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Abstract 32 

Deep convolutional neural networks (DCNNs) are able to predict brain activity during object 33 

categorization tasks, but factors contributing to this predictive power are not fully 34 

understood. Our study aimed to investigate the factors contributing to the predictive power 35 

of DCNNs in object categorization tasks. We compared the activity of four DCNN 36 

architectures with electroencephalography (EEG) recordings obtained from 62 human 37 

subjects during an object categorization task. Previous physiological studies on object 38 

categorization have highlighted the importance of figure-ground segregation - the ability to 39 

distinguish objects from their backgrounds. Therefore, we set out to investigate if figure-40 

ground segregation could explain DCNNs predictive power. Using a stimuli set consisting of 41 

identical target objects embedded in different backgrounds, we examined the influence of 42 

object background versus object category on both EEG and DCNN activity. Crucially, the 43 

recombination of naturalistic objects and experimentally-controlled backgrounds creates a 44 

sufficiently challenging and naturalistic task, while allowing us to retain experimental control. 45 

Our results showed that early EEG activity (<100ms) and early DCNN layers represent object 46 

background rather than object category. We also found that the predictive power of DCNNs 47 

on EEG activity is related to processing of object backgrounds, rather than categories. We 48 

provided evidence from both trained and untrained (i.e. random weights) DCNNs, showing 49 

figure-ground segregation to be a crucial step prior to the learning of object features. These 50 

findings suggest that both human visual cortex and DCNNs rely on the segregation of object 51 

backgrounds and target objects in order to perform object categorization. Altogether, our 52 

study provides new insights into the mechanisms underlying object categorization as we 53 

demonstrated that both human visual cortex and DCNNs care deeply about object 54 

background. 55 
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Author summary 56 

Our study aimed to investigate the factors contributing to the predictive power of deep 57 

convolutional neural networks (DCNNs) on EEG activity in object recognition tasks. We 58 

compared the activity of four DCNN architectures with human neural recordings during an 59 

object categorization task. We used a stimuli set consisting of identical target objects 60 

embedded in different phase-scrambled backgrounds. The distinction between object 61 

backgrounds and object categories allows us to investigate the influence of either factor for 62 

human subjects and DCNNs. Surprisingly, we found that both human visual processing and 63 

early DCNNs layers dedicate a large proportion of activity to processing object backgrounds 64 

instead of object category. Furthermore, this shared ability to make object backgrounds (and 65 

not just object category) invariant is largely the reason why DCNNs are predictive of brain 66 

dynamics in our experiment. We posit this shared ability to be an important solution for object 67 

categorization. Finally, we conclude that DCNNs, like humans, care deeply about object 68 

backgrounds.  69 

Introduction  70 

Deep convolutional neural networks (DCNNs) have entered the computational modeling 71 

scene with high predictive performance of both object category and brain dynamics during 72 

object categorization tasks (1–4). These predictions on brain dynamics are not limited to low-73 

level image statistics but also include high-level features such as animacy, object category 74 

and semantics (5–9). In fact, DCNNs’ predictive performance on visual processes surpassed 75 

hand-engineered, biologically-inspired models (e.g. Gabor wavelet filtered, HMAX) because 76 

DCNNs are able to achieve high performance on visual tasks (10,11). Traditional mechanistic 77 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.04.14.536853doi: bioRxiv preprint 

https://paperpile.com/c/2mI0Hu/HRyv+6qjw+e9k3+Rajr
https://paperpile.com/c/2mI0Hu/LoZt+O76a+IMxb+h9Zn+s2sw
https://paperpile.com/c/2mI0Hu/fS0A+0wwI
https://doi.org/10.1101/2023.04.14.536853
http://creativecommons.org/licenses/by/4.0/


HUMAN VISUAL CORTEX AND DEEP CONVOLUTIONAL NEURAL NETWORKS CARE 

DEEPLY ABOUT OBJECT BACKGROUND 

 

5 

models generally include few parameters and are tested on simplistic, artificial stimuli such 78 

as bar gratings and white noise; in contrast, DCNNs generally include hundreds of thousands 79 

to millions of parameters, and are tested on complex and naturalistic stimuli such as 80 

photographs of real objects or scenes. But, this claim to fame is not without faults as DCNNs 81 

have also been criticized to be black-boxes (12,13) as researchers struggled to understand 82 

how millions of parameters work together to perform tasks such as object categorization (14), 83 

and also predict brain activity without being trained with brain data (15).  84 

The criticism towards DCNNs become pointed as studies revealed a divergence between 85 

humans and DCNNs categorization strategies - humans and DCNNs make mistakes on 86 

different images (16–18), DCNNs have an inherent texture bias while humans have an inherent 87 

shape bias (19–22), and DCNNs are susceptible to adversarial attacks imperceptible to 88 

humans (23,24). While these studies point to differences in categorization strategies, they do 89 

not negate the fact that DCNNs can still produce representations which align with human 90 

visual processing (25), as reflected in its high predictive performance of brain dynamics. In 91 

other words, though certain DCNNs categorization outputs are incorrect, we could probe 92 

DCNNs processing stages and find representations which are shared between DCNNs and 93 

humans to understand crucial processing steps (7,26). The right question would then be, 94 

“which representations are useful and robust for solving the task?”  95 

In this study, we investigated the factors leading to DCNNs’ high predictive power on human 96 

visual processing within an object categorization task, focusing on essential representations 97 

for solving the task. Prior research has shown the importance of figure-ground segregation 98 

(27,28) - the ability to distinguish an image’s foreground and background (i.e. object and 99 

background). This ability is especially crucial when the object and its background share 100 

similar features such as line orientations, curvatures and colors. Both humans and DCNNs 101 

showed enhanced performance when presented with pre-segmented objects compared to 102 
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objects embedded in backgrounds (29–31). To investigate this further, we used images with 103 

identical target objects embedded in varying background complexities, allowing us to isolate 104 

human electroencephalography (EEG) recordings and DCNN activity related to target object 105 

categorical features versus object background. This approach provides a challenging and 106 

naturalistic task while still maintaining experimental control and enables us to identify 107 

potentially useful representations in object categorization. Surprisingly, we discovered that 108 

large proportions of activity in both human subjects’ EEG recordings and DCNNs’ activity 109 

relate to the processing of object backgrounds, rather than object category. Our findings 110 

suggest that the ability to distinguish between target object and object background is an 111 

essential representation for object categorization.  112 

Results 113 

In this study, we investigated the factors contributing to the high predictive performance of 114 

Deep Convolutional Neural Networks (DCNNs) in human visual processing dynamics. We 115 

compared human subjects’ EEG recordings and DCNN activations using Representational 116 

Similarity Analysis (RSA; see Materials and methods section). Under the RSA framework, we 117 

examined the representations of EEG recordings and DCNN activations using three 118 

categorical representational dissimilarity matrices (RDMs; see Materials and methods 119 

section) - segmentation, background complexity and object category (see Figure 7). First, we 120 

computed partial correlations between the categorical RDMs and EEG RDMs, and between 121 

the categorical RDMs and DCNN RDMs. Second, we qualitatively examined the 122 

representational structure of DCNNs using t-distributed stochastic neighbor embedding 123 

(tSNE; (32). Results from both the partial correlations and tSNE revealed that both EEG 124 

recordings and DCNN activations shared a high proportion of activity distinguishing between 125 
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objects with and objects without backgrounds. Third, to investigate which processing stage 126 

(i.e. which layer) was most similar between human subjects and DCNNs, we performed 127 

Spearman correlations between EEG RDMs (at every time sample) with DCNN RDMs (per 128 

layer). We showed that DCNN layers which correlate highly with EEG recordings are also 129 

layers which correlate highly with the categorical RDM of segmentation.  130 

 131 

Object background largely modulates early neural activity in humans 132 

To investigate which of our experimental factors best explained human subjects EEG 133 

recordings, we performed partial correlations between the categorical RDMs with EEG 134 

RDMs. (See Figure 1) The EEG RDMs correlated highly with segmentation; this correlation 135 

had an onset of 86.67ms, W = 79, p(Bonferonni corrected) < .01. This was followed by a 136 

correlation between the EEG RDMs with background complexity (onset of 90.56ms), W = 137 

197, p(Bonferonni corrected) < .01. Finally, there was a much smaller correlation between the 138 

EEG RDMs with object category (onset of 110ms), W = 222, p(Bonferonni corrected) < .01. 139 

The order of onset significance started with segmentation and background complexity, both 140 

factors relating to object background, and subsequently arrived at object category. The 141 

correlation between the EEG RDMs with segmentation is significantly higher than the 142 

correlation between the EEG RDMs with background complexity and object category at ~87-143 

246ms and ~343-409ms, p(Bonferonni corrected) < .01.  The correlation between the EEG 144 

RDMs with background complexity is significantly higher than the correlation between the 145 

EEG RDMs with object category at ~87-246ms and ~343-413ms, p(Bonferonni corrected) < 146 

.01. Thus, both factors related to object backgrounds have earlier onsets and higher 147 

correlations as compared to object category. We can infer three things from these results - 148 

1. object background modulates majority of visual processing signals, not object category, 149 
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2. object background modulates visual processing before object category, and 3. the 150 

processing of object background begins early (~87ms) and maintains through ~409ms.  151 

 152 

Figure 1. Partial squared correlation of conceptual models with EEG RDMs. By correlating our 153 

categorical RDMs with EEG RDMs, we find that the correlation with segmentation was the largest and 154 

earliest at 86.67ms. This was followed by the correlation with background complexity with an onset at 155 

90.56ms. Finally, the correlation with object category was much smaller and later at 110ms,  compared 156 

to both factors related to object backgrounds.  157 

 158 

Object background largely modulates early layers’ activations in DCNNs 159 

Observing that a large proportion of EEG RDMs can be explained by the existence of a 160 

background, we similarly performed the partial correlation with DCNNs’ activations, 161 

correlating the categorical RDMs with DCNN RDMs (per layer). We have chosen four 162 

commonly used DCNNs (AlexNet, VGG-16, ResNet-18, ResNet-50) for predicting brain 163 

activity. (See Figure 2) Firstly, we observed that early layers of the DCNNs have high 164 

correlation values with segmentation and background complexity - indicating that a large 165 
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proportion of DCNNs’ early activity was related to object background, not object category, 166 

similar to human brains as shown in the previous section. Secondly, we observed that 167 

correlations with object category arose in later layers. In deeper networks (with more layers), 168 

the correlations with object category became much higher towards the penultimate layer as 169 

compared to shallower networks. As a control, we performed the partial correlations between 170 

categorical RDMs and untrained DCNN RDMs. We observed that the correlation for 171 

segmentation (and not background complexity nor object category) similarly captured a large 172 

proportion of untrained DCNNs’ activations. However, unlike their trained counterparts, 173 

untrained DCNNs’ correlations arose more gradually and remained until the penultimate 174 

(fully-connected) layer. The correlation for background complexity and object category 175 

remained close to null throughout the untrained DCNN layers. This indicates that the 176 

background differences in untrained DCNNs were not resolved or made invariant, unlike their 177 

trained counterparts. Presumably, this transformation of making backgrounds invariant 178 

allowed the networks to learn object categorically relevant features.179 
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 183 

 184 

Figure 2. Partial correlation of categorical RDMs with DCNNs. The partial correlations between 185 

categorical RDMs (segmentation, background complexity and object category) and DCNN RDMs are 186 

shown for each layer of the network. Partial correlations for untrained DCNN RDMs are marked by the 187 

yellow stars. Values on the x-axis indicate layer number; values on the y-axis indicate the layer’s partial 188 

correlation (in r²) with the categorical RDMs. We observed that the early layers of DCNNs correlate 189 

largely with both segmentation and background complexity but not with object category. The 190 

correlation with object category gradually increases in the later layers, with deeper networks showing 191 

a larger increase compared to shallower networks. This pattern of correlation is robust across all 192 

networks. 193 
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To further understand the network activations, we visualized its activity with t-distributed 194 

stochastic neighbor embedding (tSNE; (32)). tSNE maps high-dimensional data points to 2D 195 

or 3D spaces. We selected to visualize the activations of DCNNs’ first and final layers, and 196 

also the layer with the highest correlation with human subjects EEG recordings. The tSNE 197 

visualization showed that with DCNNs layers which correlate most with EEG RDMs, its 198 

activation is differentiated along object background - not object category (see Figure 3). In 199 

the first layer of all networks, we see a random initialization with no clear clustering of stimuli. 200 

In the layer which correlates most with brain activity, we see a clustering of activity according 201 

to object backgrounds. And in the final layer, we see a clustering of activity according to 202 

object category. With the tSNE visualization, we showed that DCNNs activity differentiates 203 

first according to object background and then according to object category. One notable 204 

exception of this pattern of results is AlexNet; in its output layer (layer 9), its activity is still 205 

clustered along object background. An explanation could be that AlexNet is a much shallower 206 

network compared to the other three networks, the lack of depth and additional processing 207 

prevents the network from differentiating the stimuli according to their categories.  208 

As these layers with activations differentiating object background correlate with brain activity, 209 

we can infer that DCNNs activity are related to processing object backgrounds. This finding 210 

is different from other similar studies using DCNNs because we show that DCNNs layers 211 

which capture differences related to object background are also layers which best explain 212 

human subject EEG recordings. Additionally, we show that DCNNs layers which capture 213 

differences related to object category are also layers which explained the least amount of 214 

variance. Thus, both representations from DCNNs and human subjects capture features from 215 

object backgrounds, not object category. As such, we posit that the predictive power of 216 

DCNNs on brain activity is largely derived from its ability to differentiate object backgrounds, 217 

or more specifically, image textures (19).  218 
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 223 

Figure 3. tSNE of DCNNs activations. We applied tSNE to DCNNs’ activations in the first and last 224 

layers, and also the layer which correlated most with brain activity. Colors indicate object 225 

background conditions - segmented (blue), low complexity (yellow), medium complexity (green), high 226 

complexity (red). Markers indicate object category - bird (crosses), cat (circles), frisbee (stars), fire 227 

hydrant (triangles), suitcase (plusses). We observed that DCNNs’ activity were differentiated along 228 

object background – not object category. In the first layer of all networks, we see a random 229 

initialization with no clear clustering of stimuli. In the layer which correlates most with brain activity, 230 

we see a clustering of activity according to object background (in colors). In the final layer, we see a 231 

clustering of activity according to object category (in marker shapes). Here, we show that DCNNs 232 

activity differentiates first according to object background and then according to object category. 233 

 234 

Object background predicts brain activity better than DCNNs 235 

Though DCNNs have been touted as the best available mechanistic models, they fell short 236 

in explaining human subject EEG recordings as compared to the categorical RDM of 237 

segmentation. We have chosen four commonly used DCNNs (AlexNet, VGG-16, ResNet-18, 238 

ResNet-50) for predicting brain activity. For each DCNN, we correlated its activation RDMs 239 

(per layer) with EEG RDMs (per time sample). (See Figure 4) We observed that AlexNet’s 240 

second convolutional layer correlates best with EEG RDMs, followed by VGG-16’s fifth 241 
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convolutional layer, then ResNet-50’s eighth convolutional layer, and finally ResNet-18’s 242 

seventh convolutional layer. Out of the four DCNNs, only AlexNet reached the noise ceiling 243 

of the EEG RDMs; whereas, the other networks fell far from the noise ceiling, especially 244 

when compared to the categorical RDM of segmentation. We also performed Welch’s t-test 245 

between the correlations of DCNNs and EEG, and the correlations of segmentation and 246 

EEG, and found that the correlations of DCNNs and EEG significantly differed from the 247 

correlations of segmentation and EEG. With the exception of AlexNet conv2 layer - which 248 

had higher explained variance as compared to segmentation within the early time window 249 

(< ~160ms), all networks have lower explained variances as compared to segmentation. 250 

 251 

Figure 4. Best correlating DCNNs layers with EEG. We correlated DCNN RDMs (per layer) with EEG 252 

RDMs and observed that only AlexNet’s second convolutional layer was close to the noise ceiling of 253 

the EEG data. AlexNet was also the only network which surpassed the explained variance of the 254 

segmentation model in the earlier time window (< ~160ms). All other network layers failed to reach the 255 

noise ceiling and did not correlate as well with EEG RDMs as compared to the categorical RDM of 256 

segmentation. 257 
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DCNNs layers which correlate highly with EEG RDMs also correlate highly with 258 

segmentation 259 

After observing that both EEG RDMs and DCNNs RDMs correlate highly with the categorical 260 

RDM of segmentation (see Figure 1 and 2), we wanted to investigate the relationship between 261 

the RDMs from EEG RDMs, DCNNs RDMs and the categorical RDMs. More specifically, we 262 

examined if the correlation values of EEG with a categorical RDM (e.g. segmentation), and 263 

the correlation values of DCNNs with the same categorical RDM, correlated with each other. 264 

By doing so, we directly investigate if DCNNs’ layers which correlate with a categorical RDM, 265 

also correlate well with EEG. This correlation analysis gives us a bridge between EEG and 266 

DCNNs to observe if their correlation with a categorical RDM helps explain DCNNs’ predictive 267 

power on EEG dynamics. Thus, we took the correlation values of DCNNs with the three 268 

categorical RDMs (one datapoint per layer, averaged across five initializations) and plotted 269 

its correlation with EEG. We observed that DCNNs RDMs which correlates highly with EEG 270 

RDM also correlate highly with the categorical RDM of segmentation (AlexNet, r=0.99, 271 

p<0.01; VGG-16, r=0.88, p<0.01; ResNet-18, r=0.64, p<0.01; ResNet-50, r=0.62, p<0.01). 272 

This indicates that DCNNs’ correlation with brain activity is derived from its ability to 273 

distinguish between objects' backgrounds. DCNNs RDMs which correlate highly with 274 

background complexity, share a moderate correlation with EEG RDM (AlexNet, r=-0.56, 275 

p=0.11; VGG-16, r=0.11, p=0.67; ResNet-18, r=0.38, p=0.08; ResNet-50, r=0.27, p=0.04). 276 

DCNNs RDMs which correlate highly with the categorical RDM of object category actually 277 

have a negative correlation with EEG RDMs (AlexNet, r=-0.62, p=0.08; VGG-16, r=-0.72, 278 

p<0.01; ResNet-18, r=-0.35, p=0.11; ResNet-50, r=-0.12, p<0.38). 279 
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 282 

Figure 5. Relationship between DCNNs correlation with EEG and categorical RDMs. Each dot 283 

represents a DCNN layer (averaged across five initializations). Darker colors indicate deeper layers 284 

within a network and lighter colors indicate shallower layers. A) We observed that layers which 285 

correlate highly with EEG are also layers which correlate with the categorical RDM of segmentation. 286 

B) There is a moderate relationship between DCNNs’ correlation with EEG and the categorical RDM 287 

of background complexity; and C) a negative correlation between DCNNs’ correlation with EEG and 288 

the categorical RDM of object category - indicating that DCNN layers which correlate highly with object 289 

category actually become dissimilar with EEG RDMs.  290 

Discussion 291 

We set out to investigate the factors leading to DCNNs’ high predictive performance on 292 

human visual processing dynamics by studying objects and their backgrounds. Using 293 

representational similarity analysis (RSA; (33), we compared the activity of four DCNN 294 

architectures with electroencephalography (EEG) recordings of human participants. We 295 

focused on three factors: segmentation, background complexity and object category. First, 296 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.04.14.536853doi: bioRxiv preprint 

https://paperpile.com/c/2mI0Hu/ZA4NE
https://doi.org/10.1101/2023.04.14.536853
http://creativecommons.org/licenses/by/4.0/


HUMAN VISUAL CORTEX AND DEEP CONVOLUTIONAL NEURAL NETWORKS CARE 

DEEPLY ABOUT OBJECT BACKGROUND 

 

10 

we found that object background largely modulates early EEG signals and early DCNNs 297 

layers. Second, we found that both representations from EEG and DCNNs reflected the 298 

distinction between objects with and without backgrounds. Third, we showed that the shared 299 

distinction of object backgrounds is associated with DCNNs’ high predictive performance on 300 

human visual processing dynamics. We posit that DCNNs’ ability to predict EEG signals is 301 

derived from its ability to distinguish between target object and object backgrounds.  302 

 303 

Processing of object backgrounds in humans happens earlier and is more 304 

substantial than processing of object features 305 

We found high correlations between the categorical RDMs of segmentation and background 306 

complexity with EEG - revealing that visual processing (as recorded with EEG) is largely 307 

modulated by object backgrounds instead of object category (see Figure 1). Furthermore, the 308 

correlations between segmentation and background complexity with EEG have earlier onsets 309 

compared to object category - segmentation at 86.67ms, background complexity at 310 

90.56ms, and object category at 110ms. Our result suggests that the processing of object 311 

background precedes object features and through this process target objects and their 312 

backgrounds becomes distinct. This is evident not only in the latency of significant correlation 313 

between the conceptual models and EEG, but also in the correlation between the conceptual 314 

models and DCNNs layers - where correlations with segmentation and background 315 

complexity precedes object category.  316 

Our finding agrees with previous findings showing that object background complexity 317 

influences object categorical perception, with objects embedded in more complex 318 

backgrounds to reach categorical perception later (34,35). The longer latency for categorical 319 

perception could be explained by time taken to distinguish between the target object and its 320 

background. Additionally, our result also extends initial findings that categorical perception 321 
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is fast (within 150ms) (36,37). Results from earlier studies demonstrating the quickness of 322 

categorical perception holds when the presented stimuli was simple (i.e. object with a plain 323 

background); however, if the presented stimuli was more complex (i.e. object with a complex 324 

background), longer latency incorporating additional processing steps would be required 325 

(38). As natural scenes comprises a myriad of complexities in backgrounds, we recommend 326 

a careful consideration of not only object category but also backgrounds.   327 

 328 

DCNNs processes on object backgrounds are explaining EEG activity 329 

In our experiment, we show that DCNNs predictive power on EEG data is derived from 330 

DCNNs’ inherent ability to distinguish between objects with and without backgrounds. 331 

Crucially, the distinction of object backgrounds is orthogonal to the object categorization 332 

task. The selected DCNNs for the experimental task have been pre-trained on a naturalistic 333 

dataset (ImageNet), and further optimized with a separate dataset (MSCOCO). Nonetheless, 334 

DCNNs activations reflect a distinction between objects with and without backgrounds. The 335 

distinction is apparent in its partial correlation with the categorical RDMs of segmentation 336 

and background complexity (see Figure 2), especially in DCNNs early and mid-layers. 337 

Additionally, we also showed that DCNNs layers which correlated with segmentation also 338 

correlated with EEG (see Figure 5), suggesting that DCNNs’ predictive power on EEG data is 339 

largely derived from the shared ability of both modalities to distinguish between the target 340 

object and its background.  341 

Our conclusion that DCNNs’ predictive power on EEG data is derived from the shared ability 342 

of both modalities to distinguish between objects' backgrounds needs to be considered 343 

carefully because we have reconstructed an experimental dataset with target objects 344 

embedded within artificial backgrounds. There is a high necessity to identify the target object 345 

as separate from its background because the artificial backgrounds are uninformative on the 346 
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object category. In contrast, if the object category correlated with its background (e.g. frisbee 347 

with the background of a park), and if the discrimination of object categories could be 348 

performed sufficiently well based on the object backgrounds, no distinction needs to be 349 

made between target objects and their backgrounds. In reality, most naturalistic scenes will 350 

have backgrounds which are informative of its target objects’ categories as these are a matter 351 

of statistical correlations. In our study, we constructed an object categorization task which 352 

required the distinction of target object and its background with the intention of investigating 353 

the mechanism of figure-ground segmentation; surprisingly, we found that both DCNNs and 354 

our human subjects shared this ability.  355 

 356 

Emergence of shared solutions for object categorization 357 

The shared ability to distinguish between target objects and their backgrounds within human 358 

visual processing and DCNNs affords us to ask a follow up question - “Why does it exist?” 359 

This ability was not directly implemented in both systems yet emerged as part of the solution 360 

for categorizing objects. Within vision neuroscience, this ability to distinguish between target 361 

objects and its backgrounds has long been studied as part of processes known as perceptual 362 

grouping or figure-ground segmentation (27,28,39–42). Specifically, these processes refer to 363 

the grouping of image elements which belong to different entities. It has been shown that if 364 

these processes were interrupted in human subjects, object categorization becomes 365 

impaired (43). In our study, the emergence of a shared solution (i.e. perceptual grouping) for 366 

object categorization suggests it to be a crucial solution for the task at hand and could 367 

elucidate the evolutionary constraints on the problem (44). This helps us arbitrate which 368 

biological processes are necessary to incorporate in artificial systems depending on their 369 

contexts. 370 

 371 
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Figure-ground segregation assists object features learning 372 

Previous research has shown the surprising prediction performance of random weights 373 

networks (26,45,46); it is indeed impressive that random weights networks are able to explain 374 

any brain activity at all. Our experimental results similarly showed that untrained networks 375 

can explain variance in brain activity through its inherent ability to process low-level image 376 

statistics. Through correlating untrained networks RDMs with conceptual RDMs, we find that 377 

the networks’ activity is modulated only by object background and not object category at all 378 

(see Figure 2). We observed a similar predictive performance of an untrained network on V1 379 

in previous studies, where the correlation of the untrained network gradually increased in the 380 

early layers and remained until the late layers (46). In our study, we observed that the 381 

conceptual RDMs of segmentation correlated highly with the layers of untrained networks, 382 

whereas, the conceptual RDMs of background complexity and object category did not 383 

correlate with the layers of untrained networks. This indicates that untrained networks are 384 

able to distinguish between objects with and without backgrounds, but are unable to 385 

distinguish between the background types or categorical features. In contrast, layers of 386 

trained networks show a correlation with segmentation up until the middle layers of the 387 

network which then gradually decreased, matched by the gradual increase of correlation with 388 

object category. This suggests that trained networks “resolved” figure-ground segregation, 389 

allowing it to learn object categorical features.  390 

Conclusion 391 

In summary, we have tested the best mechanistic models of visual processing and showed 392 

that both early human visual processing and early DCNN layers are highly modulated by 393 

object background, not object category. Moreover, the shared ability to distinguish between 394 
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object backgrounds explains DCNNs’ predictive power on EEG activity. Neither humans nor 395 

DCNNs were explicitly taught to distinguish between object backgrounds but the shared 396 

solution emerged to resolve the experimental task of object categorization. Altogether, we 397 

have shown that both human visual processing and DCNN care deeply about the object 398 

backgrounds. 399 

Materials and methods 400 

Data 401 

The electrophysiological data are from (35), it consists of electroencephalography (EEG) 402 

recordings from human subjects (n=62, 18-35 years old). For a brief description of the 403 

experimental paradigm and example of stimuli, please see Figure 6.  404 
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 405 

Figure 6. Stimuli sample and experimental paradigm. A) Two object exemplars (cat and fire hydrant) 406 

are displayed across four background types. The first (highlighted in blue) is a uniform gray 407 

background, referred to as the “segmented” condition. The second (highlighted in orange), third 408 

(highlighted in green) and fourth (highlighted in red) are a low, medium and high complexity background 409 

respectively.. The increasing levels of background complexity makes it increasingly difficult to 410 

differentiate the target object from its background. B) The experimental paradigm had human subjects 411 

perform an object categorization task. Each trial starts with a fixation cross of 500ms, followed by a 412 

stimulus presentation of 34ms. For masked trials, stimulus presentation is followed by five visual 413 

masks, each presented for 100ms. For unmasked trials, the stimulus presentation is followed by a 414 

blank screen for 500ms. Finally, there is a response screen displaying the five object category options 415 

for 2000ms. Participants completed a total of 960 trials - 120 trials per image condition both masked 416 
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and unmasked. In this paper, only the unmasked trials were used as our study did not pertain to a 417 

comparison of feedforward versus feedback processing. Figure taken from (35). 418 

 419 

Stimuli 420 

The stimuli used consisted of 120 unique target objects (24 per category) from five categories 421 

(bird, cat, fire hydrant, frisbee, and suitcase), embedded within four background types 422 

(uniform gray background, low complexity, medium complexity and high complexity). This 423 

gave us a total of 480 unique stimuli. The backgrounds were created by phase-scrambling 424 

the original image backgrounds to remove information aiding recognition of the target object. 425 

The complexity of these phase-scrambled backgrounds varied with contrast, with higher 426 

contrast indicating higher complexity. The segmented condition does not have phase-427 

scrambled backgrounds but a uniform gray one. The stimuli were presented at a resolution 428 

of 512 x 512 pixels. 429 

 430 

Deep convolutional neural networks (DCNNs) 431 

We selected four established DCNN architectures, commonly used in computational 432 

modeling - AlexNet (47), VGG-16 (48), ResNet-18 and ResNet-50 (49). Five different seeds of 433 

each network were initialized and trained with the ImageNet Large Scale Visual Recognition 434 

Challenge 2012 (ILSVRC) dataset, then fine-tuned to the experimental object categories with 435 

the Microsoft COCO dataset (50). We used different seeds to capture variance between 436 

different initializations and obtain reliable results (51). For the initial training on ILSVRC, we 437 

used a learning rate of 0.1 (except for VGG-16 which needed a lower learning rate of 0.05) 438 

with a learning rate decay of 0.1 every 30 epochs and a weight decay of 1e-4. We also used 439 

a stochastic gradient optimizer with a momentum of 0.9. AlexNet, ResNet-18 and ResNet-50 440 

were trained for 150 epochs while VGG-16 was trained for 74 epochs. All DCNNs reached 441 
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similar performance accuracies reported in the original papers. For fine-tuning, we replaced 442 

the last fully-connected layer and retrained weights from all layers. We fine-tuned the network 443 

with a learning rate of 1e-3 with a learning rate decay of 0.1 every 7 epochs. The fine-tuning 444 

was performed for 20 epochs. We also used a stochastic gradient descent optimizer with a 445 

momentum of 0.9 for fine-tuning. In addition to trained networks, we initialized five different 446 

seeds of each architecture with no training as untrained networks. All DCNNs training and 447 

fine-tuning was done in PyTorch (52). 448 

 449 

Analysis: Representational Similarity Analysis (RSA) 450 

We used the framework of Representational Similarity Analysis (RSA; (33) to compare EEG 451 

activity with DCNNs activations. RSA is a method of analysis allowing for the comparison 452 

between different modalities by first generating a representational structure of the stimuli set 453 

as reflected in brain activity (as recorded using EEG sensors) and DCNNs (as reflected 454 

through its unit activations), and then comparing both those representational structures. This 455 

abstraction from EEG sensors and DCNNs unit activations allows us to compare the 456 

transformations performed by both modalities on the stimuli. Using RSA, we obtained time-457 

resolved EEG activity and layerwise DCNN activations in the form of representational 458 

dissimilarity matrices (RDMs). The RDMs consist of pairwise distances computed from 459 

multivariate responses (i.e. pattern of EEG activity or pattern of layerwise DCNNs activations) 460 

towards every possible stimuli pair. Pairwise distances were computed as (1 −461 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛). An entry in the RDM between stimuli A and B would be - 1 −462 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑠𝑡𝑖𝑚𝑢𝑙𝑖 𝐴 𝑎𝑛𝑑 𝐵; whereas, an entry 463 

in the RDM between stimuli A and A would be 0. With 480 unique stimuli (120 unique objects 464 

x 4 background types), we obtained 480x480 RDMs. In all analyses using RDMs, we used 465 

only the upper triangle (excluding the diagonal) since the RDMs are symmetrical.  466 
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RDMs of EEG recordings were computed using 22 posterior electrodes (Iz, I1, I2, Oz, O1, O2, 467 

POz, PO3, PO4, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10). These electrodes 468 

are chosen to focus on activity from visual processing areas and were confirmed in previous 469 

studies (34,35). The electrodes placement followed a 10-10 layout, modified with two 470 

additional occipital electrodes (I1 and I2) replacing two frontal electrodes (F5 and F6). RDMs 471 

were computed from every time sample from -100ms to 600ms relative to stimulus onset. 472 

RDMs of DCNNs activations were obtained from activity of all convolutional, pooling and 473 

fully-connected layers.  474 

In addition to RDMs from EEG and DCNNs, we also constructed categorical RDMs to 475 

evaluate the main effects of our experimental manipulations. We built three categorical RDMs 476 

- segmentation, background complexity and object category (see Figure 7). All three RDMs 477 

consisted of binary values: “0” representing pairs from the same group, and “1” representing 478 

pairs from different groups. Segmentation distinguishes between stimuli with and without 479 

backgrounds (see Figure 7A). Background complexity distinguishes between the four 480 

background types (see Figure 7B): segmented (no background), low complexity, medium 481 

complexity and high complexity. Object category distinguishes between the five object 482 

categories (see Figure 7C). Here, it should be noted that the categorical RDMs of 483 

segmentation and background complexity correlate substantially (r = .45), because the 484 

segmented stimuli all have the same complexity (i.e., 0; see Figure 7A & B). As such, to 485 

separate the variance associated with segmentation or background complexity, we 486 

performed partial correlations between the categorical RDMs and EEG RDMs. 487 
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 488 

Figure 7. Categorical models of main experimental manipulations. A) The categorical RDM of 489 

segmentation distinguishes between trials with and without backgrounds. B) The categorical RDM of 490 

background complexity distinguishes between trials with different background complexities. C) The 491 

categorical RDM of object category distinguishes between trials based on the target object category. 492 

 493 

First, we performed partial correlations between the categorical RDMs and EEG RDMs, and 494 

between the categorical RDMs and DCNN RDMs to identify the shared representational 495 

structure. We chose to use a partial correlation instead of a regression to control for the 496 

correlation between the segmentation and background complexity categorical model. 497 

Second, we qualitatively inspected the representations from both EEG and DCNNs using t-498 

distributed stochastic neighbor embedding (tSNE) (32). Third, we performed a Spearman 499 

correlation (i.e. classical representational similarity analysis) between EEG RDMs (for every 500 

time sample) and DCNN RDMs (per layer). Fourth, we normalized each layer’s explained 501 

variance from the Spearman correlation against the upper noise ceiling (the upper bound of 502 

EEG data) for all time samples and then plotted its median correlation against the layer’s 503 
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correlation with the categorical RDMs. This allowed us to summarize each layer’s correlation 504 

with EEG data across all time samples.  505 

All statistical analysis was performed and visualized in Python using the following packages: 506 

NumPy, SciPy, Statsmodels, Pandas, Seaborn, Matplotlib (53–58).  507 

 508 

Analysis: Statistical  509 

We used a Wilcoxon signed rank test to determine the onset of correlation significance 510 

between categorical RDMs and EEG RDMs, and to determine statistical significant 511 

differences in the correlation values of categorical RDMs. The p-values obtained from the 512 

Wilcoxon signed rank test are Bonferroni corrected for multiple comparisons (α=0.01). 513 
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