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Abstract 

The latest research shows that calcium signals can provide a new signal source for brain-

machine interfaces (BMI). However, it remains a question whether the calcium signals from 

layer 2/3 motor cortex can be used for continuous neural decoding. And how they are involved 

in movement coding is also worth investigating. Here we collect the somatic signals in M1 layer 

2/3 while mice performed a lever-press task under the one-photon imaging. We first present the 

potential of somatic calcium signals from layer 2/3 in continuous neural decoding through an 

improved recurrent neural network. Layer 2/3 neurons exhibit three types of calcium dynamics 

with distinct spatiotemporal coding patterns involved in the movement. Pre-pressing and 

pressing neurons enable sparse coding of movement through complementary spatiotemporal 

information. While post-pressing neurons predict the lever movement most accurately through 

the calcium dynamics with higher fidelity. These results demonstrate the capability of calcium 

signals from layer 2/3 neurons as a motor BMI driver and underscore their diversity in motor 

coding, opening a new avenue for studying the motor cortex and designing optical BMIs. 
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1. Introduction 

Population decoding is a powerful way to understand neural content and coding in the BMI 

system. The signal source is usually electrical signals from the neural activities collected by 

electrophysiological methods. To date, intracranial microelectrode arrays can monitor activities 

from hundreds of neurons in non-human primates. The latest Neuropixels probes have been 

developed to provide approximately 1000 recoding sites on a narrow shank for large-scale 

neural information recoding[1]. These electrophysiological recording methods have 

demonstrated great advantages in the neural information source recording. However, they are 

all spatially sparse and the high-density signals from Neuropixels are not commonly used in 

population decoding. 

Optical imaging methods, as another important method for large-scale neural population 

recording, have rapidly developed in recent years. Calcium imaging such as two-photon and 

one-photon imaging methods has been widely used in many studies for learning neural 

population dynamics[2; 3; 4]. It provides a more comprehensive view of neural activity in a 

dense, spatially localized, and genetically annotated map[5]. More importantly, it enables us to 

track the subpopulation of neurons for many weeks or even months[6]. Although the temporal 

resolution of calcium imaging methods is not as fine as that of electrophysiological techniques.  

The advantages of calcium imaging methods may help make up for some limitations of current 

electrophysiological recording methods. The combination of calcium imaging methods and 

BMI will open up new opportunities for a generation of optical BMIs. 

In recent studies, calcium imaging methods, especially two-photon calcium imaging, have 

been combined with BMI and proved successful[7; 8]. But animals need to keep head-fixed 

under the traditional two-photon calcium imaging, thus restricting various behavioral tasks. 

Some differences may be induced by head fix in comparison to free movements as well. While 

one-photon calcium imaging allows free moving and thus avoids these problems. 

In traditional motor BMIs, electrical signals of pyramidal neurons (PNs), typically 

collected from layer 5b in the primary motor cortex (M1), are served as the signal source of 

BMI. However, the accessible depth of surface calcium imaging was approximately 600μm, 

making it challenging to image somatic signals from layer 5b without tissue damage [9]. It is 

unclear how this tissue damage influences normal neural activities. Therefore, Trautman E et 

al. imaged apical dendritic calcium signals originating from layer 5 output neurons in 

superficial layers as an agent via two-photon imaging [10]. Masamizu Y et al. conducted two-

photon calcium imaging in layer 5a at a depth of 503±29μm instead [11]. Actually, there are 

two intermediate layers upstream of the motor-output layer in M1: layer 2/3 and layer 5a. Layer 
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2/3 accepts input from the somatosensory cortex [12], which means layer 2/3 neurons directly 

link somatosensation and control of movements [13]. Previous studies have reported that motor 

learning caused plasticity in M1 layer 2/3 neurons [14]. The dynamics of layer 2/3 neurons in 

M1 during a lever-pull task could reflect their high plasticity activities associated with motor 

primitives and sensory feedback evoked by the lever-pull movement [15]. Theoretically, layer 

2/3 neurons integrate sensory and motor information and could function as a signal source of 

BMI.  

In one of our previous studies, we demonstrated that somatic signals from layer 2/3 in the 

motor cortex were able to decode the discrete movement states [16]. However, whether the 

temporal resolution of calcium signals is sufficient for continuous neural decoding remains 

unknown. Masamizu Y et al. and Hira R et al. used the activities of layer 2/3 neurons in M1 

under the two-photon imaging to decode lever trajectory during a lever-pull task [11; 17]. But 

their two-photon images only provided the highest decoding accuracy about 0.6. Obviously, it 

is controversial that the calcium signals from layer 2/3 can be used as the electrophysiological 

signals from layer 5b PNs did in a motor BMI decoder.  

In this study, we demonstrated calcium signals from layer 2/3 motor cortex under the one-

photon imaging when mice engaged in a lever-press task. We first presented the potential of 

calcium signals of layer 2/3 neurons in continuous neural decoding through an improved 

recurrent neural network (RNN). Then we further explored how these layer 2/3 neurons were 

involved in the movement encoding. There were three types of calcium dynamics displaying 

distinct spatiotemporal coding patterns. They all specified the lever movement through the 

ensemble responses. Pre-pressing and pressing neurons predicted the lever trajectories sparsely 

through complementary spatiotemporal information. Post-pressing neurons enabled the most 

accurate coding of movement through the calcium dynamics with higher consistency from trial 

to trial. Our demonstration illustrates new insights for motor cortex investigation and helps to 

develop a novel optical BMI system. 

 

2. Results 

2.1. One-photon calcium imaging of somatic signals from layer 2/3 motor cortex during a 

lever-press task 

To investigate whether the calcium signals from layer 2/3 neurons were involved in 

forelimb movement, we trained mice to perform the lever-press task. In each trial, water-

restricted mice received a water reward by pressing a lever beyond two set thresholds with their 

left forelimb during the response time (Figure S1C, Supporting Information). After 10 days of 
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the train, the mice could perform the lever-press task skillfully. A total of 17 session datasets 

from 6 mice after the train was collected. The mean success rate achieved 85.64 ± 6.50% across 

all sessions (Figure 1A). One-photon imaging was obtained from the left caudal forelimb area 

(CFA) via UCLA miniscope in a field of view of 700×450 μm (Figure 1B). 144 ± 86 (mean ± 

SD) ROIs were imaged in each session (a total of 2448 ROIs). ROIs with their corresponding 

fluorescence were identified after MIN1PIPE processing[18] (Figure 1C, 1D). Different 

neurons displayed distinct activity patterns. Some neurons mapped well to lever movement 

while others did not. It is also worth noting that some neurons exhibited a very sparse active 

pattern (Figure 1D).  

 

Figure 1. One-photon calcium imaging during a lever-press task. (A) Behavioral performance. 

The mean success rate for 17 sessions from 6 mice. (B) A representative one-photon image of 

layer 2/3 neurons expressing Gcamp7f in the left CFA. Scale bar, 50μm. (C) All reconstructed 

ROIs are outlined within the imaging filed in B. n=94 ROIs. Scale bar, 50μm. (D) Example 

calcium traces (fluorescent value) of 4 selected neurons during the lever-press task. These 

neurons correspond to the neurons which color marked in C. The lever trajectory is shown in 

the top trace. Grey shading indicates movement epochs from successful trials. 
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2.2. Successful continuous decoding from layer 2/3 calcium signals 

First of all, we tried to present the potential of these calcium signals from layer 2/3 in 

continuous neural decoding. For each neuron, calcium signals were calculated as the relative 

change in fluorescence, DF/F, over time. We classified these neurons as task-related or not using 

the Wilcoxon rank-sum test. 70.17% ± 10.83% of neurons in each session were task related. 

The results indicated the calcium signals from layer 2/3 neurons were indeed associated with 

forelimb movement. For a better understanding of neural content and coding, the RNN decoder 

with Hessian-Free (HF) optimization that allows information about past and future inputs to 

inform the predictions was used[19; 20]. We trained and test the HF-RNN decoder with 5-fold 

cross-validation. Only successful trials were included here (number of successful trials per 

session: 112 ± 16). The decoding performance was evaluated by Pearson’s correlation 

coefficient (CC) between predicted and actual pressure. All the results demonstrated high 

decoding performance (Figure 2). The average decoding performance for all sessions achieved 

up to 0.85 ± 0.06 (Figure 2A). The CC between the predicted and actual pressure was up to 0.93 

for a single session (Figure 2B). The decoding performance from task-related neurons only was 

not inferior as well (Figure S2, Supporting Information). To prevent overfitting, we confirmed 

the generalization ability of trained decoders (Figure S3, Supporting Information). 

 

Figure 2. Continuous neural decoding using calcium signals from the layer 2/3 neurons. (A) 

Decoding performance through HF-RNN decoder in terms of CCs for all 17 sessions. Each 

performance was computed with 5-fold cross-validation. Each bar represents the mean ± SD. 

(B) Example of traces of the recorded lever trajectory (blue) and the lever trajectory predicted 

from the decoder (grey) in a single session. 

 

2.3. The heterogeneous dynamics of layer 2/3 calcium signals 

Considering successful continuous decoding from calcium signals, how the layer 2/3 
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neurons participated in movement coding was still unknown. Layer 2/3 neurons have been 

reported to integrate sensory and motor information from different input pathways. This 

different information suggested the existence of neurons with different motor representations. 

Wherefore we analyzed the activity patterns of these task-related neurons individually using 

trial-averaged DF/F traces. The calcium traces from all the successful trials in the session were 

aligned to movement onset and then averaged across the trials. The normalized resulting traces 

of task-related neurons were sorted based on their peak activation time and displayed in 

temporal raster plots (Figure 3A). We found that the neurons could be divided into three types 

according to their different temporal dynamics during the lever pressing, namely the pre-

pressing, pressing, and post-pressing neurons. Their peak activation time was before pressing, 

up to pressing and after pressing respectively (Figure 3B). The remaining neurons that did not 

belong to these three types were defined as other task-related neurons.  

Although the distribution of three main types of neurons was slightly different among six 

mice, the distribution across different sessions from the same mouse was relatively consistent 

(Figure 3C, Figure S4, Supporting Information). The pre-pressing neurons, as the dominant 

neurons, occupied 57.72% of all the task-related neurons. The percentage of pressing and post-

pressing neurons was close, which was 12.80% and 17.75% respectively (Figure 3D).  

However, we did not find obvious spatial clustering among the three types of activity 

patterns in 14 out of 17 sessions (Figure S5A, Table S1, Supporting Information), which 

suggested intermingled representations among different types of neurons in layer 2/3 of the 

motor cortex. 
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Figure 3. Dynamics of calcium activity of task-related neurons during the lever-press task. (A) 

Normalized average activity of all task-related neurons from mouse 5 in session 3 aligned to 

movement onset (dotted line). All the neurons were sorted based on their peak time during the 

task. n=77 neurons. (B) Representative trial-averaged calcium traces (DF/F±SEM) of pre-

processing (blue), pressing (yellow) and post-pressing (red) neurons. The movement onset time 

is indicated by the black dotted line. (C) The quantity distribution of different types of task-

related neurons across six mice. Error bars are SD.  (D) The quantity distribution of different 

types of all task-related neurons, n=1594 (17 sessions from six mice). 

 

2.4. Different sparsity representations from different calcium dynamics 

The three different calcium dynamics may play distinct roles in movement encoding. In 

the previous description, we noticed some neurons with a very sparse active pattern. We guessed 

whether the sparsity representations are associated with the specific calcium dynamics. As we 

all know sparseness is one of the principles important to sensory representations. Here we 

introduced kurtosis, referred to the definition of lifetime sparseness widespread in the sensory 

cortex, to measure the distribution of responses of neurons over time during the task-related 

period. The high kurtosis indicated a high degree of sparseness. We found that the pre-pressing 
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and pressing neurons exhibited significantly higher lifetime sparseness compared to the post-

pressing neurons, which was also consistent with the results displayed in Figure 2D (Figure 

4A, Figure S6). 

 

Figure 4. (A) The distribution of kurtosis measure to histograms of responses of an individual 

neuron overtime during the task-related periods. The median line is indicated by the black 

dotted line. ***p<0.001, **p<0.01, Kolmogorov-Smirnov test. (B) Comparing the decoding 

performance in terms of CC utilizing calcium signals from different neural ensembles. Error 

bar shows SEM. 10 sessions with at least 10 target neurons imaged are chosen for the three 

types of neurons. ***p<0.001, **p<0.01, *p<0.5, Wilcoxon rank sum test.  

 

2.5. Consistency of population coding among different calcium dynamics 

The question worth pondering is whether these different sparsity representations 

influenced population coding. Or the key to successful decoding was more from the post-

pressing neurons with the lowest lifetime sparseness. To confirm this assumption, we compared 

the amount of movement information carried by these distinct populations. Not surprisingly, 

Post-pressing neurons encoded the lever trajectory most precisely among the three types of 

neurons. However, the pre-pressing neurons and pressing neurons with such sparse active 

patterns still showed good decoding performance with no significant differences. Certainly, 

none of the three types of neurons encoded the movement equally as the task-related neurons 

(Figure 4B). It can be seen that the three types of neurons are all involved in movement 

encoding at a considerable level, but the way they participated in population coding was 

different. 

 

2.6. Different spatiotemporal coding patterns of different calcium dynamics 
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The comparable population decoding performance and the different degrees of sparseness 

hinted to us there may be distinct coding patterns from different calcium dynamics. We used 

the dimension reduction methods to characterize the population responses of the three types of 

neurons as well. The results displayed obvious spatial clustering in all 17 sessions, which 

proved their different coding patterns (Figure S7, Table S2, Supporting Information). We 

thence further explored the active properties of these calcium dynamics. We first investigated 

the relationships between the calcium dynamics and lever pressure individually. A large 

fraction of the three types of neurons all exhibited a low correlation to pressure value at the 

single neuron level. Even the highest CC was not more than 0.5 (Figure 5A). This demonstrated 

that the three types of neurons all encoded the pressure by the population responses rather than 

some individual functional neurons. At the same time, the mean CC values were ranked exactly 

the opposite of the kurtosis among the three types of neurons (Figure 5B, Figure 4A). The pre-

pressing neurons with the highest lifetime sparseness had the lowest correlation. From this 

perspective, the sparseness of active patterns may partly explain the low correlation individually. 

 In the previous description, the pre-pressing neurons and pressing neurons showed good 

decoding performance with no significant differences. Since there were no individual functional 

neurons, these sparse active patterns must complement each other for the movement 

representation.  We calculated the correlation between the calcium dynamics itself among 

different types of neurons (Figure 5C, Figure 5D). The correlation between the post-pressing 

neurons was higher than the pre-pressing neurons and the pressing neurons. We also plot the 

correlation between the population responses and lever movement among different types of 

neurons (Figure 5E). As we expected, only pre-pressing and pressing neurons displayed the 

linear relationship between correlation and the number of neurons. The greater the number of 

neurons, the greater the correlation. We can see that the movement information carried by pre-

pressing and pressing neurons was with higher complementarity. By contrast, the movement 

information from post-pressing neurons, which responded more regularly, was with higher 

redundancy. 

Besides that, although the pre-pressing neurons had the lowest individual correlation and 

highest lifetime sparseness, the dominant quantity made it comparable to pressing neurons at 

the population encoding (Figure 3D, 4B). However, the increase of CC caused by an increase 

in the quantity of pre-pressing neurons was much slower than that of post-pressing neurons 

(Figure 5E). The movement information conveyed by pre-pressing neurons was much less than 

the same quantity of post-pressing neurons. The coding patterns of post-pressing neurons made 

the decoding accuracy predictably better. 
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The three types of calcium dynamics displayed different temporal active patterns. The 

temporal dynamics itself may also affect the movement representation. Here we use a simple 

linear decoder, the Kalman decoder, to show the impacts of temporal dynamics on the 

movement representation. We performed time delay on the calcium signals and compared the 

decoding performance again. The activities of pre-pressing ensembles displayed the highest 

decoding performance when the time delay was -400ms, while the activities of post-pressing 

ensembles displayed the highest decoding performance when the time delay was 200ms and 

400ms which better matched the press movement. Pressing ensembles predicted the movement 

most precisely without any time delay (Figure 5F). To some extent, we confirmed these calcium 

dynamics were related to lever-press movement with different temporal properties.  

Taking together, although the three types of neurons all participated in lever movement 

coding through the population responses, the coding patterns were with distinct spatiotemporal 

characteristics. 
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Figure 5.  Characteristics of pre-pressing, pressing and post-pressing neurons. (A) 

Distribution of different types of neurons with different correlations to the pressure value. 

n=1408 neurons, 17 sessions from six mice (blue for pre-pressing, yellow for pressing, orange 

for post-pressing). (B)  The mean correlation between the single neuron from different types 

and the pressure, n=1408 neurons, 17 sessions from six mice. ***p<0.001, Wilcoxon rank sum 

test. (C) The CCs between the calcium dynamics among the different types of neurons during 

one single session (left for pre-pressing, middle for pressing, right for post-pressing) (D) 

Distribution of CCs between the calcium dynamics among the different types of neurons. 

n=1408 neurons, 17 sessions from six mice. (E) The CCs between ensemble responses of 
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different types of neurons and pressure (17 sessions from six mice). CC is plotted as a function 

of number of neurons. Each dot represents a single session. Regression lines with P values for 

the regression are shown for all points. (F) The decoding performance in terms of CC using 

Kalman decoder from pre-pressing (blue), pressing neurons (yellow), and post-pressing(red) 

neurons with different time delays. *p<0.05, #p<0.01, ο p<0.001, Paired-sample T test. 

 

3. Discussion 

In this study, we used a miniscope to monitor somatic signals from hundreds of layer 2/3 

neurons in M1 when mice performed a lever-press task. We not only demonstrated the great 

capability of somatic calcium signals from layer 2/3 in continuous neural decoding through HF-

RNN but also further investigated how these layer 2/3 neurons participated in the movement 

coding. Our results provided some insights into the motor cortex study and the generation of 

optical BMIs. 

We found three types of calcium dynamics with distinct spatiotemporal encoding patterns 

involved in the lever movement. In general, structure affects function. The multiple input 

pathways converging on M1 were likely to make the diverse motor representations here. In 

terms of the temporal active properties (Figure 3A, 3B), the calcium signals of pre-pressing 

neurons may be derived from the premotor cortex (M2). While the activity of post-pressing 

neurons was a response to sensorimotor cortex afferents or thalamocortical projections carrying 

sensory information[21]. We did not detect the obvious spatial clustering among the three types 

of patterns (Figure S5A, Supporting Information). Instead, they formed functional groups with 

predominantly local but also some long-range correlation (Figure S5B, Supporting Information). 

This is also consistent with the structure of intermingled representations of the motor cortex. 

Different from some functional neurons serving as the good predictor of the movement in 

layer 5, the three types of calcium dynamics all exhibited low correlation to pressure at the 

individual level (Figure 5A). However, the movement information carried by these populations 

was capable of decoding lever pressure (Figure 4B). We can see that the specific kinematic 

parameters were only encoded by the ensembles in layer 2/3. One possible reason was the top-

down control of the motor cortex, which led to more abstract information in layer 2/3 compared 

to layer 5[22; 23]. 

Although they all participated in movement encoding through the population. How they 

work was totally distinct. It’s noteworthy that we found the active patterns of pre-pressing and 

pressing neurons had a higher degree of sparseness (Figure 4A). It has been suggested that the 

most efficient neural codes perform sparse encoding[24]. There has been wide evidence of 
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sparse coding in the sensory cortex especially in the visual cortex[25; 26]. While the sparse 

coding in the motor cortex was still controversial. Some evidence has been revealed in previous 

studies. Some motor neurons in layer 6 of the rabbit motor cortex will produce just one spike 

during some movement[27]. The stimulation of single neurons in the vibrissae motor cortex of 

rats can evoke whisker movements[28]. Our results here further support the presence of sparse 

coding in the motor cortex. 

In the primate or rodent motor cortex layer 5, the activities in the preparation period were 

strongly related to the accurate movements that followed[29]. Even the pre-lever-movement 

peak was a better predictor of lever movement than neural activity recorded during the lever 

movement itself. In our study, these pre-pressing neurons, compared to pressing or post-

pressing neurons, exhibited the lowest correlation to pressure value at the individual level 

(Figure 5A, Figure 5B). Meanwhile, at the population level, the post-pressing rather than pre-

pressing neurons predicted the lever movement most precisely (Figure 4B). On the one hand, 

the difference in their coding patterns led to this difference. Pre-pressing neurons enabled sparse 

coding of lever trajectories through complementary spatiotemporal information. While Post-

pressing neurons predicted the lever movement more accurately through the high fidelity and 

high redundancy of calcium dynamics.  

On the other hand, the distinct roles played by layer 2/3 neurons and layer 5 neurons were 

also an important reason. The activities of layer 2/3 neurons intend to reflect the sensory input 

feedback and be a retrospective measure of movement performance itself. Levy S et al. reported 

the role of layer 2/3 pyramidal neurons in generating performance outcome-related signals 

during dexterous movements, which was a global assessment of motor performance rather than 

specific kinematic parameters or rewards. While layer 5 neurons encoded the specific 

parameters of behavioral response in the presence of sensory feedback to generate 

movement[30; 31]. Post-pressing neurons as the typical feedback of lever-press movement 

evoked or a retrospective measure of movement performance were more correlated to the lever-

press movement. By contrast, the pre-pressing neurons here intended to work as a backup of 

the information from M2. During the movement preparation, such sparse and uncorrelated 

activity patterns of pre-pressing neurons were similar to independent basis functions, which 

provided more degrees of freedom for the following movement to generate a variety of pressure 

values. Therefore, such sparse active patterns are undoubtedly an optimal and efficient coding 

solution. 

Despite the differences between layer 2/3 and layer 5 neurons, our results did present the 

capability of somatic calcium signals from layer 2/3 M1 in continuous neural decoding through 
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high decoding performance, proving the feasibility of an optical motor BMI. Meanwhile, the 

movement information from the subpopulations was also adequate for specific kinematic 

parameters prediction. In an optical BMI system that processed image information, the time 

latency was specific to the recording location and the number of neurons recorded. A 

subpopulation of neurons recorded and processed enabled the implementation of low-time 

latency for a real-time optical BMI system.  

One of the greatest superiorities of optical imaging technologies over electrophysiological 

methods is enabled advancements in genetics. In addition to excitation downstream from layer 

2/3 to layer 5, in which layer 2/3 PNs contact the PNs in layer V. Layer 5 PNs contact inhibitory 

interneurons in layer 2/3[32]. Inhibitory and excitatory neurons in layer 2/3 during a forelimb 

lever-press task displayed different spatiotemporal activity[14]. The activity of inhibitory 

interneurons may also contribute to continuous decoding. A previous study conducted by Mitani 

et al. has presented the BMI with inhibitory interneurons. Even for inhibitory interneurons, 

different subtypes exhibited different neural dynamics[8]. The different types of calcium 

dynamics in our study may also come from distinct types of neurons or different projections. In 

the following studies, imaging for a specific cell type will help to uncover the function of 

distinct cell types in movement coding. 

 

4. Methods 

4.1. Subjects 

All surgical and experimental procedures conformed to the Guide for The Care and Use of 

Laboratory Animals (China Ministry of Health) and were approved by the Animal Care 

Committee of Zhejiang University, China. Adult (8-12 weeks) male C57BL/6J mice were used 

for experiments. Mice were housed under standard housing conditions under a normal light 

cycle (12-h light/dark cycle) with food and water. Before the lever-press task training, mice 

were water restricted for at least 48 hours. 

4.2. Behavior Task 

Mice were first trained to perform a lever-press task similar to that previously 

described[33]. Each trial began with a 700ms, 500Hz tone. A successful trial was rewarded with 

water (10ul per trial) paired with a 350ms, 1000Hz tone, after which there was a variable inter-

trial interval (ITI) lasting 3s-5s. A successful trial was defined as crossing two thresholds (a 

pressing threshold and a resetting threshold) and a holding period for at least 200ms in which 

the pressure exceeded the pressing threshold within response time (5s). The pressing threshold 

defined the pressure required for a successful lever press while the resetting threshold was used 
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to prevent the mouse from holding the lever. Failure to pass the two thresholds during the 

response time or a timeout would both trigger a 150ms, 100Hz tone (Figure S1C, Supporting 

Information). A lever press during ITI was neither rewarded nor punished. Each session 

consisted of 100-200 trials that lasted 20-30 minutes. When the mice accomplished 120 trials 

or they stopped performing tasks, a session would terminate. Mice were trained with this task 

daily for 10 days before surgery. 

4.3. Surgery 

Mice (n=6) that successfully learned this task after a 10-day behavioral training were 

anesthetized with isoflurane and intraperitoneally injected with ketamine (100 mg/kg) and 

xylazine (10 mg/kg). Then a midline incision of the scalp was made to expose the periosteum, 

and the skull above the left caudal forelimb area (CFA) was located based on stereotactic 

coordinates (from -1.5 to +1.0 mm of bregma and from 0.5 to 3.0 mm lateral to midline; Allen 

Mouse Brain Atlas) and marked with ink. A craniotomy (3 mm diameter) was performed over 

the left CFA. Adeno-associated viruses (AAV) carrying genes for the calcium indicator 

jGCaMP7f (pGP-AAV-syn-jGCaMP7f-WPRE, Obio Technology Corp) were injected into the 

left CFA of the motor cortex (bregma +0.3 mm, lateral 1.5 mm, depth 0.25 mm). After viral 

injection, a glass coverslip (3.0 mm diameter) was glued to the skull above the exposed dura 

(Figure S1A, Supporting Information). The scalp was sutured to protect the surface of the glass 

coverslip. Three weeks later, the expression of jGCaMP7f was appropriate and a custom 

baseplate was glued over the glass coverslip with an optimized focus to observe the neuronal 

activity. Mice were then sent to recover from the surgery for 1 week. Before imaging, mice with 

head baseplates were habituated to the imaging apparatus three times (10 min each) to minimize 

the potential stress effects of head restraining and imaging. No obvious distress was observed 

in habituated animals during imaging experiments. 

4.4. Data Acquisition  

Calcium signals from layer 2/3 CFA were imaged via UCLA miniscope, a one-photon 

imaging system. Imaging data were acquired at 752×480 pixels with a frame rate of 20Hz in a 

field of view of 700×450 μm. The depth of imaging was approximately 150-250 μm from the 

dura for Layer 2/3 (Figure S1B, Supporting Information). The time of each session was kept to 

less than 30 minutes to prevent photonic bleaching. Figure S1C shows the overall experimental 

pipeline for the lever-press task including a combination of calcium imaging and behavior setup 

(Figure S1C, Supporting Information). The behavior setup was conducted by visual studio 

software, which controlled task events including task cues, threshold crossing monitoring and 

reward control. During the trials, the voltage from the force transducer sampled at 30 kHz, 
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which is proportional to the lever pressure, was continuously recorded by neural simultaneous 

processing (NSP), a Cerebus acquisition system. Except for pressure, the timestamps for stream 

alignment from the miniscope and behavior setup were also synchronously recorded by NSP.  

4.5. Movement analysis 

During the lever-press task, movement data was identified in the lever pressure (voltage 

recordings from the force transducer).  The data was firstly baseline removed and then filtered 

with a 2-order, 20 Hz low-pass Butterworth filter. After that, timestamps from the miniscope 

were used to downsample the data from 30k Hz to 20 Hz. The movement onset time was defined 

by finding when the lever pressure crossed a threshold exceeding the resting period before the 

movement, and the end time was defined by finding when the lever pressure went below the 

resetting threshold following the movement[14].  

4.6. Processing of calcium imaging videos 

All analyses were performed using MATLAB (Mathworks). After getting the raw videos, 

we performed neural enhancement, movement correction and neural signal extraction with a 

miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE) developed 

by Jinghao Lu et al. [18]. Thus, ROIs with corresponding calcium signals would be extracted. 

The resolution was approximately 0.93μm/pixel for the UCLA miniscope. We set the size of 

the structure element comparable to half of the overall size of the neurons as 9 in MIN1PIPE 

parameter settings for ROIs identification, which matched the size of soma instead of the 

dendritic trunk. 

4.6.1. Fluorescence analysis 

For each ROI, calcium signals were calculated as the relative change in fluorescence, 

DF/F= (F-F0)/F0, over time. The F0 was estimated as the baseline of fluorescence from a ± 15 

s sliding window. To visualize the activity patterns of the single neuron during the lever-press 

task, we calculated trial-averaged DF/F traces for each ROI. The DF/F value in each trial was 

calculated from 400ms before the movement onset to the end time of movement, which is 

defined as the task-related epochs. The DF/F traces of each ROI were aligned by movement 

onset and then averaged across trials. Only successful trials were included. The resulting traces 

from all ROIs were sorted based on their peak time during the task and displayed in temporal 

raster plots. 

4.6.2. Classification of different types of calcium dynamics 

The neurons were classified into different types according to the method in a previous 

study [17]. Briefly, among all identified neurons, an individual neuron was defined as task-

related when DF/F during all task-related periods was significantly larger (p<0.05 in Wilcoxon 
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rank-sum test) than DF/F during all ITIs.  For each task-related neuron, DF/F was then aligned 

to either the onset or end time of all successful lever movements at time 0 and then averaged 

over all successful trials and defined as 𝐹𝑠𝑡𝑎𝑟𝑡and 𝐹𝑒𝑛𝑑, respectively. The neurons with peak 

activity 20% larger than mean activity during task-related periods were collected. Neurons with 

𝐹𝑠𝑡𝑎𝑟𝑡 at peak times of < 0s were considered pre-pressing neurons. For neurons with 𝐹𝑠𝑡𝑎𝑟𝑡 at 

peak times of > 0s, the peak amplitude before the end of the lever press, 𝑚𝑎𝑥𝑡≤0𝐹𝑒𝑛𝑑(𝑡), was 

compared with the peak amplitude after the end of the lever pressing, subtracted by the 

exponential decay component of the amplitude at the end of the lever pressing, 

𝑚𝑎𝑥𝑡>0(𝐹𝑒𝑛𝑑(𝑡) − 𝐹𝑒𝑛𝑑(0)𝑒
−𝑡/1) . Neurons were classified as pressing neurons when 

𝑚𝑎𝑥𝑡≤0𝐹𝑒𝑛𝑑(𝑡)  was larger than 𝑚𝑎𝑥𝑡>0(𝐹𝑒𝑛𝑑(𝑡) − 𝐹𝑒𝑛𝑑(0)𝑒
−𝑡/1) . The remaining neurons 

were considered post-pressing neurons. Task-related neurons that did not belong to these three 

types were defined as other task-related neurons. 

4.6.3 spatial clustering analysis 

The spatial clustering index (SCI) is used to quantify spatial clustering. SCI is the ratio of 

the mean distance between neuronal pairs belonging to different classifications divided by the 

mean distance between neuronal pairs belonging to the same classifications exclusively. Under 

the null hypothesis that different classifications are intermingled, SCI ~ 1. SCI > 1 indicates 

spatial clustering. We shuffled the cell’s labels and computed SCI on the shuffled data 1000 

times to test for statistical significance. The p-value is the fraction of shuffled SCI higher than 

the unshuffled SCI. 

4.6.4 Sparseness measure 

The sparseness measure is used to quantify the peakedness of the response distribution. 

Two definitions of sparseness are widespread. One is to describe codes in which few neurons 

are active at any time (‘population sparseness’), and the other is to describe codes in which each 

neuron’s lifetime response distribution has high kurtosis (‘lifetime sparseness’) [34]. We used 

the latter in our study. The calcium signals of each neuron during task-related periods from all 

successful trials were used only. The lifetime sparseness uses kurtosis (the fourth statistical 

moment of distribution) as its metric. The equation is as follows: 

                     𝐾𝐿 = {
1

𝑛
∑ [

𝑟𝑖−𝑟

𝛿𝑟
]
4

𝑛
𝑖=1 } − 3                           (1)                                                                

where r and 𝛿𝑟are the mean and standard deviation of the responses. A distribution with high 

positive kurtosis means it contains many responses which are small (compared to the 𝛿𝑟), and 

only a few responses that are very large. A distribution will have large negative kurtosis if all 

responses are present equally often in the distribution. The Gaussian distribution has the zero 
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kurtosis. 

4.6.5. Dimension reduction and visualization 

Dimension reduction methods, which are well-suited for analyzing neural population activity, 

were used to produce low-dimensional projections from high-dimensional data and realize data 

visualization[35]. Considering nonlinear manifold discovery, we applied a nonlinear t-

distributed stochastic neighbor embedding (t-SNE) algorithm here. t-SNE can capture much of 

the local structure of the high-dimensional data, while also revealing global structures such as 

the presence of clusters at several scales[36]. In order to reduce computational complexity, the 

high-dimensional data was first projected into 10 decor-related components by principal 

component analysis (PCA). The t-SNE then refined the PCA results to produce a 2-dimensional 

mapping[37]. 

4.7. Continuous Decoding 

For continuous decoding, we adopted an improved recurrent neural network (RNN) 

decoder. The biggest difference between this decoder and standard RNN is that the training 

used Hessian-Free optimization (HF) together with a novel damping scheme [19; 20]. We used 

the DF/F traces from all or subsets of neurons during the task-related epochs and ITIs from all 

successful trials to train and test the HF-RNN decoders with 5-fold cross-validation. For the 

generalization ability test of trained decoders, the calcium signals across the entire trials were 

used as the test data. The decoding performance was evaluated by Pearson’s correlation 

coefficient (CC) between predicted and actual pressure. 

4.8. Quantification and Statistical analysis 

Typically, n=6 mice were used for analyses of the results in the lever-press task. Statistical 

analyses are described in the results, and figure legends. In general, the paired t-test or Wilcoxon 

rank sum test was used to determine the difference between groups. P < 0.05 was considered 

statistically significant. 

4.9. Histology 

Mice were deeply anesthetized with isoflurane and then perfused transcardially with PBS 

followed by 4% paraformaldehyde. The brain was removed and postfixed with 4% 

paraformaldehyde overnight at 4 ℃. After that, the brain was dehydrated with 30% sucrose in 

PBS solution over 48 hours at 4 ℃. After freezing, the brain was sectioned into 50μm coronal 

slices. Slices were imaged under a fluorescence microscope (Olympus) with a 10×and 

20×objective and a fluorescence filter was set appropriately for GFP. The expression of 

jGCaMP7f in the motor cortex of all mice used for in vivo imaging was confirmed (Figure 1B). 

Selected slices were imaged using a confocal microscope (Zeiss). 
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