker across both branch heights. The 489 

columns “candidate gene” and “gene name” correspond to candidate genes identified within 3 kb of the associated marker, either on the Quercus robur reference genome, or 490 

based on sequence similarity with Arabidopsis thaliana proteins. Structural annotations for the 16 other pseudo-molecules with strong associations are available in Dataset 491 

S4. Dataset S3 gives the full list of significant associations detected in our study.   492 
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Molecule annotation and candidate genes for leaf specialized metabolites 493 

with high association to genetic markers 494 

For the 21 pseudo-molecules with high associations within mQTLs, we sought to confirm 495 

their chemical structure using spectral proof from MSn analyses. Putative structures were 496 

proposed for only 12 of these molecules by the automated annotation pipeline (see Material 497 

and Methods). Of these, we were able to validate the structures of three, modify the proposed 498 

structure of four molecules (Dataset S4), and reject the proposed structures for five 499 

molecules. The seven manually validated molecules represented six different chemical 500 

structures that belonged to five different ontology chemical classes: flavonoids, quinic and 501 

gallic acid derivatives, lignan glycosides and cinnamic acids (Dataset S4).  502 

 503 

We aimed to determine if the 21 pseudo-molecules were associated with SNPs located within 504 

or near annotated genes in the Quercus robur genome. For 9 pseudo-molecules, we found 505 

annotated genes in a 6 kb window around the most associated SNP. This allowed identifying 506 

12 candidate genes located in 12 mQTL. In addition, we searched for sequence similarities 507 

between the 6 kb regions around associated SNPs and Arabidopsis thaliana proteins. This 508 

allowed identifying 14 additional candidate genes and confirmed all of the other annotations. 509 

For the 7 pseudo-molecules with validated structural annotations, only molecule m269 had 510 

significant associations located near genes on chromosome 1 and 2 of the Quercus robur 511 

genome. For four other annotated pseudo-molecules, m25, m39, m216 and m514, we 512 

identified six additional candidate Arabidopsis genes. These five metabolites were annotated 513 

as galloylquinic acid, norbergenin, ferulic acid like and caffeoylquinic acid as derived 514 

compounds of phenylpropanoid pathway and kaempferol-rhamnoside (Table 1). 515 

Discussion  516 

Oak populations display low genetic differentiation  517 

We observed low genetic differentiation among the nine sessile oak populations , which is 518 

consistent with previously published observations, for the same populations, and in oaks 519 

more generally (Leroy et al., 2020; Saleh et al., 2022). The lack of differentiation among oak 520 

populations likely results from large population sizes, limiting genetic drift, the continuous 521 
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distribution of the species and extensive long distance seed and pollen dispersal (Gerber et 522 

al., 2014).  523 

 524 

Despite very low average genetic differentiation over the genomes, a small number of loci 525 

displayed differentiated allele frequency. In a previous study, (Torres-Ruiz et al., 2019) 526 

studied  the variation of leaf phenology, growth or hydraulic traits in the same populations 527 

and identified phenotypic differentiation for phenology and growth traits. It is possible that 528 

differentiated loci detected here could contribute to the variation of these traits (including leaf 529 

SMs, see next section) and may be involved in the local adaptation of the nine populations to 530 

their respective environments. 531 

 532 

Phenotypic and genetic variation of most leaf specialized metabolites 533 

investigated displayed extensive within population variation and low 534 

differentiation among sessile oak populations.  535 

We quantified the variation of 219 pseudo-molecules within the canopies of 225 individuals 536 

originating from nine populations. Our first observation was a large effect of branch height 537 

(Fig. 2a). This effect impacted nearly all pseudo-molecules and explained a large fraction of 538 

the overall phenotypic variance across the 219 pseudo-molecules. Such variation was 539 

previously reported in pedunculate oak for total phenolics (Valdés-Correcher et al., 2020; 540 

Volf et al., 2022), suggesting that different environmental factors within the canopy such as 541 

the exposure to direct sunlight or to a different set of biotic interactions influences the 542 

production of leaf SMs. While sampling height appeared to influence the abundance of nearly 543 

all molecules, phenotypic variation among trees in high and low branches was generally 544 

highly correlated (Fig. 2c).  545 

 546 

At both branch heights we found very little phenotypic differentiation among populations, 547 

both in multivariate analysis and when considering molecules individually (Fig. 2d). In 548 

addition, our genome-wide association analysis detected very strong associations for nearly 549 

10% of the pseudo-molecules we investigated (21 out of the 219), and significant associations 550 

for almost 63%, suggesting that the variation of non-volatile leaf SMs within populations was 551 

to a large extent genetically determined by a small number of loci. On the one hand, this high 552 

heritability and the simple architecture of SMs variation is consistent with estimates in other 553 
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species such as rice (Matsuda et al., 2015) or Arabidopsis thaliana (Brachi et al., 2015). On 554 

the other hand, however, the lack of differentiation among populations is consistent with 555 

observations in natural oak stands (Bertić et al., 2021).  556 

 557 

Taken together, our results suggest that the variation of leaf SMs we measured was generally 558 

not involved in the local adaptation of populations to their respective environments, at least at 559 

the geographical scale considered. Previous studies of SMs variation in common gardens 560 

observed patterns consistent with local adaptation in plants (Brachi et al., 2015) or in trees 561 

(O’Reilly-Wapstra et al., 2013; Meijón et al., 2016). However, differences between 562 

environments may also produce patterns of local adaptation as for example in oaks (Bertić et 563 

al., 2021). While we quantified the variation of many molecules, using untargeted 564 

metabolomics, it is possible we did not capture the variation of locally adaptive molecules. 565 

This could have two plausible reasons. First, we explored the variation of leaf SMs between 566 

populations grown in a common garden at one time point during the summer. While using a 567 

common garden trial allowed to remove the environmental effect, it is possible that 568 

phenotypes that would display patterns of variation consistent with local adaptation were not 569 

expressed in our phenotyping conditions. Sampling additional time points during the year, or 570 

quantifying the variation of leaf in a different environment may reveal more phenotypic 571 

variation among populations (Meijón et al., 2016). Second, the phenotypic variation observed 572 

within each population may not be representative of the variation in leaf SMs among adult 573 

trees in natural populations from which acorns were collected (Ducousso et al., 2022). In 574 

each population, acorns were collected, heat treated to avoid infection by pathogens and then 575 

raised in controlled conditions for 3 years. This protocol allowed to reduce material loss, 576 

however, it may have promoted the development of seedlings that would not have developed 577 

under natural conditions. 578 

 579 

Consistent with the lack of phenotypic differentiation among populations, the vast majority of 580 

markers associated with leaf SMs were not significantly less differentiated between 581 

populations (low FST values) than random loci. One interpretation could be that the variation 582 

in leaf SMs evolves neutrally. This is unlikely in our opinion as drift would likely generate 583 

differentiation between populations, and leaf SMs are known to impact fitness related traits 584 

such as stress resistance and defence against pests (De-la-Cruz et al., 2020). At least three 585 

other scenarios could be formulated to explain the very high level of variation within 586 

provenances for leaf SMs, and in different scenarios the balanced frequency of phenotypes in 587 
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all populations (see Moore et al., 2014 for a review). A first scenario could be that 588 

phenotypic variation among adult trees within populations of origin is geographically 589 

structured at a fine scale, due to adaptation to micro-local conditions. Locally this would 590 

result in a diverse pollen cloud that could generate extensive phenotypic variation among 591 

offsprings. This scenario would likely require strong and recurrent selection on seedling 592 

populations that vary over relatively small distances (maybe in order of a few kilometres, 593 

Gerber et al., 2014) to generate the geographical structure of phenotypic variation in adult 594 

populations. A recent study explored the mechanisms that maintain the high variation in leaf 595 

glucosinolates across the species range of the perennial wildflower (Boechera stricta). It 596 

showed that variation for the production of certain glucosinolates was maintained because 597 

selection by herbivores and exposure to drought varied over small geographic distances 598 

(Carley et al., 2021). The second scenario would be analogous to the first one, but instead of 599 

varying over the landscape, selection would vary in time, favouring different phenotypes 600 

depending on the year. Investigating allele frequencies at associated markers in trees of 601 

different ages could be a way to test this scenario (Saleh et al., 2022). Finally, in a third 602 

scenario, variation could be maintained by negative frequency dependent selection. For 603 

example, a particular chemotype (or the production of a specific molecule) could be 604 

favourable when rare in the population. The rarer chemotypes could for example deter 605 

herbivores adapted to the most common chemotype in the population and therefore be 606 

advantageous. As the rarer chemotype increases in frequency in the populations, its 607 

advantage would decrease as the local insect community adapts. Examples are rare in the 608 

literature (Núñez-Farfán et al., 2007), but the mechanism would be analogous to those 609 

observed in plant-pathogen interactions (Karasov et al., 2014).  610 

 611 

Potential pleiotropic effect of leaf specialized metabolites associated genes 612 

Specialized metabolites, as single molecules or chemotypes, play a key role in multiple stress 613 

responses. In oaks, previous studies on leaf SMs abundance variation showed that variation 614 

of different SMs, such as quinic acids or quercitols, were shaped by both biotic stresses 615 

(Sardans et al., 2014; Bertić et al., 2021) and abiotic stresses (Passarinho et al., 2006; Aranda 616 

et al., 2021). Their multiple roles may be reflected by a pleiotropic effect of the biosynthetic 617 

genes associated with their variation. As hypothesised in the previous section, selective 618 

pressure variation over time and space may act differently on biosynthetic genes and 619 
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transcription factors and favour different alleles creating patterns of balancing selection 620 

within populations (Carley et al., 2021).  621 

 622 

Here, we only discuss possible pleiotropic effects of three metabolites for which we manually 623 

validated the structure, identified a relevant candidate gene, and for which literature searches 624 

highlighted potential pleiotropic effects on tolerance or resistance to both abiotic and biotic 625 

challenges.   626 

The first molecule of interest, m39, was annotated as a ferulic acid like metabolite, derived 627 

from the phenylpropanoid pathway, and associated with a single major-effect locus 628 

(chromosome 7; position 27,514,866 bp) with a sequence similarity in Arabidopsis with an 629 

alpha/beta-Hydrolases protein superfamily. Ferulic acids play a key role in plant cell wall 630 

biosynthesis and are involved in drought tolerance of cereals (Hura et al., 2007). In addition, 631 

ferulic acids may also contribute to herbivore resistance in oaks. Their absolute quantity in 632 

leaves, quantified as lignin equivalent, were positively correlated with the growth rate of 633 

caterpillars of a generalist herbivore, Lymantria dispar (Damestoy et al., 2019).  634 

The second molecule was annotated as a kaempferol derivative (m514) which belongs to the 635 

flavonoid class and was associated with another major-effect locus (chromosome 2; position 636 

63,715,454 bp) with high similarity to a hydrolase-type esterase superfamily protein in 637 

Arabidopsis. Kaempferol based molecules contribute to increased resistance of pedunculate 638 

oaks to a specialist herbivore Tortrix viridana (Bertić et al., 2021) and to increased drought 639 

response of pubescent oaks (Q. pubescens) (Saunier et al., 2022). Both alpha/beta-Hydrolases 640 

and hydrolase-type esterase protein superfamilies were previously described to be involved in 641 

specialized metabolism in plants (review in Mindrebo et al., 2016).  642 

The third molecule was annotated as a galloylquinic acid or theogallin (m269) and we found 643 

a very strong association for this theogallin, with a single marker on chromosome 1, at 644 

position 19,760,198 bp. We identified one candidate gene in the vicinity of SNPs associated 645 

with the variation of this theogallin, annotated as a serine carboxypeptidase like (SCPL) in 646 

the oak genome. SCPL genes were previously shown to play a key role in metabolomic 647 

biosynthesis pathways of flavonoids in grapevine Vitis vinifera (Bontpart et al., 2018) and 648 

galloylated catechins in Camellia sinensis (Ahmad et al., 2020). In oaks, galloylquinic acids 649 

were previously identified within leaves of 12 species of black and white oaks (Yarnes et al., 650 

2006), but, to our knowledge, no study investigated the biological function of this molecule. 651 

Galloylquinic acid is composed of a quinic acid and a gallic acid moiety and is a precursor of 652 

hydrolysable tannins. Previous studies have investigated the properties of quinic acid and 653 
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gallic acid in oaks, however separately. Quinic acid concentrations were shown to increase in 654 

response to wounding (Sardans et al., 2014), temperature elevation (Passarinho et al., 2006) 655 

and water deprivation (Aranda et al., 2021). In addition, the production of gallic acid was 656 

frequently associated with herbivore resistance, and its concentration appears to vary 657 

seasonally in oak leaves (Salminen et al., 2004).  658 

 659 

In conclusion, we observed extensive variation of leaf SMs within sessile oak populations 660 

samples over a latitudinal cline, and few molecules displayed significant differentiation 661 

among populations (14%). We found significant associations for 63% of the leaf SM 662 

investigated suggesting both that the variation of individual molecules within populations 663 

often had high heritability and simple genetic architecture. Thus, our results suggest that most 664 

leaf SMs with heritable variation within provenances, were not involved in the local 665 

adaptation of populations to their respective environment.  666 

Instead, we found very high levels of genetic variation for leaf SM in all nine European 667 

populations investigated. This pattern may be the result of two evolutionary processes. On the 668 

one hand, the variation could be mostly selectively neutral. In this case, our results would 669 

show the extent of the phenotypic and genetic variation present in oak populations, for 670 

specialized metabolites. Hence, this large variability could be an important source of novel 671 

phenotypes, affording populations the potential to adapt to extent or emergent changes in 672 

their environment. On the other hand, the extensive genetic variation for leaf SMs we 673 

observed within all populations could be maintained by natural selection. While we discussed 674 

different possible scenarios that could explain the maintenance of this genetic variation, 675 

understanding the selective pressures that shape this variation and the ecological role it plays 676 

in forests is essential in the context of global change. Our results lay the foundation for 677 

detailed analysis of the selective pressures and the ecological consequences of the genetic 678 

variation of leaf SMs in oak dominated forests.  679 
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