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Abstract

Neural oscillations are ubiquitously observed in many brain areas. One proposed
functional role of these oscillations is that they serve as an internal clock, or ‘frame of
reference’. Information can be encoded by the timing of neural activity relative to the
phase of such oscillations. In line with this hypothesis, there have been multiple
empirical observations of such phase codes in the brain. Here we ask: What kind of
neural dynamics support phase coding of information with neural oscillations? We
tackled this question by analyzing recurrent neural networks (RNNs) that were trained
on a working memory task. The networks were given access to an external reference
oscillation and tasked to produce an oscillation, such that the phase difference between
the reference and output oscillation maintains the identity of transient stimuli. We
found that networks converged to stable oscillatory dynamics. Reverse engineering these
networks revealed that each phase-coded memory corresponds to a separate limit cycle
attractor. We characterized how the stability of the attractor dynamics depends on both
reference oscillation amplitude and frequency, properties that can be experimentally
observed. To understand the connectivity structures that underlie these dynamics, we
showed that trained networks can be described as two phase-coupled oscillators. Using
this insight, we condensed our trained networks to a reduced model consisting of two
functional modules: One that generates an oscillation and one that implements a
coupling function between the internal oscillation and external reference. In summary,
by reverse engineering the dynamics and connectivity of trained RNNs, we propose a
mechanism by which neural networks can harness reference oscillations for working
memory. Specifically, we propose that a phase-coding network generates autonomous
oscillations which it couples to an external reference oscillation in a multi-stable fashion.
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Author summary

Many of our actions are rhythmic—walking, breathing, digesting and more. It is not
surprising that neural activity can have a strong oscillatory component. Indeed, such
brain waves are common, and can even be measured using EEG from the scalp. Perhaps
less obvious is the presence of such oscillations during non-rhythmic behavior—such as
memory maintenance and other cognitive functions. Reports of these cognitive
oscillations have accumulated over the years, and various theories were raised regarding
their origin and utilization. In particular, oscillations have been proposed to serve as a
clock signal that can be used for temporal-, or phase-coding of information in working
memory. Here, we studied the dynamical systems underlying this kind of coding, by
using trained artificial neural networks as hypothesis generators. We trained recurrent
neural networks to perform a working memory task, while giving them access to a
reference oscillation. We were then able to reverse engineer the learned dynamics of the
networks. Our analysis revealed that phase coded memories correspond to stable
attractors in the dynamical landscape of the model. These attractors arose from the
coupling of the external reference oscillation with oscillations generated internally by
the network.
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Introduction 1

Rhythmic neural activity is an abundant phenomenon in nervous systems. Neural 2

oscillations naturally underlie behavior with an observable oscillatory component, such 3

as walking and digesting [1, 2]. Oscillating neural activity is also widely observed in 4

brain regions implicated in higher cognitive functions, where there is no obvious 5

correlate to oscillatory behavior [3]. Such rhythmic neural activity has been suggested 6

to support short-term memory maintenance (among other functions), by serving as an 7

internal clock for the brain [4–9]. This makes phase-coding possible: Information can be 8

encoded by spikes that are systematically timed with respect to the phase of ongoing 9

oscillations. Empirical observations of a phase code in the brain were first described in 10

the hippocampus of moving rats [10]. Since then, phase coding has also been associated 11

with the representation of discrete object categories [11–13] for short-term maintenance 12

of stimuli [7, 14–16] and goals [17]. Such observations have been reported in a wide 13

range of brain regions, including the human medial temporal lobe as well as primate 14

prefrontal and sensory cortices. 15

Oscillations are a dynamic phenomenon, and it is therefore a natural question to ask: 16

How do ongoing oscillations in the brain interact with the neural dynamics that support 17

cognitive functions? Specifically, we seek to characterize dynamical systems that could 18

underlie working memory relying on phase coding with neural oscillations. We do so by 19

assuming that cognitive functions can be described by a low-dimensional dynamical 20

system, implemented through populations of neurons (computation through 21

dynamics) [18–23], in line with empirical observations [24,25]. 22

We make use of artificial recurrent neural networks (RNNs). RNNs are universal 23

dynamical systems, in the sense that they can approximate finite time trajectories of 24

any dynamical system [26,27]. We are thus able to use these networks as hypothesis 25

generators — first training them on a cognitive task, and then reverse engineering the 26

resulting networks [18,22,28–35]. 27

Concretely, we provide RNNs with a reference oscillation, as well as transient stimuli 28

as input. We train the networks to produce an oscillation whose relative phase maintains 29

stimulus identity (Fig. 1). We find two different solutions, of which one corresponds to 30

network units coding for information by their phase, and one solution in which units 31

code with their average firing rates (Fig. 2). We show that phase-coded memories 32

correspond to stable limit cycles and demonstrate how empirically observable quantities 33

control the stability of these attractors (Fig. 3). Having detailed the dynamics, we study 34

the connectivity of our trained RNNs (Fig. 4). Finally, we show that the system can be 35

well approximated by two coupled oscillators. Based on these analysis, we propose that 36

phase-coded memories reside in stable limit cycles, resulting from the coupling of an 37

oscillation generated by the recurrent network to an external reference oscillation. 38

April 11, 2023 3/26

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.11.536352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.536352
http://creativecommons.org/licenses/by-nc/4.0/


Results 39

Fig 1. Trained RNNs encode stimuli in oscillation phase. A) RNNs receive
transient stimuli as input, along with a reference oscillation. Networks are trained to
produce an oscillation, such that the phase of the produced oscillation (relative to the
reference oscillation), maintains the identity of transient stimuli. B) Example output of
trained networks. Transient presentation of stimulus a, results in an in-phase output
oscillation (left), regardless of the initial phase (top or bottom). Similarly, the b
stimulus results in an anti-phase oscillation, again irrespective of its initial phase (right).
C) To obtain a tractable model, we apply a low-rank constraint to the recurrent weight
matrix of the RNN, i.e., we require that the weight matrix can be written as the outer
product of two sets of vectors m(1),m(2) and n(1),n(2). D) Low-rank connectivity leads
to low dimensional dynamics. In the absence of any input, the recurrent dynamics,
described by coordinates κ1, κ2, lie in a linear subspace spanned by m(1) and m(2)

(purple). E) When probing the model with sinusoidal oscillations, we can rewrite the
system as a dynamical system in a three-dimensional phase space, where the additional
axis, θ, is the phase of the input oscillation. We can visualize this phase space as a
toroid, embedded in a 3 dimensional space, such that θ is the horizontal circle, and the
vertical circle lies in the κ1, κ2 plane.
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Tractable, oscillating recurrent neural networks perform a 40

working memory task 41

In order to study the dynamics of phase coding during working memory, we defined a 42

task in which an RNN receives transient stimuli, and has to encode their identity using 43

the relative phase of oscillations (Fig. 1A). The network consists of N units, with 44

activation x(t) ∈ RN , recurrently connected via a connectivity matrix J ∈ RN×N , and 45

receiving external input u(t) ∈ R3, 46

τ
dx

dt
= −x(t) + J tanh(x(t)) + Iu(t) + ξ(t), (1)

where τ represents the time constant of the units, tanh is an elementwise non-linearity, 47

I ∈ RN×3 represents the input weights, and ξ(t) ∈ RN independent noise for each unit. 48

The RNN received an oscillatory reference input, for which we used filtered rat CA1 49

local field potentials (LFPs) [36,37]. Additionally, during a given trial, one of two 50

stimuli a or b, was transiently presented to the network at a randomized onset-time, 51

with amplitude sa or sb, respectively. Networks were trained with backpropagation 52

through time (Fig. S1). The task was to produce an oscillation, that is either in-phase 53

with respect to the reference signal, following stimulus a, or anti-phase, following 54

stimulus b. Networks were able to successfully learn the task (Fig. 1B). 55

As we were interested in reverse-engineering the networks, we made two 56

simplifications. After training, we replaced the LFP reference signal with a pure sine 57

wave with phase θ. During training, we chose a constraint on the connectivity that 58

reduces the complexity of our analysis while still allowing for expressive networks. 59

Specifically, we constrained the recurrent weight matrix to be of rank two, by 60

decomposing it as an outer product of two pairs of vectors.(Fig. 1C; see Fig. S2 for 61

unconstrained networks) [27,32,38,39], 62

J =
1

N
(m(1)n(1)T +m(2)n(2)T). (2)

By constraining the weight matrix, we directly constrain the dynamics. Specifically, the 63

projections of network activity on the two vectors m(1),m(2), which we term κ1, κ2 64

respectively, are sufficient to describe the network dynamics in the absence of inputs 65

(Fig. 1D). 66

In the presence of sinusoidal input, the κs are not sufficient to describe the dynamics,
and we also need to know the current phase θ of the reference oscillation. These three
numbers constitute the complete phase space M for our dynamical system (Fig. 1E),

M = {(κ1, κ2, θ) ∈ R2 × S1}.

Phase-coded memories correspond to limit cycle attractors 67

We reverse-engineered the dynamics of our trained networks in order to understand how 68

they solve the task [35]. Depending on the training setup, we found that networks 69

converge to one of two solutions,characterized by their activity following the transient 70

stimuli: In the first solution, individual network units code for stimuli by using their 71

phase of oscillation relative to the reference, as illustrated by rate traces of example 72

units (Fig. 2A), as well as statistics for all units (Fig. S3). In κ space, the population 73

activity corresponds to two cycles that roughly lie on the same area, but have a different 74

phase relation to the reference oscillation (Fig. 2B). In the full phase space M 75

introduced above, this solution corresponds to the network activity residing in one of 76

two linked cycles (Fig. 2C). 77
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Fig 2. Both phase-coding and rate-coding can solve the working memory
task. We found two qualitatively different solutions. A) In the first solution (top row),
we find that single unit activity codes for stimulus information by relative phase: We
plot the rates tanh(xi) of 4 units i, as a function of the reference oscillation phase θ.
We find that single unit activity oscillates, with the phase relative to the reference
oscillation depending on stimulus identity (colors). B) Projecting x in the κ1, κ2 plane
reveals that population activity lies on overlapping cycles in this plane. Here, the black
dots denote θ = 0. C) In the full phase space M, the trajectories are non-overlapping,
but the cycles are linked. D) In the second solution (bottom row), we find that stimulus
identity does not modulate the phase of single units, but rather their mean activity. E)
This rate-code corresponds to two cycles separated in the κ1, κ2 plane. F) These cycles
are also separated in the full phase space.

In the second solution, single units code stimulus identity by their average activation 78

(Fig. 2D, Fig. S3). Due to saturation of the nonlinearity, this effectively means that a 79

different set of units determines the phase of the output oscillation after either stimulus. 80

In κ space, activity lies on two non-overlapping cycles (Fig. 2E), which are likewise 81

completely separated in the full phase space (Fig. 2F). Given the similarities of the 82

second solution to previous work on fixed point dynamics in RNNs [27,28,32,40], we 83

focus here on the analysis of the ‘phase-coding’ solution (Fig. 2A-C). 84

Single trials have a limited duration, and hence the cycles we observed might arise
either from a transient dynamical phenomenon or from stable attractors. These would
lead to different experimental observations of residual dynamics (trial-to-trial variability
in neural population responses [41]), and responses to perturbations [34]. To study
stability, we used discrete-time iterative maps, or Poincaré maps [42,43]. Given a
cross-section Q = {(κ1, κ2, θ) : mod θ = 2π} through the phase space, one can follow
trajectories as they go through Q multiple times. We define the iterative map from Q
to itself (Fig. 3A),

κc+1 = P(κc),

where κc = [κ1,c, κ2,c]
T ∈ S corresponds to the c’th intersection. We found that 85

trajectories starting from many initial conditions quickly converged to one of two fixed 86

points in Q (Fig. 3A), corresponding to the cycles observed during the working memory 87

task (Fig. 2C). To confirm their stability, we performed linear stability analysis by 88

calculating the Floquet multipliers (λ), i.e., the eigenvalues of the linearized Poincaré 89

map. Limit cycles are stable if these have a magnitude less than one, i.e., |λ| < 1. 90
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Fig 3. Input controls the stability of the attractors in which phase-coded
memories reside. A) Poincaré maps illustrate that the previously observed cycles
correspond to attractive limit cycles. Sixteen trajectories with different initial
conditions are shown after 1 and 13 cycles. Trajectories were colored by the cycle they
end up in. B) Linear stability analysis of the Poincaré maps shows that stimuli of
sufficient magnitude (si > criti) lead to a bifurcation, such that only one of two limit
cycles remains stable. Left: cartoon of the bistable dynamics (without stimuli) and
bifurcation during stimulus presentation illustrated as a potential well. Right: Floquet
multiplier norm (a measure of stability) as a function of stimulus amplitude. Insets
show the Poincaré map after 13 iterations with the stimulus presented at amplitude
si = 1. C) Stability analysis for a range of amplitudes and frequencies of the reference
oscillation (quantities that naturally vary in the brain). The box with dashed lines
indicates the parameters seen during training. The boundaries of the box are 5’th and
95’th percentiles of the amplitudes and frequencies used during training trials. The
‘islands’ correspond to regions where bistable dynamics persist. If the reference
oscillation and amplitude are within such a bistable region (e.g. the red star), there are
two stable cycles, and the model can maintain memory of a stimulus. For lower
amplitudes (orange square and yellow triangle), the model only retains bistability if the
frequency is also lower (yellow triangle). The additional ‘islands’ correspond to regions
with bistable m : n phase locking, where the reference oscillation is an integer divisor of
the oscillation generated by the RNN (e.g. purple oval, bistable 1 : 2 phase locking; pink
circle, bistable 1 : 4 phaselocking). Trajectories on the right correspond to the different
markers in the parameter space on the left.

This analysis allows us to study how the two inputs direct activity to the 91

corresponding limit cycle. Without inputs, both cycles are stable (Fig. 3B, leftmost 92

cartoon). We can then tonically provide input corresponding to a scaled version of one 93

of the stimuli, and recalculate the maximal Floquet multiplier for the resulting limit 94

cycle. We found that this procedure gradually destabilizes the other limit cycle, so that 95

eventually only the limit cycle corresponding to the correct input remains (Fig. 3B, 96
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Fig 4. Phase-coding RNNs are oscillators. A) We hypothesized that the model
functions as two coupled oscillators, where one represents the external reference
oscillation phase and one the RNNs’ internal oscillation phase. B) We extracted the
coupling functions from our trained RNNs. This coupling function induces bistable
dynamics when it couples two oscillators, as apparent from the superimposed stable and
unstable trajectories. C) Input stimuli transiently modify the coupling function,
resulting in the bifurcation, previously observed in Fig. 3B. D) To formalize the coupled
oscillator description, we created a reduced model where weights are drawn from a
mixture of Gaussians. This model consists of a population that generates oscillations,
and two populations that together implement the coupling function between internal
and external oscillations. E) Simulating a reduced set of equations that describe the
idealized dynamics of RNNs with connectivity in terms of a Gaussian mixture
distribution, as well as 10 finite-size models with weights sampled from this distribution,
all result in trajectories similar to our original system, validating our reduced
description.

right cartoons). Thus, for both stimuli, once a sufficient amplitude is crossed (si > criti; 97

Fig. 3B), a bifurcation occurs and only one limit cycle remains stable. When the 98

transient stimulus is removed, both limit cycles are stable again, but the network has 99

already been directed to one of them. 100

As realistic neural oscillations exhibit drifts in both frequency and amplitude, we 101

next assessed the robustness of our network to variations of the reference oscillation, 102

going substantially beyond the range encountered during training. This analysis also 103

makes testable predictions, as changes in oscillation amplitude and frequency can be 104

experimentally observed, and potentially controlled [44]. 105

We calculated the norm of the maximum Floquet multiplier for varying frequencies 106

and amplitudes of the reference oscillation (Fig. 3C), in order to determine when 107

bifurcations occur (i.e., maximum multiplier norm exceeding one). The resulting 108

diagram allows us to draw two conclusions: First, there are multiple regions with two 109

stable oscillations, but with an m : n phase coupling, i.e., where the internal oscillation 110

frequency is an integer multiplier of the reference frequency. This kind of 111

cross-frequency phase-phase coupling is an integral part of previously proposed theories 112

of phase coding [9, 45] (however, interpretation of experimental observations can be 113

challenging [46]). Second, based on the shape and location of the bistable regions (the 114

‘islands’ in Fig. 3C), we predict that being able to phase-code stimuli is possible for 115

reference oscillations with low frequency, only if the amplitude is also low. 116
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Low-rank RNNs as phase-coupled oscillators 117

Having described the dynamics, we next aimed to understand the population structure
that gives rise to these dynamics. To proceed, we observe that, following the stimulus,
the internal dynamics of the RNN quickly converge to a trajectory in the (κ1, κ2) plane,
which can be approximately described by its phase (Fig. 2B ϕ = arctan(κ1

κ2
)). Using

this insight, we can rewrite our model as two phase-coupled oscillators (Fig. 4A): one
that describes the external reference oscillation phase (θ) and one that characterizes the
internal RNN phase (ϕ). The dynamics of these oscillators are then determined by the
oscillation frequency ω, and a coupling function g(ϕ, θ) [47]:

θ̇ = ω,

ϕ̇ = ω + g(ϕ, θ).
(3)

To extract the coupling function g from our trained networks, we rewrote the model 118

equations in polar coordinates, and approximated the radius in κ-space as constant 119

(Fig. 4B, Methods). We then simulated the oscillators of equation 3 using this function, 120

and observed two stable trajectories (superimposed lines in Fig. 4B), showing that the 121

coupling function is sufficient to induce bistable dynamics. We found that the 122

convergent trajectories are close to those of the RNN projected to the same phase space 123

(θ, ϕ), verifying that our approximate description captures the dynamics of the full RNN 124

(Fig. S4). Furthermore, the observed stimulus-induced dynamics (Fig. 3C) can now be 125

explained by the effect of input on the coupling function. In the presence of input, the 126

coupling function only admits a single stable trajectory, resulting from one stable and 127

one unstable trajectory colliding and annihilating in a saddle-node bifurcation (Fig. 4C). 128

Finally, we wanted to know how the rank-two connectivity leads to these coupled 129

oscillators. To this end, we approximated the weights in the connectivity vectors of the 130

RNN using a mixture of Gaussians [27,32,38]. Fitting a mixture of Gaussians to the 131

connectivity of trained networks, and sampling weights from this mixture, as in previous 132

work [32], did not reliably lead to functioning networks (Fig. S5A). We were, however, 133

able to manually design a reduced model, with weights drawn from a mixture of 134

Gaussians, based on the reverse-engineered dynamics of trained networks, as well as the 135

structure in their connectivity as revealed through the clustering analysis (Fig. S5B). 136

The reduced model consisted of three mixture components (or subpopulations; Fig. 4D, 137

Fig. S6). One component is not connected to the reference oscillation and autonomously 138

generates its own oscillation. The other two components implement the required 139

coupling function. The two coupling components differ only in their connectivity with 140

the input; one population saturates (i.e. is inhibited) by stimulus a, and one by stimulus 141

b. 142

The description in terms of a mixture of Gaussians enables us to derive a reduced set 143

of three equations, which describe the dynamics of the RNN, in the limit of infinite 144

units (Reduced models). We confirmed that finite-size networks are appropriately 145

described by this reduced description, by simulating trajectories of 10 RNNs (with 146

N=4096 units) sampled from the deduced connectivity (Fig. 4E). Thus, we show that a 147

sufficient connectivity for working memory through phase-coding entails two modules: 148

an oscillator and a coupling function that induces bistable dynamics. 149
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Discussion 150

In this study, we raised a hypothesis about a potential dynamical mechanism underlying 151

phase-coding with neural oscillations. Namely, that phase-coding in recurrent networks 152

can be implemented through multi-stable coupling of two oscillations, one internal and 153

one external to the network. We arrived at the hypothesis by training RNNs on a 154

working memory task, while supplying them with oscillatory reference input. The 155

networks had to encode transient stimuli by producing an oscillation with a persistent 156

phase shift with respect to the reference input. 157

Through reverse engineering the dynamics of trained RNNs, we found that 158

phase-coded memories correspond to stable periodic attractors. These materialized in 159

our models as linked cycles in phase space. The presence of attractive oscillatory 160

dynamics, as opposed to marginally stable or transient trajectories, can be detected by 161

analyzing residual dynamics from data [41] or through perturbation studies [34]. We 162

showed how LFP frequency and amplitude jointly control the stability of the attractors. 163

As LFP oscillation frequency and amplitude vary naturally in the brain, and can 164

potentially be steered [44], this relationship could be probed directly from neural data. 165

Beyond characterizing the dynamics, we also revealed the effective underlying 166

connectivity. We showed that our trained RNNs are analogous to coupled oscillators 167

and that a sufficient connectivity for phase coding entails two modules: one generating 168

an oscillation and one implementing a coupling function between this oscillation and an 169

external reference one. Two independently generated oscillations that couple during 170

memory are found in the medial temporal lobe (i.e. theta and gamma 171

oscillations) [3, 5, 15]. Our model would predict that coupling functions extracted from 172

neural data [47,48], recorded from subjects performing working memory tasks, should 173

have a structure that induces multi-stability. 174

We used trained recurrent neural networks [18,20,22]. RNNs can be trained to 175

reproduce both neural activity and behavior [16,21,28,31,34]. The resulting networks 176

can be understood in terms of their dynamical objects, i.e. the set of attractors [35, 49], 177

and in terms of the trajectories [33,50] flowing between them. In particular, recurrent 178

models that implement discrete memory, as in this study, often have a separate static 179

attractor, or fixed point, for each memory [27,29,51, 52], although oscillatory models of 180

memory have also been proposed [16,40,53]. Here we complement previous work by 181

showing that stable dynamic attractors naturally emerge when tasking networks to 182

store memories in the relative phase of oscillations. 183

Our findings support the notion that rhythmic neural activity can play a supporting 184

role in cognitive phenomena. Brain waves during working memory are widely observed 185

in neural systems of rats, primates, and birds [54]. Phase-coding of information relative 186

to theta oscillations has been proposed to be a general coding scheme in the brain [5]. 187

Here, we focused on the coding of two distinct stimuli in phase, which suffices to 188

highlight the dynamics underlying the coding of discrete pieces of information. Both our 189

model and findings can also be extended to coding for more than two items (Fig. S7). 190

Phase-coding has also been observed during memory of sequences of information [16], as 191

well as for coding of position [10]. Linking these findings to our model requires further 192

investigation. We note that phase precession, in the sense of a continuous variable (e.g., 193

position in a place field) changing the phase to which a group of neurons locks could be 194

explained by our model through input translating the coupling function, as is 195

tentatively shown in Fig. S8. 196

In summary, we used RNNs as trainable dynamical systems to form a hypothesis on 197

how oscillations can be harnessed for neural computation. We proposed that 198

phase-coded memories in recurrent networks reside in stable limit cycles resulting from 199

the coupling of internal and external oscillations. 200
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Models and methods 201

Code availability 202

All code for obtaining the results and generating the figures is available at: 203

https://github.com/mackelab/phase-limit-cycle-RNNs. 204

Training RNNs on a phase-coding task 205

Model definition 206

As stated in Eq 1, we used a continuous time RNN with N units [30], 207

τ
dx

dt
= −x(t) + J tanh(x(t)) + I(osc)u(t) + I(sb)sb(t) + I(sa)sa(t) + ξ(t). (4)

The input weights I of Eq 1 are split into three vectors in RN : The oscillatory reference 208

input u(t) with input weights I(osc) and transient stimuli sa(t) and sb(t) with weights 209

I(sa) and I(sb), respectively. To obtain networks with tractable dynamics, we 210

implemented a low-rank constraint according to Eq. 2. Trained networks consisted of 211

N = 512 units, with τ = 20 ms. 212

Task 213

We defined a task in which stimulus identity is to be encoded in the phase of an 214

oscillation. During each trial, of duration T = 0.8s, a reference oscillation u(t) with 215

random initial phase θ was provided to the RNN. Trials started with an initial period, 216

with duration drawn uniformly from [0.125s, 0.25s]. After the initial period, either 217

stimulus a, sa(t), or stimulus b, sb(t), was shown, consisting of a ‘pulse’ with a constant 218

amplitude of 1 (see Fig. 1A). The duration of stimuli was drawn uniformly from 219

[0.125s, 0.175s]. For the remainder of the trial, the target r̂(t) was either 220

sin(θ(t)− 0.2π), when stimulus a was shown (‘in-phase’ trial), or else sin(θ(t)− 1.2π) 221

when stimulus b was shown (‘anti-phase’ trial). 222

LFP processing 223

We used a publicly available data set containing LFP recordings from 3 Long-Evans 224

rats, to obtain a reference oscillation that captures the statistics of ongoing oscillation 225

in biological neural systems [36, 37]. Rats were chasing randomly placed drops of water 226

or food, and neural activity was recorded using multichannel silicon probes inserted in 227

area CA1 of the right dorsal hippocampus. The data contains LFP from 31 to 64 228

channels, recorded over multiple sessions. 229

We read the data using Neo [55]. We first re-sampled the data from 1250 Hz to 500 230

Hz and then high-pass filtered at 7 Hz using a FIR filter with Hamming window and 231

511 taps [56]. We normalised the signal by dividing the signal channel-wise with 232√
2σLFP , where σLFP is the channel-wise standard deviation, resulting in the signals 233

having a root mean square equal to a sine wave with amplitude 1. 234

In order to obtain a unique reference signal for each training trial, we split the 235

recordings for each rat in chunks. In particular, we first split the data into 4 second 236

segments, and picked a random channel for each segment. To extract instantaneous 237

phase of the LFP oscillation for creating training targets, we convolved the signal with 238

complex Morelet wavelets, consisting of the product of a complex sinusoid with a 239

Gaussian with standard deviation c
2πf . We picked frequencies f from 7 to 9 in steps of 240

0.2, and set c (‘cycles’) to 7. For each trial we took the phase (angle) corresponding to 241

the frequency with the highest power. The first second of the signal was discarded to 242
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avoid boundary effects. We also discarded a small fraction of trials with artifacts, i.e. 243

trials where the maximum absolute value of the signal was larger than 4 (after 244

normalisation). We ended up with 5708 trials from rat 1, 5669 from rat 2, and 5632 245

from rat 3. 246

Training 247

We approximated Eq. 4 using the Euler–Maruyama method with timestep h, giving us
for a rank-two network,

xt′+1 =(1− h

τ
)xt′

+
h

τ
(
1

N

2∑
i=1

[m(i)(n(i)T tanh(xt′))] + I(osc)ut′ + I(sb)sb,t′ + I(sa)sa,t′)

+

√
h

τ
N (0, 2σ2

noise).

We use h = 2 for training, whereas for the stability analysis and Figures, we take
h = 0.5. We defined a mean-squared error loss L between the targets r̂(t) and a linear
readout r(t) of the model’s activity at time t,

r(t) =
1

N
wTx(t),

L =
1

T − Ts

∫ T

Ts

(r(t)− r̂(t))2dt, (5)

where Ts is the time of the stimulus offset and T is the time at the end of a trial. In 248

principle, one could also take r(t) = 1
NwT tanh(x(t)), but this generally leads to a 249

different solution (Fig. 2D-F, Fig. S3. 250

We drew initial entries in the connectivity vectors from a zero-mean normal 251

distribution, with a covariance matrix that is the identity I, except for an initial 252

covariance between m(1),n(1) and m(2),n(2) of 0.6 and a variance for w of 16 [32]. We 253

minimised Eq 5, by optimising with stochastic gradient descent all entries in 254

I(osc), I(sa), I(sb),m(1),m(2),n(1),n(2), as well as a scalar multiplying the readout 255

weights w. We used the Adam optimizer in Pytorch, with default decay rates (0.9, 256

0.999) and learning rate 0.01 [57,58]. 257

We trained a separate RNN for LFP data from each rat. Shown in the main text is 258

an RNN trained on LFP from rat 2, see Fig. S9 for RNNs trained on rat 1 and 3. 259

During training, 90% of all trials were used for calculating the gradients, whereas the 260

other 10% served as a validation set. We trained for 50 epochs, in batch sizes of 128, 261

where one epoch denotes all training trials created from the LFP of one rat. 262

Analysing dynamics of oscillating low-rank RNNs 263

Dimensionality and dynamics of low-rank RNNs with periodic input 264

Here, we we show that the dynamics of a rank-2 RNN with periodic input lie on a 3
dimensional manifold. To facilitate the analysis, we first consider the dynamics of the
network in the absence of transient stimuli (sa(t) = sb(t) = 0), and no recurrent noise
(σnoise = 0). Furthermore we set m(1) ⊥ m(2), which one can always obtain by singular
value decomposition of J, even if during training m(1) and m(2) became correlated. We
split up I(osc) in the parts parallel and orthogonal to the m’s,

I(osc) = I⊥ +m(1)α1 +m(2)α2.
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We can then express x(t) in the orthogonal basis

x(t) = m(1)κ1(t) +m(2)κ2(t) + I⊥v(t),

with i ∈ {0, 1}:

κi(t) =
m(i)Tx(t)

m(i)Tm(i)
,

v(t) =
IT⊥x(t)

IT⊥I⊥
.

Here v(t) is the reference oscillation filtered by the model’s time constant τ . Using ∗ to
denote convolution,

v(t) =
1

τ
u(t) ∗ e− t

τ + v(0)e−
t
τ .

As both u(t) and v(t) explicitly depend on time, we first obtain the non-autonomous 265

dynamical system F, 266

dκ1
dt

,
dκ2
dt

= F(t, κ1, κ2), (6)

with 267

τ
dκi
dt

= −κi(t) +
1

N
n(i)T tanh(x(t)) + αiu(t). (7)

Next, we show that for periodic input this system can be considered as a three
dimensional autonomous dynamical system. We introduce the variable θ = wt mod 2π
such that

dθ

dt
= ω.

We take u(t) = sin(θ) and we can now find the closed form solution for v,

v(t) =
1√

(wτ)2 + 1
sin(θ − arctan(wτ)) + ce−

t
τ .

Here, the last term on the right hand side will decay to 0. Practically, we get rid of this
dependence on t, by by taking appropriate v(0) such that c = 0 (or by assuming the
simulation has run for a little amount of time). Following this definition, both u and v
are functions of θ, and we can consider the autonomous dynamical system with
coordinates κ1, κ2, θ,

dκ1
dt

,
dκ2
dt

,
dθ

dt
= G(κ1, κ2, θ).

Coordinate system for phase space figures 268

To create the phase space figures, we applied the following coordinate transform, where
x′, y′, z′ denote the coordinates in the figure,

x′ = cos(θ)(r′ − κ1),

y′ = sin(θ)(r′ − κ1),

z′ = κ2.

Given an initial condition for κ1, i.e. κ1(0), one can always pick an r′ such that this is 269

an injective map for all t. This requires r′ < κ1(t) for all t (otherwise trajectories would 270

cross at the center). From Eq 7, we can see that κ1(t) >
1
N |n(1)|1 + |α1| =⇒ dκ1

dt < 0, 271

thus if we pick r′ > κ1(0) ≥ 1
N |n(1)|1 + |α1|, the requirement is satisfied. 272
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Poincaré maps and linear stability analysis 273

We used Poincaré maps to study the stability of limit cycles [42,43]. We took a cross
section Q = {(κ1, κ2, θ) : mod θ = 2π}, and created the iterative map from Q to itself,

κc+1 = P(κc),

where κc = κ1,c, κ2,c ∈ Q corresponds to the c’th intersection. Limit cycles correspond
to fixed points κ∗ for which

κ∗ = P(κ∗).

To study the stability of limit cycles we see what happens to a small perturbation η0 in
Q. Applying a Taylor expansion around κ∗,

κ∗ + η1 = P (κ∗) +DκP(κ∗)η0 + h.o.t,

where Dκ denotes the gradient operator, the partial derivatives with respect to κ.
DκP(κ∗) is called the linearised Poincaré map at k∗ To first order, perturbations scale
proportional to the norm of its eigenvalues λ, called the Floquet (or characteristic)
multipliers. To see this we can express η0 as a linear combination of eigenvectors e of
DκP(κ∗) (for some scalars v) and get the following expression for the perturbation
after c cycles,

ηc =
2∑
i=1

vieiλ
c
i .

We now show how to obtain DκP(κ∗). Let ψ(t,κ0) denote the flow, a mapping
from (t,κ) to κ, obtained by integrating F(t,κ) (Eq 6) for duration t, with initial
conditions κ0. The Poincaré map then corresponds to [59]

P(κc) = ψ(T ,κc)

=

∫ T

0

F(0, ψ(t,κc))dt+ ψ(0,κc),

where the second line is obtained by applying the fundamental theorem of calculus. T
denotes one period of the reference oscillation. Defining M(t) as Dκψ(t,κc), one can
obtain a variational equation for the linearized Poincaré map,

DκP(κc) =

∫ T

0

DψF(0, ψ(t,κc))Dκc
ψ(t,κc)dt+ I

= M(T )

with
dM(t)

dt
= DψF(t, ψ(t,κc))M(t).

Here, M(0) = I. M(t) is called the circuit or monodromy matrix. Since we can not 274

obtain the circuit matrix analytically we approximated M(T ) using the euler method 275

with timestep h. 276

Coupled oscillators and population structure 277

Extracting the coupling function 278

We can rewrite the internal dynamics of the RNN in polar coordinates with

κ1 = r cos(ϕ), κ2 = r sin(ϕ).
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We extracted the coupling function g, 279

τ
dϕ

dt
=

1

r2N
((κ1n

(2) − κ2n
(1))T tanh(x) + (κ1α2 − κ2α1)u(θ)),

g(θ, ϕ) = τ
dϕ

dt
− ω.

Note that the radius of the two stable limit cycles might not be exactly constant, or 280

equal to each other, so for Fig. 3B and Fig. 3C we took for r the mean radius over the 281

two cycles. 282

Reduced models 283

In order to find a simplified description of the dynamics of our models we assumed
entries in the weight vectors of our network are N samples , indexed by j, from a
probability distribution p(y) [27, 32, 38, 39]. To keep the equations brief, we assume one
input v here, which can be straightforwardly extended to multiple inputs. Then we have

I⊥j ,n
(1)
j ,n

(2)
j ,m

(1)
j ,m

(2)
j ∼ p(y),

p(y) = p(I, n(1), n(2),m(1),m(2)).

We can then see Eq 7 as a sampling estimator for the recurrent input, which as N → ∞
approaches the expectation,

dκi
dt

N→∞
= −κi + Ep(y)[n(i) tanh(κ1m

(1) + κ2m
(2) + v1I)].

We assume p(y) is a mixture of L zero-mean Gaussians ( [32]),

p(y) =
L∑
l

wlN (0,Σl).

We can then obtain a mean-field description for the dynamics (see previous 284

studies [27,32,38,39] for a derivation). Here the effective connectivity consists of the 285

covariances of the mixture components, modulated by a nonlinear ‘gain’ function (which 286

approaches 0 when the non-linearity saturates), 287

dκi
dt

= −κi +
L∑
l

wl(κ1σ
(l)

m(1)n(i) + κ2σ
(l)

m(2)n(i) + vσ
(l)

In(i))Ep(z)[tanh′(
√
∆(l)z)], (8)

with ∆(l) = (σ
(l)

m(1)κ1)
2 + (σ

(l)

m(2)κ2)
2 + (σ

(l)
I v)2 and z = N (0, 1). 288

Instead of numerically approximating the expectation as in previous studies [27,32],

we substitute erf(
√
π
2 x) for tanh(x) and analytically obtain a simpler approximation.

Ep(z)[tanh′(
√
∆z)] ≈ Ep(z)[erf ′(

√
π∆

2
z)]

≈ Ep(z)[e−
π∆
4 z2 ]

≈ 1√
1 + π

2∆
.
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Connectivity for mean-field model 289

By writing Eq 8 in polar coordinates we can see that the total change in phase of the 290

model is the sum of the change in phase of its populations, 291

dϕ(t)

dt
=

L∑
l

wl
dϕ(l)(t)

dt
. (9)

Based on reverse engineering the dynamics and connectivity of our trained networks 292

(2,3B,C,S5), we can now choose covariances in order to design a model that 293

approximates the coupled oscillator equations (Eqs 3). 294

We first initialize a population that generates oscillations with angular velocity ω.

We set this population unconnected to the input (σ
(i)
I = 0 for all i). When taking

σm(2)n(1) = −σm(1)n(2) and σm(1)n(1) = σm(2)n(2) [27, 38,40] this populations produces
oscillations, with constant frequency,

dϕ(p1)(t)

dt
=
wp1σ

(p1)

n(1)m(2)√
1 + π

2 r
2)
.

. 295

Next, we create two populations that together implement the coupling function, 296

g(ϕ, θ) =
σn(1)m(2) cos(2ϕ)√

1 + π
2 (r

2 + σ2
I(osc)

v(θ)2))
. (10)

Based on Fig. 3B, it seems reasonable to assume that the bistable dynamics stem from 297

sin(2ϕ) and sin(2θ) terms, which we obtained by setting σn(1)m(2) = σn(2)m(1) (or 298

σn(1)m(1) = −σn(2)m(2)), and σI(osc) ̸= 0. 299

In order to get the stimulus-induced bifurcation observed in Fig. 2C,Fig. 3C, we,
additionally set the following connectivity for the input to the coupling populations,

σ
(p2)

I(sa) ̸= 0, σ
(p3)

I(sb)
̸= 0, σ

(p2)

I(osc)n(1) = −σ(p2)

I(osc)n(2) = −σ(p3)

I(osc)n(1) = σ
(p3)

I(osc)n(2) . Then the
equations for the coupling populations read,

dϕ(p2)(t)

dt
= wp2

√
2
r σ

(p2)

n(1)I(osc)
sin(ϕ+ 1

4 )v(θ) + σ
(p2)

n(1)m(2) cos(2ϕ)√
1 + π

2 (r
2 + σ

2(p2)

I(osc)
v(θ)2 + σ

2(p2)

I(sa) sa(t)2)
,

dϕ(p3)(t)

dt
= wp3

√
2
r σ

(p3)

n(2)I(osc)
sin(ϕ− 3

4 )v(θ) + σ
(p3)

n(1)m(2) cos(2ϕ)√
1 + π

2 (r
2 + σ

2(p3)

I(osc)
v(θ)2 + σ

2(p3)

I(sb)
sb(t)2)

.

When both sa and sb are zero, the sin(ϕ) terms cancel out and we retrieve the desired 300

coupling function (Eq 10; where the sin(2ϕ) terms dominate). When either stimulus a 301

or b is on, population 2 or 3 is inhibited, respectively (the non-linearities of the units in 302

this population saturate). Then the sin(ϕ) term of the population that is unaffected by 303

the stimulus takes over the coupling function, mimicking what we saw in Fig. 3B and 304

Fig. 3C. For exact values of the parameters, see Fig. S6. 305
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Supporting information

Fig S1. Loss curves. Loss over epochs for three models, each trained with LFP data
from a seperate rat. An epoch denotes one pass through all trials in the training or
validation set. The validation trials are defined before training and are not used for
calculating gradients. See Training for training details.

Fig S2. Dynamics of unconstrained networks are similar to low-rank RNNs.
We also trained RNNs without rank constraint. For these networks initial entries in the
recurrent weight matrix J were drawn from a zero mean Gaussian with variance g2

N . We
also add a regularisation term R to the loss, which keeps the average firing rates close

to 0, to avoid a rate-coding solution: R = 1
N

∑N
i ( 1

T

∫ T
0
xi(t)dt)

2. We set g to 0.6 and
took a learning rate of 0.001, with the training setup otherwise as for the low-rank
networks (Training). In order to find a basis similar to the one used for plotting the
dynamics of the low-rank RNN we took the following approach. First we calculated
basis vectors for the activity due to recurrent dynamics: J tanh(x(t)), by performing a
Principal Component Analysis (singular vector decomposition): UΣVT = J tanh(X),
where X is an N × 2T matrix containing the activity of all units for one period of
oscillation for both a trial on which stimulus a and b has been shown. We took the first
two columns (principal components), u1 and u2, of U, as well as the input vector I(osc)

orthogonalised with respect to these two principal components as basis for X. This
basis retains 77% of the variance of X (measured by r2). Since now, similar to the

low-rank case, we can write the projection of x(t) on I
(osc)
⊥ as a function of θ, we can

plot trajectories with coordinates (θ, uT
1x,u

T
2x), and we obtain two stable cycles, linked

in phase-space, as in Fig. 2.
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Fig S3. Statistics of the phase and mean rate of trained RNN units
distinguishes solutions. There are two qualitatively different solutions to the working
memory task used in this study, that can be distinguished on the single unit level. Each
dot represents for a single unit in the RNN, the mean difference in firing rate (left) or
phase (right) between trials with stimulus a and trials with stimulus b. Shown are two
different models (colors). When trained with a linear readout on the rates tanh(x(t))
instead of on x(t) (Training), RNNs converged to the second solution (red). For these
models, the mean firing rate is systematically shifted depending on the stimulus shown,
whereas for the model shown in the main text (yellow) the mean firing rate is close to 0
for all units. When the firing rate of a unit shifts away from zero, its contribution to the
recurrent dynamics (and the readout when reading out tanh(x(t))) decreases due to its
nonlinearity saturating (Reduced models; [27, 32,38]). The difference in single unit
phase however is more pronounced for the first solution.

Fig S4. Converged RNN dynamics match those of coupled oscillators. We
simulated two coupled oscillators with the coupling function extracted from a trained
network (Fig. 3B). The two oscillators represent the RNN’s phase (ϕ) and the reference
oscillation phase (θ). Starting simulations from various initial conditions demonstrates
that the coupling function induces bistability, as all simulations converge to one of two
stable cycles on the torus. Furthermore, the convergent trajectories of the coupled
oscillators are a close match to those of the full RNN projected into the same space
(ϕ, θ), indicating that the coupled oscillator description is appropriate for the RNN.
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Fig S5. Connectivity of trained models. A: In order to study the connectivity of
trained models, we fitted a mixture of Gaussians with 1 to 7 mixture components to the
connectivity vectors of three different models [32], each trained with LFP data from a
seperate rat. For this, we used variational inference with a Gaussian prior on the mean
with precision 1e5 and mean 0 [60]. After each fit, we resampled the weights 30 times
and computed the loss over a batch of 128 trials with a pure sine wave as reference
oscillation. Altough for no amount of components we reliable were able to resample
functioning models, from 3 components onwards a small fraction of sampled model have
a comparable loss to the original trained model (red line). B: The covariance structure
when fitting three components to weights of a trained network give us some hints as to
what is needed to get a functioning model (top: covariances, bottom: pair plots). One
component is unconnected (zero covariance) to the reference oscillation and has a
skew-symmetric structure between the singular vectors. This structure generates
oscillations [27,38,40]. The other two components, each connected to one stimulus and
with opposite covariance between the input and singular vectors, together implement
the coupling function.
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Fig S6. Connectivity of mean-field model. A: The designed covariance structure
for the reduced model shown in Fig. 4D,E, which leads to dynamics similar to the
trained models. It also shares connectivity structure with trained models (Fig. S5B),
namely having one component unconnected to the reference oscillation that
autonomously generates oscillations, and having the other two components, each
connected to one stimulus, implement the coupling function.

Fig S7. Geometry of dynamics is preserved for 4 stimuli. We trained a network
to maintain 1 of 4 stimuli at a given trial, by producing an output oscillation at
−0.2π,−0.7π,−1.4π or −1.7π radians offset with respect to the reference LFP, for
stimulus a, b, c or d, respectively. Again we find a stable limit cycle for each stimuli,
which form linked cycles in phase-space.
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Fig S8. Phase precession through translation of the coupling function. Phase
precession in rat hippocampus entails a place cell changing its relative phase of firing as
a result of rat moving through a place field [10]. We here show how to create a network
that changes its relative phase of oscillation depending on a continuous valued stimulus
input. We setup a network with connectivity drawn from a mixture of three Gaussians,
again with two components implementing a coupling function and one component
implementing an oscillator. The network receives sinusoidal reference input with phase
θ as sin(θ), cos(θ) through input vectors I(osca), I(oscb) respectively, as well as
continuous valued stimulus input, representing place field position, s(t) ∈ [0, 1) as
sin(s(t) 12π), cos(s(t)

1
2π) through input vectors I(sa), I(sb) respectively. The oscillator

component has connectivity equal to Fig. S6, whereas for the coupling components
(p2, p3) we define the covariance matrices as follows: For the off-diagonal elements,

σ
(p2)

n(1)I(oscb)
= −σ(p2)

n(2)I(osca) = σ
(p3)

n(2)I(osca) = σ
(p3)

n(1)I(oscb)
, otherwise 0. For the diagonal

elements, component two has zero variance for (is unconnected to) I(sa) and component
three has zero variance for I(sb). This gives a coupling function of the form:

g(θ, ϕ) = sin(θ − ϕ)
a√

b+ c sin(π2 s(t))
2
+ cos(θ − ϕ)

a√
b+ c cos(π2 s(t))

2
,

for constants a, b, c that depend on the exact values of the variances and covariances of
the mixture components. For large c and small b, the coupling function will change from
a sin(θ − ϕ) to a cos(θ − ϕ) as s(t) changes from 0 to 1. A: The coupling function of a
network (N=2056 units) with connectivity drawn from mixture of Gaussians as
described above, for s(t) = 0 and s(t) = 1. The coupling function translates between
these two states as a consequence of position input s(t). B: Different trials on which s(t)
is tonically presented at different values lead the the network locking to a unique phase
difference with respect to the reference oscillation. In phase-space, this appears as the
stable cycle shifting along the surface of a torus.
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Fig S9. Results are consistent over data from multiple rats. Dynamics (A),
bifurcation analysis (B) and coupling function (C) extracted from models trained with
LFP data from rat 1 (top row) or rat 3 (bottom row) look qualitatively similar to that
of rat 2 (Fig. 2-4), with only slight quantitative differences.
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