Genetic variation in *Loudetia simplex* supports the presence of ancient grasslands in Madagascar

George P. Tiley\(^1,\dagger\), Andrew A. Crowl\(^2\), Tchana O. M. Almary\(^3\), W. R. Quentin Luke\(^4\), Cédrique L. Solofondranohatra\(^5\), Guillaume Besnard\(^6\), Caroline E.R. Lehmann\(^7,\dagger\), Anne D. Yoder\(^2\), Maria S. Vorontsova\(^1\)

\(^1\)Royal Botanic Gardens Kew, Richmond, UK
\(^2\)Department of Biology, Duke University, Durham, North Carolina, 27708 USA
\(^3\)Kew Madagascar Conservation Centre, Antananarivo 101, Madagascar
\(^4\)East African Herbarium, National Museums of Kenya, P.O. Box 45166, Nairobi, 00100, Kenya
\(^5\)Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
\(^6\)CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
\(^7\)School of GeoSciences, University of Edinburgh, Edinburgh, UK
\(^8\)Royal Botanic Garden Edinburgh, Edinburgh, UK

\dagger Author for Correspondence: g.tiley@kew.org
Summary

1) Research Aims — The extent of Madagascar’s grasslands prior to human colonization is unresolved. We used population genetic analyses of a broadly dominant C₄ fire-adapted grass, *Loudetia simplex*, as a proxy for estimating grassland change through time. In the absence of population genomic resources, we used target-enrichment data. We carefully examined the utility of these data for population genetics to make recommendations on cost-effective strategies for conservation genetics. We explored the potential of estimating individual ploidy levels from target-enrichment data and how assumptions about ploidy could affect analyses.

2) Methods — We developed a novel bioinformatic pipeline based to estimate ploidy and genotypes from target-enrichment data. We estimated standard population genetic summary statistics in addition to species trees and population structure. Extended Bayesian skyline plots provided estimates of population size through time for empirical and simulated data.

3) Key Result — All Malagasy *Loudetia simplex* individuals sampled in this study formed a clade and possibly indicated an ancestral high-altitude distribution near the present-day Itremo protected area. Demographic models suggested grassland expansions occurred prior to the Last Interglacial Period and supported extensive grasslands prior to human colonization. Though there are limitations to target-enrichment data for population genetic studies, we find that analyses of population structure are reliable.

4) Key Point — Genetic variation in *Loudetia simplex* supports widespread grasslands in Madagascar prior to the more recent periods of notable paleoclimatic change. However, the methods explored here could not differentiate between paleoclimatic change near the Last Glacial Maximum and anthropogenic effects. Target-enrichment data can be a valuable tool for analyses of population structure in the absence of reference genomic resources.

Keywords
Effective Population Size, Target-Enrichment, HybSeq, Polyploidy, Anthropogenic Climate Change, Conservation Genetics
Societal Impact Statement

Recognizing *Loudetia* dominated grasslands were widespread prior to human colonization highlights that open ecosystems were and continue to be an important component to Madagascar’s biodiversity. Urgently required are biodiversity inventories and risk assessments for unique grassland flora and fauna under present day environmental conditions to recognize and quantify modern human impacts within ecosystems historically regarded as wastelands. Substantial financial and logistic barriers exist to implementing conservation studies using contemporary genomic tools that we seek to ameliorate by developing computational resources to leverage a cost-effective data generation strategy that requires no prior genetic knowledge of the target species.
Introduction

The degree to which anthropogenic activities have transformed the ancestral vegetative composition of Madagascar’s ecosystems is heavily debated. While the narrative that most of central Madagascar was once covered in closed-canopy forests has been rejected (Bond et al., 2008; Vorontsova et al., 2016; Hackel et al., 2018; Solofondranohatra et al., 2020; Bond et al., 2022; Lehmann et al., 2022), the degree to which a former mosaic of grassland, shrubland, and forests has become more dominated by grasses is contentious (reviewed in Joseph et al., 2021). Understanding population dynamics of individual ecologically important species and plant communities will have profound effects on conservation policy decisions and the economic productivity of grasslands for local communities. However, it is difficult to determine where grasslands were in the past and how extensive they were. Stratigraphic sediment records from central Madagascar indicate an increased relative abundance of grasses and fire through the Holocene (Burney, 1987; Gasse & Van Campo, 1998; Virah-Swamy et al., 2010), especially near the expected age of human colonization [c. two thousand years ago (ka); Dewar & Wright, 1993; Dewar et al., 2013; Pierron et al., 2017]. Megafaunal isotope records also support Holocene expansions of C4 grasslands but show a vegetative mosaic of C4 grasses and C3 vegetation was at least present (Crowley et al., 2021) near the last glacial maximum (LGM; c. 26.5-19 ka). Reconstructing spatio-temporal vegetative dynamics beyond the LGM begin to approach limitations of paleoecological data, but molecular evolutionary approaches can fill the gaps by providing probabilistic inferences through time. Population genetic approaches for reconstruct demographic histories has been successfully applied to lemurs to reconstruct patterns of past forest connectivity (Quéméré et al., 2012; Yoder et al., 2016; Salmona et al., 2017; Teixeira et al., 2021; Tiley et al., 2022) and may similarly provide insights into the Late Pleistocene dynamics of grasses between the LGM and Last Interglacial period (LIG; c. 132-112 ka) or older. This strategy has been used to reconstruct vegetative dynamics of temperate Japanese grasslands from forb species (Yamaura et al., 2019).

An array of tools now exists to estimate the effective population size (N_e) of species through time. As generating genomic data for non-model groups has become more accessible, population genomic methods that utilize precisely estimated site frequency spectra (SFS; Nielsen et al., 2000; Gutenkunst et al., 2009; Excoffier et al., 2013; Liu & Fu, 2020; Blischack et al., 2022) have become a valuable tool for reconstructing the demographic history of natural populations. There are still barriers to generating population genomic data though, either due to the lack of suitable tissue, an appropriate reference genome, or costs. Target-enrichment
libraries have been transformative for the analysis of plant phylogenetic relationships (e.g. Breinholt et al., 2021; Baker et al., 2022), but the population genetic utility of such data are not well-explored. A survey of taxa with low sample sizes suggested population genetic parameters estimated from target-enrichment data could be unreliable, in addition to violating assumptions of the neutral coalescent model that underpins most tests of selection and demographic change (Slimp et al., 2021). However, the relatively long loci recovered by target-enrichment (or HybSeq) methods could be appropriate for a demographic modeling approach, the extended Bayesian skyline plot (EBSP; Heled & Drummond, 2008), which has been successfully applied to a range of conservation genetic questions despite some model violations. We are interested in exploring the potential of target-enrichment data for population or conservation genetic insights from plant groups that may be lacking genomic resources.

Here, we examined the population genetics of the grass species *Loudetia simplex* (Tristachyideae: Panicoideae: Poaceae). It is largely dominant in Madagascar’s Central Highlands (Koechlin, 1993; Hagl et al., 2021; Fig. 1a) and is notable for its fire- and grazing-adapted functional traits (Solofondranohatra et al., 2018). Population genetic analyses of microsatellites suggest Malagasy *L. simplex* has been isolated from mainland African populations with no detectable level of gene flow, and that there is additional population structure between the northern and southern extents of the species range across the Central Highlands of Madagascar (Hagl et al., 2021). Here, we use a subset of individuals analyzed by Hagl et al. (2021) along with a new sample from the center of the *L. simplex* distribution to explore the population genetic utility of target-enrichment data and its implications for the natural history of Madagascar’s grasslands. Because Malagasy *L. simplex* are putative polyploids (tetraploids and hexaploids; Hagl et al., 2021), we developed novel bioinformatic tools for the processing and analysis of polyploid data, integrated into the PATÉ allele phasing pipeline (Tiley et al., 2021).

Materials and Methods

Sampling and Sequencing

Target-enrichment data was generated for 24 individuals of *Loudetia simplex* and one outgroup, *Tristachya nodiglumus* (Supplementary Table S1). Twenty individuals were selected to best represent Madagascar from available collections as a single unstructured population and avoid complications of population substructure and low sample sizes in downstream analyses (Fig. 1b). Genomic DNA samples were used from Hagl et al. (2021) while new extracts used a
modified CTAB protocol (Doyle & Doyle, 1987) from silica-dried leaf tissue. Genomic DNA was then sent to Rapid Genomics (Gainesville, FL, USA) where sample enrichment and sequencing was performed with a bait kit developed for angiosperms following Breinholt et al. (2021). All sample metadata is provided in Supplementary Table S1.

Sequence Assembly and Processing
Initial contigs were assembled with HybPiper (Johnson et al., 2016) with default settings. We then used HybPiper's supercontigs as reference sequences for PATÉ (Tiley et al., 2021; Crowl et al., 2022) to genotype individuals, filter low-quality variants with GATK v4.2.0 (McKenna et al., 2010; DePristo et al., 2011), and phase haplotype sequences using HPOP-G (Xie et al., 2016). Ploidy information for individuals (Supplementary Table S1) was based on previous microsatellite allele count data (Hagl et al., 2021); however, we also implemented a statistical test to infer ploidy level in PATÉ based on mixtures of distributions from allele balance data, similar to other approaches that use the number of reads supporting an alternate allele over total reads to infer ploidy (Weiß et al., 2018). We extended the mixture models of Tiley et al. (2018) to determine the ploidy of a sample with the model weights as a selection criterion (Supplementary Methods: Ploidy Test). PATÉ control files with all filtering options for GATK are provided in the Supplementary Data (Dryad X).

To investigate nucleotide variation and the potential population genetic value of non-coding versus coding regions of target-enrichment loci, we identified the following regions:
1) **Left Flank** – Non-coding sequence upstream of the 5’ start codon or splice site
2) **Core** – The coding region targeted by probes for sample enrichment
3) **Right Flank** – Non-coding sequence downstream of the 3’ stop codon or splice site
Identification of individual regions was automated (https://github.com/gtiley/Locus-Splitter) based on the tblasx program from BLAST v2.10.0 (Camacho et al., 2009) to find in-frame alignments between our assembled sequences and the original transcriptome loci used for probe development. Individual regions were aligned with MAFFT v7.471 (Katoh & Standley, 2013). The aligned regions were then concatenated together to make whole-locus alignments.

Because we are interested in investigating the analytic impact of ploidy in sequence data, we created three datasets from the phased ploidy-aware data:
1) **One Haplotype (OH)** – Only one phased haplotype sequence was randomly selected from each individual for each locus.
2) Ambiguous Genotype (AG) – The genotypic information for an individual is represented as a single sequence with IUPAC ambiguity codes for biallelic sites. Analyses that treat IUPAC codes as missing data were randomly resolved into two sequences.

3) Phased Haplotypes (PH) – All phased haplotype sequences for an individual are used.

We expect the OH data to be representative of majority consensus sequences (e.g. HybPiper supercontigs) since our target-enrichment loci are anchored in single exons and we anticipate that any risk of assembling chimeric sequences from such data without paralog warnings is low. Any site genotyped as polyallelic was assumed to be an error and treated as missing sequence across all data sets. All expected copies of a locus are represented even if they are invariant. For example, some individuals in the PH data may have six identical sequences at a locus if they are hexaploids and every site is homozygous. While the ploidy at an individual locus may vary, this is a simplifying assumption to preserve expected allele frequency information.

Phylogeny estimation
A species tree was estimated for all L. simplex individuals using whole-locus sequences for the OH, AG, and PH datasets with BPP v4.6.2 (Flouri et al., 2020). We chose a full-likelihood multispecies coalescent (MSC; Rannala & Yang, 2003) model since it is robust to low-information gene tree estimates (Xu & Yang, 2016). Markov chain Monte Carlo (MCMC) analyses collected 10,000 posterior samples, saving every 10 samples after a 10,000 generation burnin. Model and prior specifications are provided in the supplementary information (Supplementary Methods: BPP Prior Specification). The starting tree for our Bayesian species tree analyses was based on a concatenated maximum likelihood (ML) estimate from the OH data with IQTREE v2.1.2 (Minh et al., 2020). We used unpartitioned analyses with ModelFinderPlus (Kalyaanamoorthy et al., 2017) for the OH, AG, and PH data to estimate ML evolutionary distances between individuals, with random concatenation of haplotypes within individuals.

Population structure
Potential population structure within our sample of L. simplex from Madagascar was explored with STRUCTURE v2.3.4 (Pritchard et al., 2000). For each dataset, we sampled only one biallelic SNP per locus, if present, and required a minimum minor allele count of three with no more than 25% missing data. To explore uncertainty due to sampling error of sites in a target-enrichment dataset that is relatively small compared to contemporary population genomic data,
we generated 10 datasets with random SNP sampling. The number of clusters that best satisfy Hardy-Weinberg assumptions was determined with the \(\Delta K \) method (Evanno et al., 2005).

Principal component analyses (PCAs) were conducted on the OH, AG, and PH datasets with adegenet v2.1.3 (Jombart & Ahmed, 2011) by compressing allele counts to the same dimension as the lowest ploidy level present. For example, a hexaploid with three reference and three alternate alleles would be scored as a 2 on a scale from 0 to 4, to be comparable to tetraploids in the dataset. Additional details on allelic imbalances would be lost as, for example, hexaploids with either one or two alternate alleles would be represented as a 1 on the tetraploid scale.

Scripts for generating PCA or other clustering-ready matrices from fasta files are available on GPT’s GitHub (https://github.com/gtiley/fasta-conversion). Additional details about compression of PCA data matrices can be found in the Supplementary Material (Supplementary Methods: PCA Input Data). The presence of isolation-by-distance as an explanation for observed patterns of genetic structure and ordination was tested with the patristic distances from the ML analyses or the uncorrected pairwise distances (p-distances) regressed against the natural logarithm of the great circle distance between individuals. A Mantel test was performed for isolation-by-distance analyses in the ape v5.6.2 R package (Paradis & Schliep, 2019).

Population genetic summary statistics

The pairwise nucleotide diversity (\(\pi \)), number of segregating sites (\(S \)), and Tajima’s \(D \) were calculated across locus regions and datasets with the PopGenome v2.7.5 R package (Pfeifer et al., 2014). The significance of Tajima’s \(D \) statistics was determined by 100 standard coalescent simulations with ms (Hudson, 2002). To estimate 95% confidence intervals on summary statistics, we generated 200 bootstrap replicates of each alignment. The relative estimation error between regions and datasets was compared using the root squared mean error (RSME) from the bootstrap sample. The scaling and interpretation of parameters are described in the supplementary material (Supplementary Methods: Summary Statistics). We tested for differences in the distribution of summary statistics among locus regions (left flanks, cores, and right flanks) and data types (OH, AG, and PH) with Wilcoxon Rank-Sum tests. We tested for biases in Tajima’s \(D \) results among locus regions and data types with \(\chi^2 \) tests.

Demographic History

We chose the extended Bayesian skyline plot (EBSP, Heled & Drummond, 2008) as the most appropriate model of \(N_e \) change through time for our sample of target enrichment data. The model assumes \(N_e \) changes coincide with coalescent events, and although an unrealistic
assumption (Yang, 2014), is common. Here we assumed a strict molecular clock underlying all lineages but allowed rates of evolution to vary among loci. One locus was fixed to the clock rate and all other locus rates were relative. Rates of molecular evolution among plants are especially complicated, as there can be life histories with variable reproductive strategies, unknown generation times, and overlapping generations. Thus, we relied on an estimate of the neutral substitution rate at third-position synonymous sites from grass genomes (Christin et al., 2014) and constructed a vague prior around this mean rate, such that any biologically plausible uncertainty in the rate of evolution is reflected in our posterior sample. It is a tenuous rate estimate at best, since it remains unknown whether polyploid *L. simplex* largely propagates clonally, through apomixis, or through sexual reproduction. The MCMC analyses for the OH, AG, and PH data collected 20,000 samples after a burnin of 50,000,000 and sample interval of 10,000. Two replicates were run for each analysis to evaluate convergence and mixing was assessed with Tracer v1.7 (Rambaut et al., 2017). All model and prior specifications are provided in the supplementary information (Supplementary Methods: EBSP Prior Specification) and are replicable from XML files on Dryad (X).

Adequacy of Demographic Models

To explore if EBSP models could reliably differentiate between Late Pleistocene versus Holocene population size increases, we evaluated the accuracy of EBSP inferences with simulations that captured some features of our target-enrichment data. We simulated 57 loci that were 1000 bp in length for 20 haplotype individuals 100 times with ms (Hudson, 2002) and seq-gen (Rambaut & Grass, 1997) for four scenarios: 1) a constant N_e of 100,000, 2) an N_e increase from 10,000 to 100,000 individuals roughly coinciding with the LGM at 20,000 years in the past, 3) the same ten-fold increase but at 2,000 years in the past to reflect anthropogenic expansion, and 4) a scenario combining both LGM and anthropogenic effects by exponentially increasing N_e from 10,000 to 100,000 between 20,000 years ago and the present. Each simulated dataset was then evaluated with the same EBSP model using a fixed clock used for our empirical analyses, except the MCMC algorithm collected 10,000 posterior samples with a sample interval of 1,000 after a 100,000 sample burnin. Commands for simulations are given in the supplementary information (Supplementary Methods: Simulating Demographic Histories).

Results

Sequencing statistics
The probe set targeted 408 loci from which an average of 327 loci were assembled by HybPiper (Supplementary Table S2). These were supported by an average of 217 read pairs per locus. Although there was variable read depth across loci and individuals, the number of assembled loci was significantly correlated with read depth (Pearson’s correlation coefficient = 0.57, p-value = 0.002). After joint-genotyping all individuals as diploids, normal mixture models suggested all individuals were hexaploids, with the exception of two individuals from South Africa (Supplementary Table S3). Some individuals were inferred as pentaploids, but since this was unexpected based on previous observations from microsatellites (Supplementary Table S1) these cases were assumed to be hexaploids. Although available evidence leaves the ploidy of some individuals ambiguous and raises skepticism of the inference methods, genotyping and phasing of individuals proceeded with the ploidy suggested by our mixture models. We inferred an average of 247 loci with allelic variation, which had a heterozygosity of 0.012 variants per base. After reducing the number of loci with BLAST clustering to avoid tight linkage, a final 301 loci were retained from the OH, AG, and PH datasets for downstream analyses.

Phylogeny Estimation

Species trees revealed all Malagasy L. simplex form a well-supported clade (Supplementary Fig. S1), but there was disagreement in the biogeographic history within Madagascar based on the treatment of ploidy. Individuals in northern Madagascar formed a clade with a posterior probability of 0.9 or greater across the OH, AG, and PH analyses. However, the individuals from central and southern Madagascar were paraphyletic in the OH and AG analyses (Supplementary Figs. 1a and 1b). A clade of central and southern individuals was recovered in the PH analysis, but with a weak posterior probability of 0.64 (Fig. 1c; Supplementary Fig. 1c). Individuals from the center of the L. simplex distribution appear to be the earliest diverging lineages in the OH and AG analyses (Supplementary Figs. 1a and 1b), or with respect to the sample of central and southern individuals in the PH analysis (Fig. 1c; Supplementary Fig. 1c).

Population sub-structure in Madagascar

STRUCTURE analyses recovered a variable number of Hardy-Weinberg groups across the ten datasets that randomly sampled one non-singleton biallelic SNP per locus (Supplementary Table S4). For the OH data, we found a K of two, three, or four in eight, one, and one of the respective replicates. For AG data, the optimal number of clusters was more ambiguous with a K of two, three, and four recovered for four, five, and one replicates. PH data found K of two and three for eight and two replicates. We note that the method of Evanno et al. (2005) cannot infer
if one panmictic population is the best model, and while there is reasonable geographic
structure at K of two weighted across biological and technical replicates (Fig. 2a) the non-zero
admixture between individuals at the most extreme ends could indicate a single population with
a cline of genetic variation. This is further supported by the lack of distinct cluster assignments
at higher values of K despite some evidence for additional population structure (Supplementary
Fig. S2). A weak signal of isolation-by-distance was detected when regressing genetic distance
against spatial distance (Fig. 2b). Notably, the AG data inferred much higher pairwise distances
between individuals; although, the relative differences and overall trend were similar. The same
patterns can be observed when using patristic distances from ML phylogenetic estimates,
although the disparity between AG versus OH or PH distances is reduced, as is the percent of
genetic variation explained by spatial distances (Supplementary Fig. S3).

PCAs reflected findings from STRUCTURE analyses and reinforce the presence of a genetic
cline (Fig. 3). For OH data, where only one reference or alternate allele was observed per
individual, Malagasy $L.\ simplex$ is clearly distinguished from mainland African individuals (Fig.
3a), but there is no clear separation of individuals based on geographic location (Fig. 3b). PCAs
of data that accounts for heterozygosity but not dosage recovered a single Malagasy versus
mainland African pattern (Fig. 3c), PCAs reflect a north-to-south gradient of genetic variation
regardless of whether allelic dosage was treated as hexaploid (Fig. 3d), tetraploid (Fig. 3e), or
diploid (Fig. 3f). The total percent of variance explained by principal component axis 1 (PC1)
and axis 2 (PC2) increased as allelic dosage was compressed from a hexaploid to a diploid
state.

Variation in summary statistics
There were significant differences in the distributions of π, S, and Tajima’s D among locus
regions and between the OH, AG, and PH data (Fig. 4). For π, there was always a difference
between flanking regions and the exon core (Supplementary Table S5), with the cores
surprisingly having more variation. Differences were also observed between the flanking regions
and cores for S and Tajima’s D, except when comparing the left flanks and cores for OH data
(Supplementary Table S5). The only case of a difference between the left and right flanks was
when estimating π for AG data (Supplementary Table S5). The OH and PH data resulted in
similar estimates of π; however, the AG and PH data had similar distributions of S
(Supplementary Table S5). Any differences in Tajima’s D statistics were largely explained by an
over-representation of values less than negative two, indicating positive selection or population size expansion, in the OH data and among core regions across datasets (Table 1).

We attempted to explore biases in summary statistic estimates due to sampling error of sites through bootstrapping the OH (Supplementary Fig. S4), AG (Supplementary Fig. S5), and PH data (Supplementary Fig. S6). Since mutations are assumed to arise through a Poisson process and exponential distributions of measures of genetic variation, such as π and S are often observed, the bootstrap confidence intervals are not a reasonable measure of uncertainty. However, we used the bias, difference between the bootstrap mean and observed estimate, and the RSME of bootstrap replicates with respect to the observed estimate, to gain some general insights. Notably, the bias of π is larger and much noisier in the AG data (Supplementary Fig. S5) compared to the OH (Supplementary Fig. S4) and PH (Supplementary Fig. S6) data. Even if the bias for a whole-locus is low, there can be high variability between regions. For the observed values, estimates are not always proportional among regions either. The RSME of an estimate tends to decrease along with genetic variation, implying some role of genotyping error or rare variants and singletons inflating values at the higher end of the spectrum. Loci with very low levels of genetic variation can also be problematic though, as the RSME for flanking regions increases towards the tail of the distribution, creating opportunity for sampling error to wildly swing estimates regardless of ploidy (Supplementary Figs. S4-S6). The number of segregating sites increased with ploidy of the data, but π was relatively stable. However, differences between π and S will affect estimates of Tajima’s D, and this could affect interpretations of demography or selection acting on loci; although, the majority of loci and their regions were not significantly different from neutral expectations given the simulation-based test statistics (Supplementary Table S6).

Population Size Change through time

After filtering for longer loci with low amounts of missing data, 57 loci were retained for EBSP analyses. Reducing our data to a subset of more informative loci was done for computational convenience, because EBSP models are parameter-rich and require long MCMC runs for convergence. Runs converged for each data type for both analyses with a fixed rate of molecular evolution (Fig. 5) and variable rate (Supplementary Fig. S7). All analyses suggested the $L. simplex N_e$ increased through the Late Pleistocene, well before the LIG, approximately one million years ago. Between the LGM and period of potential human colonization of Madagascar in the Holocene, N_e had already reached present-day estimates. N_e estimates
through the Holocene were only possible for the PH data, as accounting for the within-individual variation should have captured more recent coalescences. Simulations cast doubt on the seriousness with which EBSP results can be interpreted through the Holocene though. For example, when \(N_e \) was truly constant through time, some individual EBSP analyses would suggest recent \(N_e \) increases; although, the mean estimate across simulations recovered the constant population scenario (Fig. 6a). This problem was exaggerated in the presence of model over-fitting (Supplementary Fig. S8). In scenarios with recent \(N_e \) increases, the contemporary \(N_e \) was underestimated but a trend indicating a recent \(N_e \) increase was detectable (Figs. 6b-6d). However, simulations indicated it would not be possible to differentiate between \(N_e \) increases that occurred during the LGM (Fig. 6b) versus the Late Holocene (Fig. 6c), let alone some combination of paleoclimate and anthropogenic effects (Fig. 6d). Interpreting these recent \(N_e \) increases from EBSP analyses becomes impossible with model over-fitting (Supplementary Fig. S8).

Discussion

Robustness of analyses across loci and ploidy

Although transformative for species-level phylogenomic studies (Breinholt et al., 2021; Baker et al., 2022), the robustness of population genetic estimates for a sample of closely-related individuals was largely unexplored (but see Slimp et al., 2021). Some of the most important measures of genetic variation for populations were susceptible to sampling error, especially in the flanking intron regions (Supplementary Figs. S4-S6). While estimates from cores showed less error, they will lead to some violations of population genetic methods that assume evolution consistent with neutral theory, given potential signatures of purifying selection (Table 1). This creates some conflict, since most of the information is contained within the exon cores of target-enrichment loci (Fig. 4), presumably due to read coverage. Because Tajima’s \(D \) alone cannot disentangle demography from selection, some judgment calls and tolerance for downstream model violations are necessary. The majority of loci examined were consistent with neutral expectations based on simulations (Supplementary Table S6), and the proportion of loci with significant Tajima’s \(D \) statistics were exaggerated when ignoring heterozygosity (Table 1).

Predicting the effects of assumptions about genotype on estimates of genetic variation and downstream analyses are not always straightforward. For example, the pairwise distances (Fig. 2b) or evolutionary distances (Supplementary Fig. S3) between individuals was higher when assuming all individuals were diploid (AG) compared to assuming all individuals were haploid.
(OH) or genotyped at their anticipated ploidy level (PH). If we were willing to ignore the absolute estimates of genetic distance, the interpretation of isolation-by-distance analyses was the same across the OH, AG, and PH data. This implies that biologically meaningful conclusions can arise even with uncertainty in ploidy and phasing. Interestingly, treating all individuals as diploid was sufficient for STRUCTURE to recover northern and southern clusters with some admixed central individuals of varying proportions (Fig. 2a; Supplementary Fig. S2). Similarly, PCAs reflected the geographic distribution of our L. simplex samples in the AG and PH data with, surprisingly, the AG data explaining more of the observed genetic variance (Fig. 3f) than the PH data (Fig. 3d). This may be due to genotyping error at higher ploidy levels caused by read stochasticity and a flat genotype likelihood surface (Blischak et al., 2016) or caused by incorrect ploidy inferences. A similar mixture model approach to the one implemented here (Weiß et al., 2018) has been shown to have good performance based on comparisons of allele balance distributions from target-enrichment data and flow cytometry-based ploidy estimates (Viruel et al., 2019). We are cautiously optimistic about the prospects of direct ploidy estimation from sequence data, because likelihood-based criteria can be prone to overfitting (Tiley et al., 2018). However, our ploidy estimates are generally consistent with the previous inferences from microsatellite allele counts (Hagl et al., 2021; Supplementary Table S1; Supplementary Table S3). A positive insight from our comparisons across ploidy levels is that if unknown individuals are genotyped as diploid, there will be sufficient information about population structure, and that ploidy estimation should not be a barrier to investigations of natural plant populations with little a priori cytological or genetic knowledge.

Limits to differentiating anthropogenic and paleoclimate Ne change

Large population genomic studies in plants that can leverage demographic estimates from SFS (e.g. Excoffier et al., 2013; Liu & Fu, 2020) are commonly focused on temperate regions (e.g. Yamaura et al., 2019) and species exploited for energy or agriculture (e.g. Huang et al., 2014; Wang et al., 2017). Thus, it is tempting to leverage models that use gene trees as data such as the EBSP (Heled & Drummond, 2008) or other extensions of skyline plots (Pybus et al., 2000), since they could be paired with relatively low-cost target-enrichment strategies that yield multilocus nuclear data while stretching material quality.

While our analyses provide valuable insights into the ancient origins of L. simplex dominated grasslands, both our empirical and simulated analyses show we cannot differentiate between Ne increases that occurred during human colonization or paleoclimate change near the LGM. The
change in vegetative composition towards more C₄ grass species in central Madagascar is well-documented (Burney, 1987; Gasse & Van Campo, 1998; Virah-Swamy et al., 2010; Crowley et al., 2021). It is unlikely that these increases in C₄ grasses did not involve L. simplex; although, an increase in census size may not be reflected by N_e (Fig. 5; Supplementary Fig. S7), the expected population size under a neutral coalescent model. Our simulations show that detecting these recent increases is difficult, and that we cannot differentiate between a ten-fold increase that occurred 200 generations (2 ka) or 2000 generations (20 ka; Fig. 6). Diagnosing a true N_e change becomes impossible in the presence of model overfitting (Supplementary Fig. S8) and diagnosing these problems in empirical data can be difficult aside from convergence assessments.

These limitations do not necessarily disagree with an assessment of EBSP models with a larger genomic dataset from endemic palm species in Madagascar (Helmstetter et al., 2021). Helmstetter et al. (2021) found that the estimated N_e trends were valuable predictors of IUCN risk assessments, and that population decreases could be detected at anthropogenic time scales. However, it should be easier to detect population declines than population increases in a system that already had a large degree of standing genetic variation, such as L. simplex. This is because the time until the most recent common ancestor of a genealogy will be much more recent in a small population than a large one (e.g. see equation 2.13 from Gillespie 2004). Analyses of demographic models with genomic SFS should be able to increase resolution at recent anthropogenic time scales (Patton et al., 2019) and differentiate anthropogenic from paleoclimatic demographic effects (Tiley et al., 2022), but this would require much more extensive sampling and sequencing effort. Additionally, our analyses treat all individuals as a single population, and since we detected some level of population structure, we cannot rule out their confounding effects on analyses of N_e through time (Heller et al., 2013; Mazet et al., 2016) or other confounding affects such as clonal growth and overlapping populations. Population-level sampling of multiple sites throughout a species range should be used to control for population structure, while accounting for localized effects such as agriculture and grazing versus regional climate effects.

New insights into Loudetia simplex evolution and policy implications

Our analyses yielded new findings about the evolution of L. simplex that are potentially consequential for the broader understanding of Malagasy grasslands. First, our species trees (Supplementary Fig. S1) indicate that individuals from what we call central Madagascar – a
loose term meant only to indicate individuals from the center of the sampled *L. simplex* distribution – represent the ancestral distribution. It is likely that *L. simplex* dominated grasslands have origins in some of the higher elevation regions of the Central Highlands. For example, MSV1564 comes from the Itremo protected area (Fig. 1b; Supplementary Table S1), and further investigations of this region should be productive for characterizing natural grasslands in Madagascar. The hypothesis of central high-altitude origins is also supported by our analyses of population structure (Fig. 2a; Supplementary Fig. S2) and the weak but significant pattern of isolation-by-distance (Fig. 2b; Supplementary Fig. S3).

Our models of N_e change through suggests that *L. simplex* grasslands were already extensive (Fig. 5; Supplementary Fig. S7) well before any hypothesized human presence in Madagascar (c. 10 ka; Hansford et al., 2018) let alone human colonization (c. 2 ka; Dewar and Wright, 1993; Dewar et al., 2013; Pierron et al., 2017). We found an approximate ten-fold increase between one MA and the LIG which is beyond the limitations of available stratigraphic records. Increases in grass and especially C$_4$ grass relative abundance through the Holocene are well-characterized (Burney, 1987; Gasse & Van Campo, 1998; Virah-Swamy et al., 2010; Railsback et al., 2020; Crowley et al., 2021); however, we showed that limitations of our model do not permit us to make inferences at these very recent timescales (Fig. 6). Strong assumptions about the mutation rate and generation time to calibrate analyses to absolute time and N_e were necessary, but our interpretations of results are within the biologically plausible uncertainty of these parameters. Even if the per-year substitution rate was overestimated by a factor of ten, the N_e increase would still be constrained to the Late Pleistocene, occurring between the LIG and LGM. These analyses, especially in the context of a previous investigation of population structure (Hagl et al., 2021), suggest that *L. simplex* dominated grasslands have pre-human origins and likely experienced some N_e increase coincident with Pleistocene climate change. Tree planting programs have been deployed to combat the measurable habitat loss and deforestation in Madagascar since the 1950s (Green & Sussman, 1990; Harper et al., 2007; Vieilledent et al., 2018). The results of our study strongly imply that these efforts should be cautious of treating *L. simplex* dominated grasslands as degraded forests, and at least a mosaic of *L. simplex* and native woody species would be more appropriate.

Potential use cases of target-enrichment data for conservation genetics

One application of target-enrichment data going forward could be analyses of population structure and population assignment of unknown individuals. For example, many conservation
programs operating at scale rely on reduced-SNP panels to determine provenance of an individual or sample (e.g. Bourgeois et al., 2018; Stronen et al., 2022). Developing SNP panels requires at least some *a priori* genomic resources, so target-enrichment libraries could provide feasible approaches in the absence of such references and practical improvements over existing barcoding strategies for identifying, for example, Madagascar’s rosewoods (Hassold et al., 2016); although acquiring viable DNA samples from woody tissue would remain a barrier (Jiao et al., 2018). We anticipate limited use cases of target-enrichment data in population genetics going forward as reference genome assembly is becoming more accessible through decreasing long-read costs, and less complicated library preparation protocols for whole-genome resequencing will become preferential to any target-enrichment strategy. However, the population genetic inferences from target-enrichment data should be biologically meaningful when available.

A practical need for plant population genomics in Madagascar

There are few studies of plant population genetics from the Central Highlands and those are limited to AFLP (Gardiner et al., 2017) or microsatellite data (Salmona et al., 2020; Hagl et al., 2021). Demographic analyses from the endemic olive tree *Noronhia lowryi* suggested recent population declines of the woody species, but it is unclear if these declines represent anthropogenic or paleoclimatic change near the LGM (Salmona et al., 2020). While our analyses of *L. simplex* are also ambiguous regarding this window of anthropogenic effects on the extent of grasslands, we can at least conclude that the *L. simplex* N_e was quite large. Contemporary population genomic analyses will be necessary to provide statistical power to differentiate between competing demographic hypotheses, not only for grasses such as *L. simplex* but also species representing plant diversity across families and life-history. A better reconstruction of the natural history of Madagascar’s grasslands is not only necessary for understanding diversity within and outside of the Central Highlands (Yoder et al., 2016; Burbbrink et al., 2019; Everson et al., 2020), but also to make effective land management decisions for tree planting programs.

Acknowledgements

GPT was supported by a Marie Curie Individual Fellowship (MSCA-IF-EF-ST 101026923). GB is supported by LabEx TULIP (ANR-10-LABX-0041). CERL was supported by a The Royal Society International Collaboration Award. Thank you to MEDD Madagascar, Madagascar National Parks, Isalo MNP, and Itremo NPA for supporting our research and exportation permits in 2014.
and 2017, and also to COSTECH Tanzania for their support for the 2014 collection permits for MSV and WRQL. This work would not have been possible without Stuart Cable and everyone at the Kew Madagascar Conservation Centre. We thank Emily Lockwood for DNA extractions, and Lorena Endara and J. Gordon Burleigh for coordinating library preparation and sequencing.

Author Contributions

GPT, ADY, and MSV conceived the study. WRQL, CLS, CERL, GB and MSV collected samples. GPT and TOMA curated data. GPT and AAC analyzed data. GPT wrote the first draft. All authors revised the manuscript and approved the final version.

Data Availability Statement

Scripts for analyses and input files are available through the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.[NNNN]. Additional scripts are available on GPT’s GitHub for identifying exon-intron boundaries from target enrichment data (https://github.com/gtiley/Locus-Splitter) generating matrices for PCAs from fasta files (https://github.com/gtiley/fasta-conversion) and the ploidy test implemented through PATÉ (https://github.com/gtiley/Phasing). Raw sequence data is available via the NCBI short read archive (SRA) database, with individual SRA and BioSample identifiers in Supplementary Table S1. Raw sequence data is associated with NCBI BioProject PRJNA952819.

Conflict of Interest Statement

The authors declare no conflict of interest.
References

Figure 1 — *Loudetia simplex* distribution and single Madagascar origin. a) A field of *L. simplex* near Antsirabe Madagascar planted with eucalyptus (photo credit: George P. Tiley). b) Our sampling of *L. simplex* was based on collections made throughout Madagascar’s Central Highland Plateau, with an elevation between 800 and 1800 meters. c) Phylogenetic relationships of individuals based on the phased (PH) data. Numbers next to nodes are posterior probabilities.
Figure 2 — Patterns of genetic structure and variation in Madagascar. a) Aggregated STRUCTURE results across runs for an *a priori* number of clusters of two (K=2) for the different data types. c) A plot of natural-log-scaled geographic distance against the pairwise distance (p-distance). Lines are from a least-squares linear regression with the coefficient of determination (R^2) shown for each data type. Statistical significance was determined with a Mantel test using 9999 permutations. Significance levels are p-value < 0.05 (*), p-value < 0.01 (**), and p-value < 0.001 (***). Colors represent different data types: one haplotype (OH), ambiguous genotypes (AG), and phased haplotypes (PH).
Figure 3 — Principal component analyses across data types. a) All individuals using haploid (OH) data. b) Only Malagasy individuals using OH data. c) All individuals treating all sites as diploid. d) Only Malagasy individuals treating all sites as hexaploid. e) Only Malagasy individuals compressing unbalanced allelic dosage to single categories. f) Only Malagasy individuals treating all sites as diploid.
Figure 4 — Distributions of summary statistics across locus regions. Box-and-whisker plots show distribution medians and quartiles for the expected pairwise nucleotide divergence (π), the number of segregating sites (S), and a normalized measure of the difference between two estimators of nucleotide divergence, indicating deviations from neutral expectations (Tajima’s D).
Figure 5 — Extended Bayesian Skyline Plot results with fixed clock rates. Two independent runs are shown with mean population sizes shown by solid lines. Polygons show the 95% HPD intervals with the overlap between runs in purple. Results are shown for the a) OH, b) AG, and c) PH data. Relevant time periods are shown in gray, which includes likely human colonization (LHC), the last glacial maximum (LGM), and last interglacial period (LIG).
Figure 6 — Simulation results from EBSP analyses for an appropriate number of change points. Individual red lines are the mean N_e estimates from 100 simulated data sets. Blue points and vertical lines are the mean of mean N_e estimates and their 95% HPD intervals. The dashed black line is the true demographic history of the population.
Tables

Table 1 — χ^2 test result from Tajima's D statistics across datasets and locus regions

<table>
<thead>
<tr>
<th>Tested Effect</th>
<th>Fixed Effect</th>
<th>χ^2</th>
<th>p-value</th>
<th>Largest Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>OH</td>
<td>7.72</td>
<td>0.27</td>
<td>Under-representation of Tajima's D < -2 in core regions</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>37.77</td>
<td>0.0001</td>
<td>Over-representation of Tajima's D < -2 in core regions</td>
</tr>
<tr>
<td></td>
<td>PH</td>
<td>83.47</td>
<td>0.0001</td>
<td>Over-representation of Tajima's D < -2 in core regions</td>
</tr>
<tr>
<td>Dataset</td>
<td>Left Flank</td>
<td>12.65</td>
<td>0.046</td>
<td>Over-representation of Tajima's D < -2 in OH dataset</td>
</tr>
<tr>
<td></td>
<td>Right Flank</td>
<td>8.61</td>
<td>0.19</td>
<td>Over-representation of Tajima's D < -2 in OH dataset</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>57.15</td>
<td>0.0001</td>
<td>Over-representation of Tajima's D < -2 in OH dataset</td>
</tr>
</tbody>
</table>