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Abstract 
Hand drawing involves multiple neural systems for planning and precise control of sequential 
movements, making it a valuable cognitive test for older adults. However, conventional visual 
assessment of drawings may not capture intricate nuances that could help track cognitive 
states. To address this issue, we utilized a deep-learning model, PentaMind, to examine 
cognition-related features from hand-drawn images of intersecting pentagons. PentaMind, 
trained on 13,777 images from 3,111 participants in three aging cohorts, explained 23.3% of the 
variance in global cognitive scores, a comprehensive hour-long cognitive battery. The model's 
performance, which was 1.92 times more accurate than conventional visual assessment, 
significantly improved the detection of cognitive decline. The improvement in accuracy was due 
to capturing additional drawing features that we found to be associated with motor impairments 
and cerebrovascular pathologies. By systematically modifying the input images, we discovered 
several important drawing attributes for cognition, including line waviness. Our results 
demonstrate that hand-drawn images can provide rich cognitive information, enabling rapid 
assessment of cognitive decline and suggesting potential clinical implications in dementia. 

Introduction 
Copying geometric or abstract figures is a complex behavior that requires the integration of 
multiple cognitive domains, including executive function to initiate the task, visuospatial abilities 
to carry it out, and, to a lesser extent, semantic memory to produce the correct image. 
Therefore, paper-and-pencil drawing tasks are often employed independently or as part of a 
larger screening tool to detect cognitive impairment, including Alzheimer's dementia1,2, and 
Parkinson's disease3,4. For example, copying intersecting pentagons, the Pentagon Drawing 
Test (PDT), is used as one of the items in the 30-item Mini-Mental State Examination (MMSE) - 
a common tool to evaluate a person's mental health and identify potential cognitive 
impairments5. PDT involves asking the participants to draw two intersecting pentagons on a 
piece of paper. In the MMSE, the intersecting pentagons are rated simply 0 (fail) or 1 (pass) 
based on limited factors. More detailed evaluations of the intersecting pentagons have been 
shown to provide granular-level information about a person's cognitive abilities and potential 
dementia status1,6. 
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While paper-and-pencil drawing tests, like the PDT, can be a useful tool in assessing a person's 
cognitive abilities, the conventional scoring has some limitations. First, these tests are often 
prone to subjective assessment and rater bias with different raters potentially having different 
interpretations of the drawings, which can lead to inconsistencies in the scoring and potentially 
impact the accuracy of the results. Secondly, these tests can be labor-intensive and time-
consuming to score, particularly when used within a larger population. Finally, these tests are 
typically focused on a limited set of drawing attributes. For example, the PDT scoring is based 
on only a few factors, such as the presence or absence of intersections and the number of 
vertices5, which only capture limited aspects of behavior and hence cognitive status1. Thus, 
while paper-and-pencil drawing tests can be useful, their human-based scoring has limitations in 
scope, accuracy and scalability. 
 
Automated scoring methods that utilize machine learning methods offer the potential to address 
some or all of these weaknesses. For example, deep-learning techniques have demonstrated 
promising performance in automating ratings for the PDT7,8, Rey Complex Figure Test9,10, and 
Clock Drawing Test11,12. However, the primary objective of the previous automated scoring is to 
reproduce human-based conventional ratings and few machine learning approaches directly 
predict cognitive performance from drawings13. In addition, prior work has not been able to 
explore the factors that may confound or mediate the characteristics of cognitive impairment in 
intersecting pentagons, such as motor abilities and brain pathologies. Generating such 
integrated mechanisms requires drawing images, various phenotypes, and multiple brain 
pathologies assayed in the same set of individuals and the analytical frameworks to integrate 
these data. Furthermore, none of the studies utilized the models to discover the novel drawing 
features associated with cognitive impairment, which may be important for advancing our 
understanding of visuospatial memory ability and motor coordination of drawing in older adults. 
 
Here, we leveraged data from 3,111 participants from three ongoing cohort studies of aging and 
dementia at the Rush Alzheimer’s Disease Center (RADC) to train a deep learning model that 
predicts global cognition performance (Figure 1A). By performing a thorough evaluation of 47 
established deep-learning models for vision recognition, we identified an architecture that 
demonstrated high and robust performance. Along with detailed cognitive tests, we were also 
able to incorporate comprehensive motor examinations conducted with participants and a 
variety of neuropathologies recorded for several hundred of participants. We used these data to 
break down the non-cognitive and pathological components of the model's prediction. 
Furthermore, to address the challenge of interpretability of deep learning models, we developed 
a pentagon-drawing simulator. This simulator is an explainable-AI approach that allowed us to 
interrogate the deep learning model to suggest the key drawing characteristics in people with 
lower cognitive function.  
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Results 

Characteristics of study participants 
Participants enrolled at the age of 77.4 (SD: 7.6) with a follow-up of 5.6 years (SD: 4.6) (Table 
1), on average. Of participants, non-Latino white (77.6%) is the most common race, followed by 
African American (21.6%). At yearly home visits, participants received comprehensive cognitive 
assessments, which included 19 tests used to generate a composite measure of global 
cognition. In addition, the pentagon drawing test was administered as one of the items of the 
standard MMSE. Note that the pentagon drawing test is not included in global cognition which is 
based on 19 measures independent of MMSE. We scanned 13,777 drawings of intersecting 
pentagons obtained throughout the visits. 

Model architecture for predicting cognition via drawing (PentaMind) 
To develop models that predict global cognition from intersecting pentagon drawings, we 
comprehensively evaluated 47 published convolutional neural network models for image 
recognition (Methods). The 47 models were designed and trained to categorize images into 
1,000 object classes14. We modified the model structures so that the final output layer outputs a 
numeric value instead of object classes. As we collected multiple images from the same 
participant across the period, we used a person-based split rather than an image-based split to 
ensure that models were not trained with images from the same participants in both the training 
and validation/test sets. Specifically, we randomly divided 3,111 participants into a training set 
(80%), a validation set (10%), and a test set (10%). To improve the reliability of performance 
evaluation, we repeated the training procedure five times using five distinct sets of training and 
validation samples.  
 
Figure 1B indicates the comparative performance of the models based on Spearman’s 
correlation and root mean squared error (RMSE) for the validation sets. We selected a model 
that demonstrated superior performance in both correlation and RMSE metrics for further 
investigation. Specifically, we calculated a composite ranking as an average of the rankings 
based on Spearman's correlation and RMSE. The model that ranked highest overall among the 
47 models was the model based on VGG19 with batch normalization (VGG19-BN), which we 
named PentaMind. This model ranked second in Spearman’s correlation (0.41) and fourth in 
RMSE (0.40). The accuracy of PentaMind on the test sets was reasonably high, with a 
Spearman’s correlation of 0.44 and an RMSE of 0.42. Importantly, the performances of models 
on validation and testing sets are highly congruent, indicating that selecting a representative 
model based on validation sets did not introduce bias (Figure 1C). 

Evaluation of PentaMind using test dataset 
To conduct a series of evaluations for our PentaMind, we predicted  
the global cognition from all 13,777 images. However, applying the model to training samples 
may introduce bias into the estimates. To prevent this, we retrained PentaMind using an out-of-
fold prediction strategy. Specifically, we divided the images into ten non-overlapping folds. 
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Then, we trained the model using nine folds and tested on the left-out tenth fold. This procedure 
was repeated for each of the ten folds, resulting in ten models, each trained on different sets of 
training and holdout images. By concatenating the predicted global cognitive function for the 
holdout samples, we obtained an unbiased prediction for all 13,777 images, which could then be 
used to calculate overall prediction accuracy and examine the characteristics of our prediction 
(Figure S1). 
 
The predicted cognition score explained 23.3% of the variance in global cognition, which is 1.92 
times greater than that of manual standard binary scoring (Figure 2A and Table S1) that is 
based on the presence or absence of intersections and the number of vertices. A regression 
model using PentaMind-predicted scores and human binary scores as covariates was able to 
explain 24.7% of the variance in global cognition together. Notably, the PentaMind’s predictions 
were the primary contributor as compared to the binary scoring, independently explaining 18.0% 
of the variance (Table S1). Next, we investigated whether PentaMind could differentiate 
cognitive status with the images scored as 1 (pass/normal) by the conventional clinical 
evaluation. Intriguingly, the PentaMind exhibited a Spearman correlation of 0.32, accounting for 
10.0% of the variance in the global cognition score (Figure 2B and Table S2). The PentaMind 
accounted for more variance (24%) in a group of failed pentagons (score = 0 from binary 
scoring), but there was no significant difference in variance explained between the groups 
(p=0.41). These findings demonstrate that our PentaMind can capture nuanced characteristics 
of human drawings that are undetectable, unquantifiable, or omitted by the conventional clinical 
assessment. 

Generalization of PentaMind across race 
By leveraging the racial diversity of our observational community-based cohorts, we examined 
the generalizability of our model across race. To do this, we calculated prediction performance 
separately for white participants (77.6% of participants) and those identifying as African 
American (21.6% of participants). The predictive performance based on Spearman’s correlation 
for the two racial groups were 0.42 and 0.43, respectively (Figure 2C), while the percentage of 
variance in cognitive score explained by PentaMind for white and African American participants 
were 23.2% and 24.1%, respectively (Table S3). This comparable performance demonstrates 
that our model may successfully generalize across both white and African American 
participants. 

Relationship of PentaMind’s prediction with clinical phenotypes 
Global cognition is a summary representation of various aspects of cognitive functions. To 
understand whether the improvement of PentaMind over the conventional clinical assessment is 
attributed to the model's ability to capture specific cognitive components, we analyzed various 
phenotypic measurements acquired simultaneously from the same individual. Specifically, we 
explored the link of the predicted global cognition with five domains of global cognition and ten 
motor functions that are known to be associated with cognitive impairment (Table S4). Motor 
function is a complicated action that may necessitate the use of many clinical instruments to 
capture the various deficiencies that appear in older adults. Therefore, we investigated two 
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interrelated motor phenotypes, a global parkinsonism score and a global motor score, and their 
domains. 
 
All 15 phenotypes were significantly associated with global cognition score predicted by 
PentaMind (Bonferroni-corrected-p < 0.05), but only eight were associated with the conventional 
binary scoring (Figure 3 and Table S5). Overall, PentaMind accounted for about five times more 
variance than the manual binary scoring alone. Notably, this tendency was more pronounced for 
motor-related phenotypes than for cognition domains, where the predicted score of PentMind 
was significantly more strongly associated with motor phenotypes than the manual binary 
scores, with a magnitude of 6.4 times. While for cognitive scores, the predicted score was also 
more strongly associated than the manual binary scores, the effect size was smaller, with a 
magnitude of 2.6 times. The result implies that PentaMind’s improved performance is partly due 
to its capability to extract signals pertaining to motor impairment from a handwriting image that 
may be associated with global cognition. The result also highlights the limitation of the 
conventional scoring, which is dependent on basic indicators such as the number of vertices 
and the presence of the intersection of two pentagons.  

Relationship of PentaMind’s prediction with brain pathologies 
The existence of brain pathologies is the leading cause of cognitive impairment. Consequently, 
it is important to determine if the global cognition score predicted by the pentagon represents 
cognitive impairment tied to specific brain pathologies. Therefore, we associated a broad 
spectrum of brain pathologies, including classical AD pathologies, Lewy bodies, TDP-43, and 
cerebrovascular pathologies, with the global cognition score predicted by PentaMind based on 
the PDT closest to death (Table S6). Out of 20 pathologic indices, nine were associated with the 
predicted global cognition (Bonferroni-corrected-p < 0.05), while six were associated with the 
conventional binary score (Figure 4 and Table S7). Comparable effect sizes for classical AD 
pathologies, including NIA-Reagan and global AD pathology, were observed between the 
predicted global cognition by PentaMind and the conventional score. By contrast, the 
PentaMind’s prediction showed stronger associations with cerebrovascular disease, specifically 
vessels disease of atherosclerosis and arteriolosclerosis, as well as loss of pigmented neurons 
in the substantia nigra.  
 
Since PentaMind appeared to have an advantage in detecting motor-related cognitive 
impairment as outlined above, these pathologies might be tied to their known effects on motor 
function15. To examine this hypothesis, we contrasted motor dexterity with the 20 brain 
pathologies. We found that the cerebrovascular pathologies of atherosclerosis and 
arteriolosclerosis and nigral neuronal loss were more robustly associated with motor dexterity 
than the other classical AD pathologies (Table S8). These congruent clinical and pathological 
associations indicate that the deep learning approach can detect the signs of motor dysfunction 
from pentagon drawing. 
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Identification of crucial drawing features 
Although PentaMind improved performance in predicting global cognition from the pentagon 
drawing, elucidating the drawing features contributing to this accuracy is crucial for gaining 
novel clinical insights. To pinpoint vital elements within the image, we utilized DeepSHAP16, a 
technique for comprehending how a model generates its predictions (Figure S2). DeepSHAP 
indicated that the model penalizes the poor shape of the pentagon and the lack of well-formed 
interlocking pentagons. However, it was challenging to specify key drawing features from the 
result of SHAP. Therefore, we developed a simulator to generate intersecting pentagons with 
specified parameters. By providing the simulated images to PentaMind and monitoring the 
predicted cognition values, we were able to identify influential drawing features linked to 
cognition. To generate a synthetic pentagon drawing, the simulator takes eight parameters, 
including (1) the number of vertices, (2) the distance between pentagons, (3) alignment of two 
pentagons, (4) angle distortion, (5) size equality, (6) pentagon size, (7) line width, and (8) line 
waviness.  
 
First, we examined the number of vertices and the presence of intersections – two qualities that 
are evaluated in the conventional clinical assessment (Figure 5). As the number of vertices in a 
drawing increases or decreases, PentaMind’s prediction of global cognition score drops, 
demonstrating that the model accurately recognizes the geometry of the pentagon (Figure 5A). 
Additionally, the distance between two pentagons affects the predicted cognition. Consistent 
with the conventional evaluation, we observed a lower cognition score when no intersection was 
present (Figure 5B). However, PentaMind indicated that excessive overlap is also indicative of 
diminished cognitive ability (Figure 5B). Furthermore, the parts of pentagons that intersected 
influenced the prediction. Specifically, the prediction for global cognition score was highest 
when vertices of the two pentagons overlapped. However, the predicted cognition score was 
reduced when one pentagon's vertex intersected the other's side (Figure 5C). This is noteworthy 
given that in the conventional assessment, any sort of overlap is a prerequisite for pass of the 
PDT. Nonetheless, PentaMind model dissects the overlaps with respect to cognitive 
performance in greater detail. This demonstrates how PentaMind can quantify nuanced drawing 
features. 
 
With the aid of PentaMind, we further explored key drawing features associated with cognition 
including the shape and size of the pentagons. As anticipated, PentaMind assigned a higher 
cognition score to regular pentagons – a five-sided polygon in which all sides and angles are 
equal (Figure 5D). The proportionality of the size of the two pentagons was also correlated with 
a higher predicted cognitive score (Figure 5E). We observed a sharp decline in the prediction 
cognition when the size of the drawing was reduced (Figure 5F), which is in line with the fact 
that micrographia often seen in Parkinson’s disease17. Regarding line width, the cognition score 
decreased when the line was too thin but had a moderate effect otherwise (Figure 5G). Notably, 
the increase in line waviness had a strong influence on the prediction, even if the shape still 
appeared to be regular pentagons (Figure 5H). The line waviness likely reflects motor 
impairment, as drawing a straight line requires proper motor executions. Therefore, the model’s 
ability to quantify the line waviness may contribute to the enhanced accuracy of detecting motor-
related cognitive impairment shown in Figure 3. This finding suggests line quality as a significant 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2023. ; https://doi.org/10.1101/2023.04.18.537358doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537358


 

 

parameter for the cognitive assessment of hand drawing, which the conventional visual 
inspection mostly ignores. 

Discussion 
This work revisited data from a traditional paper-and-pencil drawing test collected for decades 
with deep learning technology, bringing innovation to healthcare and life science. Results 
obtained with cutting-edge data analysis outperformed the standard human-based rating by 
about two-fold for predictions of cognitive function, revealed the novel relationships of hand-
drawn pentagons with motor and related brain pathologies, and nominated specific drawing 
attributes affected by cognitive function. Our approach quantifies the contributions of diverse 
cognitive and motor neural systems underlying a commonly employed drawing task that can 
advance our understanding of the well-known association of cognitive and motor decline in older 
adults. 
 
Our results suggest that quantifying facets of motor function underlying the drawn image was 
the primary source of the improved model performance compared to the conventional scoring. 
The subsequent analysis of brain pathologies, including cerebral atherosclerosis, 
arteriolosclerosis, and nigral neuronal loss also supported the involvement of motor function. 
For instance, cerebral atherosclerosis and arteriolosclerosis are associated with dementia and 
Parkinsonism18 by triggering neurovascular dysfunction such as decreased blood flow in the 
brain and impairment of blood-brain barrier integrity19,20. Also, the connection between the loss 
of nigral dopaminergic neurons and Parkinsonism is well-established21. Furthermore, the line 
waviness greatly impacted the predicted cognition, which also supports the connection between 
hand-motor execution and cognitive impairment. Recently, digital pen technology has enabled 
the measurement of intricate graphomotor data and shown its utility for cognitive evaluation22,23. 
Thus, incorporating time-series hand-drawing movement into the deep learning model may 
further improve the predictive accuracy for cognitive status. The success of this approach in 
highlighting the importance of quantifying sequential drawing for improved performance 
suggests that this approach may be useful for the assessment of other conventional motor 
skills, which currently assess only limited facets of the actual movement and do not even 
capture the duration of cognitive planning prior to the initial movement. Therefore, the 
significance of deep learning techniques will become even more crucial in analyzing other more 
complex behaviors, such as gait, whose 3D features are difficult to quantify during the routine 
clinical assessment of walking. These efforts may lead to a new lexicon of movement features 
derived from deep learning analysis that can be further examined using simulation, as was done 
in the current study. 
 
We leveraged our cohorts' racial diversity to examine the model's applicability to white and 
African American populations. The model performed similarly for both races, indicating that the 
model is well-generalized across two races. This comparable performance may suggest that the 
number of training samples is sufficient to learn white and African-American-specific signals or 
that cognition-related drawing characteristics are independent of race. Clarifying these 
possibilities will guide the development of a generalized biomarker model based on hand 
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drawings, which warrants further investigation. However, due to the small number of deceased 
people from the African American population (n=225), the findings on brain pathologies mostly 
reflect the data from the white population. Therefore, follow-up research is required to confirm 
the relationships between pentagon drawings and vascular pathologies in the African American 
population. 
 
One of the challenges of using deep learning models is the need for more interpretability, or the 
ability to understand which image features are being used by the model to make predictions24. 
This is because deep learning models are often complex and have many layers, making it 
difficult to understand how the model reaches its conclusions. Various methods have been 
proposed to analyze an image's most important parts for making predictions. These methods 
highlight the areas of an image that contain the most predictive information. Still, they may not 
explain which specific drawing characteristics are associated with cognitive decline. To address 
this challenge, we developed a fully parametrized simulator to generate a range of synthetic 
pentagon images. Then we analyzed the model's predictions on these images to determine 
which features are most important for making a prediction. Having successfully identified a set 
of drawing attributes associated with predicted cognition, our approach could provide a novel 
way to explore handwritten biomarkers. Our result will serve as a resource to develop 
complementary computational approaches that automate the extraction of drawing features25. 
By quantifying each drawing attribute, we can examine the correlations between each attribute 
and the various phenotypes in greater depth. 
 
Rapid and accurate assessment of complex behaviors resulting from diverse neural systems is 
critical to identifying the underlying neural mechanisms that can be targeted for treatment. By 
using deep learning technology to analyze handwriting images, it may be possible to design a 
faster and more accurate method for evaluating cognitive status. This could help healthcare 
providers more quickly identify individuals at risk for developing dementia and other cognitive 
impairments, allowing for early intervention and improved outcomes. Additionally, using 
handwriting samples as a biomarker for cognitive performance could provide insight into the 
molecular status of the brain, potentially advancing the development of precision medicine for 
dementia and other conditions. Overall, this study highlights the potential of using deep learning 
technology in healthcare to improve our understanding of cognitive impairments and to develop 
more effective treatment strategies. 

Method 

Study cohorts 

All eligible participants were enrolled in one of three prospective aging studies at the Rush 
Alzheimer’s Disease Center (RADC), the Religious Orders Study (ROS)26, the Rush Memory 
and Aging Project (MAP)26, and the Minority Aging Research Study (MARS)27).  These are 
prospective analytic community-based cohort studies. As community-based cohorts, the studies 
are far less susceptible to referral bias, which can introduce substantial sociodemographic, 
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clinical, and genetic variations in patient research.  At the time of enrollment, the average age 
was 77.4, the average length of education was 15.9 years, 72.9% were female, 77.4% were 
non-Latino white, and 21.9% were African American. All participants consent to undergo yearly 
comprehensive clinical examinations. Brain donation at the time of death is a condition of ROS 
and MAP study entry; it is optional for MARS. An Institutional Review Board of Rush University 
Medical Center approved all studies and participants gave written informed consent in 
accordance with the Declaration of Helsinki. As applicable, participants also sign an Anatomical 
Gift Act (AGA) for brain donation at death. 

Pentagon drawing test administration and pipeline processing 
PDT was administered yearly to the participants as a part of items of the Mini-Mental State 
Examination (MMSE)5. The MMSE is a 30-item screener for gross cognitive impairment and 
dementia. It evaluates the severity of cognitive impairment across various cognitive domains. In 
one section, participants are asked to replicate a sample of intersecting pentagons on paper. 
The pentagons are then rated 0 (fail) or 1 (pass) based on the presence or absence of 
intersections and the number of vertices.  
 
To prepare obtained pentagon drawing test data for training and testing the PentaMind model, 
we converted each pair of intersecting pentagons to a digital image. Then, we used an object 
detection method based on a C-Support Vector Classification algorithm 
(https://github.com/ttruty/object-detector) to identify and clip the region containing the 
intersecting pentagon. On the test set, the accuracy of the pentagon detection was 97.7%. In 
addition, we ran a manual evaluation to filter out images without pentagon drawings. The 
images were then padded with a white area around the edge of the pentagon to standardize the 
image size to 500 pixels by 500 pixels, while maintaining the size of the pentagon. 

Cognitive assessments 
Each participant underwent comprehensive clinical evaluations at baseline and at each annual 
follow-up28. In summary, the cognitive battery includes 21 cognitive performance tests, 19 of 
which are used to develop a global composite measure of cognitive function (global cognition 
score) and 17 of which assess relatively dissociable cognitive domains, including episodic 
memory (7 measures), semantic memory (3 measures), working memory (3 measures), 
perceptual speed (2 measures), and visuospatial ability (2 measures). 

Motor assessments 
Each participant was scored with two motor-related assessments: a global parkinsonism score 
and a global motor score. The global parkinsonism score was calculated by averaging the 
scores from each of the four parkinsonian domains26, which include bradykinesia, tremor, 
rigidity, and parkinsonian gait. The parkinsonian domains were assessed by qualified nurse 
clinicians using a modified version of the United Parkinson's Disease Rating Scale 
(UPDRS)29,30.  A higher score suggests more severe parkinsonian impairment of motor function. 
The global motor score is a summary of ten motor tests from four categories (1) hand strength 
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(two items), (2) motor gait (four items), (3) motor dexterity (two items), and (4) motor balance 
(two items)31. To retain consistency with the global parkinsonism score, the sign of the global 
motor score and its components has been inverted such that a higher score reflects a more 
severe motor impairment. These two scores are independently linked with worse health 
outcomes when evaluated together32. 

Neuropathologic evaluations 
We generated continuous measures for neuritic plaques, diffuse plaques, and neurofibrillary 
tangles. The modified NIA-Reagan criteria for diagnosing Alzheimer's disease comprise the 
CERAD score for neuritic plaques and the Braak stage for neurofibrillary tangles33. Global AD 
pathology burden is a quantitative summary of AD pathology derived from counts of three AD 
pathologies: neuritic plaques, diffuse plaques, and neurofibrillary tangles, as determined by 
microscopic examination of silver-stained slides from 5 regions. For molecular specificity, we 
also quantified the load of parenchymal deposition of β-amyloid, and the density of abnormally 
phosphorylated paired helical filament tau (PHFtau)-positive neurofibrillary tangles, as 
previously described34. Additionally, we evaluated the extent of nigral neuronal loss, the 
presence of Lewy bodies35, the TDP-43 staging36, hippocampal sclerosis37, chronic macroscopic 
and microinfarcts38, cerebral amyloid angiopathy (CAA)39, the severity of atherosclerosis40, and 
arteriolosclerosis40. 

Model training 
The convolutional neural network is a type of deep learning model that is particularly effective in 
image recognition tasks. Convolutional neural networks use a variation of the standard neural 
network architecture but with an added convolutional layer that helps to extract features from 
the input image. This convolutional layer comprises a set of filters, which are learned during the 
training process. These filters are used to scan over the input image, looking for meaningful 
patterns and features. The output of the convolutional layer is subsequently supplied to a series 
of fully connected layers, which perform the final classification or regression task. Convolutional 
neural networks excel at various tasks, including object detection, image classification, and 
image segmentation. The 47 vision recognition models implemented in Torchvision (v0.11.1) 
served as the foundation for the deep learning models that predict global cognition from 
pentagon drawings. Torchvision is a Pytorch-based library that provides several model 
architectures and pre-trained weights for computer vision. We modified the last layer of the 
model architectures such that the models output a single numeric number that corresponds to 
the global cognition score instead of image classes. The pre-trained weights against ImageNet14 
were used to initialize the model parameters. The model parameters were then further tuned 
with a stochastic gradient descent (SDG) optimizer with a learning rate of 0.001, a momentum 
of 0.90, a weight decay of 0.0001, and a batch size of 32. In the case of AlexNet and 
SqueezeNet, a learning rate of 0.0005 was used. The input images were resized to 224 pixels 
by 224 pixels and augmented with imgaug (version 0.4.0)41. The maximum number of training 
epochs was set at 90, with an early termination threshold of 3 based on validation loss. The 
training pipeline was constructed with the workflow management system Snakemake42 and 
executed on the Google Cloud Platform with an NVIDIA Tesla T4 GPU. 
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Pentagon simulation 
We developed a simulator for drawing intersecting pentagons using the Matplotlib visualization 
library. In this simulation study, we examined eight drawing attributes, including angle distortion, 
line waviness, line width, the number of vertexes, alignment of two pentagons, the distance 
between pentagons, pentagon size, and size quality. For each parameter, we tested eight 
values that deviated from the standard pentagons. For each value of the main parameter tested, 
we generated 20 images with slight variations by randomly varying the rest of the parameters in 
a small range around the regular pentagons. A reproducible code and generated images are 
available at https://github.com/stasaki/. Generated images were supplied to the ten deep 
learning models, each of which had been trained with a distinct subset of data, and the 
predicted global cognition scores from the ten models were then averaged. 

Statistical analyses 
To examine associations of the pentagon scores with clinical parameters and pathologies, we 
used Spearman’s correlation and linear regression as appropriate. For a multivariable linear 
regression model, the proportion of the variance explained by each variable was computed 
using the variance decomposition approach developed by Chevan and Sutherland43, 
implemented in the relaimpo R package44. 

Data availability 
The data can be requested at the RADC Resource Sharing Hub at www.radc.rush.edu. 

Code availability 
The trained model and the PDT simulator are available at https://github.com/stasaki/PentaMind/. 
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Tables 

 
Table 1. Demographic information for the ROS, MAP, and MARS cohorts. 
 
 

Table1

ROS MAP MARS
Number of participants 1093 1508 510

Number of samples 5575 6849 1353

Race (%)

American Indian or Alaska Native 5 (0.5) 3 (0.2) 0 (0.0)

Asian 1 (0.1) 6 (0.4) 0 (0.0)

Black or African American 90 (8.2) 82 (5.4) 510 (100.0)

Native Hawaiian or Other Pacific Islander 1 (0.1) 1 (0.1) 0 (0.0)

Unknown 3 (0.3) 2 (0.1) 0 (0.0)

White 993 (90.9) 1414 (93.8) 0 (0.0)

Female = TRUE (%) 777 (71.1) 1110 (73.6) 381 (74.7)

Education year (mean (SD)) 18.18 (3.34) 14.61 (3.20) 14.93 (3.52)

Age at enrollment (mean (SD)) 75.38 (7.28) 80.00 (7.32) 73.64 (6.29)

Age at visit (mean (SD)) 79.52 (6.85) 82.11 (7.37) 75.58 (6.24)

Follow-up year (mean (SD)) 8.29 (5.21) 4.33 (3.45) 3.37 (3.00)

Demented = TRUE (%) 278 (25.4) 250 (16.6) 26 (5.1)

Global cognitive function (mean (SD)) -0.01 (0.73) -0.11 (0.73) -0.13 (0.57)

Pentagon score = 1 (%) 509 (47.1) 822 (55.1) 307 (60.2)

Deceased (%) 769 (70.4) 924 (61.3) 155 (30.4)

Table 2
linear regression spearman correlation

model term nobs beta
std 
error p-value variance explained estimate p-value 

univariate modelpredicted global cognition 13747 1.079 0.017 <2.2x10-16 23.3% 0.42 <2.2x10-16
conventional binary score 13747 0.667 0.015 <2.2x10-16 12.1% 0.30 <2.2x10-16

joint modelpredicted global cognition 13747 0.923 0.019 <2.2x10-16 17.9% - -
conventional binary score 13747 0.260 0.017 <2.2x10-16 6.7% - -

Table 3
linear regression spearman correlation

Sample group term nobs beta std error p-value variance explained estimate p-value 
Conventional binary score: 0 predicted global cognition 2483 0.939 0.034 <2.2x10-16 23.6% 0.46 <2.2x10-16
Conventional binary score: 1 predicted global cognition 11264 0.907 0.026 <2.2x10-16 10.0% 0.32 <2.2x10-16
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Figures 

 
Figure 1. Development of a deep learning model for predicting global cognitive 
performance. (A) Schematic representation of the model development and interpretation 
process for predicting global cognition performance. The process includes (1) Model Building: 
selection of a high-performing vision recognition architecture from 47 established deep-learning 
models, and (2) Model Interpretation: integration of comprehensive motor examinations, 
neuropathologies, and development of a pentagon-drawing simulator to identify key drawing 
characteristics in individuals with lower cognitive function. (B) Validation performances of the 47 
deep learning models. Spearman’s correlation and RMSE between predicted cognition scores 
from each model and measured values were computed for validation samples. We repeated 
model training five times, each time using a distinct training set. The Median and median 
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absolute deviation of the metrics from the five runs was plotted. Models were ranked based on 
the average ranking of Spearman’s correlation and RMSE. (C) Comparison of model’s 
performances between validation and test sets. The composite ranking was obtained as an 
average of rankings based on Spearman’s correlation and RMSE. The composite ranking, 
Spearman’s correlation, and RMSE are compared between validation (x-axis) and test (y-axis) 
sets. The based on the VGG-19 BN architecture is highlighted as it showed the best 
permanence with the validation sets.  
 

 
Figure 2. Performance evaluation of PentaMind. (A) Relationship of the predicted cognition 
scores and actual scores. We employed an out-of-fold prediction strategy to generate an 
unbiased predicted cognition score for all 13,777 images. The scatter plot compares the actual 
and predicted cognition scores with a linear regression line. Spearman’s correlation and p-value 
are also displayed. (B) PentaMind’s performance stratified by the conventional binary rating.  
The images are stratified based on the conventional rating: success (1) or failure (0). 
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Spearman’s correlation and p-value for each group are displayed. (C) PentaMind’s performance 
stratified by the race of participants. The performance metric is calculated for Whites and 
African Americans separately.  
 

 
Figure 3. Relationship of Pentamind’s prediction with clinical phenotypes. The percent of 
the variance in each clinical phenotype explained by the predicted cognition (y-axis), and the 
conventional clinical rating of PDT (x-axis) is compared. Dashed lines indicate the fold 
improvements in percent of variance explained by the PentaMind over the conventional rating. 
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Figure 4. Relationship of Pentamind’s prediction with brain pathologies. The percent of 
the variance in each brain pathology explained by the predicted cognition and the conventional 
clinical rating of PDT is compared. Dashed lines indicate the fold improvements in percent of 
variance explained by the PentaMind over the conventional rating. 
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Figure 5. Identification of crucial drawing features. The effect of eight drawing attributes on 
predicted cognition sore is examined using synthetic images of PDT. The eight drawing 
attributes include (A) the number of vertices, (B) the distance between pentagons, (C) alignment 
of two pentagons, (D) angle distortion, (E) size equality, (F) pentagon size, (G) line width, and 
(H) line waviness. A point represents the median value and the absolute median deviation of 20 
images, respectively.   
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