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modeling of the 10kb sequence flanking the top BLAST hit with Fgenesh, with the Primula vulgaris 

genome as a reference, identified a 857 bp gene model for PdMyb1 (Solovyev et al., 2006).  

We aligned the 268 amino acid sequence of this gene model to those of known anthocyanin-

regulating R2R3-Myb genes from Arabidopsis, Antirrhinum, Grape, and Petunia (GenBank ID: 

NP_176813.1, AKB94073.1, ABB83827.1, BAD18977.1, ADW94950.1) (Supplemental Information Figure 

S5). With this alignment, we identified and annotated well-known conserved motifs of anthocyanin-

regulating dicot R2R3-Myb transcription factors; the bhLH interacting motif [DE]Lx2[RK]x2Lx6Lx3R, a 

conserved dicot anthocyanin-promoting R3 motif [A/S/G]NDV, and the C-terminal R2R3-Myb SG6-

defining motif [R/K]Px[P/A/R]x2[F/Y/L/R] (Stracke et al., 2001; Zimmermann et al., 2004; Lin-Wang et al., 

2010; Hichri et al., 2011; Berardi et al., 2021). 

Virus induced gene silencing of PdMyb1. We acquired pTRV1 and pTRV2-MCS constructs from the 

Arabidopsis Biological Resource Center (ABRC accessions CD3-1039, CD3-1040, respectively). Unique 

sequences of the coding regions of the Phlox drummondii PdMyb1 (307bp) and phytoene desaturase 

(PdPDS) (310bp) genes flanked with BamHI and EcoRI digestion sites were synthesized using Twist 

Biosciences (South San Francisco, California) (Supplemental Information Table S7). These synthesized 

fragments were independently cloned into the pTRV2-MCS plasmid using the BamHI and EcoRI digestion 

sites.  

Our pTRV2-PdMyb1, pTRV2-PdPDS, and empty pTRV1 vectors were independently transformed 

into Agrobacterium tumefasciens (strain GV3101) and allowed to grow at 28*C overnight on YEB agar 

plates with kanamycin, gentamycin, and rifampicin antibiotic resistance selection. After PCR confirmation 

for the pTRV vectors, single colonies were used to inoculate 3mL overnight YEB cultures with kanamycin 

and gentamycin resistance selection. Cultures were grown overnight at 28*C and then used to initiate 

50mL volume overnight cultures the following day. Cells were harvested by pelleting via centrifugation, 

resuspended in freshly made infiltration buffer (10mM MES, 200uM acetosyringone, 10mM MgCl+2), and 

normalized to OD600=10. pTRV2-PdMyb1 and pTRV2-PdPDS resuspended cells were separately mixed 

in a 1:1 volume with pTRV1 resuspended cells. Cell mixtures were incubated at room temperature for 2.5 

hours before transfection.  
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P. drummondii seeds were germinated and grown under controlled conditions in a growth 

chamber. Once the plants began to branch, they were transfected with either our pTRV2-PdMyb1 + 

pTRV1 or pTRV2-PdPDS + pTRV1 inoculums by both applying the mixture to cut apical meristems and 

by injection into axillary buds with a 28-gauge needle. We transfected a total of 41 individuals with 

pTRV2-PdMyb1 + pTRV1 and 30 individuals with pTRV2-PdPDS1 + pTRV1. After transfection, all plants 

were placed into a growth chamber under 23oC 16-hour day/ 18oC 8-hour night growing conditions, with 

all plants under a plastic propagation domed for the first 24 hours.  

Symptoms of virus-induced gene silencing appeared between 3-4 weeks after transfection. Single 

branches on each transfected plant were identified by eye to be silenced based on photobleaching of the 

vegetative tissue (pTRV2-PdPDS) or color change of the floral tissue (pTRV2-PdMyb1). For each branch, 

flower color was phenotyped by spectral reflectance as described above. For both branch types, RNA 

was extracted from a pool of three stage six buds and converted to cDNA as described above. We then 

used quantitative real time PCR to quantify expression of PdMyb1 and the housekeeping gene PdEF1a in 

pTRV2-PdMyb1 in silenced (N=20) and unsilenced (N=20) branches, pTRV2-PdPDS silenced branches 

(N=10), and no transfection control wildtype dark (N=13) and light (N=13) plants. cDNA from a single 

sample was run across all plates to normalize for batch effects. Significance differences between groups 

was determined using ANOVAs with post hoc Tukey test (Figure 2b-d, Supplemental Information Table 

S5a-d). 

Targeted enrichment of PdMyb1 genomic region, long-read sequencing, and local variant 

identification. We isolated the genomic window around the PdMyb1 gene using the X-dropTM method for 

target enrichment of high molecular weight (HMW) long fragment DNA (Madsen et al., 2020). Genome-

wide high molecular weight nuclear DNA was extracted from Phlox meristem tissue using a modified 

nuclei isolation and chloroform extraction method. We targeted PdMyb1 containing HMW DNA fragments 

with primers specific to the C-terminus of the gene’s third exon (d100227_1_3_F: 

5’ACATAGCGGGAGTCATTGGG3’, d100227_1_3_R: 5’ACCTCTATCCCTGGTACCGT3’) and amplified 

isolated HMW DNA positive for PdMyb1 was amplified using multiple displacement amplification (MDA). 

Oxford Nanopore Technologies (ONT) sequencing libraries were constructed and barcoded by individual 
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and sequenced using an ONT PromethION with R9.4.1 flowcells. The Xdrop enrichment and Nanopore 

sequencing was performed by Samplix ApS services (Herlev, Denmark). 

Raw long-read sequence data was basecalled and demultiplexed with GUPPY v.5.0.11 HAC 

model (Oxford Nanopore Technologies). 10bp from the head and tail of each read was clipped, and reads 

were filtered for an average base quality ≥ 10 and length ≥ 500bp using Nanofilt (De Coster et al., 2018). 

Trimmed and filtered long reads were error corrected using Canu (version 1.8) with settings -

corOutCoverage =1000 -corMinCoverage = 0 (Koren et al., 2017), and reads with chimeric structure 

resulting from MDA were split using SACRA with settings sl=1000, pc=10 (Kiguchi et al., 2021), per 

recommendation by Samplix ApS. 

To identify simple variants (SNPs and small indels), our processed reads were mapped to the P. 

drummondii reference genome assembly V1.0 (unpublished data) using minimap2 v2.1 (Li, 2018) with 

settings -z 600,200 -x map-ont. Variants within a 6Mb window flanking the R2R3-Myb1 gene (i.e. 

chrlg6:19000000-26000000) were called using Clair3 with the “enable long indel” parameter (Zheng et al., 

2021).  

Region-wide genotype-phenotype association analyses. A joint cohort-level gVCF was constructed 

using GLNexus (Lin et al., 2018; Yun et al., 2021), and variants were filtered using bcftools (Danecek et 

al., 2021) to be 1) polymorphic, 2) Depth >10X, 3) GQ >10, 4) MAF >0.025, and 5) have <90% 

missingness. After filtering, 2,533 variants were left for association analyses. Genotype-phenotype 

associations were performed using a univariate linear mixed model in GEMMA (version 0.98.3) (Zhou & 

Stephens, 2012). Population structure and relatedness among individuals were accounted for in our 

association analyses using a relatedness matrix generated by GEMMA from our region-wide variants. 

Significant associations with categorical and quantitative measures of (light versus dark) and quantitative 

brightness and chroma phenotypes were evaluated using the P value of a two-sided Wald test, with a 

Bonferroni correction for multiple testing (cutoff = −log10 (0.05/number of variants). We used the d/a 

statistic to infer the dominance relationship of alleles at each significantly associated SNP (Miller et al., 

2014). The allelic effect was categorized based on the d/a ratio falling into one of the following categories: 

< −1.25 for underdominant, −1.25 to −0.75 for recessive, −0.75 to −0.25 for partially recessive, −0.25 to 
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0.25 for additive, 0.25 to 0.75 for partially dominant, 0.75 to 1.25 for dominant, and >1.25 for 

overdominant. 

Annotation of cis-regulatory elements. Cis-regulatory element motifs within 250bp upstream of 

PdMyb1 were inferred using PlantPAN 3.0 (Chow et al., 2019) and PlantCARE (Lescot et al., 2002) with 

the P. drummondii reference genome sequence. 
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Figure 1: Two large evolutionary transitions explain flower color variation in natural admixed P. 
drummondii populations. a. Representative images of the four flower color categories previously 
inferred in controlled crosses suggesting a large evolutionary transition in intensity (light to dark) and hue 
(blue to red) in the reinforcement of dark-red flower color. Predicted hue (H/h) and intensity (I/i) genotypes 
are indicated below each flower color category, with dominant alleles capitalized. b. Schematic of Texas 
showing the sampling locations of natural admixed individuals from two independent zones of sympatry-
allopatry contact included in this study. Pie charts show the number of individuals of each color category 
collected from each sampling site. The underlying light-blue and dark-red polygons indicate the allopatric 
and sympatric P. drummondii distributions, respectively. c. Coordinates of sampled admixed individuals 
along three-dimensions of spectral flower color (brightness, chroma, and hue). Color indicates individual 
assignment to one of the four model-inferred color categories (light-blue, dark-blue, light-red, and dark-
red). d. Histograms of the values of brightness, chroma, and hue in the admixed individuals, with 
individual color assignment based on the categorical variable, intensity (light or dark) or hue (red or blue), 
that best explains variation along each color axis. 
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Figure 2: Knockdown of PdMyb1 causes a shift in flower color intensity. a. Branch-specific PdMyb1 
virus-induced gene silencing (VIGS) results in PdMyb1 unsilenced dark flowers (Top), PdMyb1 silenced 
light flowers (Bottom), and flowers with mosaic PdMyb1 silencing (Middle) on the same naturally dark 
flowered plants. b-d. PdMyb1 VIGS silencing knocks down flower petal expression of PdMyb1 (b) and 
creates lighter (brighter (c) and less chromatic (d)) flowers relative to PdMyb1 unsilenced dark flowers 
from the same plant. VIGS-induced shifts in PdMyb1 expression and flower intensity in dark plants is in 
the same direction as the divergence between natural light and dark flowered plants (e-g). Significant 
differences assessed by paired t-tests (lowercase letters) and ANOVAs with post-hoc Tukey (uppercase 
letters), P < 0.001 (Supplemental Information Table S3.5a-c, S3.6).
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Figure 3: Genotype-phenotype associations and the evolution of cis-regulation at the PdMyb1 
locus. a. Targeted GWAS identifies a single peak significantly associated with natural variation in P. 
drummondii categorical flower intensity across the 35kb window flanking PdMyb1. The dashed line 
represents the Bonferroni corrected significance threshold ((-log10(P) ≃4.7) b. A closer view of two 
associated variants reveals they are both SNPs directly upstream of PdMyb1 coding sequence. Circles 
represent genetic variants. Colors represent the degree of linkage disequilibrium between each marker 
and the highest associated variant, SNP1. c. Quantitative brightness (top) and chroma (bottom) by 
genotype at SNP1. Red bars denote the mean trait value for each genotype. Statistics above each plot 
report the proportion of variance explained (PVE) and the dominance effect (d/a) of alleles at SNP1 d. 
Cis-regulatory motif prediction of 250bp upstream of PdMyb1. SNP1 and SNP2 are located between the 
TATA-Box and CAAT-Box elements of the PdMyb1 core promoter, denoted with white and light purple 
boxes respectively (Top). Base pair differences at SNP1 and SNP2 cause allele-specific variation at 
predicted regulatory motifs (Bottom). e. Evolutionary history at SNP1 and SNP2 confirms the dark 
associated alleles are derived in P. drummondii. 
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