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ABSTRACT 

Segmenting visual objects from each other and their background is critical for vision. 

Motion speed provides a salient cue for scene segmentation – an object moving at a speed different 

from its background is easier to be perceived. However, how the visual system represents and 

differentiates multiple speeds to achieve segmentation is largely unknown. We first characterized 

the perceptual capacity in segmenting overlapping stimuli moving simultaneously at different 

speeds. We then investigated the rule of how neurons in the motion-sensitive, middle-temporal 

(MT) cortex of macaque monkeys represent multiple speeds. We found that the responses of 

neurons to two speeds showed a robust bias toward the faster speed component when both speeds 

were slow (< 20⁰/s). Our finding can be explained by a divisive normalization model with a novel 

implication that the weights for the speed components are proportional to the responses of a 

population of neurons elicited by the individual components and the neurons in the population 

have a broad range of speed preferences. We also showed that it was possible to decode two speeds 

from MT population response in a way consistent with perception when the speed separation was 

large, but not when it was small. Our results provide strong support for the theoretical framework 

of coding multiplicity and probability distribution of visual features in neuronal populations and 

raise new questions for future investigation. The faster-speed bias would benefit figure-ground 

segregation if figural objects tend to move faster than the background in the natural environment.  
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INTRODUCTION 

Neuroscientists have been investigating how neurons in the brain represent sensory 

information for decades. Previous studies were often concerned with the neural coding of a single 

visual stimulus. However, natural environments are abundant with multiple entities that often co-

occupy visual neurons’ receptive fields (RFs). Segmenting visual objects from each other and their 

background is a fundamental function of vision (Braddick, 1993), but how the visual system 

represents multiple visual stimuli to achieve segmentation is not well understood. As the field 

progresses to unravel visual processing in natural vision, it becomes increasingly important to 

understand the principles of neural coding of multiple visual stimuli. 

 

Visual motion provides a salient cue for scene segmentation. Common motion helps to 

group elements that belong to the same object together, whereas different motion velocities help 

to segment visual scenes. Here we investigated how the visual system represents and extracts 

multiple motion velocities. The extrastriate middle-temporal cortex (area MT) in primates is 

important for motion processing and motion-based segmentation (Allman et al., 1985; Britten 2003; 

Born and Bradley 2005; Pasternak et al., 2020; Born et al., 2000; Huang et al., 2007, 2008). To 

investigate the neural representation of multiple moving stimuli, it is advantageous to start with 

overlapping stimuli so the effects of motion cues can be isolated from spatial cues. Segmentation 

of overlapping stimuli moving at different directions and speeds gives rise to the perception of 

transparent motion (Braddick, 1997; Braddick et al, 2002; Mestre et al., 2001; Masson et al., 1999). 

Previous studies have investigated how neurons in area MT represent multiple motion directions 

of transparently moving stimuli (Snowden et al., 1991; Qian and Andersen, 1994; McDonald et 

al., 2014; Xiao et al., 2014; Xiao and Huang, 2015; Wiesner et al., 2020; Stoner and Albright, 

1992; Krekelberg and van Wezel, 2013). Although how cortical neurons represent the speed of a 

single stimulus has been well-studied (Maunsell and van Essen, 1983; Lisberger and Movshon, 

1999; Nover et al., 2005; Pack et al., 2005; Krekelberg et al., 2006a; Perrone and Thiele, 2001; 

Priebe et al., 2003, 2006; Liu and Newsome 2003), how neurons represent multiple speeds is 

largely unknown. The goal of this study is to characterize the neural encoding of multiple speeds 

of overlapping stimuli in area MT and determine whether it is possible to decode multiple speeds 

from the population neural response in MT, in a manner consistent with perceptual segmentation.  

 

It is conceivable that the responses of MT neurons elicited by two motion speeds may 

follow one of the following encoding rules: 1) “averaging” the responses elicited by the individual 

speed components;  2) bias toward the speed component that elicits a stronger response, i.e. “soft-

max operation” (Riesenhuber and Poggio, 1999); 3) “slower-speed bias” toward the slower speed 

component, which may better represent slower speeds which are more probable in nature scenes 

(Weiss et al., 2002);  4) “faster-speed bias” toward the faster speed component, which may benefit 

the segmentation of a faster-moving stimulus from a slower background. Also, the encoding rule 

may be consistent across a full range of stimulus speeds or may change depending on the stimulus 

speeds. How a given neuron represents two speeds may also depend on the neurons’ speed 

preference and the difference between two stimulus speeds.  

 

Regarding neural decoding, previous studies successfully extracted single stimulus speeds 

from neuronal populations in area MT using decoders such as vector-averaging and maximum 

likelihood estimators (Lisberger and Movshon, 1999; Churchland and Lisberger, 2001; Priebe and 

Lisberger, 2004; Huang and Lisberger, 2009; Yang and Lisberger, 2009; Krekelberg et al., 2006a, 
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b; Krekelberg and van Wezel, 2013). However, it is unclear whether simultaneously presented 

multiple speeds can be extracted from population neural responses, which would be difficult to 

achieve for decoders that only read out a single value. Zemel and colleagues developed a decoding 

framework that recovers the probabilistic distribution of a stimulus feature (Zemel et al., 1998; 

Pouget et al., 2003). Decoders of this type remain to be tested with neurophysiology data to 

determine whether they can extract multiple speeds from population neural responses.  

 

We investigated the rule by which neurons in area MT represent overlapping stimuli that 

moved simultaneously at multiple speeds. We first characterized the perception of these visual 

stimuli in human and monkey subjects and then recorded the neuronal responses from macaque 

MT. We made a novel finding that MT neurons showed a strong faster-speed bias when stimulus 

speeds were low, and as stimulus speeds increased the faster-speed bias gradually shifted to 

response averaging. We also found that information about multiple speeds was carried in the 

population neural response in MT and it was possible to extract either a single speed or multiple 

speeds from area MT in a way largely consistent with perception, but also with limitations when 

two stimulus speeds were less separated from each other. Our results provided new insight into the 

neural coding of multiple visual stimuli and the mechanism underlying scene segmentation. Our 

work also raised new questions for future investigation.  

 

MATERIALS AND METHODS 

 

We conducted psychophysical experiments using human subjects, and psychophysical and 

neurophysiological experiments using macaque monkeys. Visual stimuli were identical for all 

experiments except where noted. 

 

Human psychophysics 

 

Subjects 

Four adult human subjects (CN, CO, IN, NP), two men and two women, with normal or corrected-

to-normal visual acuity participated in the psychophysics experiments. Subject CN was naive about 

the purposes of the experiments. Subjects CO and IN had a general idea about this study but did 

not know the specific design of the experiments. Informed consents were obtained from the 

subjects. All aspects of the study were in accordance with the principles of the Declaration of 

Helsinki and were approved by the Institutional Review Board at the University of Wisconsin-

Madison.  

Apparatus 

Visual stimuli were generated by a Linux workstation using an OpenGL application and displayed 

on a 19-inch CRT monitor. The monitor had a resolution of 1,024 x 768 pixels and a refresh rate 

of 100 Hz. The output of the video monitor was measured with a photometer (LS-110, Minolta) 

and was gamma-corrected. Stimulus presentation was controlled by a real-time data acquisition 

and stimulus control program “Maestro” (https://sites.google.com/a/srscicomp.com/maestro/) as in the 

animal behavior and neurophysiology experiments. Subjects viewed the visual stimuli in a dark 

room with dim background illumination. The viewing distance was 58 cm. A chin rest and 
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forehead support were used to restrict the head movements of the observers. During experimental 

trials, human subjects maintained fixation on a small spot within a 2 x 2o window. Eye positions 

were monitored using a video-based eye tracker (EyeLink, SR Research) at a rate of 1kHz.   

Visual stimuli 

Visual stimuli were two spatially-overlapping random-dot patches presented within a square 

aperture 10° wide. Each square stimulus was centered 11° to the right of the fixation spot, therefore 

covering 6° to 16° eccentricity. This range roughly matched the RF eccentricity of the recorded 

MT neurons in our neurophysiological experiments. The random dots were achromatic. Each 

random dot was 3 pixels and had a luminance of 15.0 cd/m2. The background luminance was 0.03 

cd/m2. The dot density of each random dot patch was 2 dots/degree². The two random-dot patches 

translated horizontally in the same direction. The motion direction was either leftward or rightward 

in half of the trials and stimulus trials were randomly interleaved. In one set of trials, two 

overlapping random-dot patches had a “large speed separation” and the speed of the faster 

component was always four times (x4) that of the slower component. In another set of trials, visual 

stimuli had a “small speed difference” and the speed of the faster component was always twice 

(x2) that of the slower component (see Fig. 1A, B). For each bi-speed stimuli, there was a 

corresponding single-speed stimulus composed of two overlapping random-dot patches moving in 

the same direction at the same speed.  The single speed was the natural logarithmic (log) mean 

speed of the bi-speed stimuli: 𝑆𝑝𝑑𝑚𝑒𝑎𝑛 = 𝑒[ln (𝑆𝑝𝑑1)+ln (𝑆𝑝𝑑2)]/2, in which Spd1 and Spd2  were the 

two component speeds. The motion coherence of each random-dot patch was always 100%.  

Procedure 

In a standard two-alternative-forced-choice (2AFC) task, subjects discriminated bi-speed stimuli 

from the corresponding single log-mean speed stimulus. The bi-speed and single-speed stimuli 

were presented in two consecutive time intervals with a 500 ms gap in random, balanced order. In 

each time interval, the visual stimulus appeared, remained stationary for 250 ms, and then moved 

for 500 ms. At the end of each trial, subjects reported which time interval contained bi-speed 

stimuli by pressing one of two buttons (left or right) within a 1500-ms window. The inter-trial 

interval was 1300 ms. Each block of trials contained 40 trials, i.e. 5 speed pairs × 2 speed 

separations × 2 temporal orders (bi-speed stimuli appeared in the first or second time-interval) × 2 

motion directions (visual stimuli moved either to the left or right). Each experimental session 

typically contained 5 blocks, i.e. 200 trials. 

Subjects also performed a 3AFC task.  As in the 2AFC task, subjects discriminated bi-speed stimuli 

from the corresponding single log-mean speed stimulus but had the option to make a third choice 

by pressing the middle button on trials when they thought neither stimulus interval appeared to 

contain two speeds (“no two-speed” choice). When subjects thought one of the two stimulus 

intervals contained two speeds, subjects then pressed either the left or the right button to indicate 

which interval had two speeds.  

Data analysis  
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The hit rate was calculated as the percentage of trials in that a subject correctly picked the bi-speed 

stimuli as having two speeds. The false alarm rate was calculated as the percentage of trials that a 

subject incorrectly picked the singe-speed stimulus as having two speeds. As a measure of 

discriminability between bi-speed stimuli and the corresponding single-speed stimulus, we 

calculated the discriminability index d′ = norminv(hit rate) – norminv(false alarm rate).  norminv 

is a MATLAB function that calculates the inverse of the normal cumulative distribution function, 

with the mean and SD set to 0 and 1, respectively. When the hit or false alarm rate was occasionally 

greater than 0.99, to avoid infinite d’ values, d' was calculated using a modified formula: d' 

= norminv{[(100 x hit rate)+1]/102} - norminv{[(100 x false alarm rate) +1]/102}. 

Neurophysiological and psychophysical experiments 

Subjects 

Five adult male rhesus monkeys (Macaca mulatta) were used in the experiments. Four monkeys 

were used in the neurophysiological experiments, and one was used in the psychophysical 

experiment. Experimental protocols were approved by the local Institutional Animal Care and Use 

Committee and were in strict compliance with U.S. Department of Agriculture regulations and the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals.  

Apparatus and electrophysiological recording  

Procedures for surgical preparation and electrophysiological recording were routine and similar to 

those described previously (Huang and Lisberger 2009; Xiao et al., 2014). For subjects IM and 

MO, horizontal and vertical eye positions were monitored using the search coil method at a 

sampling rate of 1kHz on each channel. For subjects RG, GE, and BJ, eye positions were monitored 

using a video-based eye tracker (EyeLink, SR Research) at a rate of 1kHz.  For 

electrophysiological recordings, we lowered tungsten microelectrodes (Thomas Recording or 

FHC) either using the MiniMatrix microdrive (Thomas Recording) or the NAN drive (NAN 

Instruments) into the posterior bank of the superior temporal sulcus. The impedances of the 

electrodes were 1∼3 MΩ. We identified area MT by its characteristically large proportion of 

directionally selective neurons, small classical RFs relative to those in the neighboring medial 

superior temporal area, and location on the posterior bank of the superior temporal sulcus. 

Electrical signals were filtered, amplified, and digitized conventionally. Single units were 

identified with a real-time template-matching system (Plexon). Spikes were carefully sorted using 

Plexon offline sorter. 

Stimulus presentation and the behavioral paradigm were controlled by a real-time data 

acquisition program Maestro as mentioned above.  For neurophysiological recordings from IM 

and MO, visual stimuli were presented on a 20-inch CRT monitor at a viewing distance of 38 cm. 

Monitor resolution was 1,280 × 1,024 pixels and the refresh rate was 85 Hz. For RG, GE, and BJ, 

visual stimuli were presented on a 25-inch CRT monitor at a viewing distance of 63 cm. Monitor 

resolution was 1,024 × 768 pixels and the refresh rate was 100 Hz. Visual stimuli were generated 

by a Linux workstation using an OpenGL application that communicated with the main 

experimental-control computer over a dedicated Ethernet link. The output of the video monitor 

was gamma corrected. 
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Visual stimuli and experimental procedure of the main experiment 

All visual stimuli were presented in individual trials while monkeys maintained fixation. Monkeys 

were required to maintain fixation within a 1.5 × 1.5° window centered around a fixation spot 

during each trial to receive juice rewards, although actual fixation was typically more accurate. In 

a trial, visual stimuli were illuminated after the animal had acquired fixation for 200 ms. To assist 

the isolation of directional-selective neurons in area MT, we used circular translation of a large 

random-dot patch (30 × 30°) as a search stimulus (Schoppmann and Hoffmann, 1976). After an 

MT neuron was isolated, we characterized the direction tuning by randomly interleaved trials of 

30 × 30° random-dot patches moving at 10°/s in eight different directions from 0 to 315° at 45° 

steps. Next, we mapped the RF by recording responses to a series of 5 × 5° patches of random dots 

that moved in the preferred direction of the neuron at 10°/s. The location of the patch was varied 

randomly to tile the screen in 5° steps without overlap and to cover an area of either 40 × 30° or 

35 × 25°. The raw map of the RF was interpolated using the Matlab function interp2 at an interval 

of 0.5° and the location giving rise to the highest firing rate was taken as the center of the RF. In 

the following experiments, testing stimuli were centered on the RF. 

Monkeys IM and MO were tested with the main visual stimuli used in our experiments, 

which were two spatially-overlapping random-dot patches presented within a square aperture 10° 

wide. The random dots were achromatic. The dot density of each random-dot patch was 2 

dots/deg2. Each random dot was 3 pixels at a side and had a luminance of 15.0 cd/m2. The 

background luminance was < 0.2 cd/m2.  In each trial, the random dots translated within the 

aperture. The two random-dot patches translated at two different speeds at 100% motion coherence 

and in the same direction (the preferred direction of the recorded neuron). The ratio between the 

two component speeds was fixed either at 4 (i.e. the large speed separation) or 2 (i.e. the small 

speed separation) (see Methods for human psychophysics above). Figure 1A, B illustrates the 

speeds of the stimulus components for all bi-speed stimuli used. At x4 speed separation, the five 

speed pairs used were 1.25 and 5°/s, 2.5 and 10°/s, 5 and 20°/s, 10 and 40°/s, and 20 and 80°/s 

(Fig. 1A). At x2 speed separation, the five speed pairs used were 1.25 and 2.5°/s, 2.5 and 5°/s, 5 

and 10°/s, 10 and 20°/s, and 20 and 40°/s (Fig. 1B). Experimental trials of bi-speed stimuli that 

had x4 or x2 speed separations were randomly interleaved. Also randomly interleaved were trials 

that showed only a single random-dot patch moving at a speed of 1.25, 2.5, 5, 10, 20, 40, or 80°/s, 

which were the individual stimulus components of the bi-speed stimuli.  

Monkeys RG and GE were tested with a variation of the main visual stimuli, in which two 

overlapping random-dot stimulus components moved at two fixed speeds of 2.5 and 10°/s, 

respectively, and in two different directions separated by 90°. The diameter of the stimulus 

aperture was 3°. The faster component moved at the clockwise side of the two component 

directions (illustrated in Figure 8A). We varied the vector average direction of the two component 

directions across 360° in a step of 15° to characterize the direction-tuning curves of MT neurons 

in response to the bi-speed and bi-direction stimuli. We also measured the direction-tuning curves 

to a single stimulus moving at the individual component speeds.  

Behavioral paradigm and visual stimuli of attention control 
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Monkey RG was also tested in a control experiment in which the attention of the animal 

was directed away from the RFs of MT neurons. The attended stimulus was a random-dot patch 

moving in a single direction at 100% motion coherence within a stationary circular aperture that 

had a diameter of 5⁰. The stimulus patch was centered 10⁰ to the left of the fixation spot, in the 

visual hemifield contralateral to the hemifield of the recorded MT neurons’ RFs. The monkey 

performed a fine direction-discrimination task to report whether the motion direction of the 

attended stimulus moved at the clockwise or counter-clockwise side of the vertical direction. While 

the animal fixated on a point at the center of the monitor, both the attended stimulus and the RF 

stimulus were turned on and remained stationary for 250 ms before they moved for 500 ms.  The 

attended stimulus translated at a speed of 10°/s and in a direction either clockwise or counter-

clockwise from an invisible vertical (upward) direction by an offset of 10°, 15°, or 20°.  The RF 

stimuli were the same as our main visual stimuli, with either one stimulus or two overlapping 

stimuli moving in the same direction (the preferred direction of the recorded neuron) at different 

speeds. All trials were randomly interleaved. After the motion period, all the visual stimuli were 

turned off, and two reporting targets appeared 10° eccentric on the left and right sides of the 

fixation point. To receive a juice reward, the animal was required to make a saccadic eye 

movement within 400 ms after the fixation spot was turned off, either to the left or right target 

when the motion direction of the attended stimulus was counter-clockwise or clockwise to the 

vertical direction, respectively. 

Monkey psychophysics  

Monkey BJ was trained to perform a 2AFC discrimination task. The visual stimuli were the 

same as our main visual stimuli in the neurophysiological experiments except that the stimulus 

moving at a single speed was also composed of two overlapping random-dot patches moving in 

the same direction at the same speed, the same as in the human psychophysics experiments. In this 

way, the single-speed stimulus and the bi-speed stimuli had the same dot density. Visual stimuli 

were random-dot patches moving within a square aperture of 10°x10°, centered 10° to the right of 

the fixation spot. The motion direction of the visual stimuli was always rightward. Experimental 

trials of bi-speed stimuli that had x4 or x2 speed separations, as well as the single-speed stimulus 

that moved at the log mean speed of the bi-speed stimuli were randomly interleaved. Visual stimuli 

were turned on and remained stationary for 250 ms before they moved for 500 ms. Following the 

stimulus offset, two reporting targets (dots) were presented 5.7° away from the fixation spot, at 

upper right (4°, 4°) and lower left (-4°, -4°) positions relative to the fixation spot. To receive a 

juice reward, the animal was required to make a saccadic eye movement to one of the two targets 

within 300 ms after the fixation spot was turned off. In a majority of the experiment trials, the 

animal received juice rewards if selecting the upper-right target when visual stimuli moved at two 

different speeds and selecting the lower-left target when visual stimuli moved at a single speed. 

Guided by our human psychophysics results, we made an exception to always reward the animal 

when the bi-speed stimuli moved at 20 and 80°/s or at 20 and 40°/s, regardless of which target was 

selected to avoid biasing the monkey’s choice by veridically rewarding the animal. This was 

because, at these fast speeds, human subjects could not segment the bi-speed stimuli. During 

training, the animal was never presented with the bi-speed stimuli of 20 and 80°/s, and 20 and 

40°/s.  During testing, the trials of 20 and 80°/s, and 20 and 40°/s were randomly interleaved with 

bi-speed and single-speed trials that were rewarded veridically to anchor the task rule.  Among all 

testing trials, only 10% of the trials were rewarded with a 100% rate. We collected 50 trials of data 
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for x4 speed separation across 5 experimental sessions, and 90 trials for x2 speed separation across 

9 sessions during the testing phase. The hit rate, false alarm rate, and the d’ were calculated in the 

same way as in the human psychophysics experiments.  

Model fit of the tuning curves to bi-speed stimuli 

We fitted the response tuning curves to the bi-speed stimuli using a few variants of a divisive 

normalization model (Fig. 6). We also used a weighted summation model to fit the direction tuning 

curves to overlapping stimuli moving in different directions and at different speeds (Fig. 8). These 

model fits were obtained using the constrained minimization tool “fmincon” (MATLAB) to 

minimize the sum of squared error. To evaluate the goodness of fit of models for the response 

tuning curves, we calculated the percentage of variance (PV) accounted for by the model as follows: 

PV = 100 x (1 - 
𝑆𝑆𝐸

𝑆𝑆𝑇
 ),  where SSE is the sum of squared errors between the model fit and the 

neuronal data, and SST is the sum of squared differences between the data and the mean of the 

data (Morgan et al., 2008). 

 

Analysis of population neural coding of multiple speeds 

 

Construction of population neural response 

 

For each recorded MT neuron, we plotted the trial-averaged speed tuning curve in response 

to the single speed and spline-fitted the tuning curve using the Matlab function csaps with the 

smoothing parameter p set to 0.93. We found p = 0.93 best captured the trend of the speed tuning, 

without obvious overfitting. We then found the preferred speed (PS) of the neuron, which is the 

speed when the maximum firing rate was reached in the spline-fitted tuning curve. The neuron’s 

responses to all single-speed and bi-speed stimuli were normalized by the maximum firing rate at 

the PS. To construct the population neural response to a given stimulus, we took the normalized 

firing rate of each neuron elicited by that stimulus and plotted it against the PS of the neuron. 

Because the PSs of the neurons in our data sample did not cover the full speed range evenly, we 

spline-fitted (with a smoothing parameter of 0.93) the population neural response again to capture 

the population neural response evenly across the full range of PS.  

 

Discrimination of population neural responses using a classifier 

 

We trained a linear classifier to discriminate population neural response to the bi-speed 

stimuli and the corresponding single-speed stimulus moving at the log mean speed. Trial-by-trial 

population responses were generated randomly according to a Poisson process with the mean set 

to the trial-averaged neuronal response. For each speed combination, we generated 200 trials of 

responses to the bi-speed stimuli and the corresponding single-speed stimulus, respectively. Data 

were partitioned into training and testing sets using k-fold cross-validation (k = 40). The data trials 

were randomly divided into 40 folds. The classifier was trained on 39 data folds and tested on the 

remaining fold, and the process was repeated 40 times to ensure that each fold was used for testing 

exactly once. The Matlab fitclinear function was used to fit a linear classifier to the training data. 

The logistic learner and lasso regularization techniques were specified during the model training. 

Stochastic Gradient Descent solver was used to optimize the objective function during the training 
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of the classifier. The performance of the classifier was evaluated by d', calculated using the hit rate 

and false alarm rate as described in human psychophysics.  

 

Population Decoding 

 

We define a given probability distribution of stimulus speed as: ∅𝑚 = {𝑃𝑚,𝑗}, in which 𝑃𝑚,𝑗 

is the probability of speed 𝑆𝑗,  j = 1, 2, 3, …, 121, and j evenly samples speeds from 1.25⁰/s to 80⁰/s 

(referred to as the “full speed range”) in a natural logarithm scale and at a “speed interval” of 

0.0347. Because ∅𝑚  is a probability distribution, ∑ 𝑃 𝑚,𝑗 𝑗 = 1 . m is an index for different 

distributions. 

 

The estimated response (ES) of neuron i to the stimulus speeds with a probability 

distribution ∅𝑚 is a linear sum of the responses of neuron i to each single speed 𝑆𝑗 within the full 

speed range, weighed by the probability of each speed in ∅𝑚 . The probability can also be 

considered as the weight (signal strength) of the speed.  

 

𝐸𝑆𝑖(∅𝑚) =  ∑ 𝑃 𝑚,𝑗 𝑓𝑖(𝑆𝑗)𝑗   ,                       ( 1) 

 

where 𝑓𝑖  is the spline-fitted speed tuning curve of neuron i in response to single speeds.   

 

The estimated population response (EP) of N neurons to ∅𝑚 is:  

 

𝐸𝑃𝑚(ln (𝑃𝑆𝑖)) =  𝐸𝑆𝑖 (∅𝑚),                         (2) 

 

where 𝑃𝑆𝑖 is the preferred speed of neuron i, i = 1, 2, 3, …, N.  N = 100 in our neural data.  

 

We then spline-fitted the estimated population response 𝐸𝑃𝑚(ln (𝑃𝑆𝑖)) using a smoothing 

parameter of 0.93, interpolating the PS within the full speed range from 1.25⁰/s to 80⁰/s in natural 

logarithm with 121 evenly spaced values. The spline-fitted estimated population response is 

represented as 𝑠𝑝𝐸𝑃𝑚(ln (𝑃𝑆𝑗)), j = 1, 2, 3, … , 121.   

 

Similarly, we spline-fitted the recorded and normalized population neural response 

𝑅𝑃𝑚(ln (𝑃𝑆𝑖)), i = 1, 2, 3, …, 100, and interpolated the PS to the same 121-speed values in a 

logarithm scale within the full speed range as above. The spline-fitted, recorded population neural 

response is represented as 𝑠𝑝𝑅𝑃𝑚(ln (𝑃𝑆𝑗)), j = 1, 2, 3, … , 121.   

 

The decoded probability distribution of the stimulus speed ∅𝑒 is the ∅𝑚 that maximizes the 

objective function (OF), which is defined as the negative value of the SSE (sum squared error) 

between the spline-fitted estimated population response and the recorded neural response:  

 

𝑂𝐹(∅𝑚)  = − ∑ {[𝑠𝑝𝐸𝑃𝑚(ln (𝑃𝑆𝑗)) −  𝑠𝑝𝑅𝑃𝑚(ln (𝑃𝑆𝑗))]2}𝑗 ,                        (3) 

 

∅𝑒  = arg max
∅𝑚

[𝑂𝐹(∅𝑚) ] .                                                                             ( 4) 
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Rather than finding an arbitrary distribution, we constrained ∅𝑒 to contain either a single 

speed with a probability (referred to as the “weight”) of 1 or two speeds with the same or different 

weights that sum to 1.  

 

Algorithm to search for the probability distribution of stimulus speed 

 

We first searched for the best-fit distribution ∅𝑒1 that contained a single speed SP with 

non-zero probability (P=1) that gave rise to the maximum OF across the full speed range (𝑂𝐹𝑚𝑎𝑥1). 

We next searched for the best-fit distribution ∅𝑒2 that contained two speeds 𝑆𝑃1 and 𝑆𝑃2 with non-

zero probability and gave rise to the maximum OF for two speeds (𝑂𝐹𝑚𝑎𝑥2).  We varied the speed 

separation, the center position, and the probabilities of the two speeds. For each speed separation 

and center position, the probabilities of 𝑆𝑃1 and 𝑆𝑃2 were varied from 0 to 1 at a step of 0.01, with 

the constraint that they summed to 1. We searched the speed separation, ln(𝑆𝑃2)- ln(𝑆𝑃1), from 

0.0693 (i.e. 2 speed intervals) to 3.3271 (i.e. 96 speed intervals), in a step of 0.0693. The search 

range covered the speed ratio 𝑆𝑃2/𝑆𝑃1 from x1.07 to x27.86, sufficiently broader than x2 and x4 

used in our visual stimuli.  For each speed separation, we started the search where the center 

position of the two speeds [ln(𝑆𝑃1)+ln(𝑆𝑃2)]/2 was in the middle of the 121 possible speed values, 

referred to as the “speed axis”. We then moved the center position toward the left border of ln(1.25) 

at a step of 0.0347 to find the maximum OF value (𝑂𝐹𝑙𝑒𝑓𝑡𝑚𝑎𝑥) along the left half of the speed axis. 

If the OF value at the center position next to the current position was higher, the search moved to 

the next position. Otherwise, the current position was considered a local maximum. After we found 

a local maximum, the search continued in the same direction for up to another 30 speed intervals 

until one of the component speeds hit a border, or 30 intervals were reached, or an OF value greater 

than the previous local maximum was found. If a larger OF was found, the local maximum was 

updated and the search jumped to that position, and the procedure repeated until 𝑂𝐹𝑙𝑒𝑓𝑡𝑚𝑎𝑥 was 

found. We then returned to the middle of the speed axis and searched speed pair toward the right 

border ln(80) to find the maximum 𝑂𝐹𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑥. The larger one of 𝑂𝐹𝑙𝑒𝑓𝑡𝑚𝑎𝑥 and 𝑂𝐹𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑥 was 

the maximum OF for two speeds (𝑂𝐹𝑚𝑎𝑥2).  The ∅𝑒 was either ∅𝑒1 or ∅𝑒2, whichever gave rise to 

the larger value of 𝑂𝐹𝑚𝑎𝑥1 and 𝑂𝐹𝑚𝑎𝑥2.  

 

Discrimination readout speeds using a classifier 

 

Based on our decoding results we evaluated the discriminability between the readout 

speed(s) of the bi-speed stimuli and the corresponding single speed stimulus moving at the log-

mean speed. To correct for certain artifacts due to our decoding procedure (see Results), we first 

made the following correction:  In a given trial, when the difference between the weights of two 

readout speeds was greater than 0.7, the trial was considered to have a single readout speed and 

the separation between the two readout speeds was set to zero. After this correction, we applied a 

speed separation threshold of x1.3 (i.e. 0.26 in natural log scale) to the distributions of the readout 

speed separation from trials that contained two speeds and a single speed. If a readout speed 

separation in a trial was greater (or less) than the threshold, the visual stimulus in this trial was 

considered to have two (or one) speeds. A hit was achieved when the readout speed separation of 

a trial was considered to have two speeds and the visual stimulus in the trial indeed had two speeds.  

A false alarm occurred when the readout speed separation of a trial was considered to have two 

speeds, whereas the visual stimulus in the trial only had one log-mean speed. We calculated 

discriminability d' using the hit rate and false-alarm rate as described in human psychophysics.  
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RESULTS 

Perception of overlapping stimuli moving at different speeds 

To establish the perceptual basis for our study, we first characterized how human subjects 

perceived overlapping stimuli moving at different speeds. We used the same visual stimuli in our 

psychophysics experiments as in our neurophysiology experiments and investigated how the mean 

stimulus speed and the separation between two speeds impacted the perceptual segmentation of 

speeds.   

The visual stimuli were two overlapping random-dot patches presented within a stationary 

square aperture. The random dots translated within the aperture in the same direction at two 

different speeds. It has been suggested that the neural representation of speed in the visual cortex 

is encoded on a logarithmic scale (Maunsell and van Essen, 1983; Lisberger and Movshon, 1999; 

Nover et al., 2005), so we used a fixed ratio between two speeds, which gave rise to a fixed speed 

difference in the logarithmic scale. One set of stimuli had a “large speed separation”, and the speed 

of the faster component was four times (x4) that of the slower component. The five speed pairs 

used were 1.25 and 5°/s, 2.5 and 10°/s, 5 and 20°/s, 10 and 40°/s, and 20 and 80°/s (Fig. 1A). 

Another set of stimuli had a “small speed separation”, and the speed of the faster component was 

twice (x2) that of the slower component. The five speed pairs used were 1.25 and 2.5°/s, 2.5 and 

5°/s, 5 and 10°/s, 10 and 20°/s, and 20 and 40°/s (Fig. 1B). Experimental trials of bi-speed stimuli 

that had large and small speed separations were randomly interleaved.  

Human subjects first performed a standard 2AFC task to discriminate the bi-speed stimuli 

from the corresponding single-speed stimulus that moved at the log mean speed of the two 

component speeds (see Methods). At the large (x4) speed separation, all four subjects could well 

differentiate the bi-speed stimuli from the single-speed stimulus at speeds less than 20 and 80°/s 

(Fig. 1C). At the highest speeds of 20 and 80°/s, the discrimination performance was poor (mean 

d’ = 0.74, standard error STE = 0.5), indicating that subjects could not segment the speed 

components. At the small (x2) speed separation, the discriminability was worse than at x4 

separation. Nevertheless, when the speeds of stimulus components were less than 20 and 40°/s, 

subjects on average could differentiate the bi-speed stimuli from the single-speed stimulus, but not 

at the highest speeds of 20 and 40°/s (mean d’ = 0.17, STE = 0.1) (Fig. 1D).  

In the standard 2AFC task, it is possible that subjects could not segment the bi-speed 

stimuli into two separate speeds, but were still able to differentiate the bi-speed from single-speed 

stimuli based on their appearances (e.g., the distribution of the random dots of the bi-speed stimuli 

may appear less uniform). Because our goal was to measure discriminability based on perceptual 

segmentation, we designed a 3AFC task to address this concern. In the modified task, subjects still 

discriminated the bi-speed stimuli from the corresponding single-speed stimulus but had the option 

to make a third choice on trials when they thought neither stimulus interval appeared to contain 

two speeds (“no two-speed” choice). Therefore, the discrimination between the bi-speed and 

single-speed stimuli was only on trials when subjects thought they could perceive two different 

speeds of the bi-speed stimuli. The results from the 3AFC task were similar to those of the 2AFC 

task, with a slight reduction of d’ across conditions as the “no two-speed trials” reduced 

discrimination performance.  The small performance difference between the 2AFC (Fig. 1C, D) 
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and 3AFC (Fig. 1E, F) tasks suggests that human subjects generally relied on speed segmentation 

to perform the 2AFC task. 

Our results showed that human subjects can segment overlapping stimuli based only on 

speed cues and the performance was better when the separation between the two-speed 

components was larger. Our results also showed that the ability to segment two motion speeds was 

reduced at fast speeds, even when the ratio between the speed components was fixed. Based on 

the results from the 3AFC task, we performed a two-way ANOVA, in which the two factors were 

the speed separation (x4 or x2) and the speeds of the stimulus components. We found both factors 

had significant effects on d’ (for speed separation, F(1,30) = 94.2, p = 9.11x10-11; for stimulus 

speeds, F(4,30) = 46.8, p = 1.76x10-12).  The discrimination performance was significantly better 

at x4 than at x2 speed separation (paired t-test, p = 0.015), except at the fastest speeds of 20 and 

80°/s vs. 20 and 40°/s (Fig. 1E vs F). The discrimination performance was poor at fast speeds. d' 

dropped significantly as the stimulus speeds increased from 10 and 40°/s to 20 and 80°/s for x4 

separation (one-way ANOVA, F(1,6) = 67.6, p = 1.75x10-4) (Fig. 1E), and as the stimulus speeds 

increased from 10 and 20°/s to 20 and 40°/s for x2 separation (one-way ANOVA, F(1,6) = 47.1, p 

= 4.71x10-4 ) (Fig. 1F).   

To measure the monkey’s ability to segment overlapping stimuli moving at two speeds, we 

trained one monkey to perform a 2AFC task and discriminate the bi-speed stimuli from the 

corresponding single-speed stimulus moving at the log-mean speed (see Methods). In a given trial, 

either the bi-speed or the single-speed stimulus was presented. The monkey made a saccadic eye 

movement to one of two targets to indicate whether the stimulus had two speeds or a single speed. 

The monkey’s performance at x2 speed separation (Fig. 1H) was very similar to that of humans 

(Fig. 1D of the 2AFC task). At x4 separation, the monkey’s performance was generally better than 

at x2 separation (Fig. 1G vs 1H). As the stimulus speeds increased from 5 and 20°/s to 20 and 

80°/s, the performance declined (Fig. 1G), similar to the human results (Fig. 1C).  However, the 

monkey was still able to differentiate the bi-speed and single-speed stimuli at the fastest speeds of 

20 and 80°/s (Fig. 1G), whereas the averaged human performance was poor (also note that one 

human subject (NP) performed better than others at the fastest speeds) (Fig. 1C). The difference 

between the monkey and human results may be due to species difference and individual variability. 

It is also possible that at the fastest speeds, the monkey may use the appearance of the stimulus, 

rather than speed segmentation to perform the task. Although we could not rule out this possibility, 

the similar trend between the results of monkey and human subjects across speeds and speed 

separations suggests that the monkey’s ability to segment overlapping motion speeds is similar to 

that of humans.  

Neuronal responses in MT elicited by bi-speed stimuli and single-speed components 

To characterize how neurons in the visual cortex encode two overlapping stimuli moving 

at different speeds, we recorded extracellularly from 100 isolated neurons in the extrastriate area 

MT of two male monkeys (60 neurons from IM and 40 neurons from MO) while the monkeys 

performed a fixation task. Figure 2 shows the responses from four example neurons. To visualize 

the relationship between the responses to the bi-speed stimuli (red) and the constituent speed 

components, the plots of the response tuning curves to the slower (green) and faster (blue) 

components are shifted horizontally so that the responses elicited by the bi-speed stimuli and its 

constituent single-speed components are aligned along a vertical line as illustrated in Figure 2A1. 
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We found that the relationship between the responses elicited by the bi-speed stimuli and 

the constituent components depended on the stimulus speeds. Figure 2A1-D1 shows the results 

obtained when the separation between the two component speeds was large (×4). The component 

speeds are shown in Figure 1A. When the two component speeds were slow (1.25 and 5°/s), the 

response to the bi-speed stimuli nearly followed the response elicited by the faster-speed 

component (the leftmost data points in Fig. 2A1-D1). Importantly, the response elicited by the bi-

speed stimuli did not simply follow the stronger component response. When the preferred speed 

of a neuron was sufficiently low such that the response elicited by the faster component was weaker 

than that elicited by the slower component, the response to the bi-speed stimuli still followed the 

weaker response elicited by the faster component (Fig. 2A1).  When the speeds of the two stimulus 

components were at 2.5 and 10°/s, the response elicited by the bi-speed stimuli was also biased 

toward the faster component, albeit to a lesser degree. As the mean speed of the two stimulus 

components increased, the bi-speed response became closer to the average of the two component 

responses. We found similar results when the speed separation between the two stimulus 

components was small (×2) (Fig. 2A2-D2).  

We found the same trend in the neural responses averaged across 100 neurons (Fig. 3). At 

×4 speed separation, the population-averaged response showed a strong bias toward the faster 

component when the stimulus speeds were low and shifted toward the average of the component 

responses as the speeds increased (Fig. 3A1). To determine whether this trend held for neurons 

with different preferred speeds, we divided the neuron population into three groups with “low” 

(<2.5°/s), “intermediate” (between 2.5 and 25°/s), and “high” (>25°/s) preferred speeds.  For 10 

neurons that preferred low speeds, the response to the faster component was weaker than that to 

the slower component. However, the response to the bi-speed stimuli was strongly biased toward 

the faster component when the stimulus speeds were low (Fig. 3B1). This finding suggests that the 

bi-speed response is not biased toward the stimulus component that the neuron prefers when 

presented alone but biased toward the faster speed component.  

For 61 neurons that preferred intermediate speeds (Fig. 3C1) and 29 neurons that preferred 

high speeds (Fig. 3D1), we also found a strong bias toward the faster speed component when the 

stimulus speeds were low, and a gradual change toward the average of the component responses 

as the stimulus speeds increased. At the lowest stimulus speeds of 1.25 and 5°/s, the bi-speed 

response was nearly identical to that elicited by the faster component, showing “faster-component-

take-all”. For neurons that preferred high speeds, faster-component-take-all was also found for the 

stimulus speeds of 2.5 and 10°/s (Fig. 3D1).  We found similar results at x2 speed separation (Fig. 

3A2-D2), although the effect is not as pronounced as x4 speed separation.  

Relationship between the responses to bi-speed stimuli and constituent stimulus components 

To quantify the relationship between the response elicited by the bi-speed stimuli and the 

corresponding component responses, at a given pair of stimulus speeds, we expressed the response 

R of a neuron elicited by the bi-speed stimuli as a weighted sum of the component responses Rs 

and Rf  elicited by the slower and faster stimulus component, respectively:  

𝑅 =  𝑤𝑠𝑅𝑠 + 𝑤𝑓𝑅𝑓    ,                                 (5) 

in which, ws and wf  are the response weights for the slower and faster component, respectively.  

For three data points of R, Rs, and Rf, as long as Rf ≠ Rs, R can always be expressed as: 
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                              R =  
𝑅𝑓− 𝑅

𝑅𝑓− 𝑅𝑠
𝑅𝑠 +  

𝑅− 𝑅𝑠

𝑅𝑓− 𝑅𝑠
𝑅𝑓   ,                             (6) 

The response weights can be expressed as 𝑤𝑠 =  
𝑅𝑓− 𝑅

𝑅𝑓− 𝑅𝑠
 , 𝑤𝑓 =  

𝑅− 𝑅𝑠

𝑅𝑓− 𝑅𝑠
 , and 𝑤𝑠 and 𝑤𝑓 𝑠um to 1.  

By this definition, if R were closer to one component response, that stimulus component would 

have a higher weight. Note that Equation 6 is not intended for fitting the response R using 𝑅𝑠 and 

𝑅𝑓, but rather to use the relationship among R, 𝑅𝑠, and 𝑅𝑓 to define the weights for the faster and 

slower components.  

Using this approach to estimate the response weights for individual neurons can be 

inaccurate because the weights are determined only by three data points. Also, 𝑅𝑠  and 𝑅𝑓 can 

sometimes be similar so the denominator in Equation 6 could be close to zero. We therefore used 

the neuronal responses across the population to determine the response weights (Fig. 4). For each 

pair of stimulus speeds, we plotted (R - Rs) in the ordinate versus (Rf - Rs) in the abscissa. Figure 

4A1-E1 shows the results obtained at ×4 speed separation. Across the neuronal population, the 

relationship between (R - Rs) and (Rf - Rs) is remarkably linear (Type II regression, R2 ranged from 

0.94 to 0.76, see Table 1), and can be well described as:                                

                         𝑅 − 𝑅𝑠 =  𝑘(𝑅𝑓 − 𝑅𝑠) +  𝑏  .                                  (7) 

Because all the regression lines in Figure 4 nearly go through the origin (i.e. intercept b ≈ 0, Table 

1), the slope k obtained from the linear regression approximates 
𝑅− 𝑅𝑠

𝑅𝑓− 𝑅𝑠
, which is the response 

weight 𝑤𝑓 for the faster component (Eq. 6). Therefore, for each pair of stimulus speeds, we can 

estimate the response weight for the faster component using the slope of the linear regression. Our 

results showed that the bi-speed response changed progressively from a scheme of "faster-

component-take-all" to “response-averaging” as the speeds of the two stimulus components 

increased (Fig. 5A). We found similar results when the speed separation between the stimulus 

components was small (×2), although the bias toward the faster component at low stimulus speeds 

was not as strong as x4 speed separation (Fig. 4A2-E2, Fig. 5B, and Table 1).   

Table 1. Response weight for faster component based on linear regression (N = 100)  

 

 Large Speed Difference (×4) Small Speed Difference (×2) 

Components 

Speeds 

(°/s) 

 

1.25/5 

 

 

2.5/10 

 

5/20 

 

10/40 

 

20/80 

 

1.25/2.5 

 

2.5/5 

 

5/10 

 

10/20 

 

20/40 

Slope (𝑤𝑓) 

and 95% 

Confidence 

Interval 

0.95  

± 

0.097 

0.88  

± 

0.113 

0.62  

± 

0.094 

0.50  

± 

0.089 

0.53  

± 

0.104 

0.79   

±    

0.139 

0.82  

± 

0.134 

0.70  

± 

0.118 

0.53  

± 

0.100 

0.56  

± 

0.084 

R2 0.94 0.90 0.86 0.80 0.76 0.80 0.83 0.82 0.78 0.86 

Intercept (b) 

and 95% 

Confidence 

Interval 

-1.29  

± 

2.161 

-1.32  

± 

2.739 

1.48  

± 

1.771 

2.44 

± 

1.115 

2.00 

± 

3.544 

-1.48 

±   

1.425 

-1.32 

±   

1.632 

-0.56 

±   

1.604 

0.89 

±   

0.532 

-0.25 

±   

1.508 
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Normalization model fit of MT responses to bi-speed stimuli  

We found that a divisive normalization model (Carandini and Heeger, 2012) can well 

describe the MT responses elicited by the bi-speed stimuli.  We used the following equation (Eq. 

8) to fit each neuron’s responses to the bi-speed stimuli across 5 speed combinations with either 

x4 or x2 speed separation: 

            𝑅𝑏𝑖 =
𝑆𝑠

𝑛

𝑆𝑠
𝑛+𝛽𝑆𝑓

𝑛+𝜎
𝑅𝑠(𝑉𝑠) +

𝛽𝑆𝑓
𝑛

𝑆𝑠
𝑛+𝛽𝑆𝑓

𝑛+𝜎
𝑅𝑠(𝑉𝑓) + 𝑐         .                (8)    

𝑅𝑏𝑖 is the model-fitted response to the bi-speed stimuli; Rs is the response tuning to a single-speed 

stimulus; 𝑉𝑠  and 𝑉𝑓  are the slower and faster component speed, respectively; Ss and Sf are the 

population neural responses in MT to the slower and faster component speed, respectively, and 

were estimated based on the population-averaged speed tuning curve to single speeds of our 

recorded MT neurons (Fig. 6A); n, 𝛽, σ, and c were model parameters and followed the following 

constraints: 0 ≤ n ≤ 100, 0.01 ≤ β ≤ 100, 0 ≤ σ ≤ 500, 0 ≤ c ≤ 100. In the model, the component 

responses of a given neuron elicited by the slower and faster components are weighted by Ss and 

Sf, which are the population neural responses to the corresponding speed components. The 

parameter 𝛽 appears in the denominator that controls the contribution of Sf  to the response of the 

normalization pool. 𝛽 also appears in the numerator for the component response elicited by the 

faster stimulus 𝑅𝑠(𝑉𝑓),  which provides a control for weighting the component responses in 

addition to Ss and Sf. Therefore, we refer to this model as the “weighted normalization” model. In 

comparison, we also fitted the bi-speed response using a “tuned normalization” model (Rust et al 

2006; Ni et al., 2012; Carandini et al., 1997), in which the parameter α (0.01 ≤ α ≤ 100) only 

appears in the denominator (Eq. 9):  

           𝑅𝑏𝑖 =
𝑆𝑠

𝑛

𝑆𝑠
𝑛+𝛼𝑆𝑓

𝑛+𝜎
𝑅𝑠(𝑉𝑠) +

𝑆𝑓
𝑛

𝑆𝑠
𝑛+𝛼𝑆𝑓

𝑛+𝜎
𝑅𝑠(𝑉𝑓) + 𝑐         .                  (9)    

Intuitively, when the stimulus components move at low or intermediate speeds less than 

20°/s, population-averaged MT response to the higher-speed component Sf  is stronger than that to 

the lower-speed component Ss at the x4 (Fig. 6B) and x2 speed separation (Fig. 6C). This difference 

between Sf  and Ss would weigh the faster stimulus component more than the slower component 

(Eqs. 8, 9). When both stimulus components move at speeds greater than 20°/s, Sf  is smaller than 

Ss (Fig. 6B, C) and would weigh the faster component less than the slower component.   

At x4 speed separation, the weighted normalization model accounted for on average 84.7% 

of the response variance across 100 neurons, which is significantly better than the tuned 

normalization model (mean = 78.3%) (one-tailed paired t-test, p = 0.0018) (Fig. 6D).  At x2 speed 

separation, the weighted normalization model accounted for 97.7% of the response variance, which 

is also significantly better than the tuned normalization model (mean = 95.9%) (one-tailed paired 

t-test, p = 0.00029) (Fig. 6E).   
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Based on the model-fitted bi-speed responses across the population, we calculated the 

weight for the faster stimulus component at each of the five speed pairs using linear regression as 

we did for the recorded neural responses (Eqs. 6, 7).  The weights obtained using the weighted 

normalization model matched the weights calculated based on the data well (R2 = 0.925 for x4 and 

R2 = 0.93 for x2 speed separation) (Fig. 6F, G). The weights obtained using the tuned 

normalization model fit also matched the data well but were slightly worse (R2 = 0.90 for x4 and 

R2 = 0.87 for x2 speed separation) (Fig. 6F, G). 

For both x4 and x2 speed separations, the median 𝛽 value of the weighted normalization 

model fit is 1.2, which is significantly different from one (Wilcoxon signed-rank test, p = 0.00011 

and 0.00018 for x4 and x2 speed separation, respectively). This result indicates a stronger 

weighting for the faster speed component than the slower component across all stimulus speeds, 

in addition to the weighting prescribed by Sf  and Ss dependent on the stimulus speeds. Taking the 

weighting contributed by 𝛽 and Sf  and Ss together, the overall response weight for the faster 

component is greater than the slower component at the low and intermediate speed range, but the 

two weights are similar at high stimulus speeds, which matches the neural data well (Fig. 6F, G).  

In contrast, the relative weights for the faster and slower component fitted with the tuned 

normalization model are only determined by Sf  and Ss (Eq. 9), which predicts a stronger weight for 

the slower than the faster component at fast stimulus speeds, slightly deviating from the neural 

data at this speed range.   

Time course of MT responses to bi-speed stimuli  

We asked whether the bias toward the faster speed component occurred early in the 

neuronal response or developed gradually over time.  Figure 7 shows the time course of the 

response averaged across 100 neurons in the population. The bias toward the faster speed 

component occurred at the very beginning of the neuronal response when the stimulus speeds were 

less than 20º/s (Fig. 7A-C). The first 20-30 ms of the neuronal response elicited by the bi-speed 

stimuli was nearly identical to the response elicited by the faster component alone, as if the slower 

component were not present. The early dominance of the faster component on the bi-speed 

response cannot be explained by the difference in the response latencies of the faster and slower 

components. Faster stimuli elicit a shorter response latency (Lisberger and Movshon, 1999), which 

can be seen in Figure 7A-C. However, the bi-speed response still closely followed the faster 

component for a period of time after the response to the slower component started to rise. The 

effect of the slower component on the bi-speed response was delayed for about 25 ms, as indicated 

by the arrows in Figure 7A-C. During the rest of the response period, the bias toward the faster 

component was persistent. As the stimulus speeds increased, the bi-speed response gradually 

changed to follow the average of the component responses (Fig. 7E). We found similar results 

when the speed separation between the two stimulus components was x4 (Fig. 7A1-E1) and x2 

(Fig. 7A2-E2).   

Faster speed bias also occurs when stimulus components move in different directions  

We showed that at low and intermediate speeds, MT response to bi-speed stimuli was 

biased toward the faster stimulus component when two overlapping stimuli moved in the same 
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direction (at the preferred direction of the neuron). We asked whether this faster-speed bias also 

occurred when visual stimuli moved in different directions. We presented overlapping random-dot 

stimuli moving in two directions separated by 90° in the RF. The two stimulus components moved 

at different speeds. The speed of the stimulus component moving on the clockwise side of the two 

directions was 10°/s, whereas the speed of the other component was 2.5°/s. We varied the vector-

average (VA) direction of the two component directions across 360° to characterize the direction 

tuning curves. Figure 8A shows the direction tuning curves averaged across 21 neurons (13 

neurons from monkey RG, 8 neurons from monkey GE). The direction tuning curve of each neuron 

was first fitted with a spline and rotated such that the VA direction 0° was aligned with the neuron’s 

preferred direction before averaging across neurons. The peak response to the faster component 

(Fig. 8A, blue curve) was stronger than that to the slower component (green curve).  MT responses 

elicited by the bi-directional stimuli (red curve) showed a strong bias toward the faster component, 

more than expected by the average of the two component responses (black curve). 

We fitted the MT raw direction tuning curve to the bi-directional stimuli as a weighted sum 

of the direction tuning curves to the individual stimulus components moving at different speeds: 

               𝑅𝑏𝑖(𝜃1,  𝜃2) = 𝑤𝑠𝑅𝑠(𝜃1) + 𝑤𝑓𝑅𝑓(𝜃2) + 𝑐 ,                      (10)    

in which, 𝑅𝑠 and 𝑅𝑓 are the direction tuning curves to the slower and faster stimulus components, 

respectively; 𝜃1 and 𝜃2 are the motion directions of the two components;  𝑤𝑠 and 𝑤𝑓 are fitted 

response weights for the slower and faster components, respectively and they are not required to 

sum to 1. An implicit assumption of the model is that at a given pair of stimulus speeds, the 

response weights for the slower and faster components are fixed across motion directions. The 

model fitted MT responses very well, accounting for on average 90.3% of the response variance 

(std = 8.4%, N = 21).  The median response weights for the slower and faster components were 

0.26 and 0.74, respectively, and were significantly different (Wilcoxon signed-rank test, p = 8.0 

x10-5). For most neurons (20 out of 21), the response weight for the faster component was larger 

than that for the slower component (Fig. 8B). This result suggests that at low to intermediate speeds 

the faster-speed bias is a general phenomenon that applies to overlapping stimuli moving either in 

the same direction or different directions.  

Faster speed bias is not due to attention 

We asked whether the faster speed bias was due to bottom-up attention being drawn toward 

the faster stimulus component. To test this hypothesis, we recorded neural responses from one 

monkey (RG) as the animal directed attention away from the single- and bi-speed stimuli presented 

in the RFs. We trained the monkey to perform a demanding fine direction discrimination task in 

the visual field opposite to that of the RFs. The perifoveal/peripheral viewing of the attended 

stimulus and the use of a fine direction-discrimination task made the task attention-demanding (see 

Methods). The monkey performed the task reliably with an average correct rate of 86.7 ± 7.3%  

(mean ± std) across 23 sessions and a total of 5184 trials. The correct rates for 10°, 15°, and 20° 
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direction offsets of the fine direction discrimination task were 78.8 ± 9.7%, 87.5 ± 8.3%, and 93.9 

± 5.8%, respectively (see Methods).  

 

We recorded the responses from 48 MT neurons in 23 experimental sessions while the 

monkey performed the task. Among the 48 neurons, 32 neurons were recorded using both the 

attention-away paradigm and a fixation paradigm. We found a similar faster-speed bias at low and 

intermediate speeds. The results obtained using the attention-away paradigm and the fixation 

paradigm were also similar (Supplementary Fig. 1). The faster-speed bias was more evident at x4 

speed separation than at x2 speed separation.  Based on the neuronal responses across the 

population, we calculated the weight for the faster stimulus component at each of the five speed 

pairs using linear regression (Eqs. 6, 7). When attention was directed away from the RF, the 

response weight for the faster component decreased from a strong faster-speed bias to response 

averaging as the stimulus speeds increased (red and green curves in Fig. 5C, D), similar to the 

results from the fixation paradigm (Fig. 5A, B, and the blue curves in Fig. 5C, D).  Together, these 

results suggest that the faster-speed bias at low to intermediate speeds was not due to attention 

being drawn to the faster-speed component.  

Population neural responses elicited by bi-speed and single-speed stimuli 

We asked whether information of multiple speeds of overlapping stimuli was carried in the 

responses of neuronal populations in MT and whether multiple speeds can be decoded from the 

population neural response. Because we used identical visual stimuli when recording from neurons 

in different experimental sessions, this allowed us to pool the responses from different neurons to 

form a pseudo-population. We first examined the difference between the population neural 

responses elicited by the bi-speed stimuli and the corresponding single-speed stimulus that moved 

at the log-mean speed (see Methods of human psychophysics). Figure 9 shows the population 

neural response plotted as a function of neurons’ PS, constructed from 100 neurons that we 

recorded using the fixation paradigm (see Methods). To capture the population neural response 

evenly across a full range of PS, we spline-fitted the recorded response elicited by the bi-speed 

stimuli (the red curves) and by the single, log-mean speed (the black curves) (Fig. 9). At x4 and 

x2 speed separations, the population neural responses elicited by two speeds did not show two 

separate peaks but rather had a main hump that shifted from low PS to high PS as the stimulus 

speeds increased. At x4 speed separation and across all five speed pairs, the population response 

elicited by two speeds was broader and flatter than that elicited by the single log-mean speed (Fig. 

9A-E). In our experiments, we directly measured the neuronal responses elicited by the log-mean 

speed of x4 but not x2 speed separation. Because we had characterized each neuron’s tuning curve 

to single speeds, we inferred the responses elicited by the log-mean speed of x2 separation by 

interpolating the speed tuning curve using a spline fit. At x2 speed separation, the population 

response elicited by two speeds was very similar to that elicited by the single log-mean speed, with 

the two-speed population response being just slightly broader (Fig. 9F-J).  
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To evaluate the discriminability between MT population responses elicited by the bi-speed 

stimuli and the corresponding log-mean speed, we used a linear classifier to perform a 

discrimination task. Trial-by-trial population responses were generated randomly according to a 

Poisson process and with the mean set to the trial-averaged neuronal response. The classifier was 

trained and tested using k-fold cross-validation. The classifier determined whether a population 

response was elicited by two speeds or a single speed (see Methods). Discriminability of the 

classifier was measured in d’ as in our psychophysics study. At x4 speed separation, the 

discriminability was generally very high and slightly decreased as the stimulus speed increased 

(Fig. 9K), which was generally consistent with our psychophysics results (Fig. 1C, E, G).  One 

difference is that at 20 and 80°/s, the classifier’s performance did not drop to a very low level as 

human performance (compare Fig. 9K with Fig. 1C, E), but was comparable to that of the monkey 

subject (Fig. 1G).  At the highest stimulus speeds, it was possible that the monkey subject picked 

up other appearance differences between the bi-speed and single-speed stimuli to perform the task. 

The classifier can also pick up the difference in population neural responses to the bi-speed and 

single-speed stimuli (Fig. 9E). However, it is unclear whether this neural response difference can 

be mapped to the perception of two speeds versus one speed, or as a noticeable appearance 

difference between the two stimuli. At x2 speed separation, the classifier’s performance (Fig. 9L) 

was similar to that of the human (Fig. 1D, F) and monkey (Fig. 1H) subjects, and was poorer than 

that at x4 speed separation (Fig. 9K).   

 

Decoding either a single speed or two speeds from trial-averaged population neural response 

 

We next asked whether it is possible to extract either a single speed or multiple speeds 

from the population neural response in MT. Our decoder found readout speeds and their weights 

that minimized the difference (in terms of sum squared error) between the estimated population 

response elicited by the readout speeds and the recorded population neural response (see Methods). 

Rather than searching for a probability distribution of speed with a general shape, we constrained 

the search to either one speed or two speeds. The weights of the speed components sum to one, 

akin to a probability distribution. Figure 10 demonstrates the decoding procedure and shows the 

results of extracting speeds from the recorded trial-averaged responses of 100 neurons to the bi-

speed stimuli. To capture the population neural response evenly across the PS of the neurons, we 

spline-fitted the recorded population response and the estimated population response. The best-fit 

estimated population responses (Fig. 10 blue curves) were highly correlated with the recorded 

neural responses (Fig. 10 red curves) (for five speed pairs, R2 > 0.96 at x4 speed separation; R2 > 

0.99 at x2 speed separation).  At x4 speed separation, the decoder extracted two separate speeds 

for all speed combinations (Fig. 10 A-E). The readout speeds were generally close to the veridical 

stimulus speeds. At low stimulus speeds of 1.25 and 5⁰/s (Fig. 10A) and 2.5 and 10⁰/s (Fig. 10B), 

the decoded faster speed component had a higher weight than the slower component. At the highest 

speeds of 20 and 80⁰/s, the decoder extracted two speeds (Fig. 10E), whereas human subjects could 

not perceive two speeds (Fig. 1E) (see below). At x2 speed separation, the decoder extracted two 
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separated speeds only at low stimulus speeds of 1.25 and 2.5⁰/s (Fig. 10F). At higher stimulus 

speeds, the decoder extracted a dominant single speed that was between the two stimulus speeds, 

with or without a second nearby speed that had a very low weight (Fig. 10G-J). In contrast, human 

subjects could perceive two speeds when stimulus speeds were below 20 and 40⁰/s (Fig. 1F) (see 

below and Discussion). 

 

Decoding speeds from trial-by-trial population neural responses 

 

To determine the distribution of the readout speed across trials, we randomly generated 

200 trials based on the responses of 100 MT neurons in our data sample. In each simulated trial, a 

given neuron’s response was determined by a Poisson process with the mean set to the spike count 

averaged across the experimentally recorded trials. The trial-by-trial response of each neuron was 

normalized to construct the population response and then spline-fitted for decoding. Figure 11 

shows the speeds extracted from the recorded neural responses to single stimulus speeds (Fig. 11A-

G), and from the inferred responses to the log-mean speed of x2 speed separation (Fig. 11H-L). 

The decoder speeds matched the single stimulus speed very well (Fig. 11M). 

 

Figure 12 shows the speeds extracted from the neural response to the bi-speed stimuli. The 

decoder often read out two speeds across trials. In some trials, the readout of one speed component 

had a very small weight. We considered a speed component invisible to an observer if it had a 

weight less than 0.15 (i.e. the weight of the other readout speed was greater than 0.85). Therefore, 

if the weight difference between two readout speeds was greater than 0.7, we considered the trial 

had a “single” readout speed. This usually happened when the readout speed that had a very small 

weight was either at one of the boundaries of the speed range (i.e. 1.25⁰/s or 80⁰/s) or separated 

from the other readout speed by the largest speed separation searched by the decoder (i.e. x27.86 

or 3.33 in log scale) (see Methods). These small weights were likely artifacts due to boundary 

conditions in our search algorithm.  

 

At x4 speed separation, the decoder was able to extract the speeds of the stimulus 

components (Fig. 12A-D), except at the fastest speeds of 20 and 80⁰/s.  At low stimulus speeds of 

1.25 and 5⁰/s, and 2.5 and 10⁰/s, the readout speed around the faster stimulus component had a 

higher weight than that around the slower stimulus component (Fig. 12A, B). At stimulus speeds 

of 1.25 and 5⁰/s, in trials that had two readout speeds (Fig. 12A, on white background), the faster 

readout speeds were close to the faster stimulus speed of 5⁰/s. The slower readout speeds were 

closely aligned with the slower stimulus speed of 1.25⁰/s (i.e. 0.22 on the logarithm scale), which 

was also the lower boundary of the speed range. The weights of the faster readout speeds (mean = 

0.67) were significantly greater than those of the slower speeds (mean = 0.33) (paired t-test, p =   

2.33x10-29). We cannot rule out the possibility that the slower readout speeds of 1.25⁰/s in some 

trials were due to boundary artifacts. If discounting the potential artifact, the weight for the readout 

speed near the faster stimulus speed of 5⁰/s would be even higher. In trials considered to have a 
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single readout speed, the readout was very close to the faster stimulus speed of 5⁰/s (Fig. 12A, on 

grey background). For some of these trials (at the top of Fig. 12A), the faster readout speed was 

near the upper-speed boundary of 80⁰/s (i.e. 4.4 on log scale) and had a very small weight (< 0.15). 

Those faster readout speeds were boundary artifacts. To address the artifact, rather than comparing 

the weights between the faster and slower readout speeds, we compared the weights of the readout 

speeds within a window around the faster and slower stimulus speeds. For x4 speed separation, we 

multiplied or divided the stimulus speed by 1.5 to set the window (i.e. log(stimulus speed) ± 

log(1.5) in logarithm scale). For the stimulus speed of 5⁰/s, the window was from 3.3⁰/s to 7.5⁰/s.  

For the left boundary speed of 1.25⁰/s, we chose the window to be from 1.25⁰/s to 2.8⁰/s so the 

window had the same width in logarithm scale as that around 5⁰/s.  Taking all the single- and two-

readout speed trials together, the trial-averaged mean weight for the readout around the faster 

stimulus speed (5⁰/s) was 0.72, significantly greater than the mean weight of 0.20 for the readout 

around the slower stimulus speed (1.25⁰/s) (paired t-test, p = 4.04x10-44). 

  

At stimulus speeds of 2.5 and 10⁰/s, the decoder extracted two speeds that had a separation 

close to the veridical separation (Figs. 12B, 14B). In trials considered to have a single-speed 

readout, the readout speed was close to the faster stimulus speed of 10⁰/s. In some single- and two-

readout speed trials, the slower readout speeds were also aligned with the 1.25⁰/s boundary and 

had a small weight, suggesting they were boundary artifacts. We looked at the weights of the speed 

readouts of all trials that were within a window (± log(1.5)) around the faster and slower stimulus 

speeds. The mean weight for the readout around the faster stimulus speed (10⁰/s) was 0.59, 

significantly greater than the mean weight of 0.04 for the readout around the slower stimulus speed 

(2.5⁰/s) (paired t-test, p = 4.72x10-56).  

 

At stimulus speeds of 5 and 20⁰/s, nearly all trials had two readout speeds with a separation 

well aligned with the veridical speed separation (Figs. 12C, 14C). The faster readout speeds no 

longer showed a stronger weight. The mean weight for the faster readout speed was 0.43, 

significantly smaller than the mean weight of 0.57 for the slower readout speed (paired t-test, p = 

6.0x10-10).  At stimulus speeds of 10 and 40⁰/s, the decoder was able to extract two speeds for most 

of the trials (Fig. 12D). A small percentage of the trials (about 10%) were considered to have a 

single readout speed, which was close to the log mean speed of the two stimulus speeds (20⁰/s) 

(Fig. 12D on the grey background). 

 

At the fastest stimulus speeds of 20 and 80⁰/s, about 40% of the total trials were considered 

to have only a single readout speed, which was near the log mean speed of the stimulus components 

(40⁰/s) (Fig. 12E). In other trials, the decoder extracted two speeds – the slower readout speeds 

were generally higher than the slower stimulus speed (20⁰/s) and the faster readout speeds were 

aligned with the faster stimulus speed (80⁰/s), which was also the upper boundary speed. However, 

an examination of the objective function as the decoder searched for the best-fit population 

response across speed separations revealed that the trial-averaged objective function was flat 
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within a big range of speed separations (Fig. 13A). Across all trials, the mean objective function 

value peaked at speed separation of x3.25 (mean OF = -0.17, STD=0.14). However, the peak value 

is not significantly different from the mean objective function value at the largest speed separation 

(x27.86) searched (mean OF = -0.19, STD=0.14) (paired t-test, p=0.31). The flat objective function 

suggests high uncertainty of the extracted speed separation at this speed pair.  

 

We divided the trials into two subgroups considered having either one or two readout 

speeds and calculated the objective function for each subgroup. For trials considered to have one 

readout speed, the mean objective function showed a peak at the speed separation of x27.86 (3.3 

on the log scale), which was the largest speed separation searched (Fig. 13E). As the searched 

speed separation increased, the dominate faster readout speed approached the log mean speed and 

the mean weight increased to 0.94, whereas the slower readout speed approached the lower 

boundary speed with the weight diminishing to negligible 0.06 as a likely artifact (Fig. 13F). For 

trials considered to have two readout speeds, objective function peaked at the speed separation of 

x3.25 (1.18 in log scale) (Fig. 13B), corresponding to two readout speeds of 17.8 and 58.0⁰/s (Fig. 

13C). Furthermore, we compared the population neural responses averaged across the one-readout-

speed trials and the two-readout-speed trials. The spline-fitted population responses of the two 

subgroups were highly correlated (R2=0.99) and statistically indistinguishable (paired t-test, 

p=0.30) (Fig. 13D). This indicates that a tiny change in the population response (e.g., a slightly 

higher peak near log mean speed of 3.7) would lead the decoder to exact one speed rather than two 

speeds (Fig. 13D). In other words, the decoder was uncertain about how many speeds were in the 

visual stimuli and therefore had difficulty segmenting the visual stimuli at these fast stimulus 

speeds of 20 and 80⁰/s.  

 

At x2 speed separation, the decoder was not able to extract two speeds of the stimulus 

components, except at the slowest speeds of 1.25 and 2.5⁰/s (Fig. 12F-J). At stimulus speeds of 

1.25 and 2.5⁰/s (Fig. 12F), in 38% of total trials that were considered to have a single readout 

speed, the readout speed was close to the faster stimulus speed of 2.5⁰/s (i.e. 0.92 in log scale) 

(mean = 1.97⁰/s, STD = 1.08). In trials that had two readout speeds, the slower readout speeds 

roughly followed the slower stimulus speed (1.25⁰/s), which was also the lower boundary of the 

speed range (Fig. 12F). At stimulus speeds higher than 1.25 and 2.5⁰/s, most trials were considered 

to have a single readout speed (Fig. 12G-J). The mean speeds of the single readout-speed trials 

were 3.9⁰/s (STD = 1.07), 7.3⁰/s (STD = 1.99), 13.5⁰/s (STD = 1.06), and 31⁰/s (STD = 1.07), 

respectively, for stimulus speeds of 2.5 and 5⁰/s, 5 and 10⁰/s, 10 and 20⁰/s, and 20 and 40⁰/s. These 

mean readout speeds were close to the log mean speeds of the two stimulus speeds (3.54⁰/s, 7.07⁰/s, 

14.14⁰/s, and 28.28⁰/s, respectively).   

 

Discrimination between single- and bi-speed stimuli based on decoded speeds 
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We used the decoding results to perform a discrimination task similar to that used in our 

psychophysical experiment. Figure 14 shows the distributions of the speed separation between two 

readout speeds extracted from the population responses to the bi-speed stimuli and the 

correspondingly single log-mean speed. As above, when the difference between the weights of 

two readout speeds in a trial was greater than 0.7, the trial was considered to have a single readout 

speed and the speed separation was set to zero. At x4 speed separation, the separations between 

the readout speeds extracted from the response to the bi-speed stimuli were generally matching the 

veridical speed separation and were larger than those extracted from the response to single log-

mean speed (Fig. 14A-E). Based on the distributions of the decoded speeds, we used a speed 

separation threshold of x1.3 (i.e. log scale of 0.26) to distinguish single- and bi-peed stimuli and 

to evaluate the hit rate and false alarm rate. The exact choice of the threshold within a range from 

x1.1 to x1.7 did not change our results qualitatively. We calculated d’ (see Methods) to measure 

the ability to discriminate the bi-speed stimuli from the corresponding single-speed stimulus. At 

x4 speed separation, the d’ (Fig. 14K) was similar to the psychophysical performance of the 

monkey subject (Fig. 1G), reaching its peak at 5 and 20⁰/s. Although d’s at stimulus speeds of 1.25 

and 5⁰/s and 2.5 and 10⁰/s were smaller than those of human subjects (Fig. 1C, E), the fact that in 

many trials the readout speeds matched the faster stimulus speeds (Fig. 12A, B) indicated that the 

decoder was able to segment the visual stimuli when stimulus speeds were low. If the 

discrimination were not based on the speed separation as in Figure 14, but rather on whether the 

readout speed matched the speed of one of the stimulus components, the discriminability would 

be even higher and better match the human performance at low stimulus speeds. 

 

At x2 speed separation, except at 1.25 and 2.5⁰/s, the distribution of the speed separation 

extracted from the response to the bi-speed stimuli was similar to that extracted from the inferred 

response to single log-mean speed (see Methods) (Fig. 14F-J). At some stimulus speeds, the 

decoded speed separation extracted from the response to the log mean speed even had slightly 

more trials showing two readout speeds (Fig. 14G-H), likely due to more noise in the inferred 

response to the log-mean speed than in the recorded response (see Fig. 11 H-L). The d’ calculated 

based on the decoded speed separation (Fig. 14L) was much smaller than the psychophysical 

performance of human and monkey subjects (Fig. 1D, F, H), suggesting that the decoder was not 

able to segment the visual stimuli at x2 speed separation, except at the lowest speeds of 1.5 and 

2.5⁰/s.   

 

 

DISCUSSION 

We investigated the neural code in area MT that represents not only a single speed, but also 

the multiplicity of speeds. Using the same visual stimuli as in our neurophysiology experiments, 

we showed that human subjects could segment overlapping stimuli based only on speed cues, and 

the performance reduced as the separation between two speeds was smaller. We also showed that, 

with a fixed speed separation, perceptual segmentation became harder at fast speeds. These results 
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are consistent with previous psychophysical studies (Masson et al., 1999; Rocchi et al., 2018). We 

employed a novel 3AFC task that combined the classification of whether a stimulus had one or 

two speeds and the discrimination between two-speed and single-speed stimuli (Fig. 1E, F). This 

approach allowed us to characterize discriminability based on the perception of multiple speeds, 

rather than other perceptual appearances of the stimuli.  This 3AFC task not only has the advantage 

of a discrimination task that reduces individual biases, but also a subjective report task that 

pinpoints a perceptual trait of the stimulus. Our behavioral experiment also suggests that macaque 

monkeys have a similar capacity in discriminating two-speed and single-speed stimuli as humans, 

consistent with previous studies demonstrating that visual perceptions of macaque monkeys are 

very similar to humans (e.g. Huang et al., 2002; Krekelberg et al., 2006b). By recording the 

electrical activity of single neurons from macaque monkeys, we made a novel finding that the 

responses of MT neurons to overlapping stimuli were biased toward the faster speed component 

when the stimulus speeds were slow (less than 20⁰/s). We also showed that it was possible to 

extract two speeds of MT population responses in a way consistent with human visual perception 

when the speed separation was large, but not when the speed separation was small.  Our results 

revealed the rule of encoding multiple speeds in area MT and demonstrate a population neural 

code enabling the decoding of multiple motion speeds and perceptual segmentation. 

Encoding of multiple speeds of overlapping stimuli and the underlying mechanisms 

Our finding of the faster-speed bias at low stimulus speeds cannot be explained by attention 

because we found similar results when attention was directed away from the RF.  The faster-speed 

bias cannot be explained by the apparent contrast of the stimulus component either – the random 

dots of the faster speed component had shorter dwell time on the video display and appeared to be 

dimmer than the slower component.  Instead, our encoding results can be largely explained by the 

framework of divisive normalization (Carandini and Heeger, 2012). Our findings also provide 

several new insights into the mechanisms of representing multiple speeds.   

We showed that neuronal response elicited by the bi-speed stimuli can be described by a 

weighted sum of the responses to the individual speed components. Importantly, the weight for a 

speed component is proportional to the averaged (or summed) response of a population of neurons 

elicited by that speed component (Ss and Sf  in the numerator of Eqs. 8 and 9). We name this neuron 

population the “weighting pool”. The weighting pool is not necessarily the same as the 

“normalization pool”, which is the neuron population that contributes to the response in the 

denominator of the normalization model. Our finding of the faster-speed bias at low stimulus 

speeds suggests that the weighting pool is composed of neurons with a broad range of speed 

preferences. In this way, the averaged/summed population response depends only on the stimulus 

speed and is invariant to the individual neuron’s speed preference. In our data set, MT population-

averaged speed tuning curve peaks around 20⁰/s (Fig. 6A), which is consistent with previous 

studies (Maunsell and Van Essen 1983; Lisberger and Movshon, 1999; Nover et al., 2005; Huang 

and Lisberger, 2009).  At speeds less than 20⁰/s, the population speed tuning has a positive slope, 

and a faster component would elicit a stronger population response than a slower component. This 
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insight explains the faster-speed bias at low stimulus speeds and why a fixed weight for the faster 

component fits the responses of individual neurons elicited by a pair of stimulus speeds so well, 

regardless of the speed preferences of the individual neurons (Fig. 4).  Neurons with similar speed 

preference are spatially clustered in MT (Liu and Newsome, 2003). Should the weighting pool be 

composed of locally clustered neurons with similar preferred speeds, the response weight of a 

neuron would be higher for a speed component that elicits a stronger response. This would be 

contrary to our finding that neurons preferring very low speeds also showed a faster-speed bias, 

rather than a bias toward the slower component that elicited a stronger response (Fig. 3B).   

Previous studies that characterized the neural representation of multiple stimuli have used 

stimulus strength (e.g. luminance contrast and motion coherence) to weigh the component 

responses in the normalization model (Busse et al., 2009; Ni et al, 2012; Xiao et al., 2014; Heuer 

and Britten, 2002; Morgan et al., 2008). Our current study extends these previous findings by 

showing that weighting by the population neural response elicited by the stimulus component 

provides a more parsimonious explanation even when it is not obvious how to define the stimulus 

strength. Bao and Tsao (2018) suggest that responses of neurons in category-selective regions of 

the inferotemporal cortex to multiple objects are weighted by the responses from neighboring 

neurons that have the same category selectivity. Our finding is consistent with their study and 

further constrains the extent of the weighting pool to include neurons in MT with a broad range of 

preferred speeds in response to multiple speeds of overlapping stimuli.  

A recent study from our lab using multiple stimuli competing in more than one feature 

domain suggests that it is important to consider hierarchical processing in representing multiple 

stimuli, in particular how multiple stimuli are represented in the feedforward input to a visual area 

(Wiesner et al., 2020). Our result that the initial MT response to the bi-speed stimuli was nearly 

identical to the response to the faster component alone (Fig. 7A-C) suggests that the faster-speed 

bias may be already present in the feedforward input. The suppressive effect due to the presence 

of the slower component did not appear until 20-30 ms after the MT response onset (arrows in Fig. 

7A-C), suggesting that divisive normalization requires additional processing time and may involve 

neural circuits within MT. MT neurons receive feedforward motion-selective input mainly from 

V1, and also from V2 and V3 (Ungerleider and Desimone, 1986; Movshson and Newsome, 1996; 

Anderson et al., 1998; Anderson and Martin 2002; Rockland 2002). Speed-selective complex cells 

in V1 have preferred speeds in a range similar to that of MT neurons, but the mean preferred speed 

is slower than MT (Mikami et al. 1986; Orban et al., 1986; Priebe et al., 2006). Normalization in 

V1 may contribute to the faster-speed bias at low speeds. The roles of neural processing in early 

visual areas on the faster-speed bias remain to be determined in future studies.    

Population neural coding of multiple speeds and comparison with perception 

Our decoding approach is to apply an encoding rule and find the visual stimuli that generate 

a population response best matching the recorded neural response, akin to the forward encoding 

model often used in brain imaging studies for decoding (e.g. Vintch and Gardner 2014). We 
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assumed an encoding rule of linear combination in the decoder – a neuron’s response to multiple 

speeds is the linear sum of the neuron’s responses to individual speed components presented alone 

based on the neuron’s speed tuning curve, weighted by the strength (or probability) of each speed 

component. This encoding model can be considered a special case of convolution, with the impulse 

response function (kernel) being a single value in response to a given speed.  

This “encoding model for decoding” differs from how MT neurons actually encode 

multiple speeds as characterized in this study. Our interpretation is that the brain may take linear 

combination as the default encoding rule and may not be aware of the actual encoding rule.  As 

the result, for two stimulus speeds that have the same strength and are encoded by a rule 

emphasizing the faster speed, the brain would extract the faster speed with a stronger weight than 

the slower speed, as found in our decoding results at low speeds (Fig. 12). Alternatively, if the 

encoding model for decoding captures the bias toward the faster speed, the brain would then likely 

extract two speeds with equal weight. The assumption that the brain makes about the neural 

encoding rule is a likely source for visual perception and illusion. Our finding that the speed 

readouts had a higher weight for the faster speed component suggests that the faster component 

may be more salient perceptually at a low-speed range, a prediction that can be tested in future 

psychophysics experiments.  

Theoretical studies have proposed neural coding of probability distribution and multiplicity 

of a visual attribute (Pouget et al., 2000). The key idea of this framework is that neurons are not 

coding a single stimulus value, but rather coding the full distribution of the stimulus in a sense of 

either multiplicity or probability distribution (Zemel et al., 1998; Pouget et al., 2003). However, 

neurophysiological evidence supporting this framework on coding multiplicity is limited. Previous 

studies have not demonstrated the ability to extract multiple speeds from population neural 

responses. Our results provide strong experimental support for this framework of coding 

multiplicity. Our decoding analysis reveals that population neural response in MT carries 

information about multiple speeds of overlapping stimuli and it is possible to extract multiple 

speeds and their weights even when the population neural response has a unimodal distribution.  

At large (x4) speed separation, our decoding results captured several key features of human 

and monkey’s perception of multiple speeds – the decoded speeds support perceptual segmentation 

at low to intermediate speeds and show the difficulty of segmentation at high speeds  (Figs. 12, 

14). At low stimulus speeds (1.25 and 5⁰/s, 2.5 and 10⁰/s), the decoded speed is mainly aligned 

with the faster stimulus speed (Fig. 12A-B), indicating strong segmentation of the faster speed 

component. This also explains the reduced performance of perceiving two speeds as found in the 

decoding results (Fig. 14K) and monkey psychophysics experiment (Fig. 1G), because only one 

(the faster) speed is perceived. At intermediate speeds (from 5 and 20⁰/s to 10 and 40⁰/s), the 

decoded speed separation matches the veridical separation (Figs. 12C-D, 14K). Also consistent 

with perception, our decoding results show that the ability to segment two speeds is poorer at 

smaller speed separation (x2) (Fig. 14L).  
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Our decoding results also have limitations.  At small (x2) speed separation, our decoding 

results showed very little segmentation (Fig, 12G-J, 14L), except at very low speeds. This is 

different from the perception at stimulus speeds less than 20 and 40⁰/s (Fig. 1). What are the 

potential reasons for the decoder’s inadequacy to segment small speed separation? The best-fit 

population response predicted by the encoding rule of the decoder matched the neural responses 

remarkably well (R2 > 0.99 for all five speed pairs of x2 separation, Fig. 10F-J). Because we found 

the same results when performing decoding based on neural responses averaged across 

experimental trials (Fig. 10G-J), this inadequacy was unlikely due to our assumption of the trial-

by-trial response variability following a Poisson process, nor due to the lack of consideration of 

noise correlations (Zohary et al., 1994; Huang and Lisberger, 2009).  

We think several reasons may explain this discrepancy. First, it may be due to the limitation 

of the linear encoder. If the predicted response to multiple speeds involves a nonlinear combination 

of the responses to individual speed components, the same population neural response may be best 

fitted with two speeds that have a wider (or narrower) separation than those decoded using a linear 

encoder. Second, it may be due to the choice of the “objective function”. Our decoder minimized 

the sum squared error between the predicted population response and the recorded neural response. 

In contrast, Zemel et al. (1998) found motion directions that maximized the posterior probability 

P(s|r) using a maximum a posteriori (MAP) estimate. It remains to be determined whether 

maximizing the posterior probability (or other measures) can improve the resolution of segmenting 

multiple speeds. Third, neuronal response to two stimuli may fluctuate from trial to trial between 

representing one stimulus component from the other (Li et al., 2016; Caruso et al., 2018). If this 

trial-varying stimulus multiplexing is also used for representing two stimuli with a small speed 

separation, information about individual speed components would be lost if to-be-decoded 

neuronal responses were averaged across experimental trials (with added variability based on a 

Poisson process), as in our decoding procedure. Fourth, we found that MT population response to 

two speeds at x2 separation differed from the response to the log mean speed just slightly (Fig. 9F-

J). Although a classifier was able to pick up this difference (Fig. 9L), it is unclear whether this 

small response difference in MT was sufficient to support speed segmentation. Other brain areas 

may be better suited to represent multiple speeds with a small separation. Finally, although we 

characterized a monkey’s discrimination performance in a psychophysics experiment, we did not 

measure monkey subjects’ perception during neurophysiological recordings. We cannot rule out 

the possibility that when performing a fixation task, the monkeys may not be able to segment two 

speeds with a small (x2) separation. Future study that combines a discrimination task with neural 

recording will help to provide a more definite answer. Together, our results demonstrated the 

limitation of relying on trial-averaged population neural response in MT to segment similar speeds 

and raised new questions for future investigation.  

Conclusions and functional implication of faster-speed bias 

In summary, we characterized the encoding rule of representing multiple motion speeds of 

overlapping stimuli in area MT. We made a novel finding that neuronal responses in MT to two 
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speeds showed a robust bias toward the faster speed component when the stimulus speeds were 

slow, but not when they were fast. The responses to the bi-speed stimuli can be explained by a 

divisive normalization model, with the weights for the stimulus components proportional to the 

responses of a population of neurons (i.e. the weighting pool) elicited by the individual stimulus 

components. Our results also help to constrain the extent of the weighting pool to include neurons 

that have a broad range of speed preferences when representing multiple speeds of overlapping 

stimuli. The decoding results match the visual perception well and can account for perceptual 

segmentation for speeds with a large separation, but have limitations for small speed separation. 

Our neural data and decoding results support the theoretical framework of coding stimulus 

multiplicity, with the key idea that neuronal response can represent the distribution of the visual 

stimulus. 

An efficient way to represent sensory information is to devote limited resources to better 

represent signals that occur more frequently in the natural environment (Attneave 1954; Barlow 

1961; Simoncelli and Olshausen 2001). Previous studies have suggested that slower speeds are 

more likely to occur than faster speeds in natural scenes (Weiss et al., 2002; Stocker and Simoncelli, 

2006; Zhang and Stocker, 2022). Our finding of faster-speed bias seems to disagree with the prior 

probability of single speeds having a preference for lower speeds, in the sense of efficient coding.  

However, if in the natural environment a figural object tends to move faster than its background, 

a faster-speed bias would help to identify the figure and therefore benefit figure-ground 

segregation. To test this functional implication of faster-speed bias, future study is needed to 

characterize natural scene statistics of speeds for figural objects and their background.   
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Figure 1. Visual stimuli and psychophysical performance of human and monkey subjects.  

A-B. Motion speeds of visual stimuli. The speeds of two stimulus components were plotted versus 

the log mean speed of each bi-speed stimulus. C-D. Discriminability of four human subjects 

performing a standard 2AFC task. E-F. Discriminability of the same four human subjects 

performing a 3AFC task. G-F. Discriminability of a monkey subject (BJ) performing a 2AFC task.  

A, C, E, G. X4 speed separation. B, D, F, H. X2 speed separation. Each color represents data from 

one subject. The solid line shows the subject-averaged result. Error bars and error bands represent 

±STE.   
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Figure 2. Speed tuning curves of four example neurons to bi-speed stimuli and constituent 

single-speed components.  A.  Illustration of the visual stimuli and the response tuning curves of 

an example neuron. Green and blue dots in the diagram indicate two overlapping achromatic 

random-dot patterns moving in the same direction at different speeds. Colors are used for 

illustration purposes only. The abscissas in green and blue show the speeds of the slower and faster 

components, respectively. The abscissa in black shows the log mean speed of the two speed 

components. A-D. The four example neurons are sorted by their preferred speeds (PS) from slow 

to fast. A1-D1. X4 speed separation. A2-D2. X2 speed separation.  
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Figure 3. Population-averaged speed tuning curves to bi-speed stimuli and constituent single-

speed components.  Speed tuning curves averaged across A. 100 neurons in our dataset. B. 10 

neurons that had PS lower than 2.5⁰/s. C. 61 neurons that had PS between 2.5 and 25⁰/s. D. 29 

neurons that had PS greater than 25⁰/s. Error bars represent ±STE. For some data points, error bars 

were comparable to the symbol size. A1-D1. X4 speed separation. A2-D2. X2 speed separation.  
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Figure 4.  Relationship between the responses to bi-speed stimuli and constituent stimulus 

components. Each panel shows the responses from 100 neurons. Each dot represents the response 

from one neuron. The ordinate shows the difference between the responses to a bi-speed stimulus 

and the slower component (R - Rs). The abscissa shows the difference between the responses to 

the faster and slower components (Rf - Rs). The type II regression line is shown in red. A1-E1. X4 

speed separation. A2-E2. X2 speed separation.  
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Figure 5.  Response weights for the faster stimulus component.  A-B. Results of linear 

regression based on the responses from 100 neurons recorded using a fixation paradigm. C-D. 

Results of linear regression based on the responses from 48 neurons recorded using an attention-

away paradigm. A, C. X4 speed separation. B, D. X2 speed separation.  
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Figure 6.  Normalization model fit of MT responses to bi-speed stimuli.  A. Speed tuning curve 

to single-speed stimulus averaged across 100 recorded MT neurons in our data set.  B-C. 

Population-averaged responses to slower (open circle) and faster (solid circle) speed components. 

The convention is the same as in Figure 1A, B. D-E. Comparison of percentage of variance 

accounted for by the weighted and tuned normalization model.  F-G. The response weights for the 

faster component were calculated based on the data (blue), weighted (red), and tuned (green) 

normalization model.  B, D, F. X4 speed separation. C, E, G. X2 speed separation. 
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Figure 7. Time course of MT response to bi-speed stimuli averaged across neurons.  

Peristimulus time histograms (PSTHs) were averaged across 100 neurons. The bin width of PSTH 

was 10 ms.  A1-E1. X4 speed separation. A2-E2. X2 speed separation. In A-C, the left dash line 

indicates the latency of the response to a bi-speed stimulus, and the right dash line and the arrow 

indicate when the response to a bi-speed stimulus started to diverge from the response to the faster 

component.  
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Figure 8.  MT responses to two-speed stimuli that moved in different directions.  A. 

Population-averaged direction tuning curves of 21 neurons in response to stimuli moving at two 

speeds and in two directions separated by 90⁰ (red). The component direction Dir. 1 (blue) moved 

at 10⁰/s and the component direction Dir. 2 (green) moved at 2.5⁰/s. Dir. 1 was on the clockwise 

side of Dir. 2. The abscissas in blue and green show the directions of stimulus components Dir. 1 

and Dir. 2, respectively. The blue and green axes are shifted by 90⁰ relative to each other. The 

abscissa in black shows the corresponding vector-average (VA) direction of the two direction 

components.  B. Response weights for the stimulus components obtained using a linear weighted 

summation fit. Each dot represents the response from one neuron.  
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Figure 9.  Population neural responses elicited by the bi-speed and single-speed stimuli and 

the performance of a linear classifier. A population of 100 neurons was constructed by pooling 

across recordings in different experimental sessions. Each neuron’s response was averaged across 

experimental trials and normalized by the maximum response of the spline-fitted speed tuning 

curve to single speeds. Each dot represents the response from one neuron plotted as the preferred 

speed (PS) of the neuron in the natural logarithm scale. The curves represent the spline-fitted 

population neural responses. Red: response to the bi-speed stimuli; Black: the response to the 

corresponding single, log-mean speed. A-E. X4 speed separation. The speeds of the bi-speed 

stimuli are 1.25 and 5⁰/s (A), 2.5 and 10⁰/s (B), 5 and 20⁰/s (C), 10 and 40⁰/s (D), 20 and 80⁰/s (E). 

F-J. X2 speed separation. The speeds of the bi-speed stimuli are 1.25 and 2.5⁰/s (F), 2.5 and 5⁰/s 

(G), 5 and 10⁰/s (H), 10 and 20⁰/s (I), 20 and 40⁰/s (J). Two red dots on the X-axis indicate two 

stimulus speeds; the black dot indicates the log-mean speed. K-L. Performance of a linear 

classifier to discriminate the population neural responses to the bi-speed stimuli and the 

corresponding single log-mean speed. Error bars represent STE. K. X4 speed separation; L. X2 

speed separation. 
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Figure 10.  Illustration of the decoding procedure and extraction of speeds from trial-

averaged population neural response to the bi-speed stimuli.  A-E. X4 speed separation. F-J. 

X2 speed separation. The neural population contains 100 neurons as in Figure 9.  Each red dot 

represents the trial-averaged response from one neuron plotted as the PS of the neuron in the 

natural logarithm scale. The red curve represents the spline-fitted population neural response. The 

decoder found either one speed or two speeds with different weights (green bars on the X-axis) 

giving rise to the estimated population response (blue curve) that best fits the recorded population 

neural response (red curve). Each blue dot represents the estimated response from one neuron and 

the blue curve represents the spline-fitted estimated population response. Two red dots on the X-

axis indicate the stimulus speeds. The Y-axis on the right side shows the weight of the readout 

speed.  
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Figure 11.  Trial-by-trial readout speeds decoded from population neural responses to single 

speeds.  The neural population contained 100 neurons as in Figure 9.  The trial-by-trial responses 

were randomly generated based on a Poisson process with the mean set to the spike count averaged 

across the experimentally recorded trials.  Each row shows the readout speed(s) from one trial and 

the size of each dot is proportional to the weight of the readout speed. If only one speed is decoded 

in a trial, that readout speed is shown in red. In trials that have two readout speeds, the slower and 

faster readout speeds are shown in green and blue, respectively. The white background indicates 

trials that have a weight difference between two readout speeds less than 0.7 and are considered to 

have two readout speeds. The gray background indicates trials that have a weight difference greater 

than 0.7 and are considered to have only one readout speed. The vertical black line and the speed 

marked in each panel indicate the stimulus speed. A-G. Speeds decoded from recorded population 

neural responses to single speeds from 1.25 to 80⁰/s.  H-L. Speeds decoded from inferred 

population neural response to single speeds, which are the log-mean speed of the bi-speed stimuli 

that have x2 speed separation.  M. Comparison of the readout speeds and the stimulus speeds. The 

diagonal line is the unity line. The ordinate represents the speed at the peak of the readout speed 

distribution. At the stimulus speed of 1.77⁰/s (H), the distribution of the readout speed has two 

peaks, indicated by a solid circle (at 1.77⁰/s) and an open circle (at 1.25⁰/s).   
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Figure 12.  Trial-by-trial readout speeds decoded from population neural responses to the 

bi-speed stimuli.  The neural population contains 100 neurons and the trial-by-trial responses are 

randomly generated based on a Poisson process. The convention is the same as in Figure 11. A-E. 

Speeds decoded from population responses to x4 speed separation. The vertical red lines 

indicate two component speeds, which are 1.25 and 5⁰/s (A), 2.5 and 10⁰/s (B), 5 and 20⁰/s (C), 10 

and 40⁰/s (D), 20 and 80⁰/s (E). F-J. Speeds decoded from population responses to x2 speed 

separation. The red vertical line indicates two component speeds and the black vertical line 

indicates the log mean speed. The component speeds are 1.25 and 2.5⁰/s (F), 2.5 and 5⁰/s (G), 5 

and 10⁰/s (H), 10 and 20⁰/s (I), 20 and 40⁰/s (J). 
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Figure 13.  Analysis of decoding the speeds of the bi-speed stimulus at the fastest speeds of 

20 and 80⁰/s. A. Evolution of the objective function averaged across all 200 trials as the decoder 

searched through different speed separations. The red dot on the X-axis indicates the speed 

separation of the stimulus speeds. B, E. Evolution of the objective functions averaged across trials 

considered to have two (B) and one (E) readout speed(s). In A, B, and E, the error bands indicate 

±STE. The black arrow indicates the speed separation where the objective function reaches its 

peak. The horizontal dotted line indicates the peak value of the objective function.  C, F. Evolution 

of the readout speeds (darker and thick lines) and their weights (lighter and thin lines) as the 

decoder searched through different speed separations in trials considered to have two (C) and one 

(F) readout speed(s). D. Population neural responses averaged across trials that are considered to 

have two readout speeds (purple) and one readout speed (orange).  Each dot represents the trial-

averaged response of one neuron.  The curves represent the spline-fitted population neural 

responses. The two red dots on the X-axis indicate stimulus speeds of 20 and 80⁰/s.   
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Figure 14.  Discrimination between single- and bi-speed stimuli based on decoded speeds. A-

J. The distributions of the speed separation between two readout speeds in each trial for the bi-

speed stimuli (yellow) and the single, log-mean speed (blue). The bin width is 0.05. The abscissa 

is shown in natural logarithm scale. The red dotted line indicates veridical speed separation. A-E. 

X4 speed separation. The speeds of the bi-speed stimuli are 1.25 and 5⁰/s (A), 2.5 and 10⁰/s (B), 

5 and 20⁰/s (C), 10 and 40⁰/s (D), 20 and 80⁰/s (E). F-J. X2 speed separation. The speeds of the 

bi-speed stimuli are 1.25 and 2.5⁰/s (F), 2.5 and 5⁰/s (G), 5 and 10⁰/s (H), 10 and 20⁰/s (I), 20 and 

40⁰/s (J). K-L. Performance of discriminating a bi-speed stimulus from the corresponding log-

mean speed based on the speed separation of the decoded speeds. K. X4 speed separation; L. X2 

speed separation. The black triangles in A-J indicate the speed separation threshold of x1.3 (0.26 

on the log scale) used for classifying bi-speed and single-speed stimuli.  
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Neural coding of multiple motion speeds in visual cortical area MT 

Supplementary Material 

 

 

Supplementary Figure 1. Population-averaged speed tuning curves to bi-speed stimuli and 

constituent single-speed components recorded in an attention-away and fixation paradigm.  

Speed tuning curves from one monkey (RG) averaged across A1-D1. 5 neurons that had PS lower 

than 2.5⁰/s. A2-D2. 6 neurons that had PS between 2.5 and 25⁰/s. A3-D3. 21 neurons that had PS 

greater than 25⁰/s. Error bars represent ±STE. A1-A3 and B1-B3. X4 speed separation. C1-C3 and 

D1-D3. X2 speed separation. A1-A3 and C1-C3. Attention directed away from the RF. B1-B3 and 

D1-D3. Fixation paradigm. 
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