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Abstract

Background: The responsiveness of the human brain to external input fluctuates. Timing the

external  perturbation  with  regard  to  the  oscillatory  brain  state  may  improve  the  intended

stimulation effects. However, current brain state-dependent interventions targeting phases of

the oscillatory cycle need to apply prediction algorithms to compensate for latencies between

measurement and stimulation, and are therefore imprecise. 

Objective: We investigated the phase-specific precision of a novel non-predictive approach on

the basis of integrated real-time measurement and brain stimulation.

Methods: Applying a simulation, we estimated the circular standard deviation (SD) to hit 2, 4,

8, 16 or 32 equidistant phase bins of the oscillatory cycle with high precision. Furthermore, we

used electroencephalography-triggered transcranial magnetic stimulation in healthy subjects

to empirically determine the precision of hitting the targeted phase of the oscillatory cycle for

10 different frequencies from 4Hz to 40Hz using our approach.

Results: The simulation revealed that SDs of less than 17.6°, 9.7°, 5.1°, 2.5°, and 1.3° were

necessary to precisely hit 2, 4, 8, 16, and 32 distinct phase bins of the oscillatory cycle. By

completing measurement, signal-processing and stimulation with a round-time of 1ms, our

empirical approach achieved SDs of 0.4° at 4Hz to 4.3° at 40Hz. This facilitates selective

targeting of 32 phases (at 4Hz), 16 phases (at 8, 12, 16, 20, 24Hz) and 8 phases (at 28, 32,

36, 40Hz), respectively.

Conclusion:  Integrated  real-time  measurement  and  stimulation  circumvents  the  need  for

prediction and results in more precise phase-specific brain stimulation than with state-of-the-

art procedures.
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Introduction

The growing interest  in brain  state-informed interventions in  neuroscience and therapy is

driven by  the motivation to  achieve more predictable stimulation  effects  and neuroplastic

changes.  Specifically,  EEG-triggered  transcranial  magnetic  stimulation  (TMS)  has  been

applied to repetitively target sensorimotor rhythmic activity or oscillatory up- and down phases

in order to induce increased corticospinal excitability in the human motor cortex, albeit with

contradictory findings.1-3 

To identify the impact of stimulation timing on fluctuations of motor-evoked potential (MEP)

amplitudes, the pre-TMS power and phase at the site of stimulation have been investigated

with post-hoc analysis.4 Specifically, a 40-70% MEP amplitude increase was detected across

different  beta  power  levels,  thereby  implying  a  certain  robustness  against  imprecise

stimulation timing. By contrast, the phase-modulation was critically dependent on precisely

timing the stimuli  to specific phases of the oscillatory cycle.  Importantly,  when this phase

specificity was achieved, a MEP increase of 180% could be attained.4

Different  methods  are  currently  being  applied  to  predict  the  oscillatory  phase  for  state-

informed stimulation: Autoregressive (AR) model-based approaches;5 Kalman filter-based AR

approaches  for  long-term  predictions  (>  100  ms);6 least  mean  square  (LMS)-based  AR

approaches  for  adaptive  predictions  with  recurrent  updates;7 approaches  that  utilize  pre-

learned features;8 and machine learning-based approaches on the basis of  training data.9

Importantly,  these  approaches  often  apply  their  phase  predictions  to  lower  frequency

oscillations, since these have inherently less strict demand for temporal precision than higher

frequency oscillations. The higher the frequency, the more challenging the task of targeting a

specific phase bin, since the round-trip time needs to be less than the width of the bin for the
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target frequency. This challenge becomes particularly apparent when more precise phase

targeting  than  hitting  two  opposite  phases  (e.g.,  peak  vs.  trough)  in  the  alpha  band  is

necessary to achieve the intended stimulation effect, e.g., by hitting a non-overlapping phase

bin of 1/8 of the oscillatory beta cycle.4 

In the present study, we aimed to address this question in two ways: First, we estimated the

circular SD required to hit 2, 4, 8, 16 and 32 equidistant and non-overlapping phase bins of

the oscillatory cycle with high precision. Second, we investigated the phase-specific precision

of a non-predictive approach on real data, i.e., with EEG-triggered TMS using a novel device

based on embedded real-time measurement and stimulation. We hypothesized that this novel

online  stimulation  approach would  allow selective  phase-targeting  across  different  –  also

higher – frequency bands with the necessary precision.
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Methods

Simulation

We estimated the circular SD required to target equidistant and non-overlapping phase bins

of the oscillatory cycle with an error rate of less than 1 in 10 000. Specifically, we drew 100

000  draws  from a  von  Mises  distribution  with  varying  k.  This  resulted  in  500  simulated

datasets (with k from 100 to 1010).  To be comparable to other studies on this topic,  we

calculated the circular SD for each simulated dataset.  This resulted in  SDs ranging from

0.0005° to 72.8°. We investigated 2, 4, 8, 16 and 32 non-overlapping phase bins. The width of

the phase bins was therefore changing with the number of bins. For example, the width was

180°  in  the case of  2  phase bins and 11.25° in  the case of  32  phase bins.  Finally,  we

calculated for each simulated dataset, how often a sample would land outside the width of a

phase bin. For each number of phase bin, we also calculated the SD resulting in an error rate

of less than 1 in 10 000. We selected this strict threshold to achieve high precision, also when

considering large studies with many participants and multiple sessions.

Real-time measurement and stimulation device 

The  novel  real-time  measurement  and  stimulation  device  (rtMSD)  implemented  and

investigated  here  enables  us  to  measure  electrophysiological  signals,  analyze  them

instantaneously, and return a digital output for triggering external stimulation devices. The

device is comprised of separate modules, each with its own defined functionality. The latest

version of the rtMSD contains four essential elements in a common housing. The first element

is the control chip which ensures real-time communication between all elements. It also drives

a set of LEDs to indicate status and functionality of the device and its modules. The second

element  is  a  system on  a  chip  (SoC),  running  a  Linux-based  operating  system.  In  this
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environment, custom-written software supports sending data and receiving commands to and

from external computers, and performing the signal processing and phase detection in real

time. The third element is an analog-to-digital converter which allows the digitization of up to 8

channels  of  electrophysiological  measurements.  The last  element  is  a  digital  input/output

connected  to  two  BNC  adapters  providing  TTL  input  and  output  and  triggering  external

devices. The first generation of the device used a separate PC instead of the SoC, whereas

the  current  version  is  completely  embedded  (see  figure  1)  and  was  manufactured  in

collaboration with neuroConn (Loop-IT, Ilmenau, Germany).

7

100

101

102

103

104

105

106

107

108

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.20.537612doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537612


Figure 1: Integrated real-time measurement and stimulation device. The left two images

show the first and second generation of the device, and the right diagram shows the internal

architecture of both generations. The dark gray box shows the real-time components, the light

gray box shows the components with a permissible jitter, and the circles outside the boxes

indicate  external  elements.  The EEG is  measured,  converted  and stored in  a  ringbuffer,

which is used by the algorithm to trigger stimulation (e.g.,  TMS) via a digital  input/output

interface.  The  main  module  realizes  real-time  performance  by  cyclic  execution  and

information transfer between the modules. Parameters of the trigger algorithm are shared

with a server,  which can communicate with an external  client for  reading and writing the

parameters. Raw data and derived measures are streamed online via LabStreamingLayer

and can be recorded on an external PC.

From EEG recording to TMS pulse application

Algorithms for signal processing and analysis as well as phase detection and triggering can

be programmed using a high-level language (EN 61131-3 or C/C++) and run on the SoC of

the rtMSD directly. The following approach was implemented to evaluate the phase precision

of the device. EEG was recorded in a bipolar montage, with two electrodes placed 1 cm

anterior and posterior of C3 with the ground electrode on the forehead, and sampled at 1 kHz

at a resolution of 24 bit.  The bipolar signal was stored in a ring buffer of 500 ms length,

implemented as a circular buffer of 500 doubles in memory for improved speed. The window

size was defined on the basis of our experience from previous experiments.1,10 A discrete

Fourier transform for a specific frequency was performed every millisecond with the Görtzel

algorithm.11 Taking  the  buffer  width  of  500ms  into  account,  this  provided  a  frequency

resolution of 2 Hz and a phase estimate for each sample. The trigger algorithm considers the
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current  phase and compares it  with  the phase of the last sample. When the circular arc

between  the  last  and  the  current  phase  estimate  includes  the  target  phase,  thereby

ascertaining that the target phase has been passed, a trigger signal is delivered. Additionally,

the raw EEG data and the calculated phase and trigger channel are streamed together using

the LabStreamingLayer. This makes it possible to collect the data on an external PC, where it

is then stored on a disk. 

Empirical evaluation 

To evaluate the feasibility of this device in practical applications, the 5 V trigger signal was

routed via BNC to a TMS device (MagPro X100, MagVenture, Denmark). Since triggering an

external device can induce additional latency and inherent jitter, we evaluated the delay of the

TMS device by driving it repetitively with a signal generator and measuring the stimulation

delay with an oscilloscope. This experiment suggested that the TMS device added ~65 µs

delay, which can be considered negligible for most practical applications. 

We evaluated the performance of the rtMSD in 4 right-handed participants (1 female, age M =

23.75, SD = 1.09) who gave their written informed consent prior to participation. The study

protocol conformed to the Declaration of Helsinki and was approved by the Ethical Committee

of the medical faculty of the University of Tübingen. The study followed the current safety

guidelines for application of TMS,12 and none of the participants reported side effects.

To study the phase precision of the device over a wide range of frequencies, we investigated

10 different target frequencies (4, 8, 12, 16, 20, 24, 28, 32, 36 and 40 Hz) in randomized

order at the target phase of 0°. Stimuli were triggered with an interstimulus interval (ISI) of

3.5-4.5s. We used a jitter of ± 0.5 seconds to reduce anticipation effects. We applied TMS at

120 % resting motor threshold (RMT) to the motor hot spot of the left hemisphere with a pulse
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width of 280 µs, using biphasic pulses that are considered more effective in inducing MEPs

than  monophasic  pulses.13 Due  to  technical  artifacts,  95  trials  (11.88  %)  were  rejected,

resulting in overall 705 pulses in the four participants, with 51 to 69 trials per target frequency.

Performance measures

Bearing in mind that our algorithm triggers only when the target phase has been passed, we

expected a linear increase in the phase delay with increasing frequency and compared it to

the measured phase delay (see below). 

Furthermore, we measured the precision of our stimulation by estimating the circular standard

deviation (SD). This entailed cutting 500 ms segments from the recorded signal that ended

immediately prior to each trigger and filtering it with a single-order two-way Butterworth filter

using  a passband of  ±  1  Hz around the  target  frequency.  To reduce edge artifacts,  the

segment was wrap-padded with 1000 samples on each side before filtering. The resulting

filtered segments were z-transformed to prevent bias between trials due to unequal signal

power. Finally, we averaged all segments per target frequency and calculated the resulting

confidence interval at each sample. 

Software Packages

Offline digital processing and statistical analysis were performed using NumPy 1.20.3 and

SciPy 1.5.2 on Python 3.7.6 on Linux Mint 20. Additionally, we used pyCircStat 0.0.2 and

Statsmodels 0.12.0 and Matplotlib 3.1.3 for visualization.
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Results

The simulation revealed that circular SDs of less than 17.6°, 9.7°, 5.1°, 2.5°, and 1.3° are

necessary to hit a specific phase of the oscillatory cycle divided into 2, 4, 8, 16, and 32 non-

overlapping phase bins with sufficient precision (i.e., an error rate of smaller than 1/10.000)

(fig.2). 

Figure 2: Simulated precision of phase-dependent modulation. The performance curves 

are plotted with the x-axis showing the circular standard deviance in degrees, indicating the 

phase precision. The y-axis shows how many samples lie outside of the respective phase bin 

for a given width on the basis of the number of bins. Each colored line represents a different 

number of non-overlapping equidistant phase bins, with the bin number ranging from 2 to 32. 
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The inlet in the upper left corner visualizes the number of phase bins for different samplings 

(from 2 to 32) on the unit circle with dark and light arcs.

The empirical approach completed the measurement, signal-processing and stimulation with

a round-trip time of 1 ms, which led to short phase delays for all frequencies between 4 and

40  Hz  (figure  3A).  Across  all  frequencies,  the  spread  exhibited  a  strongly  left-skewed

distribution (figure 3B). This observation is in line with the expected increase in phase delay

as  frequency  increased,  i.e.,  shorter  length  of  the  respective  oscillatory  cycle.  For  each

frequency investigated, the measured phase was invariably very close to the expected phase

delay (see figure 3C), thus allowing for a systemic lag-correction. The grand average of the

pre-stimulation  segments  showed that  the  bandpass-filtered  signal  exhibited  a  sinusoidal

modulation, with the stimulation occurring at the peak of the oscillation across frequencies, as

expected when triggering at 0° (see figure 3D).

Importantly, our approach achieved very low SDs of 0.4° at 4 Hz to 4.3° at 40 Hz from the

targeted phases (table 1). This high precision enabled us to selectively target 32 phases (at 4

Hz), 16 phases (at 8, 12, 16, 20, 24 Hz) and 8 phases (at 28, 32, 36, 40 Hz), respectively,

when considering the findings of the simulation.
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Figure 3: Visualized phase delay and precision (confidence interval) of the integrated

real-time measure and stimulation device. The upper row shows the phase delay for the

targeted frequencies. (A) The density estimates are given in polar coordinates and arbitrary

units (A) and as a count histogram (B). A wheat scatter plot (C) shows the distributed (gray)

and average (black) deviance from the expected phase, and the red lines indicating the 95%

confidence interval. (D) Band-pass filtered grand average EEG data (black) 500ms before the

TMS pulse and the 95% confidence interval (red).
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Target Frequency Expected Phase
Delay

Measured Phase
Delay

Standard
deviation

N

4 Hz 0.72° 0.67° 0.39° 51

8 Hz 1.44° 1.77° 1.67° 61

12 Hz 2.16° 2.22° 1.38° 65

16 Hz 2.88° 3.12° 1.68° 67

20 Hz 3.60° 3.32° 2.00° 69

24 Hz 4.32° 4.73° 2.46° 65

28 Hz 5.04° 5.33° 2.90° 65

32 Hz 5.76° 5.50° 3.37° 67

36 Hz 6.48° 5.54° 3.56° 68

40 Hz 7.20° 7.43° 4.30° 61

Table 1:  Expected and measured phase delay and standard deviation of the integrated

real-time measure and stimulation device for different target frequencies.  The overall

accuracy consists of the measured phase delay and the standard deviation (precision). With

a defined system latency (i.e., measurement, signal-processing and stimulation with a round-

time of 1 ms),  the expected phase delay increases with increasing target frequency, i.e.,

shorter length of the respective oscillatory cycle. Since the measured phase delay matched

the  expected  phase  delay,  a  systemic  lag-correction  of  this  predictable  system delay  is

possible. The standard deviation (precision), however, is related to the system’s jitter and/or

non-stationarity  of  the  target  frequency,  and  is  therefore  unpredictable.  This  precision  is

essential to specifically target the intended phase bin.
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Discussion

We investigated  the  phase-specific  precision  of  state-dependent  neuromodulation  on  the

basis  of  integrated  real-time  measurement  and  brain  stimulation.  By  completing

measurement, signal-processing and stimulation with a round-time of 1 ms, this novel non-

predictive  approach  achieved  high  empirical  precision  in  the  real-life  scenario  of  EEG-

triggered TMS. Specifically, the standard deviations across ten different frequencies were 0.4°

at 4 Hz to 4.3° at  40 Hz. According to our simulations, this precision would facilitate the

selective  targeting  of  8  distinct  phases in  all  investigated frequencies  up  to  40  Hz.  This

precision would be sufficient to achieve the necessary phase specificity of TMS to maximize

MEP increases in accordance with previous post-hoc estimations.4 

By  contrast,  previous  autoregressive  (AR)  model-based  approaches  using  pre-stimulus

estimation of the brain state for EEG-triggered TMS do not achieve such high precision as

they require  the application of  prediction algorithms to  compensate for latencies between

measurement and stimulation. Accordingly, previous studies applied EEG-triggered TMS to

investigate research questions that could be addressed with less temporal precision; e.g., by

applying EEG-triggered TMS on the basis of (a) high and low oscillatory power levels in the

beta band (16-22 Hz) and (b) positive and negative peaks of the slow (< 1Hz) or alpha (8-12

Hz) oscillatory cycle to study instantaneous and lasting MEP amplitude changes: Specifically,

brain state-dependent TMS, when controlled by volitionally modulated low sensorimotor beta

power levels, induced a robust MEP amplitude increase.1 By contrast, when the very same

stimulation pattern was applied independent of the brain state, a decrease in corticospinal

excitability  ensued.  When  TMS  was  applied  during  sleep,  targeting  depolarized  vs.

hyperpolarized phases of slow oscillations was associated with an increase in instantaneous

MEP amplitudes.14 During wakefulness, sensorimotor alpha oscillations at rest were used to

15

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.20.537612doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537612


trigger TMS, targeting the negative vs. positive peak of the oscillatory cycle and thus leading

to a lasting increase vs. no change in MEP amplitude in a preselected group of participants

with high sensorimotor alpha power.2 However, this finding was not replicated when the same

approach was applied in non-selected individuals.3 Importantly, these online approaches hit

the targeted negative/positive peaks of the alpha cycle with standard deviations of 55°/53°2

and 48°/52°.3 

According to the simulation of this study (figure 2), a considerable number of stimuli would be

outside the target phase bin when imprecise stimulation with a SD of ~50° is applied with

previous approaches. Specifically, >30% of stimuli would be off-target for a phase resolution

of 4 bins, which is necessary to estimate sinusoidal modulation. Furthermore, >60% of stimuli

would be off-target for a phase resolution of 8 bins, which has been shown to be necessary to

capture phase-dependent effects of corticospinal excitability in the oscillatory beta-band.4

The inconsistencies  of  these  previous  observations  may  therefore  be  related  to  different

factors: On the one hand, the relative imprecision of hitting the targeted phase of the alpha

cycle may have prevented more robust and reproducible findings with regard to TMS induced

plastic  changes.  On the other  hand,  the intrinsic  targeting error  of  current  approaches is

amplified when higher frequency bands are investigated, and thus limits studying the phase-

dependency  of  frequencies  that  may  shape  the  timing  of  voluntary  movements  and

determined corticospinal excitability in earlier offline analyses.15-18

Moreover, the interaction between oscillatory phase and power may influence corticospinal

excitability  to  an  extent  unexplained  by  phase  or  power  alone.19 Also,  resolving  current

contradictions  of  phase  dependency  in  different  frequencies15,20  may  necessitate  high-

resolution sampling along the oscillatory cycle (e.g., by comparing 8 equidistant phases in

each  investigated  frequency)  to  allow  for  robust  modeling  of  input-output  relationships.21
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Furthermore,  minor  differences  in  the  methodological  choices  may  critically  affect  the

sensitivity to detect  the complex relationship between oscillatory activity  and corticospinal

excitability22 and even lead to erroneous phase estimations.23

Limitations and perspectives

The technological feasibility of highly precise phase-specific stimulation does not per se lead

to the intended stimulation effects and desired outcome. Before translating this approach to

broad  scientific  and  clinical  application,  relevant  open  questions  need  to  be  addressed:

Although  hitting  the  intended  phase  precisely  may  result  in  reduced  variability  of

instantaneous stimulation effects,  as demonstrated in previous post-hoc analyses;17 these

less variable stimulation effects do not necessarily lead to cumulative stimulation effects and

plastic changes after repetitive application. Moreover, it needs to be clarified how consistent

phase-dependent  stimulation  effects  are in  cross-validation experiments,  e.g.,  with  out-of-

sample  evaluation  within  one  session,  across  different  sessions  and  days,  and  between

individuals  with  regard  to  the  optimal  frequency and  phase  bin  of  the  oscillatory  cycle.21

Furthermore, stimulation pulses may also be timed to the most sensitive phase with novel

computation methods that are more precise and faster than previous prediction approaches

by modeling a linear oscillator and recomputing the phase of this virtual oscillator into the

analyzed signal.24,25 Notably, the sinusoidal nature of cortical oscillations, and whether they

might  be  better  characterized  by  their  non-sinusoidality,  is  currently  a  matter  of  some

debate.26,27 However,  such  open  questions  may  now  be  addressed  with  this  novel  non-

predictive stimulation approach.  

In conclusion, integrated real-time measurement and brain stimulation circumvented the need

for  prediction  and  allowed  state-informed  stimulation  with  high  precision.  The  applied

approach of EEG-triggered TMS resulted in  selective targeting of 8 distinct phases in the
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investigated  frequencies  of  up  to  40  Hz,  thereby  attaining  the  necessary  specificity  to

maximize instantaneous stimulation effects. Future studies need to clarify whether this will

also  lead  to  increased  cumulative  stimulation  effects  and  plastic  changes,  and  whether

phase-specific stimulation may influence brain disorders that are characterized by aberrant

neural oscillations.28-31 
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