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Abstract 15 

Observing lip movements of a speaker is known to facilitate speech understanding, especially in 16 

challenging listening situations. Converging evidence from neuroscientific studies shows 17 

enhanced processing of audiovisual stimuli. However, the interindividual variability of this visual 18 

benefit and its consequences on behavior are unknown. Here, we analyzed source-localized 19 

magnetoencephalographic (MEG) responses from normal-hearing participants listening to 20 

audiovisual speech with or without an additional distractor speaker. Using temporal response 21 

functions (TRFs), we show that neural responses to lip movements are, in general, enhanced 22 

when speech is challenging. After conducting a crucial control for speech acoustics, we show that 23 

lip movements effectively contribute to higher neural speech tracking, particularly when a 24 

distractor speaker is present. However, the extent of this visual benefit varied greatly among 25 

participants. Probing the behavioral relevance, we show that individuals who benefit more from 26 

lip movement information in terms of neural speech tracking, show a stronger drop in performance 27 

and an increase in perceived difficulty when the mouth is occluded by a surgical face mask. By 28 

contrast, no effect was found when the mouth was not occluded. We provide novel insights on 29 

how the benefit of lip movements in terms of neural speech tracking varies among individuals. 30 

Furthermore, we reveal its behavioral relevance by demonstrating negative consequences for 31 

behavior when visual speech is absent. Our results also offer potential implications for future 32 

objective assessments of audiovisual speech perception.  33 
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Introduction 34 

Face masks are an important tool in preventing the spread of contagious diseases such as 35 

COVID-19 (e.g. Chu et al., 2020; Suñer et al., 2022). However, as many have subjectively 36 

experienced first hand, the use of face masks also impairs speech perception, and not only by 37 

attenuating sound. More importantly, they occlude facial expressions, such as lip movements 38 

(e.g. Brown et al., 2021; Rahne et al., 2021), that provide visual information for a relevant speech 39 

stream. This is particularly critical when speech is challenging, such as in the classic cocktail party 40 

situation, where multiple conversations are happening simultaneously (Cherry, 1953). In such 41 

situations, the brain separates auditory information of interest from competing input (McDermott, 42 

2009). Ideally, visual information is available to support this process, with numerous studies 43 

demonstrating that visual speech features enhance the understanding of degraded auditory input 44 

(e.g. Grant & Seitz, 2000; Remez, 2012; Ross et al., 2007; Sumby & Pollack, 1954). This concept 45 

is known as inverse effectiveness (Meredith & Stein, 1983; van de Rijt et al., 2019). Among visual 46 

speech features, lip movements are the most important, playing a crucial role in the perception of 47 

challenging speech (Erber, 1975; Peelle & Sommers, 2015). This is especially intriguing given 48 

the substantial interindividual differences in lip-reading performance among normal, as well as 49 

hearing-impaired, populations (Suess, Hauswald, Zehentner, et al., 2022; Summerfield et al., 50 

1992). Despite our imperfect lip-reading abilities, the human brain effectively uses lip movements 51 

to facilitate the perception of challenging speech, with the neural mechanisms and regions 52 

involved still under debate (Ross et al., 2022; Zhang & Du, 2022). 53 

Previous studies have shown beneficial effects of visual speech on the representation of speech 54 

in the brain. An MEG study by Park et al. (2016) showed enhanced entrainment between lip 55 

movements and speech-related brain areas when congruent audiovisual speech was presented. 56 

Other studies have shown that the incorporation of visual speech enhances the ability of the brain 57 

to track acoustic speech (Crosse et al., 2015; Crosse, Liberto, et al., 2016; Golumbic et al., 2013). 58 

Interestingly, when silent lip movements are presented, the brain also tracks the unheard acoustic 59 

speech envelope (e.g. Hauswald et al., 2018) or spectral fine details (Suess, Hauswald, 60 

Reisinger, et al., 2022). Despite these findings, two questions remain unanswered: First, it is 61 

unknown how individuals vary in their benefit of lip movements at the neural level. Given the 62 

aforementioned interindividual differences in lip-reading performance, a high degree of variability 63 

could also be expected here. Importantly, lip movements are correlated with acoustic speech 64 

features (Chandrasekaran et al., 2009), so it is essential to control for acoustic-related brain 65 
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activity. Second, it is unknown if the individual benefit of lip movements is of behavioral relevance, 66 

as, for example, when the lips are occluded with a face mask, as has been common during the 67 

COVID-19 pandemic. Given the negative impact of face masks on behavioral measures (e.g. 68 

Rahne et al., 2021; Toscano & Toscano, 2021; Truong et al., 2021), a relationship is plausible: 69 

Individuals who benefit more should, in principle, also show poorer behavioral outcomes when no 70 

lip movements are available, as they are deprived of critical visual information. 71 

A suitable method to obtain the individual benefit of lip movements is neural tracking (Obleser & 72 

Kayser, 2019). Besides frequency-based coherence and mutual information, temporal response 73 

functions (TRFs) have gained widespread popularity (Brodbeck & Simon, 2020; Crosse et al., 74 

2021). TRFs typically aim to predict the M/EEG-recorded neural response to one or more stimulus 75 

features, and the prediction is correlated with the original signal to quantify neural tracking. This 76 

approach has so far extended our understanding of speech processing from acoustic features 77 

(Lalor et al., 2009) to higher-level linguistic features (Brodbeck, Hong, et al., 2018; Broderick et 78 

al., 2018; Gillis et al., 2021). Crucially, neural tracking can be used to disentangle the 79 

aforementioned intercorrelation of audiovisual speech by controlling for acoustic speech features 80 

(Gillis et al., 2022). This could reveal the “pure“ individual benefit of lip movements to neural 81 

speech tracking in audiovisual settings, which has not yet been shown. 82 

Neural speech tracking has been proposed as an objective measure for speech intelligibility 83 

(Schmitt et al., 2022; Vanthornhout et al., 2018) along with a whole range of auditory and linguistic 84 

processes (Gillis et al., 2022). Previously, acoustic neural speech tracking has been related to 85 

behavioral measures such as speech intelligibility (Chen et al., 2023; Ding & Simon, 2013). 86 

Studies that involve visual speech features have established a relationship between the neural 87 

tracking of visual speech cues, so-called visemes, and lip-reading performance (Nidiffer et al., 88 

2021) or lip movements and speech comprehension (Park et al., 2016). In sum, these findings 89 

strongly suggest a meaningful relationship between neural speech tracking and behavioral 90 

measures. Regarding the aspect of interindividual differences, Schubert et al. (2023) showed that 91 

the MEG-derived tendency of individuals to predict upcoming tones facilitates neural speech 92 

tracking, and this relationship generalizes to various audio-only listening situations. Here, we aim 93 

to combine both aspects by evaluating the relationship between interindividual differences and 94 

behavioral measures. In particular, we probe the behavioral relevance of the individual benefit of 95 

lip movements, especially when critical visual information is not available. Addressing this could 96 

further strengthen the case for the behavioral relevance of neural speech tracking as an objective 97 

measure of speech processing. 98 
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Here, we used MEG and an audiovisual speech paradigm with one or two speakers to investigate 99 

the benefit of lip movements and its behavioral relevance. Utilizing a state-of-the-art neural 100 

tracking framework with source-localized TRFs (see Figure 1), we show that lip movements are 101 

processed more strongly when speech is challenging. Additionally, we show that the neural 102 

tracking of lip movements is enhanced in multi speaker settings. When controlled for acoustic 103 

speech features, the obtained benefit of lip movements is, in general, more enhanced in the multi 104 

speaker condition, with substantial interindividual variability. Using Bayesian modeling, we show 105 

that acoustic speech tracking is related to behavioral measures. Crucially, we demonstrate that 106 

individuals who benefit more from lip movements show a stronger drop in performance and report 107 

a higher subjective difficulty when the mouth is occluded by a surgical face mask. In terms of 108 

neural tracking, our results suggest that individuals benefit from lip movements in a highly variable 109 

manner. We also establish a novel link between the neural benefit of visual speech and behavior 110 

when no visual speech information is available. 111 

Material and Methods 112 

Participants 113 

The data was collected as part of a recent study (Haider et al., 2022), in which 30 native speakers 114 

of German participated. One participant was excluded because signal source separation could 115 

not be applied to the MEG dataset. This led to a final sample size of 29 participants (12 females, 116 

Mage = 26.79, SDage = 4.87 years). All participants reported normal vision and hearing (thresholds 117 

did not exceed 25 dB HL at any frequency from 125 to 8000 Hz), the latter verified by a standard 118 

clinical audiometer (AS608 Basic; Interacoustics A/S, Middelfart, Denmark). Additional exclusion 119 

criteria included non-removable magnetic objects and any psychiatric or neurologic history. All 120 

participants signed an informed consent and were reimbursed at a rate of 10 € per hour. The 121 

experimental protocol was approved by the ethics committee of the Paris-Lodron-University of 122 

Salzburg and was conducted in accordance with the Declaration of Helsinki. 123 

Stimuli and experimental design 124 

The experimental procedure was implemented in MATLAB 9.10 (The MathWorks Inc., Natick, 125 

Massachusetts, USA) using custom scripts. Presentation of stimuli and response collection was 126 

achieved with the Objective Psychophysics Toolbox (o_ptb; Hartmann & Weisz, 2020), which 127 

adds a class-based abstraction layer onto the Psychophysics Toolbox version 3.0.16 (Brainard, 128 
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1997; Kleiner et al., 2007; Pelli, 1997). Stimuli and triggers were generated and emitted via the 129 

VPixx system (DATAPixx2 display driver, PROPixx DLP LED projector, RESPONSEPixx 130 

response box by VPixx Technologies Inc., Saint-Bruno, Canada). Videos were back-projected 131 

onto a translucent screen with a screen diagonal of 74 cm (~110 cm in front of the participants), 132 

with a refresh rate of 120 Hz and a resolution of 1920×1080 pixels. Timings were measured with 133 

the Black Box ToolKit v2 (The Black Box ToolKit Ltd., Sheffield, UK) to ensure accurate stimulus 134 

presentation and triggering. 135 

The audiovisual stimuli were excerpts from four German stories, two of each read out loud by a 136 

female or male speaker (female: "Die Schokoladenvilla - Zeit des Schicksals. Die Vorgeschichte 137 

zu Band 3" by Maria Nikolai, “Die Federn des Windes” by Manuel Timm; male: “Das Gestüt am 138 

See. Charlottes großer Traum” by Paula Mattis and “Gegen den Willen der Väter” by Klaus 139 

Tiberius Schmidt). A Sony NEX-FS100 (Sony Group Corporation, Tokyo, Japan) camera with a 140 

sampling rate of 25 Hz and a RØDE NTG2 microphone (RØDE Microphones Pty. Ltd., Sydney, 141 

Australia) with a sampling rate of 48 kHz were used to record the stimuli. Each of the four stories 142 

was recorded twice, once with and once without a surgical face mask (type IIR three-layer 143 

disposable medical mask). These eight videos were cut into 10 segments of about one minute 144 

each (M = 64.29 s, SD = 4.87 s), resulting in 80 videos. In order to rule out sex-specific effects, 145 

40 videos (20 with a female speaker and 20 with a male speaker) were presented to each 146 

participant. The speakers’ syllable rates were analyzed using Praat (Boersma, 2001; de Jong & 147 

Wempe, 2009) and varied between 3.7 Hz and 4.6 Hz (M = 4.1 Hz). The audio-only distractor 148 

speech consisted of pre-recorded audiobooks (see Schubert et al., 2023), read by either a female 149 

or a male speaker. 150 

Before the experiment, a standard clinical audiometry was performed (for details, see 151 

Participants). The MEG measurement started with a 5-minute resting-state recording (not 152 

analyzed in this manuscript). Next, the participant's individual hearing threshold was determined 153 

in order to adjust the stimulation volume. If the participant reported that the stimulation was not 154 

loud enough or comfortable, the volume was manually adjusted to the participant's requirements. 155 

The actual experiment consisted of four stimulation blocks, one for each of the four stories, with 156 

two featuring each sex. Each story was presented as a block of 10 ~one-minute trials in 157 

chronological order to preserve the story content (Figure 1A). In every block, a same-sex audio-158 

only distractor speaker was added to three randomly selected trials, with a 5-second delay and 159 

volume equal to the target speaker. The resulting ratio of 30% multi speaker trials and 70% single 160 
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speaker trials per block was chosen because of a different data analysis method in Haider et al. 161 

(2022). The distractor speech started with a delay of 5 seconds to give participants time to attend 162 

the target speaker. In two randomly selected blocks, the target speaker wore a face mask (only 163 

the corresponding behavioral data was used here, see Statistical analysis and Bayesian 164 

modeling). Two unstandardized correct or wrong statements about semantic content were 165 

presented after each trial to assess comprehension performance and to maintain attention (Figure 166 

1A). On four occasions in each block, participants also rated subjective difficulty and motivation 167 

on a five-point Likert scale (not depicted in Figure 1A). The participants responded by pressing 168 

buttons. The total duration of the experiment was ∼2 h, including preparation. 169 
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Figure 1. Experimental design, behavioral results and analysis framework. (A) Each block consisted of 10 170 

~1-min trials of continuous audiovisual speech by either a female or male speaker (single speaker 171 

condition). In 30% of these 10 trials, a same-sex audio-only distractor speaker was added (multi speaker 172 

condition). After every block, two comprehension statements had to be rated as correct or wrong. (B) 173 

Performance on the comprehension statements in the multi speaker condition was lower than in the single 174 

speaker condition (p = .003, rC = 0.64). Subjective difficulty ratings, reported on a five-point Likert scale, 175 

were higher in the multi speaker condition (p = 9.00e-06, rC = -0.95). The reported motivation was lower in 176 

the multi speaker condition (p = .024, rC = 0.62). The middle dots represent the mean, and the bars, the 177 

standard error of the mean. (C) Three stimulus features (spectrogram, acoustic onsets and lip movements) 178 

extracted from the audiovisual stimuli are shown for an example sentence. Higher values in the lip area unit 179 

represent a wider opening of the mouth and vice versa. Three forward models were calculated: (1) one 180 

using only acoustic features, (2) one using only lip movements, and (3) one combining all features. Together 181 

with the corresponding source-localized MEG data, the boosting algorithm was used to calculate the 182 

models. Exemplary minimum-norm source estimates are shown for a representative participant. The 183 

resulting TRFs (a.u.) and neural tracking (expressed as Pearson’s r) were analyzed in functional regions of 184 

interest (fROIs), obtained either via the acoustic or lip model of the multi speaker condition. The TRFs and 185 

prediction accuracies shown are from a representative participant reflecting the group-level results. To 186 

obtain the benefit of lip movements, acoustic features were controlled by subtracting the prediction 187 

accuracies in an acoustic+lip fROI of the acoustic model from the combined model. The benefit of lip 188 

movements was expressed as a percentage change. *p < .05, **p < .01, ***p < .001; Speakers have been 189 

blurred due to a bioRxiv policy on the inclusion of faces. 190 

MEG data acquisition and preprocessing 191 

Before entering the magnetically shielded room, five head position indicator (HPI) coils were 192 

applied on the scalp. Electrodes for electrooculography (EOG; vertical and horizontal eye 193 

movements) and electrocardiography (ECG) were also applied (recorded data not used here). 194 

Fiducial landmarks (nasion and left/right pre-auricular points), the HPI locations and ~300 head 195 

shape points were sampled with a Polhemus FASTRAK digitizer (Polhemus, Colchester, 196 

Vermont, USA). 197 

Magnetic brain activity was recorded with a Neuromag Triux whole-head MEG system (MEGIN 198 

Oy, Espoo, Finland) using a sampling rate of 1000 Hz (hardware filters: 0.1-330 Hz). The signals 199 

were acquired from 102 magnetometers and 204 orthogonally placed planar gradiometers at 102 200 

different positions. The system is placed in a standard passive magnetically shielded room (AK3b; 201 

Vacuumschmelze GmbH & Co. KG, Hanau, Germany). 202 
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A signal space separation (SSS; Taulu & Kajola, 2005; Taulu & Simola, 2006) algorithm 203 

implemented in MaxFilter version 2.2.15 provided by the MEG manufacturer was used. The 204 

algorithm removes external noise from the MEG signal (mainly 16.6 Hz, and 50 Hz, plus 205 

harmonics) and realigns the data to a common standard head position (to [0 0 40] mm, -trans 206 

default MaxFilter parameter) across different blocks, based on the measured head position at the 207 

beginning of each block. 208 

Preprocessing of the raw data was done in MATLAB 9.8 using the FieldTrip toolbox (revision 209 

f7adf3ab0; Oostenveld et al., 2011). A low-pass filter of 10 Hz (hamming-windowed sinc FIR filter, 210 

onepass-zerophase, order: 1320, transition width: 2.5 Hz) was applied, and the data was 211 

downsampled to 100 Hz. Afterwards, a high-pass filter of 1 Hz (hamming-windowed sinc FIR filter, 212 

onepass-zerophase, order: 166, transition width: 2.0 Hz) was applied. 213 

Independent component analysis (ICA) was used to remove eye and cardiac artifacts (data was 214 

filtered between 1-100 Hz, sampling rate: 1000 Hz) via the infomax algorithm (“runica” 215 

implementation in EEGLAB; Bell & Sejnowski, 1995; Delorme & Makeig, 2004) applied to a 216 

random block of the main experiment. Prior to the ICA computation, we performed a principal 217 

component analysis (PCA) with 50 components in order to ease the convergence of the ICA 218 

algorithm. After visual identification of artifact-related components, an average of 2.38 219 

components per participant were removed (SD = 0.68). 220 

The cleaned data was epoched into trials that matched the length of the audiovisual stimuli. To 221 

account for an auditory stimulus delay introduced by the tubes of the sound system, the data were 222 

shifted by 16.5 ms. In the multi speaker condition, the first 5 seconds of data were removed to 223 

match the onset of the distractor speech. The last eight trials were removed to equalize the data 224 

length between the single speaker and multi speaker conditions. To prepare the data for the 225 

following steps, the trials in each condition were concatenated. This resulted in a data length of 226 

~6 min per condition. 227 

Source localization 228 

Source projection of the data was done with MNE-Python 1.1.0 running on Python 3.9.7 (Gramfort 229 

et al., 2013, 2014). A semi-automatic coregistration pipeline was used to coregister the FreeSurfer 230 

“fsaverage” template brain (Fischl, 2012) to each participant's head shape. After an initial fit using 231 

the three fiducial landmarks, the coregistration was refined with the Iterative Closest Point (ICP) 232 

algorithm (Besl & McKay, 1992). Head shape points that were more than 5 mm away from the 233 
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scalp were automatically omitted. The subsequent final fit was visually inspected to confirm its 234 

accuracy. This semi-automatic approach performs comparably to manual coregistration pipelines 235 

(Houck & Claus, 2020). 236 

A single-layer boundary element model (BEM; Akalin-Acar & Gençer, 2004) was computed to 237 

create a BEM solution for the “fsaverage” template brain. Next, a volumetric source space with a 238 

grid of 7 mm was defined, containing a total of 5222 sources (Kulasingham et al., 2020). In order 239 

to remove non-relevant regions and shorten computation times, subcortical structures along the 240 

midline were removed, reducing the source space to 3053 sources (similar to Das et al., 2020). 241 

Subsequently, the forward operator (i.e. lead field matrix) was computed using the individual 242 

coregistrations, the BEM and the volume source space. 243 

Afterwards, the data were projected to the defined sources using the Minimum Norm Estimate 244 

method (MNE; Hämäläinen & Ilmoniemi, 1994). MNE is known to be biased towards superficial 245 

sources, which can be reduced by applying depth weighting with a coefficient between 0.6 and 246 

0.8 (Lin et al., 2006). For creating the MNE inverse operator, depth weighting with a coefficient of 247 

0.8 was used (e.g. Brodbeck et al., 2018). The required noise covariance matrix was estimated 248 

with an empty-room MEG recording relative to the participant’s measurement date with the same 249 

preprocessing settings as the MEG data of the actual experiment (see MEG data acquisition and 250 

preprocessing). The MNE inverse operator was then applied to the concatenated MEG data with 251 

ℓ2 regularization (signal-to-noise ratio (SNR) = 3 dB, 𝜆2  =  
1

𝑆𝑁𝑅²
) and three free-orientation dipoles 252 

orthogonally at each source. 253 

Extraction of stimulus features 254 

Since the focus of this study is on audiovisual speech, we extracted acoustic (spectrograms and 255 

acoustic onsets) and visual (lip movements) speech features from the stimuli (for examples see 256 

Figure 1C). The spectrograms of the auditory stimuli were obtained using the Gammatone 257 

Filterbank Toolkit 1.0 (Heeris, 2013), with frequency cutoffs at 20 and 5000 Hz, 256 filter channels 258 

and a window time of 0.01 s. This toolkit computes a spectrogram representation on the basis of 259 

a set of Gammatone filters which are inspired by the human auditory system (Slaney, 1998). The 260 

resulting filter outputs with logarithmic center frequencies were averaged into eight frequency 261 

bands (frequencies <100 Hz were omitted; Gillis et al., 2021). Each frequency band was scaled 262 

with exponent 0.6 (Biesmans et al., 2017) and downsampled to 100 Hz, which is the same 263 

sampling frequency as the preprocessed MEG data. 264 
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Acoustic onset representations were calculated for each frequency band of the spectrograms 265 

using an auditory edge detection model (Fishbach et al., 2001). The resulting spectrograms of 266 

the acoustic onsets are valuable predictors of MEG responses to speech stimuli (Brodbeck et al., 267 

2020; Daube et al., 2019). A delay layer with 10 delays from 3 to 5 ms, a saturation scaling factor 268 

of 30 and a receptive field based on the derivative of a Gaussian window (SD = 2 ms) were used 269 

(Gillis et al., 2021). Each frequency band was downsampled to 100 Hz. 270 

The lip movements of every speaker were extracted from the videos with a MATLAB script 271 

adapted from Suess et al. (2022; originally by Park et al., 2016). Within the lip contour, the area, 272 

and the horizontal and vertical axis were calculated. Only the area was used for the analysis, 273 

which leads to results comparable to using the vertical axis (Park et al., 2016). The lip area signal 274 

was upsampled from 25 Hz to 100 Hz using FFT-based interpolation. 275 

Forward models 276 

A linear forward modeling approach was used to predict the MEG response to the aforementioned 277 

stimulus features (see Figure 1C). These approaches are based on the idea that the brain's 278 

response to a stimulus is a continuous function in time (Lalor et al., 2006). The boosting algorithm 279 

(David et al., 2007), implemented in eelbrain 0.38 (running on Python 3.9.7; Brodbeck et al., 280 

2022), was used to predict MNE source-localized MEG responses to stimulus features (“MNE-281 

boosting”; Brodbeck, Presacco, et al., 2018). For multiple stimulus features, the linear forward 282 

model can be formulated as: 283 

�̂�𝑡 = ∑

𝑛

𝑖=0

∑ ℎ𝑖,𝜏

𝜏𝑚𝑎𝑥

𝜏=𝜏𝑚𝑖𝑛

𝑥𝑖,𝑡−𝜏 284 

For every 𝑛 stimulus feature, the algorithm finds an optimal filter kernel ℎ, which is also known as 285 

a temporal response function (TRF). When 𝑛 stimulus features is > 1, ℎ is referred to as 286 

multivariate TRF (mTRF). The term 𝜏 denotes the delays between the predicted brain response 287 

�̂�𝑡 and stimulus feature 𝑥 (for further details see Brodbeck et al., 2022). TRFs reflect responses 288 

to continuous data instead of averaged responses to discrete events (Crosse et al., 2021). For 289 

the estimation of the TRFs, the stimulus features and MEG data were normalized (z-scored), and 290 

an integration window from -100 to 600 ms with a kernel basis of 50 ms Hamming windows was 291 

defined. To prevent overfitting, early stopping based on the ℓ2 norm was used. By using four-fold 292 

nested crossvalidation (two training folds, one validation fold, and one test fold), each partition 293 
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served as a test set once (Brodbeck et al., 2022). TRFs were estimated for each of the three free-294 

orientation dipoles independently at all 3053 sources (see Source localization). The spectrogram 295 

and acoustic onset mTRFs were averaged over the frequency dimension. To account for 296 

interindividual anatomical differences, TRFs were spatially smoothed with a Gaussian kernel (SD 297 

= 5 mm; Kulasingham et al., 2020). The vector norm of the smoothed TRFs was taken, resulting 298 

in one TRF per source. 299 

To obtain a measure of neural tracking, the predicted brain response �̂�𝑡 is correlated with the 300 

original response to calculate the prediction accuracy and computed as the average dot product 301 

over time (expressed as Pearson correlation coefficient r). This correlation can be interpreted as 302 

follows: The higher the prediction accuracy, the higher the neural tracking (Gillis et al., 2022).  303 

In order to investigate the neural processing of the audiovisual speech features, we calculated 304 

three different forward models per condition and participant (see Figure 1C for the analysis 305 

framework). The acoustic model consisted of the two acoustic stimulus features (spectrogram 306 

and acoustic onsets) and – also applicable to all other models – the corresponding MNE source-307 

localized MEG data. The lip model contained only the lip movements as a stimulus feature. 308 

Additionally, a combined acoustic+lip model was calculated to control for acoustic features in a 309 

subsequent analysis. 310 

We defined functional regions of interest (fROIs; Nieto-Castanon et al., 2003) by creating labels 311 

based on the 90th percentile of the whole-brain prediction accuracies in the multi speaker 312 

condition (similar to Suess, Hauswald, Reisinger, et al., 2022). The multi speaker condition was 313 

chosen for extracting the fROIs because it potentially incorporates all included stimulus features, 314 

due to its higher demand (Golumbic et al., 2013). This was done separately for the acoustic and 315 

lip models to map their unique neural sources (see Figure 1C). According to the “aparc” 316 

FreeSurfer parcellation (Desikan et al., 2006), the acoustic fROI mainly involved sources in the 317 

temporal, lateral parietal and posterior frontal lobes. The superior parietal and lateral occipital 318 

lobes made up the majority of the lip fROI. To obtain an audiovisual fROI for the acoustic+lip 319 

model, we combined the labels of the acoustic and lip fROIs. 320 

For every model, the TRFs in their respective fROI were averaged and, exclusively for Figure 2A, 321 

smoothed over time with a 50 ms Hamming window. Grand-average TRF magnitude peaks were 322 

detected with scipy version 1.8.0 (running on Python 3.9.7; Virtanen et al., 2020) and visualized 323 

as a difference between the multi and single speaker conditions. To suppress regression artifacts 324 

that typically occur (Crosse, Di Liberto, et al., 2016), TRFs were visualized between -50 and 550 325 
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ms. Prediction accuracies in the fROIs were Fisher z-transformed, then averaged, and then the 326 

z-values were back-transformed to Pearson correlation coefficients (Corey et al., 1998). For the 327 

lower panels of each model in Figure 2B, the prediction accuracies of the acoustic and lip models 328 

were averaged in their respective fROIs. Figures were created with the built-in plotting functions 329 

of eelbrain and seaborn version 0.12.0 (running on Python 3.9.7; Waskom, 2021). 330 

In order to answer the question whether or not lip movements enhance neural tracking, a control 331 

for acoustic features is needed. This is particularly important due to the intercorrelation of speech 332 

features (Chandrasekaran et al., 2009; Daube et al., 2019). To investigate the individual benefit 333 

of lip movements, we used the averaged prediction accuracies in the audiovisual fROI and 334 

subtracted the acoustic model from the acoustic+lip model (for a general overview on control 335 

approaches see Gillis et al., 2022). The resulting individual benefit of lip movements was 336 

expressed as percentage change (see Figure 2C). 337 

Statistical analysis and Bayesian modeling 338 

All frequentist statistical tests were conducted with built-in functions from eelbrain and the 339 

statistical package pingouin version 0.5.2 (running on Python 3.9.7; Vallat, 2018). The three 340 

behavioral measures (performance, difficulty, and motivation; Figure 1B) were statistically 341 

compared between the two conditions (single speaker and multi speaker) using a Wilcoxon 342 

signed-rank test and the matched-pairs rank-biserial correlation rC was reported as effect size 343 

(King et al., 2018). 344 

The TRFs corresponding to the three stimulus features (spectrogram, acoustic onsets and lip 345 

movements; Figure 2A), were tested for statistical difference between the two conditions using a 346 

cluster-based permutation test with threshold-free cluster enhancement (TFCE; dependent 347 

samples t-test, 10000 randomizations, Maris & Oostenveld, 2007; Smith & Nichols, 2009). Due to 348 

the previously mentioned TRF regression artifacts, the time window for the test was limited to -50 349 

to 550 ms. Depending on the direction of the cluster, the maximum or minimum t-value was 350 

reported and Cohen’s d of the averaged temporal extent of the cluster was calculated. 351 

We tested the non-averaged prediction accuracies in the acoustic and lip fROIs (Figure 2B) with 352 

a cluster-based permutation test with TFCE (dependent samples t-test, 10000 randomizations). 353 

According to the cluster's direction, the maximum or minimum t-value was reported, and Cohen's 354 

d of the cluster's averaged spatial extent was calculated. Additionally, averaged prediction 355 

accuracies in the acoustic and lip fROIs were statistically tested with a dependent-samples t-test, 356 
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and Cohen’s d was reported as effect size. In the audiovisual fROI, the prediction accuracies and 357 

benefit of lip movements (Figure 2C) were tested with a dependent-samples t-test, and Cohen’s 358 

d was reported as effect size. If the data were not normally distributed according to a Shapiro-359 

Wilk test, the Wilcoxon signed-rank test was used, and the matched-pairs rank-biserial correlation 360 

rC was reported as effect size. The distribution of the benefit of lip movements was assessed 361 

using the bimodality coefficient (Freeman & Dale, 2013). 362 

To investigate if neural tracking is predictive for behavior, we calculated Bayesian multilevel 363 

models in R version 4.2.2 (R Core Team, 2022) with the Stan-based package brms version 2.18.4 364 

(Bürkner, 2017; Carpenter et al., 2017). Neural tracking (i.e. the averaged prediction accuracies 365 

within the respective fROI) was used to separately predict the three behavioral measures. A 366 

random intercept was added for each participant to account for repeated measures (single 367 

speaker and multi speaker). The models were fitted independently for the acoustic and lip models 368 

(Figure 3). According to the Wilkinson notation (Wilkinson & Rogers, 1973), the general formula 369 

was:  370 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ~ 1 +  𝑛𝑒𝑢𝑟𝑎𝑙 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 +  (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 371 

We wanted to test whether the individual benefit of lip movements to neural speech tracking (see 372 

Forward models) yields any behavioral relevance. For this, we also used the behavioral data of 373 

the otherwise unanalyzed conditions with a face mask (see Stimuli and experimental design). We 374 

fitted Bayesian multilevel models with the individual benefit of lip movements to separately predict 375 

the behavioral measures when the speaker wore a face mask or not (Figure 4). The general 376 

formula was: 377 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ~ 1 +  𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝑙𝑖𝑝 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 +  (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 378 

Before doing so, we fitted control models to show the effect of the conditions on the behavioral 379 

measures when the lips are occluded (see Supplementary Table 1). Additional control models to 380 

test the effect of the benefit of lip movements on the behavioral data without a face mask were 381 

also fitted (see Supplementary Table 2 for model fits). In all described models, a random intercept 382 

was included for each participant to account for repeated measures (single speaker and multi 383 

speaker). 384 

Weakly or non-informative default priors of brms were used, whose influence on the results is 385 

negligible (Bürkner, 2017, 2018). For model calculation, all numerical variables were z-scored, 386 
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and standardized regression coefficients (b) were reported with 89% credible intervals (CIs; i.e. 387 

Bayesian uncertainty intervals, McElreath, 2020). In addition, we report posterior probabilities 388 

(PPb>0) with values closer to 100%, providing evidence that the effect is greater than zero, and 389 

closer to 0% that the effect was reversed (i.e. smaller than zero). If the 89% CIs for an estimate 390 

did not include zero and PPb>0 was below 5.5% or above 94.5%, the effects were considered 391 

statistically significant. 392 

All models were fitted with a Student-t distribution, as indicated by graphical posterior predictive 393 

checks, Pareto �̂� diagnostics (Vehtari, Simpson, et al., 2022) and leave-one-out crossvalidation 394 

via loo version 2.5.1 (Vehtari et al., 2017; Vehtari, Gabry, et al., 2022). Common algorithm-395 

agnostic (Vehtari et al., 2021) and algorithm-specific diagnostics (Betancourt, 2018) showed that 396 

all Bayesian multilevel models converged. For all relevant parameters, the convergence 397 

diagnostic �̂� < 1.01 and effective sample size (ESS) > 400 indicated that there were no divergent 398 

transitions. Figures were created with ggplot2 version 3.4.0 (Wickham, 2016) and ggdist version 399 

3.2.0 (Kay, 2022). Unstandardized b’s were used for the fitted values of the models in Figures 3 400 

and 4. 401 

Data and Code Availability 402 

Preprocessed data and code are publicly available at GitHub (https://github.com/reispat/ 403 

av_speech_mask). 404 

Results 405 

Twenty-nine participants listened to audiobooks with a corresponding video of the speaker and a 406 

randomly occurring audio-only distractor. Source-localized MEG responses to acoustic features 407 

(spectrogram and acoustic onsets) and lip movements were predicted using forward models 408 

(TRFs). We compared the TRFs between the two conditions and evaluated neural tracking of the 409 

acoustic features and lip movements. The individual benefit of lip movements was obtained by 410 

controlling for acoustic features and was compared between conditions. Using Bayesian 411 

multilevel modeling, we predicted the behavioral measures with neural tracking. We also probed 412 

the individual benefit of lip movements for their behavioral relevance by predicting the behavioral 413 

measures when the lips were occluded with a surgical face mask or not.  414 
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Listening situations with multiple speakers are behaviorally more demanding 415 

Participants performed worse in the multi speaker condition (M = 62.93%, SD = 17.34%), 416 

compared to the single speaker condition (M = 73.52%, SD = 9.71%; W = 73.00, p = .003, rC = 417 

0.64). In the multi speaker condition, subjective difficulty ratings were higher (M = 3.67, SD = 0.82) 418 

than in the single speaker condition (M = 2.47, SD = 0.71; W = 11.50, p = 9.00e-06, rC = -0.95). 419 

Motivation was rated higher in the single speaker condition (M = 3.91, SD = 0.74) compared to 420 

the multi speaker condition (M = 3.72, SD = 0.85; W = 29.00, p = .024, rC = 0.62). Overall, 421 

behavioral data showed that in the multi speaker condition, participants performed worse, 422 

reported the task to be more difficult and were less motivated (Figure 1B). 423 

Neural responses to lip movements are enhanced in a multi speaker setting 424 

First, we analyzed the neural responses to acoustic and visual speech features by statistically 425 

comparing the corresponding TRFs between the single- and multi speaker conditions within their 426 

respective fROIs (Figure 2A). The spectrogram TRFs showed a significant difference between 427 

conditions, with three clusters extending from early (30 to 110 ms; t = -5.26, p = .0001, d = -0.81), 428 

middle (160 to 290 ms; t = -3.78, p = .003, d = -1.00) and late (310 to 470 ms; t = -5.58, p = .0001, 429 

d = -1.02) time ranges. Grand-average TRF peaks are more pronounced in the single speaker 430 

condition, with two peaks at 70 and 180 ms. While the first peak is also present in the multi speaker 431 

condition, the second peak appeared 50 ms earlier than the single speaker setting. The latter 432 

peak caused the largest differences in the magnitudes of the TRFs, which are most prominent in 433 

the right hemisphere of the fROI. 434 

The TRFs to acoustic onsets showed a significant difference between single- and multi speaker 435 

speech, with three clusters extending from early (-20 to 80 ms; t = -5.39, p < .001, d = -1.10; 436 

Figure 2A), mid (120 to 140 ms; t = -4.54, p = .004, d = -1.43) and mid-late (190 to 260 ms; t = -437 

6.11, p < .001, d = -1.13) time windows. The TRFs showed two peaks at 70 and 190 ms in the 438 

single speaker condition. Similar to the spectrogram TRFs, the first peak in the multi speaker 439 

condition is at the same time point as in the single speaker condition and the second peak is 50 440 

ms earlier. The magnitude differences across peaks and hemispheres are not substantially 441 

different. 442 

TRFs to lip movements show an opposite pattern to the TRFs to acoustic features, with stronger 443 

processing in the multi speaker condition. Significant condition differences in the TRFs to lip 444 

movements between single- and multi speaker speech were found, with four clusters extending 445 
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from early (-20 to 70 ms; t = 4.41, p = .0005, d = 0.86; Figure 2A), mid (140 to 270 ms; t = 3.97, 446 

p = .001, d = 0.88), mid-late (290 to 330 ms; t = 3.34, p = .01, d = 0.91) and late (420 to 460 ms; 447 

t = 3.90, p = .002, d = 0.90) time windows. The latencies of the peaks were later in general (160 448 

and 290 ms), as compared to the acoustic TRFs, which is also in line with the longer duration for 449 

a stimulus to reach the visual system (Thorpe et al., 1996; VanRullen & Thorpe, 2001). In the 450 

single speaker condition, they are delayed by 10 ms, and magnitude differences are most 451 

prominent in the first peak and left hemisphere. 452 

Our initial analysis showed that neural responses to acoustic features are stronger when speech 453 

is clear. In contrast, neural responses to lip movements were enhanced in a multi speaker 454 

environment. The stronger processing of lip movements suggests a greater reliance on the lips 455 

of a speaker when speech is harder to understand. 456 
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Figure 2. Neural responses to audiovisual speech features, neural speech tracking, and the benefit of lip 457 

movements. (A) The three plots show grand-averaged TRFs for the stimulus features in their respective 458 

fROIs and the peak magnitude contrasts (multi speaker vs. single speaker) between the two conditions in 459 

the involved sources. For the acoustic features, TRF magnitudes were generally enhanced when speech 460 

was clear, with significant differences ranging from p = .004 to p < .001 (d = -0.81 to -1.43). In contrast, the 461 

TRF to lip movements showed an enhanced magnitude in the multi speaker condition (p = .01 to p = .0005 462 

and effect sizes from d = 0.86 to 0.91). The shaded areas of the respective conditions represent the 463 

standard error of the mean (SEM). Gray bars indicate the temporal extent of significant differences (p < 464 

.05) between the two conditions. (B) Neural speech tracking is shown for the non-averaged and averaged 465 

fROIs of the acoustic and lip models. Acoustic neural tracking was higher in the single speaker condition, 466 

with significant left- and right-hemispheric differences (both p < .001 with d from -1.30 to -1.47; averaged: 467 

p = 8.76e-09, d = -1.30). Lip movements were tracked higher in the multi speaker condition (p = .037, d = 468 

0.51; averaged: p = .026, rC = 0.48). In the averaged plots, the black dots represent the mean, and the 469 

corresponding bars the SEM, of the respective condition. (C) In a combined acoustic and lip fROI, the 470 

acoustic model showed higher neural tracking in the single speaker condition (p = 7.68e-08, d = 1.18). The 471 

benefit of lip movements was obtained by subtracting the acoustic model from the acoustic+lip model and 472 

expressed as percentage change. Lip movements especially enhanced neural tracking in the multi speaker 473 

condition (p = .00003, rC = 0.89). Participants showed high interindividual variability with a visual benefit of 474 

up to 45.37%, but also only a small benefit or no benefit at all. The black dots represent the mean, and the 475 

corresponding bars the SEM, of the respective condition. *p < .05, **p < .01, ***p < .001 476 

The cocktail party diametrically affects acoustic and visual neural speech tracking 477 

So far, the TRF results indicate a stronger neural response to lip movements and a weaker one 478 

to acoustic features when there is more than one simultaneous speaker. We also wanted to 479 

answer the question whether neural tracking of audiovisual speech features differs between the 480 

single speaker and multi speaker conditions in their respective fROIs (Figure 2B; see Figure S1 481 

for whole-brain neural tracking of the audiovisual speech features). Acoustic neural tracking in 482 

the non-averaged acoustic fROI showed a significant condition difference in the left (t = -8.04, p 483 

< .001, d = -1.47) and right (t = -9.26, p < .001, d = -1.30) hemispheres. Averaged acoustic neural 484 

tracking was higher in the single speaker condition than in the multi speaker condition (t(28) = -485 

8.07, p = 8.76e-09, d = -1.30). Neural tracking of lip movements showed a significant condition 486 

difference in the left hemisphere (t = 3.83, p = .037, d = 0.51; Figure 2B), with a focal inferior 487 

parietal area involved. When averaging over sources, neural tracking was higher in the multi 488 

speaker condition than in the single speaker condition (W = 114.00, p = .026, rC = 0.48). 489 
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Overall, the results showed that neural tracking was enhanced for acoustic features when speech 490 

is clear, and higher for lip movements when there are multiple speakers. This is in line with the 491 

observed neural responses. 492 

Lip movements enhance neural speech tracking more in multi speaker situations 493 

When there are two speakers, we have so far demonstrated that lip movements are processed 494 

more strongly and lead to higher neural tracking compared to one speaker. However, their unique 495 

contribution to neural tracking is still unknown, due to the intercorrelation of speech features 496 

(Chandrasekaran et al., 2009; Daube et al., 2019). To address this, we controlled for the acoustic 497 

features so as to obtain the unique benefit of lip movements over and above acoustic speech 498 

features. First, the acoustic model was evaluated in the audiovisual fROI (Figure 2C). Acoustic 499 

neural tracking was higher in the single speaker condition than in the multi speaker condition 500 

(t(28) = -7.20, p = 7.68e-08, d = 1.18). The acoustic model served as a baseline and was subtracted 501 

from a combined acoustic+lip model and expressed as percentage change. The obtained benefit 502 

of lip movements was higher in the multi speaker condition than in the single speaker condition 503 

(W = 24.00, p = .00003, rC = 0.89). The benefit of lip movements showed high interindividual 504 

variability and seemed to follow a bimodal distribution (Figure 2C), which was confirmed by a 505 

bimodality coefficient of 0.68 (values > 0.555 indicate bimodality; Pfister et al., 2013). 506 

These results strongly indicate that lip movements enhance neural tracking, especially in multi-507 

talker speech. However, substantial interindividual variability was observed, with participants 508 

showing an individual benefit of lip movements of up to 45.37% in the multi speaker condition, 509 

while others showed only a small benefit or no benefit at all. In the next steps, we will probe the 510 

behavioral relevance of the benefit that lip movements provide to neural speech tracking by 511 

depriving individuals of this source of information. 512 

Only acoustic neural speech tracking predicts behavior 513 

Having established that listening situations with two speakers affect neural tracking of acoustic 514 

and visual speech features in a diametrical way, we were further interested if neural tracking is 515 

able to predict the behavioral measures. We calculated Bayesian multilevel models to predict the 516 

three behavioral measures (performance, difficulty and motivation; see Figure 1B) with the 517 

averaged neural tracking of the acoustic and lip models (Figure 3). In the acoustic model, higher 518 

neural tracking was linked to higher performance (b = 0.29, 89% CI = [0.07, 0.51], PPb>0 = 519 

98.37%). Lower neural tracking predicted higher difficulty ratings (b = -0.50, 89% CI = [-0.72, -520 
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0.29], PPb>0 = 0.01%). When neural tracking was high, the motivation ratings were also higher (b 521 

= 0.12, 89% CI = [0.004, 0.24], PPb>0 = 95.05%). 522 

Neural tracking of lip movements was not related to performance (b = 0.06, 89% CI = [-0.18, 0.28], 523 

PPb>0 = 65.61%; Figure 3). We also observed no evidence for an effect of the difficulty (b = -0.05, 524 

89% CI = [-0.28, 0.18], PPb>0 = 35.63%) or motivation (b = 0.09, 89% CI = [-0.08, 0.26], PPb>0 = 525 

80.40%) ratings. 526 

These results indicate that acoustic neural speech tracking predicts behavior: The higher the 527 

neural speech tracking, the higher the performance and motivation ratings. Lower acoustic neural 528 

speech tracking was linked to higher difficulty ratings. In contrast, neural speech tracking of lip 529 

movements did not predict behavior. 530 

Figure 3. Relating behavior to neural speech tracking. Bayesian multilevel models were fitted to predict the 531 

behavioral measures with neural speech tracking. Higher acoustic neural speech tracking was linked to 532 

higher performance, lower difficulty ratings and higher motivation ratings. No evidence for an effect was 533 

observed for the neural tracking of lip movements. The shaded areas show the 89% CIs of the respective 534 

model. The distributions on the right show the posterior draws of the three models. The black dots represent 535 

the mean standardized regression coefficient b of the corresponding model. The corresponding bars show 536 

the 89% CI. If zero was not part of the 89% CI, the effect was considered significant (*). 537 
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Stronger benefit of lip movements predicts behavioral deterioration when lips are occluded 538 

Given the finding that lip movements enhance neural speech tracking (Figure 2C), we were 539 

interested in whether this visual benefit is behaviorally relevant. To do so, we also used the 540 

behavioral data from the otherwise unanalyzed conditions in which the mouth was occluded by a 541 

surgical face mask (see Figure 4 for an example). Given that critical visual information is missing 542 

in these conditions, individuals who show a strong benefit of lip movements on a neural level 543 

should show poorer behavioral outcomes. An initial analysis showed that the effect of the 544 

conditions with a surgical face mask on behavior followed the same pattern as those with non-545 

occluded lips (see Figure 1B), although with no effect on the motivation ratings. These control 546 

models are reported in Supplementary Table 1. 547 

While the effects on a solely behavioral level seem not to differ when the lips are occluded or not, 548 

predicting the behavioral measures with the lip benefit showed the expected outcome (Figure 4): 549 

Participants that had a higher benefit of lip movements in terms of neural tracking showed a 550 

decline in performance (b = -0.27, 89% CI = [-0.49, -0.06], PPb>0 = 2.21%) and reported the task 551 

to be more difficult (b = 0.25, 89% CI = [0.01, 0.51], PPb>0 = 95.41%). The motivation ratings did 552 

not yield an effect (b = 0.05, 89% CI = [-0.07, 0.18], PPb>0 = 76.14%). 553 

Interestingly, we were not able to establish a link between the benefit of lip movements to the 554 

behavioral data when the lips were not occluded (Figure 4; see Supplementary Table 2 for model 555 

fits). Taken together, these findings support a behavioral relevance of the benefit of lip 556 

movements. Individuals that benefit more from lip movements on a neural level performed worse 557 

and reported the task to be more difficult when the mouth of the speaker was covered by a surgical 558 

face mask. 559 
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Figure 4. Relating the benefit of lip movements to behavior. The benefit of lip movements was used to 560 

predict the behavioral measures when the lips are occluded or not. The values of the fitted Bayesian 561 

multilevel models are shown with a depiction of the conditions in which the speakers wore a surgical face 562 

mask. When the benefit of lip movements was high, performance was lower, and difficulty was reported 563 

higher. No evidence for an effect was observed for the motivation rating. The behavioral measures when 564 

the lips were not occluded were not linked to the benefit of lip movements. The shaded areas show the 565 

89% CIs of the respective model. The distributions on the right show the posterior draws of the three 566 

models. The black dots represent the mean standardized regression coefficient b of the corresponding 567 

model. The corresponding bars show the 89% CI. If zero was not part of the 89% CI, the effect was 568 

considered significant (*). Speakers have been blurred due to a bioRxiv policy on the inclusion of faces. 569 

Discussion 570 

Neural speech tracking is widely used to study the neural processing of continuous speech, 571 

though primarily with audio-only stimuli (Brodbeck, Hong, et al., 2018; Chalas et al., 2022; 572 

Di Liberto et al., 2015; Keitel et al., 2018). Recent studies have used audiovisual speech settings, 573 

but without directly modeling the visual speech features (Crosse, Liberto, et al., 2016; Golumbic 574 

et al., 2013) or not incorporating their temporal dynamics due to the use of frequency-based 575 

methods (Aller et al., 2022; Bröhl et al., 2022; Park et al., 2016). Here, we show, for the first time, 576 

the temporal dynamics and cortical origins of TRFs obtained from lip movements in an audiovisual 577 
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setting with one or two speakers. Using these neural responses, we demonstrate that the neural 578 

tracking of lip movements is enhanced in a multi speaker situation compared to a single speaker. 579 

When controlling for acoustic speech features, we show that the obtained benefit of lip 580 

movements is enhanced in the multi speaker condition, although with high interindividual 581 

variability. Using Bayesian modeling, we demonstrate that acoustic neural speech tracking 582 

predicts the behavioral measures. Furthermore, individuals who displayed a higher benefit of lip 583 

movements showed a stronger behavioral decline when the mouth was occluded with a surgical 584 

face mask. Our findings show that individuals vary highly in their visual speech benefit and provide 585 

new insights into the behavioral relevance of neural speech tracking. 586 

Neural responses to audiovisual speech 587 

Similar to Brodbeck, Hong, et al. (2018), neural responses to acoustic features in the two-speaker 588 

paradigm were generally weaker. The TRFs to lip movements showed an opposite pattern, with 589 

an enhanced magnitude in the multi speaker condition (Figure 2A), and with substantially later 590 

peaks compared to the TRF to acoustic features. This is in line with Bourguignon et al. (2020), 591 

where initial TRF peaks at 115 and 159 ms were shown from two significant sources, overlapping 592 

with our involved parietal and occipital sources (see Figure 1C). However, the TRFs in their work 593 

were modeled to lip movements from silent videos, which precludes a comparison between 594 

different listening situations. Our findings also strengthen the argument that TRFs to visual speech 595 

are qualitatively different from TRFs to acoustic speech (for coherence, see Park et al., 2016), 596 

despite the high intercorrelation of speech features (Chandrasekaran et al., 2009). 597 

Neural tracking of audiovisual speech 598 

Based on the source-localized neural tracking, we determined fROIs via a data-driven approach 599 

– separately for the acoustic features and lip movements (see Figure 1C). The fROIs for the 600 

acoustic speech features involved sources along temporal, parietal and posterior frontal regions, 601 

covering regions that are related to speech perception (Franken et al., 2022). Previous studies 602 

source-localized TRFs in audio-only settings, though commonly restricting the analysis to 603 

temporal regions (e.g. Brodbeck, Hong, et al., 2018; Kulasingham et al., 2020). The fROIs for the 604 

lip movements involved parietal and occipital regions, in line with previous studies that source-605 

localized the neural tracking of lip movements (Aller et al., 2022; Bourguignon et al., 2020; 606 

Hauswald et al., 2018). Similar to Park et al. (2016), we also observed neural tracking of lip 607 

movements in temporal regions (see Figure S1), but with less involvement of the primary visual 608 

cortex and prominent only in the single speaker condition. Due to our approach of defining our 609 
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fROIs based on the multi speaker condition, we removed any involvement of auditory regions in 610 

the lip fROIs. In contrast to Park et al. (2016), we did not observe neural tracking of lip movements 611 

in motor regions, resulting in no involvement of related sources in the lip fROIs. 612 

When analyzing neural speech tracking in the acoustic fROIs, we showed a large effect with 613 

enhanced tracking in the single speaker condition compared to the multi speaker condition (Figure 614 

2B). We did not find a previous study that showed such a statistical contrast, which could be due 615 

to the general focus on neural tracking of attended versus unattended speech, especially to 616 

decode auditory attention (e.g. Ciccarelli et al., 2019; Geirnaert et al., 2021; Mirkovic et al., 2015; 617 

J. A. O’Sullivan et al., 2015; Schäfer et al., 2018). On a group level, the neural tracking of lip 618 

movements showed an enhancement in the multi speaker condition (Figure 2B). When comparing 619 

the involved sources of the corresponding lip fROI, we found a medium effect in the left superior 620 

parietal cortex. This is well in line with Park et al. (2016), showing an effect in left occipital and 621 

parietal cortex when comparing two similar conditions to our design (“AV congruent vs. All 622 

congruent”), although after partializing out auditory-related coherence. When we averaged the 623 

neural tracking of lip movements, we observed interesting patterns, with participants showing no 624 

meaningful neural tracking (i.e. close to zero or negative correlations) when there was one 625 

speaker, but when speech became challenging, their neural tracking reached positive values. 626 

Notably, this pattern was reversed for some participants, suggesting that not all of them used the 627 

lip movements in the same manner. To investigate this further, eye tracking should be used to 628 

identify which face regions participants fixated when attending audiovisual speech (e.g. Rennig & 629 

Beauchamp, 2018) or to additionally incorporate a recently proposed phenomenon termed “ocular 630 

speech tracking” (Gehmacher et al., 2023). Altogether, this is the first time that neural tracking of 631 

lip movements has been quantified in the context of TRFs, although with substantially smaller 632 

correlations as compared to acoustic speech tracking. Other algorithms, such as ridge regression, 633 

could, in principle, yield higher values due to their optimization towards maximizing neural tracking 634 

values (for a comparison of algorithms, see Kulasingham & Simon, 2022). 635 

Benefit of lip movements 636 

We first compared the neural tracking of audiovisual speech between single speaker and multi 637 

speaker conditions in an isolated manner. Due to the aforementioned inter-correlation of speech 638 

features (Chandrasekaran et al., 2009; Daube et al., 2019), this approach could not rule out any 639 

acoustic contributions to the neural tracking of lip movements or vice versa. To reveal the unique 640 

benefit of lip movements and to incorporate regions that are part of models of audiovisual speech 641 
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perception (Bernstein & Liebenthal, 2014) and multisensory integration (Peelle & Sommers, 642 

2015), we combined both fROIs and controlled for acoustic speech features. Within the TRF 643 

framework, we provide first evidence that lip movements enhance acoustic-controlled neural 644 

speech tracking (Figure 2C). A general enhancement was observed for both single- and multi 645 

speaker speech, which is in line with behavioral findings that visual speech features enhance 646 

intelligibility under clear speech conditions as well (Blackburn et al., 2019; Stacey et al., 2016). 647 

When comparing the two conditions, we observed a large effect, showing a higher benefit of lip 648 

movements in the multi speaker condition. Our findings are also well in line with a previous study 649 

(Park et al., 2016) that used partial coherence to remove auditory-related contributions, showing 650 

higher coherence in a challenging audiovisual speech situation compared to a condition where 651 

the audiovisual input was congruent. 652 

Analogous to behavioral findings in Aller et al. (2022), the benefit of lip movements showed high 653 

interindividual variability (see Figure 2C) and followed a bimodal distribution. Some individuals 654 

benefited massively from lip movements, while others showed only a small benefit or none at all. 655 

Interestingly, one individual even showed a negative influence when adding lip movements to the 656 

acoustic model when there was only one speaker. As soon as speech became challenging, that 657 

individual benefited from the lip information. Overall, these findings are in line with the beneficial 658 

effects of visual speech when listening is challenging (e.g. Grant & Seitz, 2000; Remez, 2012; 659 

Ross et al., 2007; Sumby & Pollack, 1954). Given our moderate sample size, we refrained from 660 

conducting further analysis by defining groups of individuals who showed a higher or lower benefit 661 

of lip movements. Future studies should include more participants, as well as hearing-impaired 662 

populations. A recent study that used neural tracking showed an increased audiovisual speech 663 

benefit when speech was noisy (Puschmann et al., 2019). This could also provide a clearer picture 664 

of how individuals benefit from lip movements in terms of neural tracking. Previous studies used 665 

only the acoustic envelope to investigate the benefit of visual speech features on neural speech 666 

tracking (Crosse, Liberto, et al., 2016; Golumbic et al., 2013). Here, we also incorporated lip 667 

movements to provide a more complete picture of the unique benefit of visual speech features in 668 

audiovisual settings with naturalistic stimuli (Hamilton & Huth, 2020; A. E. O’Sullivan et al., 2019). 669 

Predicting behavior with neural tracking 670 

Our initial analysis of the behavioral measures suggests a higher cognitive demand when speech 671 

was challenging (Figure 1B). Participants displayed lower task performance, higher difficulty 672 

ratings and lower motivation ratings when more than one speaker was involved (Figure 1B). The 673 
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influence of challenging speech is also reflected in the findings of neural speech tracking (Figure 674 

2B). Building on these results, we used Bayesian multilevel modeling to establish a link between 675 

neural speech tracking and behavior (Figure 3). Higher acoustic neural tracking is related to 676 

higher task performance, a finding also reported in a study that used vocoded speech (Chen et 677 

al., 2023). We also show that higher acoustic neural tracking is related to lower difficulty ratings. 678 

This is in line with a study that showed a positive relationship between speech intelligibility ratings 679 

and acoustic neural tracking, though using speech-in-noise (Ding & Simon, 2013). Higher 680 

motivation ratings were associated with higher acoustic neural tracking – in contrast to Schubert 681 

et al. (2023) – showing no relationship between the two measures. We were not able to establish 682 

any link between the neural tracking of lip movements and the behavioral measures. It is important 683 

to note here that the analyzed neural tracking of lip movements was not yet controlled for speech 684 

acoustics (Gillis et al., 2022), which could confound any relationship with behavior. A recent MEG 685 

study impressively showed that the neural tracking of acoustic speech features can explain 686 

cortical responses to higher-order linguistic features, such as phoneme onsets (Daube et al., 687 

2019), emphasizing the importance of controlling acoustics (see also Gillis et al., 2021). 688 

The COVID-19 pandemic established the use of face masks on a global scale (Feng et al., 2020). 689 

However, it has been demonstrated that covering the mouth has adverse effects on behavioral 690 

measures, such as speech perception (e.g. Rahne et al., 2021). On a neural level, Haider et al. 691 

(2022) showed that surgical face masks impair the neural tracking of acoustic and higher-order 692 

segmentational speech features. However, the consequences of an absence of visual speech 693 

were not analyzed in this study. Here, we establish a relationship between behavioral measures 694 

and the individual benefit of visual speech on neural tracking. When the speaker wore a surgical 695 

face mask, individuals that benefit more from lip movements displayed lower task performance 696 

and higher difficulty ratings. Strikingly, no effect was found when the speaker did not wear a 697 

surgical face mask. Overall, our results suggest that individuals who use lip movements more 698 

effectively show behavioral deterioration when visual speech is absent. However, further studies 699 

with larger sample sizes are needed to disentangle the potential influence of experimental 700 

conditions on this relationship, e.g. using Bayesian mediation analysis (Nuijten et al., 2015; Yuan 701 

& MacKinnon, 2009). 702 

Conclusion 703 

The current study provides first evidence for the substantial interindividual variability in the neural 704 

tracking of lip movements and its relationship to behavior. First, we show that neural responses 705 
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to lip movements are more pronounced when speech is challenging, compared to when speech 706 

is clear. We show that lip movements effectively enhance neural speech tracking in brain regions 707 

related to audiovisual speech, with high interindividual variability. Furthermore, we demonstrate 708 

that this individual visual benefit is behaviorally relevant. Individuals that benefit more from lip 709 

movements have a lower task performance and rate the task to be more difficult when the speaker 710 

wears a surgical face mask. Remarkably, this relationship is completely absent when the speaker 711 

did not wear a mask. Our results provide new insights into the individual differences in the neural 712 

tracking of lip movements and offer potential implications for future clinical and audiological 713 

settings to objectively assess audiovisual speech perception. 714 
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Supplementary Materials 1110 

Figure S1. Whole-brain neural tracking of the audiovisual speech features. Neural tracking (r) of all sources 1111 

is shown for the acoustic model (spectrogram and acoustic onsets) and the lip model (lip movements). 1112 

Conditions 

b 89% CI PPb>0 

Performance (occluded lips) -0.77 [-1.13, -0.41]* 0.07%* 

Difficulty (occluded lips) 1.26 [1.04, 1.49]* 100%* 

Motivation (occluded lips) -0.11 [-0.27, 0.04] 11.11% 

1113 

1114 

Supplementary Table 1. Effects of conditions on behavior when the lips are occluded. The formula was: 

behavioral measure ~ 1 + conditions + (1 | participant). *89% CI not including zero and PPb>0 below 5.5% 

or above 94.5% (i.e. significant effect). 1115 
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Benefit of lip movements 

b 89% CI PPb>0 

Performance -0.05 [-0.28, 0.17] 36.09% 

Difficulty 0.04 [-0.19, 0.28] 60.86% 

Motivation 0.06 [-0.08, 0.19] 76.64% 

Supplementary Table 2. Effects of the benefit of lip movements on behavior when the lips are 1116 

not occluded. 1117 
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