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Summary  

During economic choice, we often consider options in alternation, until we commit to one. Nonetheless, 

neuroeconomics typically ignores the dynamic aspects of deliberation. We trained macaques to perform a 

value-based decision-making task where two risky offers were presented in sequence at different locations 

of the visual field, each followed by a delay epoch where offers were invisible. Subjects look at the offers 

in sequence, as expected. Surprisingly, during the delay epochs, we found that subjects still tend to look at 

empty locations where the visual offers were formerly presented; and, moreover, longer fixation to an empty 

location increases the probability of choosing the associated offer, even after controlling for the offer values. 

We show that activity in orbitofrontal cortex (OFC) reflects the value of the offer that is gazed, but also the 

value of the offer associated to the gazed spatial location, even if it is not the most recently viewed. This 

reactivation reflects a reevaluation process, as fluctuations in neural spiking during offer stimuli 

presentation and delays correlate with upcoming choice. Our results suggest that look-at-nothing gazing 

triggers the reactivation of a previously seen offer for further reevaluation, revealing novel aspects of 

deliberation.  
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Introduction  

Introspection and a myriad of studies imply that eye fixations play important roles in decision 

making. For instance, when confronted with multiple visual options, we tend to look at them in sequence 

until we commit to a choice (Horstmann et al., 2009; Orquin & Mueller Loose, 2013; Reutskaja et al., 2011; 

Russo & Rosen, 1975). In addition, we tend to look longer and most imminently to the offers that we finally 

choose (Chandon et al., 2009; Krajbich et al., 2010; Russo & Rosen, 1975). This result raises the possibility 

that there is a causal interplay between eye movements and choice deliberation (Shimojo et al., 2003). At a 

first glance, the sequential nature of fixations can be thought of as an inevitable consequence of the design 

fo the visual system, as visual objects need to fall inside the fovea to be accurately processed (Kandel et al., 

2000). However, evaluation of options seems to follow a sequential structure also in non-visually guided, 

abstract decisions (Simon, 1997). Therefore, a sequential evaluation of options may be the default 

computation in economic choices (Hayden & Moreno-Bote, 2018). This view is supported by the 

computational benefits of focused evaluation of fewer options as compared to an overall screening of all 

available options (Mastrogiuseppe & Moreno-Bote, 2022; Meyer et al., 1997; Moreno-Bote et al., 2020) as 

well as by anatomical and physiological considerations (Rushworth et al., 2011; Yoo & Hayden, 2018). 

Neurons in several brain areas, most notably the orbitofrontal cortex (OFC) and ventromedial 

prefrontal cortex (vmPFC), show modulations in firing rate activity that correlate with the economic value 

of visual offers (Murray et al., 2007; Padoa-Schioppa, 2007, 2011; Padoa-Schioppa & Assad, 2006; Padoa-

Schioppa & Conen, 2017; Rangel et al., 2008; Rich & Wallis, 2016; Rushworth et al., 2011; Schuck et al., 

2016; Strait et al., 2014; Wallis, 2007; Wilson et al., 2014; Yoo & Hayden, 2020). One current view is that 

partially segregated neural populations are selective for different offers in the world, and each 

independently compute its value as they are compared (Ballesta & Padoa-Schioppa, 2019; Shi et al., 2022). 

A similar view holds in perceptual decision making, where it has been shown that several competing choices 

can be prepared in parallel by partially segregated neural populations in premotor and prefrontal areas 

(Churchland et al., 2008; Cisek & Kalaska, 2010). However, some brain areas represent only the options 

that are attended to (Butler et al., 2021; Hayden & Moreno-Bote, 2018; Xie et al., 2018), and some work 

shows that OFC neurons represented offer values in alternation, not in parallel (Rich & Wallis, 2016). 

Therefore, it is still unclear how many alternative offers can be simultaneously encoded, to what extent 

offer values are simultaneously evaluated, and how this depends on gaze and attention patterns. Answering 

these questions is important to understand the canonical computations underlying economic choice.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.20.537677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 To tackle these questions, one would need a task where encoding of visual offers (e.g., recognition) 

and their evaluation are not conflated, which automatically excludes tasks where offers are permanently 

visible. This is because otherwise it is not possible to determine whether sequential processing of offers is 

the result of the need of moving the eyes or directing attention in sequence to the visual stimuli. An effective 

decoupling of encoding and evaluation can be achieved by interleaving the offer presentations with empty 

screen delay epochs, which is the approach that we adopt here. Further, to test whether evaluation is 

sequential by default, we let subjects to move their eyes at will, and expect tracking the internal deliberation 

process by using the look-at-nothing effect (Altmann, 2004; Johansson & Johansson, 2014; Theeuwes et 

al., 2011), a visuo-motor tendency to gaze to locations currently empty where relevant stimuli were 

formerly presented. Looking at empty locations is thought to aid memory recollection of the formerly 

presented visual stimuli (Fourtassi et al., 2014; Johansson & Johansson, 2014) –like looking at the center 

of the yard to remember the maple tree that used to be there. We hypothesized that it may be associated 

with memory for choice options and moreover, that it may be associated with active and ongoing evaluation 

processes that help determine which option is chosen.  

 We used a two-alternative value-based decision-making task where sequentially presented visual 

offers left an empty screen after a short presentation. We tracked the free view gaze of two macaques both 

during offers presentation (look-at-something) and later delay times when screen is empty (look-at-

nothing). As expected, we found that animals directed their gaze to the offers, with longer fixations to one 

offer predicting a higher probability of choosing said offer. The same pattern is observed when the offers 

become invisible during the delay epoch: the more the empty side is looked at, the higher the probability 

that the formerly presented offer in that location is subsequently chosen. We confirmed that this effect is 

independent of the value of the offers by factoring them out in the analysis. In simultaneous recordings of 

OFC neurons, we confirm the well-known finding that neural activity represents the value of the offer gazed 

by the subjects. And, more interestingly, looking at the empty location where a previous offer was presented 

elicits a neural reactivation of its value, regardless of whether another offer was seen and encoded in the 

interim. This representation reflects an active reevaluation process, as fluctuations of neural activity during 

look-at-nothing, while controlling for offer values, correlate with choice. We find that the encoding of value 

during stimulus presentation and reactivation occurs in overlapping cell populations. Our results show an 

unexpected connection between gazing to empty spaces, reactivation, and reevaluation, which reveals a 

sequential default mode underlying economic choice.   
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Results  

Performance and look-at-nothing gazing in a gambling task 

We combine the analysis of choices, oculomotor data and spiking neural recordings of two macaque 

monkeys performing a visually cued, two-alternative reward gambling task (Fig. 1A; Supp. Tables ST1-2 

for number of trials) (Maisson et al., 2021; Strait et al., 2014). The task consists of the sequential 

presentation of two vertical bar stimuli (offer1/offer2 for 400 ms) at opposite sides of a visual screen display. 

Each stimulus presentation is followed by an empty screen delay time (delay1/delay2 for 600 ms). Subjects 

are left free to move their gaze at their will during both offer and delay epochs. At the end of delay 2, 

subjects must re-acquire fixation (re-fixate) for at least 100 ms at the center of the screen. Upon fixation 

reacquisition, the two offers appear side by side on their old locations (choice-go cue), which instructs the 

animals to choose one by performing a saccade to the target offer. The reward magnitude 𝑚 of an offer is 

indicated by the color of the bottom part of its associated rectangular visual stimulus (gray: small; blue: 

medium; green: large; see Methods), which include a top red part. The height of the bottom part indicates 

the (success) probability 𝑝 of obtaining the liquid reward of magnitude 𝑚 (cued by its color) if the offer is 

chosen. The height of the red part corresponds to the complementary probability 1 − 𝑝 for an unsuccessful 

outcome. If the gamble is unsuccessful, no reward is given. We define the expected value 𝐸𝑉 = 𝑚𝑝 of an 

offer as the product of its magnitude 𝑚 and its probability 𝑝, and its risk is defined as the value variance, 

𝜎2 = 𝑚𝑝(1 − 𝑝). We define subjective value as 𝑆𝑉 = 𝑤1𝐸𝑉 + 𝑤2𝜎2, which we compute for each session 

via logistic regression of choice (Methods Section 4.4; Supp. Table ST3). 

Both subjects perform the task well, by successfully reporting the choice and by following value-

based contingencies (most often choosing the offer with the higher value; subject 1: 72.19%; subject 2: 

75.72%). We find a significant relationship between choice and difference in value for the two offers (Fig. 

1B, logistic regression, p<0.001; Supp. Fig. S1A, for each subject). As the task consists of the sequential 

presentation of visual offers on opposite sides of the screen, we expect subjects to perform overt visual 

search and collect sensory information to estimate the value of the offers. Indeed, the eye position of the 

two subjects mainly follow the stimuli locations (Fig. 1C, top), when offers are presented. In most trials, 

subjects first fixate the first offer location (offer 1: 78.83% and 81.57% of the trials with first offer on the 

left and right side, respectively; Supp. Table ST2), then the opposite location during the second offer epoch 

(offer 2: 75.78% and 81.82% when second offer is on the left and right side, respectively; Supp. Table ST2). 

Analogous results are found by computing the fraction of trials in 10 ms time bins where the animal looks 

at each side of the screen from the midline (Fig. 1C, bottom). We observe that gazing to the visual offers is 

most prominent in the last 200 ms of the presentation time, once a saccade towards the target has occurred, 
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and partially persists during the delay epochs (Fig. 1C; saccade delay ≈ 150-200 ms; offer 1 / offer 2 in 

Supp. Fig. S1B, S1C). After offer and delay epochs, the animals behave according to task instructions by 

re-acquiring fixation and performing a saccade to one of the two offers to report the choice (Fig. 1C, re-

fixate to choice-hold epochs). 

When analyzing eye data in two dimensions mapped on the screen, we find that gaze is concentrated 

on the offer locations also along vertical axis, i.e., animals preferentially look at the physical rectangular 

shapes of the offers (Fig. 1D, e.g., offer 1 and 2 epochs; Supp Fig. S2A for each subject). Interestingly, we 

observe that gaze locations during delay times show a look-at-nothing bias: animals look at the location of 

the formerly presented stimuli (delay 1 and 2 epochs in Fig. 1D), indicating that even in the absence of 

stimuli, animals recall the spatial location where the stimulus had been presented with a good level of 

acuity. This effect is not very surprising during delay 1, as gaze most often remains on the same side where 

the first offers has been presented, but less so during delay 2: animals asymmetrically split looking time 

between the two sides of the screen (see the two bumps in delay 2), approximately matching the locations 

of the two formerly presented offers. Overall, the look-at-nothing gazing to empty regions of the screen 

approximately matches the location of look-at-something gazing to the visual offer when physically 

presented. These results are observed regardless of whether the first offer is presented on the left or right 

(Supp. Fig. S1B, S2B). For this reason, for subsequent analyses, we mirrored data by arbitrarily choosing 

the first offer to be shown on the left, and the second one on the right, in all results. Besides doubling the 

data size per condition, folding the visual screen to a single reference (by arbitrary convention, we will use 

left offer first, right offer second) also simplifies the presentation of the following results.  

The patterns of look-at-something (offer1 and offer2) and look-at-nothing (delay1 and delay2) 

depend on several factors, including the difference in values of the offers. When splitting trials according 

to the value of the best offer (Fig. 1E; top: best offer is the first one, on the left by convention; bottom: best 

offer is the second one, on the right), we observe no substantial difference in gaze position during the offer 

1 and delay 1 epochs, probably because animals sample the first offer in most trials, while the second offer 

is still unknown. However, during the offer 2 and delay 2 epochs, both look-at-something and look-at-

nothing gazing are biased towards the location of the more valuable offer. For instance (Fig. 1E, top panel), 

when the value of the first offer (located on the left) is larger than that of the second offer (on the right), 

subjects tend to look more on the left side of the screen during the delay 2 epoch (see Supp. Fig. S2D for 

comparison). This important pattern shows that look-at-nothing gaze does not simply reflect a memory of 

the last seen offer, but rather gaze typically reallocates to the location of the visual field that, even if empty, 

tends to correspond to the better offer.  A similar effect is observed during the earlier offer 2 epoch, for 

which we find trial occurrences of the gazing over the left side (see bump on the left during the offer 2 in 
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Fig.1E, top panel), indicating that in some trials subjects barely look at the right side because the first offer 

has higher value than the second one. The opposite tendency is observed when the expected value of the 

second offer is higher: subjects mostly look at the right site during the delay 2 epoch (offer 2 in Fig.1E, 

bottom panel). Similar conclusions can be drawn by considering the chosen offer (Supp. Fig. S2C, S2E). 

Figure 1: Gambling task and gaze behavior. A. Timeline of the two-alternative sequential gambling task 

for a sample trial. Reward offers are cued by sequential presentation of vertical bar stimuli at opposite 
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screen sides (offer1/offer2) for 400ms, interleaved with blank screen delay times (delay1/delay2) for 600ms. 

Stimuli colors either cue a safe (always achieved, reward probability=1), but small fluid reward (gray), or 

to probabilistic rewards with size medium (blue) or large (green). Reward magnitudes were pseudo-

randomized across trials.  Reward probabilities of the medium and large offers were independently drawn 

from a uniform probability distribution. The green or blue portions of the bar is proportional to the reward 

probability such that if the whole bar is green or blue the probability of the reward would be one. Following 

fixation to the center of the screen (re-fixate), choice is performed after choice-go cue by performing a 

saccade to the selected side. Choice is reported by holding the gaze on the chosen offer for at least 200ms 

(choice-hold). The trial concludes by providing visual feedback and reward or no reward (feedback). 

Reward offers order (first presented Left or Right) were pseudo-randomized to have equal probability 

across trials. For analysis we mirrored choices and eye data respect to the midline in trials that started with 

the right offer, so that all trials ‘started’ with the offer located on the ‘left’ screen side.  B. The probability 

of choosing the right offer (chR) increases with the difference between right and left expected values. Solid 

line shows logistic fit (logit(chR) = 𝛽0 + 𝛽1(𝐸𝑉𝑅 − 𝐸𝑉𝐿)); shaded areas show ±95% Confidence Interval 

(C.I.), *** p<0.001. C. Top: distribution of horizontal eye position throughout the trial (spatial bin size is 

1 mm, time bin size 1 ms); bottom: fraction (%) of trials separated by looking side (left: average horizontal 

eye position <0; right: average >0) in 10ms bins during task execution. D. Gaze distribution over the visual 

display throughout the trial. First, subjects preferentially look at the left side, where the offer is first 

presented (data in trials where the first offer is presented on the right side are mirrored right to left), then 

they mostly look at the right side when the second offer is presented. Importantly, during the second delay 

epoch, subjects split gazing to both sizes of the screen, even when the offers are invisible. E. Same as D, 

but separated for trials where left offer has the highest EV (top), and for trials where right offer has the 

highest EV (bottom). Left / Right offer is the best in 48.67% / 49.28% (Supplementary tables T1, T2 report 

the exact number of trials). A-E. Data includes 5971 trials with valid behavioral choice report (2463 for 

subject 1; 3328 for subject 2, SI tables T1 and T2 report number of trials for each session). 

 

Gaze position modulates choice during look-at-something and look-at-nothing     

To determine the role of gazing in evaluation and choice, we used several analyses to test whether look-at-

something and look-at-nothing gazing are predictive of choices. First, we analyzed the relationship between 

choice and expected value for three overall gazing conditions and for each task epoch:  using all trials, or 

using only trials where the subject spends a larger fraction of time looking at the right side of the screen in 

that epoch (𝑓𝑅 > 0.5), or using trials where the subject spends a larger fraction of time looking the left side 

of screen (𝑓𝑅 < 0.5) (Methods Section 2.3). As shown above (Fig. 1B), the probability of choosing the right 

offer increases with the value difference 𝐸𝑉𝑅 − 𝐸𝑉𝐿 (Fig. 2A), but it is also modulated by which side is 

mostly looked at (mostly right 𝑓𝑅 > 0.5 mostly left 𝑓𝑅 < 0.5) in all task epochs. Not surprisingly, during 

the choice-hold epoch, the effect is reflected by a large horizontal shift of the psychometric curve: if 𝑓𝑅 >

0.5, the psychometric curves are largely shifted to the left, indicating that the choice is almost always the 

right (second) offer. But, surprisingly, a significant shift of the curves is also observed in all other task 

epochs (significance assessment in Supp. Table ST4), being most prominent during delay 2. These results 
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show that, after controlling for expected value differences, looking time during both look-and-something 

and look-at-nothing is predictive of the choice that animal will make at the end of the trial.   

In a second analysis, we find that the effect of looking time on the probability of choice is graded 

(Fig. 2B). When plotting the probability of choosing the right offer as a function of the difference of the 

time looking on the right minus the time looking on the left side (𝑡𝑅 − 𝑡𝐿), we find that it monotonically 

increases for all task epochs, regardless of the expected value difference (all trials). The same monotonic 

increase is observed when dividing trials by the expected offers: higher for left offer (𝐸𝑉𝐿 > 𝐸𝑉𝑅), and 

higher for right offer ( 𝐸𝑉𝑅 > 𝐸𝑉𝐿). Note that the slope is larger when the right offer value is higher as we 

analyze the probability of choosing the right offer (Supp. Table ST5).    

To predict choice on a trial-by-trial basis, we used a logistic regression model that included as 

regressors the values of the offers, their risk, the location of the first offer, and the fraction of time that the 

animal looks at the right side each epoch (Fig. 2C; Supp. Fig. S3A for each animal; Methods section 2.3). 

Adding both the expected value of the offer and their risk is important to control for other factors known to 

determine choices and could affect gaze position. We find, as expected, that in all epochs from offer 1 to 

re-fixate epochs, the value of the offers are the strongest regressors (Fig. 2C). The risk of each offer (see 

Methods) has also a positive contribution to the choice probability, in accordance with the well-known risk-

seeking behavior of monkeys (Heilbronner & Hayden, 2013). In the choice-hold epoch, the strongest 

regressor is the fraction of looking time, due to the causal role of visual fixation and choice by task 

construction. Confirming the previous analyses, in earlier epochs (offer 1 to re-fixate), the fraction of 

looking at the right side has a small but significant effect on the final choice. This effect is not only observed 

during the offer epochs, but also in the delay epochs, when no stimulus is displayed. Thus, in the absence 

of stimuli, the animals have an increased probability of choosing the right offer if they look at the right 

empty side of the screen for a longer duration, and the opposite when looking more to the left empty side, 

even after controlling for the expected values and risks of each offer. Importantly, the results are reproduced 

when using for the analysis the fraction of time that animals spend looking over the rectangles that define 

the location of the offers (Supp. Fig. S3B). We also asked whether the gaze patterns during the blank epochs 

can account by themselves for some variability in choice even after accounting for gaze during the stimulus 

epochs. We therefore used a new logistic regression model where the fractions of looking at the right side 

for all epochs prior to choice are included as regressors (offer 1 / 2, delay 1 / 2, Fig. 2D). This regression 

again shows that the fraction of time looking at the right during the delay 2 epoch has a significant effect 

on choice (p<0.01, Fig. 2D).  
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Figure 2. The fraction of time spent looking at either screen side predicts choice, even after 

controlling for expected value and risks of the offers. A. Probability of choosing the right offer as a 

function of difference in EV of the two offers 𝐸𝑉𝑅 − 𝐸𝑉𝐿. Solid lines are logistic regression fits 

logit(𝑐ℎ𝑅) = 𝛽0 + 𝛽1(𝐸𝑉𝑅 − 𝐸𝑉𝐿), shaded areas are ±95% C.I. The analysis is applied in each epoch for 

all trials where subjects mostly look to the left (𝑓𝑅 = 𝑡𝑅/(𝑡𝑅 + 𝑡𝐿) < 0.5) or to the right (𝑓𝑅 > 0.5) screen 

side.  B. Probability of choosing the right offer as a function of the difference in the right- and left-screen 

looking times  𝑡𝑅 − 𝑡𝐿. Solid lines are logistic regression fits logit(𝑐ℎ𝑅) = 𝛽0 + 𝛽1(𝑡𝑅 − 𝑡𝐿), shaded areas 

are ±95% C.I. The analysis is applied in each time window for all trials, for trials with the highest 𝐸𝑉 on 

the left and for trials with the highest 𝐸𝑉 on the right. C. Logistic regression of behavioral choice. 

Regressors include the expected value of left and right offers 𝐸𝑉𝐿 , 𝐸𝑉𝑅, variance (risk) of the two offers 𝜎𝐿
2,

𝜎𝑅
2, order of presentation (𝑠𝐿𝑅 = +1 if first offer is on the left; −1 if it is on the right), and fraction of time 

looking at right screen side 𝑓𝑅. D. Logistic regression model of regression of behavioral choice, using all 

regressors used in C along with the fractions of right-looking time 𝑓𝑅 for most relevant task epochs (offer 

1, delay 1, offer 2, delay 2). A-D. Data include 𝑛 = 5971 trials with valid behavioral choice report (𝑛 =

2463 for subject 1; 𝑛 = 3328 for subject 2, SI tables T1 and T2 for exact number of trials). Pooling across 

trials is made with reference to the first offer side: data in trials with first offer on the Right side are 

horizontally mirrored. Significance levels: *p<0.05, **p<0.01, ***p<0.001. 
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Look-at-something and look-at-nothing value encoding 

While look-at-nothing gazing is suggestive of an evaluation process that persists after stimulus 

disappearance from the visual field and contributes to the choice, to further support this hypothesis we need 

to show that neural activity indeed reflects re-evaluation of the offers. We recorded responses from n=248 

neurons (n=163 for Subject 1, n=85 for Subject 2, Supp. Table ST1) in two core reward regions, areas 11 

and 13 of orbitofrontal cortex OFC (Fig. 3A). The importance of OFC and reward value estimation is well 

established (Murray et al., 2007; Padoa-Schioppa, 2011; Padoa-Schioppa & Conen, 2017; Rushworth et al., 

2011; Schuck et al., 2016; Wallis, 2007; Wilson et al., 2014). We first studied the neural encoding of 

expected value of the offers by analyzing the evoked spiking activity at different task epochs. To do so, we 

compute the average number of spikes in sliding time windows of 200 ms, shifted by 10 ms steps, for each 

trial (n=5791 total trials, n=2643 for Subject 1; n=3328 for Subject 2; Supp. Tables ST1-ST2 for details). 

To calculate the fraction of neurons that encode the value of each of the two offers, we used linear regression 

models where the activity of each neuron was exclusively predicted by the 𝐸𝑉 of either offer (first or 

second, respectively: left 𝐸𝑉𝐿, or right 𝐸𝑉𝑅) and computed the fraction of neurons with significant 

regression weights (Methods Section 4.1; significances is assessed both from F and permutation tests). To 

control for spurious fluctuations in the significance of the fraction of significant neurons in short sequences 

of times, we performed a cluster-based run-length analysis (Butler et al., 2021; Methods Section 4.1).  

First, using all the trials (without conditioning on gaze), we find that the fraction of neurons encoding 

either the first or second expected values is not significantly different from chance in the pre-offer1 epoch 

time, as expected, but it is strongly modulated in the following epochs in a sensible way (Fig. 3B). 

Specifically, the fraction of neurons that encode the value of the first offer (Fig. 3B, 𝐸𝑉𝐿, green line) 

increases significantly above chance (shaded area) in the offer 1 epoch after a latency of 150-200 ms, and 

it remains above chance for almost all delay 1 time. In contrast, the fraction of neurons that encode the 

value of the second offer (𝐸𝑉𝑅, blue line), is not significantly above chance during both offer 1 and delay 1 

epochs, as it has not been presented yet. During the offer 2 and delay 1 epochs the reversed pattern is 

observed: there is a significant encoding of the value of the second offer (blue line), while the encoding of 

the first value seems to vanish. The absence of encoding of the expected value of the first offer during the 

offer 2 epoch is consistent with the idea that in most trials the subjects look at the location of the second 

offer, and therefore encoding of the second offer grows in alternation to the encoding of the first one. The 

difference in encoding at each task epoch of the expected values of the first and second offers is also 

apparent in a comparison of the fractions of neurons encoding each value averaged across task epochs (Fig. 

3C).  
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We next asked whether gaze direction modulates neural encoding, even in epochs where the screen 

is empty. For each 10 ms bin in each trial, we separate trials depending on whether animals mainly look at 

the right or left sides of the screen, based on whether the average eye position in that bin is negative or 

positive, respectively (Methods Section 4.2). We first corroborate what has been observed during look-at-

something gazing: in trials and bins where animals look at the left side of the screen (LookL), we find that 

there is a significant fraction of neurons encoding the first offer during the offer 1 epoch (Fig. 3D top, 

LookL, dark green line), with magnitude and temporal profile comparable to the gaze-independent encoding 

of that value (compare with Fig. 3B, green line). Interestingly, in trials where the animal does not look at 

the first offer side during the offer 1 epoch (Fig. 3D top, LookR, light green line), the encoding of the 

expected value of the first offer is not present. As expected, the value of the second offer during the offer 1 

epoch is not significant (Fig. 3D bottom) regardless of the average gaze position within the epoch (LookL, 

dark blue line; LookR, light blue), as the second offer has not been presented yet.  

The same pattern of results described so far is reproduced during the delay 1 epoch (Fig. 3D, delay 

1), with the relevant novelty that during this epoch the first offer is no longer visible. Thus, for look-at-

nothing gazing we find that delay 1 activity is significantly modulated by offer value (Fig. 3D top, dark 

green line). We argue that this encoding is not simply a passive, gaze-independent memory of the formerly 

presented first offer: we find that by using only the trials where subjects look at the first offer during offer 

1 (LookL during the last 200 ms of offer 1), but then look at the opposite side during delay 1 (LookR during 

the last 200 ms of delay 1), there is lack of encoding of the expected value of the first offer (Fig. 3F, left 

panel, light orange; 32.26% of trials, Supp. Table ST2). Thus, looking at the empty side where no previous 

offer has been presented so far washes out any significant trace of the value of the first seen offer, suggesting 

that its memory persistence or lack of thereof depends on gaze.  

During the offer 2 epoch, we observe the reversed pattern compared to the offer 1: there is significant 

encoding of the expected value of the second offer when subjects look to the right, where second offer is 

located, (Fig. 3D bottom, offer 2, light blue line) and absence of encoding when the left side is gazed (Fig. 

3D bottom, dark blue). Again, during the delay 2 epoch, where the screen is empty, we find that there is 

encoding of the second offer only when the animal looks at the right (Fig. 3D bottom, light blue line). 

Crucially, if the animal looks at the left side during the delay 2 epoch, there is a significant re-activation of 

the encoding of the first offer (Fig. 3D top, delay 2, dark green line). Therefore, look-at-nothing gazing 

during the delay 2 epoch leads to the maintenance of neural representation of the most recently presented 

(second) offer value when looking at its former location (LookR), and to the reactivation of the first offer 

value if looking at the first offer presentation side (LookL). This observation cannot be accounted for by a 

pure memory trace of the last seen offer coming from trials where the animals simply have not looked at 
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the second offer (which occurs in 21.2% of the trials, Supp. Table ST2): when the second offer is gazed 

during the offer 2 epoch, but then gaze is diverted to the opposite side during the delay 2 epoch (36.48% of 

the trials, Supp. Table ST2), we find a significant reactivation of the expected value of the first offer (Fig. 

3G, left panel, dark orange line). As controls, we observe the maintenance of the encoding of the value of 

the second offer when the animals keep looking at the right side of the empty screen in the delay 2 epoch 

after looking at the second offer in the offer 2 epoch (Fig. 3G, right; 43.32% of the trials, Supp. Table ST2).   

All above results were confirmed comparing the fraction of neurons significantly encoding either the 

left or right expected values when conditioning on trials where the animals looked on the right or on the 

left of the screen by considering average fractions of significant cells in each epoch time (Fig. 3E; Methods 

Section 4.2). We also confirmed that results in Fig. 3 hold for each individual subject (Supp. Fig. S5), using 

window sizes of 150 ms and 250 ms instead of 200 ms (Supp. Fig. S6), normalizing activity by subtraction 

of the pre-offer1 activity (Supp. Fig. S7, Methods Section 4.1), taking the coefficient of determination 𝑅2 

of the linear fits as statistics instead of the fraction of cells (Supp. Fig. S8A,C; Methods Section 4.1), and 

using model-free permutation tests instead of F-test statistics to test significance (Supp. Fig. S8B,D; 

Methods Section 4.1). Further, since the trial pools for LookL and LookR have in general a different size, 

we repeated our analysis, and reproduced the results, by subsampling to pools of even size (Supp. Fig. S9; 

Methods Section 4.1).  
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Figure 3. Gaze-dependent encoding of the EV of the offers and reactivation in OFC. A. Recorded brain 

areas, covering macaque brain areas 11 and 13 in OFC. B. Fraction of cells showing significant encoding 

of offer expected value (either 𝐸𝑉𝐿 or 𝐸𝑉𝑅) for each neuron using the linear models  𝜂 = 𝛽0 + 𝛽1𝐸𝑉𝐿 

(green) and 𝜂 = 𝛽0 + 𝛽1𝐸𝑉𝑅 (blue) where 𝜂 is the spike rate of that neuron in each trial. The regression 

using all trials, regardless of where animals are looking at. Solid lines show the empirical fraction in each 
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time 10ms bin; shaded areas (overlaid, green and blue, in opacity) cover the 5th to 95th percentile of 

significant fraction of cells encoding the respective 𝐸𝑉 obtained via 𝑛 = 1000 trial order permutations; 

bottom lines report consecutive runs of time bins with significant encoding of 𝐸𝑉𝐿 or 𝐸𝑉𝑅 (assessed via run 

length analysis, detecting significantly long bursts with fraction of encoding cells above the 95th percentile 

of trial-order shuffled data). C. Time-averaged fraction of cells showing significant encoding of offer 𝐸𝑉s. 

The significance of empirical values is assessed as exceeding of the 95th percentile of the same values run 

over 𝑛 = 1000 trial-order shuffles of the data (non-significant bars are reported in white, with colored 

frame). Results for the fraction of cells for 𝐸𝑉𝐿 and 𝐸𝑉𝑅 are compared via non-parametric tests (two-sided 

Wilcoxon signed-rank test), significance: - n.s., *p<0.01, **p<0.01, ***p<0.001. D. Top: fraction of 

significant cells encoding 𝐸𝑉𝐿 using trials where subjects mostly LookL (average eye position for current 

bin <0, green) with trials where subjects mostly LookR (average eye position >0, light green).  Bottom: 

same as before but focusing on 𝐸𝑉𝑅 and comparing LookL trials (blue) with LookR trials (light blue). E. 

Top: same as C but focusing on 𝐸𝑉𝐿 and comparing LookL with LookR trials. Bottom: same as C but 

focusing on 𝐸𝑉𝑅 and comparing LookL with LookR trials. Comparisons of looking sides are run via non-

parametric (one-sided Wilcoxon signed-rank tests), testing that directing gaze to either side yields stronger 

encoding for ipsilateral 𝐸𝑉. F. Encoding of offer 𝐸𝑉s at delay1 time for trials when subjects gazed to left 

side of the screen during the last 200 ms of offer1 presentation. Results show the encoding of 𝐸𝑉𝐿 (left) and 

𝐸𝑉𝑅 (right), comparing LookL (orange for 𝐸𝑉𝐿, purple for 𝐸𝑉𝑅) and LookR (light orange for 𝐸𝑉𝐿, light 

purple for 𝐸𝑉𝑅). Solid lines, shaded areas and bottom lines are computed as in B. G. Same as F, but focusing 

on delay2 time, for trials when subjects inspected the right side of the screen during the last 200 ms of 

offer2 presentation. F-G. Complementary cases, i.e., comparisons between LookL and LookR at delay1 for 

LookR during the last 200 ms of offer1, and comparisons between LookL and LookR at delay2 for LookL 

during the last 200 ms of offer2, are shown in Supp. Fig. S11. B-G. Monkeys and screen display icons are 

reported to support the visualization by recalling task conditions and respective main gaze patterns during 

task epochs.  

 

Reactivation of value encoding during look-at-nothing correlates with choice and is mediated by 

overlapping neural populations than those encoding value during look-at-something     

A final crucial question is whether activity in OFC during look-at-nothing simply reflects a reactivation of 

a spatial association of the formerly presented offer, or whether there is further re-evaluation during this 

reactivation. To answer this question, we performed two analyses. First, we used a linear model to predict 

the activity of OFC neurons using as regressors the subjective value (𝑆𝑉) of the offers and the choice of the 

animal at the end of the trial. We argue that if look-at-nothing gazing reflects reevaluation of the offers, we 

should see in the delay epochs a significant effect of choice that cannot be accounted for by the subjective 

values of the offers alone. Indeed, in a gaze-independent analysis, a significant fraction of neurons carries 

choice signals through the last task epochs and became prominent during the choice epoch (Fig. 4A top, 

black line). Therefore, fluctuations of activity of the neurons are accounted for by for choices beyond what 

would be predicted by the subjective values of the offers alone, suggesting a role of the OFC activity in the 

choice, in accordance with previous literature (Ballesta et al., 2020, 2022; Strait et al., 2014). And 

importantly, similar patterns are revealed when conditioning on gazed location to an offer or its empty 
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location (Fig. 4 middle and bottom), suggesting that evaluation and reevaluation of the offers continues 

through late task epochs (see Supp. Fig. S11 for a replication of the results using 𝑆𝑉s instead of 𝐸𝑉s).  

Second, if reactivation of the formerly presented offer reflects reevaluation, we expect to see that the 

same neurons participate in both the encoding of the value and in its reactivation. Thus, we considered the 

encoding of either offer in combination with look-at-something and look-at-nothing. We observe that the 

encoding weights for the value of an offer when is looked at correlate across neurons with the encoding 

weights for the value of the same offer when looking at its empty location during delay 2 (offer1: 𝜌 = 0.49, 

offer2: 𝜌 = 0.23; p < 0.001 in both cases; Supp. Fig. S11A; weights are computed using the last 200 ms of 

each relevant epoch). This confirms that overlapping neural populations are responsible for both value 

encoding and value reactivation. However, the same weights are negatively correlated when subjects look 

to the opposite location during delay 2 (offer1: 𝜌 = -0.34, offer2: 𝜌 = -0.26; p < 0.001 in both cases; Supp. 

Fig. S11B), suggesting that activity decays during the reactivation of the value of the other offer.  
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Figure 4. Choice-related activity supports the re-activation of offer value encoding. A. Fraction of cells 

encoding for offer subjective value (𝑆𝑉𝐿, 𝑆𝑉𝑅) and choice (𝑐ℎ𝑅 = 1 right offer is chosen, 0 otherwise), fit 

to a linear model of the spike rate 𝜂, as 𝜂 = 𝛽0 + 𝛽1𝑆𝑉𝑅 + 𝛽2𝑆𝑉𝐿 + 𝛽3𝑐ℎ𝑅 using all trials (thus ignoring 

gaze position). Subjective Values (𝑆𝑉𝐿 = 𝑤1𝐿𝐸𝑉𝐿 + 𝑤2𝐿𝜎𝐿
2 and 𝑆𝑉𝑅 = 𝑤1𝑅𝐸𝑉𝑅 + 𝑤2𝑅𝜎𝑅

2; 

𝑤1𝐿, 𝑤2𝐿 , 𝑤1𝑅, 𝑤2𝑅) are computed in each session via regression of the choice: logit(𝑐ℎ𝑅) = 𝑤0 −

𝑤1𝐿𝐸𝑉𝐿 − 𝑤2𝐿𝜎𝐿
2 + 𝑤1𝑅𝐸𝑉𝑅 + 𝑤2𝑅𝜎𝑅

2 (SI table ST3). Solid lines, shaded areas and bottom lines are 

computed as in Fig. 3B. B. Time-averaged fraction of cells showing significant encoding of offer 𝑆𝑉s and 

𝑐ℎ𝑅, computed as in Fig. 3D. C. Top: same as A, focusing on the encoding of 𝑆𝑉𝐿, comparing trials where 

subjects mostly LookL vs LookR in each time bin; middle: same as A, focusing on the encoding of 𝑆𝑉𝑅, 

comparing LookL vs LookR; bottom: same as A, focusing on the encoding of 𝑐ℎ𝑅, comparing LookL vs 

LookR. D. Top: same as B but focusing on 𝑆𝑉𝐿 and comparing LookL vs LookR; Middle: same as top, but 

for 𝑆𝑉𝑅; Bottom: same as top, but for 𝑐ℎ𝑅. The time-averaged fraction of time bins with significant 

encoding for LookL and LookR are compared via non-parametric tests (Wilcoxon signed rank, one-tailed 

for 𝑆𝑉s, testing that ipsilateral look yields higher fraction of encoding cells; two-sided for 𝑐ℎ𝑅, testing for 

non-zero mean in their difference) significance levels: - n.s., *p<0.05, **p<0.01, ***p<0.001.  
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Discussion 

Using an economic choice task where offers are sequentially presented and free fixation, we show that gaze 

can reactivate neural responses that reflect the values of previously shown offers, presumably to facilitate 

their re-evaluation for the formation of a choice. After accounting for value, residual variability in choice 

is explained by two additional factors: how much time the subjects were looking at the offers when 

presented (a look-at-something bias), and, in addition, how much time they look at the locations where they 

were formerly presented in empty screens (a look-at-nothing bias). Therefore, gaze biases choice regardless 

of the value of the visual stimulus. Based on single-neuron activity in OFC, we find that (1) gazing to an 

offer triggers a neural encoding of its value, (2) gazing to an empty region where no stimulus has been 

presented washes out that value encoding, and (3) gazing to an empty region where a stimulus was formerly 

presented re-activates its value encoding. Furthermore, variability in the size of this reactivation predicts 

choice, and overlapping neural population are involved in both sensory encoding of value and its 

reactivation during look-at-nothing, suggesting a role of re-activation in the formation of the choice. 

Altogether, our data and results eloquently speak in favor of an active role of gaze in decision making by 

facilitating memory re-activation and offers reevaluation.  

Our study is based on a large body of research showing that gaze is important for decision making 

(Horstmann et al., 2009; Krajbich et al., 2010; Orquin & Mueller Loose, 2013; Reutskaja et al., 2011; Russo 

& Rosen, 1975; Shimojo et al., 2003), but to our knowledge ours is the first work that studies look-at-

nothing gazing in neural data. Previous works that left stimuli over the screen (Butler et al., 2021; McGinty 

et al., 2016) also observe a reduction in value encoding as soon as gaze moved away from the physical 

stimulus, consistent with our results. Our work shows the more intriguing result that looking at regions of 

space where there was a stimulus triggers the re-activation of its associated memory. This reactivation is 

not a simple memory trace of the most recently gazed stimulus, as reactivation of the first offer occurs even 

when fixation is broken by looking to a second offer in the meantime, eventually playing the role of a 

distractor. Our results are in line with previous theorization of looking-at-nothing gazing, that has proposed 

that gaze is used as memory spatial indexing mechanism (Platzer et al., 2014; Renkewitz & Jahn, 2012), 

thus providing neural support for the of gaze-triggered memory recollection hypothesis. Morevoer, these 

results suggest the reactivation process is itself associated with the evaluation process and is not simply a 

passive recollection.  

Gaze in other conditions has also been shown to re-activate sensory memories. For instance, work 

in rodents has shown that during rapid eye movement (REM) sleep, eye movements trigger neural activity 

in the anterodorsal nucleus of the thalamus that reflects internal heading in the virtual world of the sleeping 

animal, showing a tight coupling between eye and internal variables (Senzai & Scanziani, 2022). Our work 
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in addition shows that the coupling between eye position and internal variables extends to awake primates 

and might subserve an important mechanism for memory re-activation during decision making. Further, 

our results extend those of re-activation in the hippocampus for memory reconsolidation (Grella et al., 

2022) and planning (Foster & Wilson, 2006), but here we show that it can also be a mechanism for re-

evaluation of information in cortex to aid visually guided economic decision making.  

We have shown the moving the eyes to another location, even if empty, washes out the neural 

memory of the previously seen offer in OFC: only the value of the offer that falls, or immediately fell, in 

the fovea is strongly encoded. This might imply that OFC does not hold a memory of all previously 

considered offers –just the one of the most recently fixated. These results are consistent with recent research 

showing that OFC only encodes the value of fixated offers, while other areas, such as the anterior cingulate 

cortex (ACC), might have a more detailed map of the relevant offers in the visual field and possibly perform 

a comparison (Butler et al., 2021). Therefore, these and our results suggest that OFC is unique in holding 

and evaluating the most recent offer and reactivating it when necessary for further evaluation. This view 

contrasts with the simultaneous encoding of offers previously reported in OFC in tasks where gaze remained 

fixed on a central fixation point (Ballesta & Padoa-Schioppa, 2019). An important difference of this study 

with ours is the lack of eye movements: as stimuli are passively projected onto the fovea, the task of 

maintaining previously encoded information might be simplified, thus making possible multiple offer’s 

value encoding. In contrast, in the more naturalistic scenario where gaze is required to foveate offers, it is 

possible that an association is made between offer and its location, such that later reactivation of a formerly 

presented offer requires, or is facilitated by, look-at-nothing gazing. Our results are also more in accord 

with other work showing that fluctuations of covert attention are translated into alternations between 

encoding one of two presented offers as a function of time, surprisingly independent of gaze (Rich & Wallis, 

2016).  Recent work where attention is decoupled from stimulus saliency shows that value encoding of 

well-known offers in single-neuron OFC is independent of attentional shifts (Zhang et al., 2022). It is 

possible that in this study overtraining makes simpler the encoding of value and thus gaze and attention can 

be decoupled. In contrast, in our case offers are more complex in number and variety but also in the 

requirement of having to combine two features (color for reward size and height for probability) to form an 

estimate of their value, and then it is possible that a more robust, gaze-centered working memory 

mechanism needs to be at place.   

On the face of it, there is no clear reason why the brain would benefit from shifting gaze back to 

the previous location to reactivate a previously encoded offer. One possibility is that coupling between gaze 

and evaluation leverages brain machinery that allows for an efficient spatial representation of visual offers 

to be used for storage and comparison (Backen et al., 2018). Indeed, behavioral studies have proposed the 
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gazing allows for memory index in spatial coordinates (Ferreira et al., 2008; Renkewitz & Jahn, 2012; 

Richardson & Spivey, 2000), therefore facilitating memory retrieval and decision making. Alternatively, it 

is also possible that economic decision making is necessarily embodied by linking gaze with cognitive 

processing, and that spontaneous associations between gazed spatial locations and offers form on the fly 

with no clear advantage beyond creating biases. 

All in all, our results generally support the hypothesis of sequential value encoding (Hayden & 

Moreno-Bote, 2018), whereby specific brain allocates the neural resources to a single offer being 

scrutinized at a time. Recent theoretical work shows focused evaluation of offers is generally a much better 

strategy than dividing neural resources into several, or many, offers to be processed in parallel 

(Mastrogiuseppe & Moreno-Bote, 2022; Moreno-Bote et al., 2020). The one-at-a-time processing of offers 

during look-at-something and the specific re-activation of one offer at a time during look-at-nothing thus 

suggests a syntax of syllable-like neural operations that need to be executed sequentially in decision 

making.   
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Methods  

Two male rhesus macaques (Macaca mulatta) were trained to perform a two-alternative risky choice task 

(Strait et al., 2014). All procedures were approved by the University Committee on Animal Resources at 

the University of Rochester or the University of Minnesota and were designed and conducted in compliance 

with the Guide for the Care and Use of Animals of the Public Health Service. Recordings covered brain 

Areas 11 and 13, in orbitofrontal cortex (Fig. 3A). Data include 5971 trials correctly performed (2643 from 

subject 1, 3328 from subject 2) and 248 neurons (163 from subject 1, 85 from subject 2; the average number 

of simultaneously recorded cells per session is 40.75 ± 16.9 (mean ± s.d.) for subject 1, and 21.25±9.98 for 

subject 2), detailed number of trials and cells for each session and for each subject are reported in 

Supplementary Tables T1 and T2. 

 

1. Behavioral task 

The behavioral task consisted in the sequential presentation of two visual stimuli on the two opposite sides 

of the screen. Each visual stimulus indicated the size of a reward that could be chosen at the end of the trial 

by performing saccade to stimuli location (Fig. 1.A). The task starts with a first offer presentation (offer 1) 

displayed on the screen for 400 ms, followed by a first black screen delay time with duration 600 ms (delay 

1); the same timings are used for a subsequent, second offer presentation (offer 2), respectively followed 

by a second, black screen delay time (delay 2). After the presentation of the two alternative offers, subjects 

were instructed to reacquire fixation (re-fixate), for at least 100 ms, at the center of the screen through the 

appearance of a central fixation dot. Following fixation, the choice could be indicated by the animal after 

the choice-go cue, which consisted of the simultaneous presentation of both offer stimuli in the same 

locations where they were previously shown. Choice was reported by shifting gaze to the preferred offer 

location and holding fixation on it for 200 ms (choice-hold). Fixation breaks during choice-hold periods led 

to a return to choice report stage, giving subjects the chance to change their mind, thus to re-start fixation 

to either offer location for a duration of 200 ms. In trials with a valid choice report, the trial follows with 

the gamble outcome resolution: reward delivery for a successful outcome and lack of thereof for an 

unsuccessful outcome (see below for the probabilities of these events and the stimuli cues).  Subjects were 

left free to direct their gaze during all task epochs except when instructed to fixate. Trials that took more 

than 7 seconds were considered inattentive and were not included in the analyses. Successfully rewarded 

trials were followed by visual feedback made of a white circle centered on the chosen offer stimulus. 

Visual stimuli were presented on a 24” monitor with resolution 1024 pixels x 768 pixels, physical 

width 48.8 cm and height 36.6 cm at 57 cm from the eyes of the animals. The visual offers consisted of two 

vertical rectangles 300 pixels tall and 80 pixels wide (14.3 cm height and 3.8 cm width). Their centers were 
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displaced right or left from the center of the screen by 256 pixels (12.2 cm,1/4 of total screen width). The 

presentation sites were randomized so that the first offer could be presented with equal probability to either 

side of the screen, and the second on the opposite side (the final count was that in 50.01% of the trials the 

first offer was presented on the left side of the screen). The colors of the rectangles indicated the magnitude 

𝑚 and probability 𝑝 of the offered liquid reward. The magnitude of the reward was indicated by the color 

of the bottom part of the rectangle (gray: small, 125μL; blue: medium,165μL; green: large, 240μL). In all 

analyses, reward magnitudes 𝑚 are reported and used in nominal units (1 = small, 2 = medium, 3 = large 

reward).  . The height of the bottom fraction of the stimuli indicated the (success) probability 𝑝 of obtaining 

the liquid reward (with magnitude 𝑚 as indicated by its color) if the offer was chosen. Whenever 𝑝 was <1, 

the stimuli top fraction was colored in red, with its height indicating the complementary probability 1 − 𝑝 

for unsuccessful outcome. We define the expected value of an offer as the product of its probability times 

its magnitude: 𝐸𝑉 = 𝑚𝑝. To consider the trial-to-trial variability of offer value, we also defined the 

variance 𝜎2 = 𝑚𝑝(1 − 𝑝), also referred to as offer risk. Offers having small rewards were always sure, 

𝑝 = 1 (safe option). Reward probabilities for the medium and large magnitude offers were randomly and 

independently drawn from a uniform distribution in the unit interval, whose presentation was limited in size 

only to the resolution of screen pixel size.  Reward magnitudes (small, medium, or large) of the first and 

second offer were randomized across trials so that 1/8 were safe, and for the remainder 7/8, offers could be 

either medium or large in equal fractions (yielding a total of: 12.15% small, safe offers; 43.93% medium 

sized gamble offers, 43.92% large sized gamble offers). Trials were interleaved with an 800ms idle inter-

trial interval when subjects were not given instructions and the screen was left blank. 

Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR Research). 

Stimuli were controlled by a computer running Matlab (Mathworks) with Psychtoolbox (Brainard, 1997) 

and Eyelink Toolbox (Cornelissen et al., 2002). 

 

 

2. Behavioral data analyses 

In all analyses, we pool trials where the first offer was on the left with trials where the first offer was on the 

right by mirroring in the latter behavioral variables and eye tracking data along the vertical axis. Therefore, 

in all analyses and figures the first offer is anchored on the left presentation site, since we did not find 

appreciable difference between trials with opposite order of presentation (Supp. Fig. S1B). For time 

resolved analyses, time epochs are aligned to task-related event times (e.g., offer1 time runs from stimulus 

onset up to the end of its presentation). For time epochs with random duration (e.g., for delay2, due to trial-

to-trial variation in fixation re-acquisition time), we limited the end of task-relevant time epochs to the 
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duration of shortest trial across all data (in both monkeys and sessions), so that all analyzed data points 

were covered by all trials.  

 

2.1 Behavioral performance 

We quantify the behavioral performance on the value-based decision-making task by regressing the fraction 

of choices for Right offer side (𝑐ℎ𝑅 = 1 if chosen offer is on Right side; 𝑐ℎ𝑅 = 0 if chosen offer is on the 

Left side) by the difference in the expected value of the two offers 𝐸𝑉𝑅 − 𝐸𝑉𝐿 (Fig. 1B). We fit choice data 

to the model: logit(𝑐ℎ𝑅) = 𝛽0 +  𝛽1(𝐸𝑉𝑅 − 𝐸𝑉𝐿), and assess the significance of linear interaction term 𝛽1 

via F-Statistic test to compare the model fit vs a constant mean model (with 𝛽1 = 0), ***𝑝<0.001.  

 

2.2 Analyses of eye position and gaze shifts 

The spatial distribution of horizontal eye position across task epochs (Fig. 1C, top) is computed by counting 

occurrences across trials with spatial resolution 0.14 cm at a temporal resolution of 1 ms. The counting is 

then applied by splitting trials where subjects mainly looked either left or right screen side (Fig. 1C, bottom). 

We call a trial LookL or LookR  according to whether the average horizontal eye position in 10 ms bins is 

negative or positive, respectively. The 2D spatial distribution of eye position on the screen is reported as 

heatmaps around the center of the visual scene (Fig. 1.D), binned with resolution 0.14 cm, smoothed with 

a gaussian filter (𝜎𝑥 = 𝜎𝑦 =  5 bins, 0.7 cm). The 2D analysis is initially run for each task epoch and by 

pooling data across all sessions from the two subjects (Fig 1D), then repeated by separating trials by best 

offer 𝐸𝑉 (best L: 𝐸𝑉𝐿> 𝐸𝑉𝑅, or best R: 𝐸𝑉𝑅> 𝐸𝑉𝐿; Fig. 1E), by separating data from the two subjects (Supp. 

Fig. S2A), for the two orders of presentation (first = L, or first = R; Supp. Fig. S2B), and for different 

choices (choice = L, or choice = R; Supp. Fig. S2C). Results for different conditions are subtracted to 

highlight differences between best offer cases (best R − best L, Supp. Fig. S2D) and chosen offers (choice 

R − choice L, Supp. Fig. S2E).  

We analyzed horizontal gaze shifts, which we defined as monotonic variations in the horizontal eye 

position with duration of at least 25ms (Supp. Fig. S1C). The shifts are labeled by horizontal direction 

(left/right) based on the sign of their first order discrete-time derivative (left if the eye position derivative 

is negative), at 1ms resolution. We show the time histograms of horizontal gaze shifts both for shifts within 

each visual hemifield and by also including midline-crossing (Supp. Fig. S1C).  

 

2.3 Probability of choice as a function of offer expected values and looking times 

For each task-related time epoch (offer1, delay1, etc.) and for each trial, we computed the fraction of time 

looking at the right screen side, 𝑓𝑅 = 𝑡𝑅/(𝑡𝑅 + 𝑡𝐿), where 𝑡𝑅 is the total time that the subject spends looking 

at the right screen side, and 𝑡𝐿 is the total time looking at left screen side in that epoch and trial.  
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We further analyzed the choice variable chR (set to 1 if choice is right, 0 if left) as a function of the 

difference in expected value of the two offers 𝐸𝑉𝑅 − 𝐸𝑉𝐿 (Fig. 2A). The choice variable was fit using least 

squares method to the model logit(𝑐ℎ𝑅) = 𝛽0 + 𝛽1(𝐸𝑉𝑅 − 𝐸𝑉𝐿), with a resolution of 0.2 nominal reward 

units. First, we run the analysis including all trials, then we split trial pools where subject mainly look left 

(𝑓𝑅 < 0.5; red in Fig. 2A), or right (𝑓𝑅 > 0.5; dark red in Fig. 2A). The ±95% C.I. is computed via the 

estimation of inverse cumulative t-distribution given the coefficients (𝛽0, 𝛽1), their covariance matrix and 

standard errors of the fit. The differences in slope show that the eye position shifts the logistic relationship 

between choice and 𝐸𝑉 difference, hence that eye position affects the choice beyond the 𝐸𝑉 differences.  

Following a similar logic, we predict the chosen offer 𝑐ℎ𝑅 across trials using the logistic regression 

model logit(𝑐ℎ𝑅) = 𝛽0 + 𝛽1 (𝑡𝑅 − 𝑡𝐿), i.e. by including as regressor the difference in right vs left screen 

looking times 𝑡𝑅 − 𝑡𝐿 within each trial (Fig. 2B). The difference in looking times 𝑡𝑅 − 𝑡𝐿 is normalized to 

the maximum of its absolute value across trials (maximum is taken across data in all sessions and in both 

subjects), and therefore the value of this regressor always falls within [-1, +1]. The ±95% C.I. is computed 

via estimation of inverse cumulative t-distribution as before. We find a significant relationship between 

choice and difference in inspection time for the two screen sides in all task epochs. The same analysis is 

repeated for trial pools where first offer is best (𝐸𝑉𝐿 > 𝐸𝑉𝑅, purple in Fig. 2B) and second offer is best 

(𝐸𝑉𝑅 > 𝐸𝑉𝐿, dark purple in Fig. 2.B). We found a shift in the relationship between choice and difference 

in looking times, indicating that choice for either offer was more likely if the same offer was looked at for 

longer time, and if it had best 𝐸𝑉.  

Further than this, we refine the above models by combining task variables in the logistic model 

logit(𝑐ℎ𝑅) = 𝛽0 + 𝛽1𝐸𝑉𝐿 + 𝛽2𝐸𝑉𝑅 + 𝛽3𝜎𝐿
2 + 𝛽4𝜎𝑅

2 + 𝛽5𝑠𝐿𝑅  + 𝛽6 𝑓𝑅 (Fig. 2C), with the following trial-

by-trial regressors: expected value of left and right offers 𝐸𝑉𝐿 and 𝐸𝑉𝑅 (computed as 𝐸𝑉 = 𝑚𝑝); risk, or 

variance of left/right offers, 𝜎𝐿
2 and 𝜎𝑅

2 (computed as 𝜎2 = 𝑚𝑝 (1−𝑝)); order of offers presentation 

𝑠𝐿𝑅 (+1 if first offer is left, −1 first offer is right); and fraction of time looking at right screen side 𝑓𝑅 =

𝑡𝑅/(𝑡𝑅 + 𝑡𝐿). To compare the magnitudes of the regressors, we normalized 𝐸𝑉 and 𝜎2 to their maximum 

value across all trials all sessions, and in both subjects, so for the analyses on the whole data set their trial-

by-trial values ranged within unitary values (in the set [0, 1]). Results for the regression of EV and 𝜎 only 

are reported in Supplementary Table ST3. Results are also shown separately for the two subjects (Supp. 

Fig. S4A). To test the effect of the fraction of looking time (𝑓𝑅) on the choice (chR), we added to the 

previous logistic regression model the fractions of looking at the right side in each of the following relevant 

task epochs: (offer1, delay1, offer2, delay2 (Fig. 2D), showing that 𝑓𝑅 in delay2 has significant impact on 

the choice (𝑝 < 0.01) even when other regressors are included. We performed an addition analysis by 

redefining the looking times 𝑡𝑅 and 𝑡𝐿 as the total amount of time when the gaze of the subjects is inside 

the physical locations of the offers (or when they are left empty) (Supp. Fig. S3B). Locations of the visual 
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stimuli are Left: horizontal coordinates -7.5±1.5cm; Right: horizontal coordinates +7.5±1.5cm; Left and 

right: vertical coordinates between ± 6 cm. This allowed us to determine whether gaze spatial precision is 

important for the encoding of the stimulus (gazing to the offer vs looking to the screen side where the offer 

was located). We find no qualitative difference in our results when using screen vs offer looking times 

(Supp. Fig. S3B; compare with Fig. 2C).  

 

3. Neuronal data recordings 

Animals were habituated to laboratory conditions and then trained to perform oculomotor tasks for liquid 

reward. We approached Areas 11 and 13 through a standard a Cilux recording chamber (Crist Instruments). 

A small prothesis for holding the head was used. Position was verified by magnetic resonance imaging by 

aligning white and gray matter scans to standard anatomical atlas with the aid of a Brainsight system (Rogue 

Research Inc.). Neuroimaging was performed using a 3T MAGNETOM Trio Tim using 0.5 mm wide 

voxels. Animals received appropriate analgesics and antibiotics after all procedures. Throughout both 

behavioral and physiological recording sessions, the chamber was kept sterile with regular antibiotic washes 

and sealed with sterile caps. Single contact electrodes (Frederick Haer & Co., impedance range 0.8 to 4 

MU) were lowered using a microdrive (NAN Instruments) until waveforms of between one and three 

neuron(s) were isolated. Individual action potentials were isolated on a Plexon system (Plexon, Inc.). 

Following a settling period, all active cells were recorded. Cells were sorted offline manually by trained 

electrophysiologists; no automated sorting tools were used. Neurons were selected for study solely based 

on the quality of isolation; they were never preselected based on task-related response properties. All 

collected neurons for which we managed to obtain at least 300 trials were analyzed; no neurons that 

surpassed our isolation criteria were excluded from analysis.  

 

 

4. Analyses of neural data 

Following the manual isolation of units, spiking activity data were preprocessed by thresholding, 

quantization and subsampling to 1kHz resolution. The resulting data have average spike rate of 1.46 ± 2.38 

(mean ± s.d.) spikes/s. Given the sparsity of the data, to improve the detectability of encoding of task 

variables, we always applied the analysis of neural data by using a time-resolved strategy based on boxcar 

sliding window.  

 

4.1 Neural spiking and the encoding of reward expected value  

For each of the recorded units, we computed the time-averaged spike count 𝜂 in time windows of 200ms, 

in every 10 ms bins (consecutive time windows have 95% overlap; time windows start at every 10 ms bin). 
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These settings were chosen because they provided a good trade-off between the temporal resolution of our 

analysis and large enough time windows to compute spike rates given the sparsity of OFC activity. In 

addition, these settings were in line with ranges used in previous studies of OFC activity (Conen, Padoa-

Schioppa, 2015; Maisson, D. et al., 2021). The spike rate in each time window, for each neuron, and in each 

10 ms bin was fit to the linear model 𝜂 ≈ 𝛽0 + 𝛽1𝑥,  where 𝑥 was either the 𝐸𝑉 of the left offer, 𝐸𝑉𝐿, or 

right offer, 𝐸𝑉𝑅. This time-resolved, cell-by-cell analysis was performed using three different sets of trials: 

(1) using all available trials, i.e. neglecting where the animal is looking; (2) using all trials within a session 

where the animal mainly looks at the left side of the screen in a given bin (defined as trials where the 

average gaze position within the 10 ms time bin is negative); ; and (3) trials where the animal mainly looked 

at the right side (average gaze position is positive). The sets of trials (2) and (3) allowed to study the 

modulatory effect of gaze on the encoding of the value of the offers by distinguishing trials where subjects 

mainly ‘Look Left=LookL’ from trials where subjects mainly ‘Look Right=LookR’, respectively (the bottom 

panel of Fig. 1C shows the fraction of trials for LookL/LookR for each session, in each time bin). The 

number of available trials could vary across sessions (𝑛 = 746.38 ± 87.29 mean ± s.e.m trials per session, 

𝑛 = 5971 in total; SI table ST1 reports exact numbers for each session) but coincided for simultaneously 

recorded cells. Given that both subjects shared the look-at-something and look-at-nothing gaze patterns for 

the two screen sides, we considered looking conditions as the opposite sides of the screen (LookL/LookR), 

which also allowed to maximize the usage of available trials. We did not consider looking conditions as 

based on perfect alignment of gaze position over stimuli presentation sites as the subjects gaze did lack 

precision in reaching exact stimuli locations (e.g. delay2 in Fig. 1 D,E; Supp. Fig. S2). Such looking 

conditions drastically reduce the number of available trials, preventing us from applying neural encoding 

analyses, especially at delay times (at delay1 time the fraction of available trials is 9.79% of the total for 

LookL, 1.75% for LookR; at delay2 time it is 3.76% for LookL, 7.43% for LookR; see SI table ST2 for 

available trials at opposite screen sides).  

To compute the fraction of significant cells, we pooled cells across all sessions for the two subjects 

(𝑛 = 31 ± 5.85 mean ± s.e.m. cells per session, 𝑛 = 248 in total; SI table ST1 for exact numbers in each 

session). The significance of each cell in encoding the offer 𝐸𝑉 in each time bin is assessed via F-Statistic 

tests comparing the linear model vs constant model, thus assessing whether the linear coefficient 𝛽1 is 

significantly different from zero (with 𝑝 < 0.05). From this, we estimated the fraction of significant cells 

over the total number of available cells (for both monkeys, Fig. 3B; for the two monkeys separately, Supp. 

Fig. S5). In our results we do not find qualitative change if shorter (150ms) or longer (250ms) time windows 

are used for spike rates (Supp. Fig. S6), nor if we applied baseline normalization (for each cell, for each 

trial, we subtracted the spike rate in each 10ms bin by average spike rate in pre-offer1, Supp. Fig. S7). 
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Although we mostly showed results for the neural encoding in terms of fraction of significantly 

encoding cells, we also show the coefficient of determination 𝑅2 for all the regressions that we implemented 

(Supp. Fig. S8A). In addition, we repeated our significant tests based on F-tests by(non-parametric) 

permutation tests on the values of 𝑅2 (Supp. Fig. S8B). In the permutation test, the trial order of 𝐸𝑉s and 

spike-counts are shuffled independently 𝑛 = 1000 times in each 10 ms time bin, for each cell, in each 

session, for the two subjects. Then, the empirical R2 (based on the not shuffled data) is compared to the 

𝑛 = 1000 shuffled 𝑅2 values, and the p-value is defined as the fraction of shuffles with 𝑅2 larger than 

empirical 𝑅2 (Nogueira et al., 2017)(Nogueira et al., 2017)(Nogueira et al., 2017)(Nogueira et al., 2017). 

Finally, we counted the cells with significant encoding (𝑝 < 0.05). The results for the permutation test 

(Supp. Fig. S8B) qualitatively match results run via F-statistic tests (Fig. 3B,D). 

To provide our bin-resolved analysis with statistical robustness, we did not naively consider 

significance of the fraction of cells for single bins, as many of those bins could be significant just by chance 

(i.e., the eventuality that the fraction of significant cells in any time bins crossed the 95th percentile 

significance threshold due to spurious fluctuations). To address this issue, we performed a cluster-based 

run-length analysis as follows (Butler et al., 2021). Here, we defined the length of a run as the number of 

consecutive significant time bins (significant here means that in the current time bin we have a fraction of 

significant cells exceeding the 95th percentile of the fraction of cells from shuffled data). We considered 

that a run length was significantly longer than expected by chance if its length exceeded the 95th percentile 

of run lengths obtained from shuffled data. The time bins involved in significantly long runs are shown by 

the solid line at the bottom of each panel in Fig. 3B,D, and in all Supp. Figs. S4-S11.  

In all our neural data analyses we compared with the respective control results obtained over trial-

order shuffled data. For each time bin, we shuffled the trial order of spike rates and expected values 

independently for each cell, to destroy the correlation between spike rates, expected values and eye position. 

For each of the 𝑛 = 1000 independent shuffles generated, we computed the fraction of cells that encoded 

either the left or right expected values. The 1000 fractions were used to build the null-hypothesis 

distribution. Finally, the 95th percentile (right tail) of the null-hypothesis distribution is used to test at 

significance level 5% whether the observed fraction of significant cells is significantly larger than the one 

expected by chance. We chose a right-tailed test because we consider only meaningful fractions of 

significant cells larger than expected by chance, not smaller. For illustration purposes, we display the 5th-

to-95th percentile of the null-hypothesis distribution as shaded areas in Fig. 3 B,D and in Supp. Figs. S4-

S11.  

We repeated the analysis of Fig. 3D by controlling for the unbalanced number of trials for the 

conditions ‘LookL’ and ‘LookR’ (see Fig. 1C, bottom). To implement this, we performed a sub-sampling 

trial method such that the number of trials for each condition is the same, before performing statistical 
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comparisons (Supp. Fig. S9). In each time bin, the number of trials for both LookL and LookR is set to 

𝑛(𝑡) = min(number of trials LookL, number of trials LookR) in each session (e.g. 𝑛(𝑡) = min(60, 535)). 

The number of subsets at each time bin is given by 𝑚(𝑡) = ⌈𝑁/𝑛(𝑡)⌉, with N the total number of trials in 

each session (e.g. 𝑚(𝑡) = ⌈595/60⌉ = 10). Then, the average fraction of significant cells is computed for 

each subset, and finally the fractions for all 𝑚(𝑡) subsets are averaged. We show that the main results (Fig. 

3D) are found by sub-sampling (Supp. Fig. S9C), yielding equivalent overall levels of 𝑅2 for LookL and 

LookR (Supp. Fig. S9D). 

 

4.2 Difference in encoding 𝑬𝑽𝑳 versus 𝑬𝑽𝑹 as a function of time, and difference in encoding 𝑬𝑽𝑳 or 

𝑬𝑽𝑹 when looking at different looking sides: LookL versus LookR. 

We tested whether in any task-related epoch (e.g., offer1, delay1, etc.), cells showed more encoding of 𝐸𝑉𝐿 

or 𝐸𝑉𝑅. We first consider all the trials, regardless of where the monkeys directed their gaze (below, we 

conditioned the same analysis on the gaze of the subjects). For each task-related epoch, we first built two 

𝑛𝑐𝑒𝑙𝑙𝑠 × 𝑛𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑠 binary matrices, 𝑀𝐿   and 𝑀𝑅. In each matrix, the element 𝑚𝑖,𝑗 = 1 if cell 𝑖 at time bin 𝑗 

has a significant encoding of the left or right 𝐸𝑉 (𝑝 < 0.05, defined by F-tests on the linear term interaction 

coefficient described in previous Section 4.1), 𝑚𝑖,𝑗 = 0 otherwise. 

We compute the fraction of time bins with significant encoding of either expected value by 

averaging the matrices 𝑀𝐿 and 𝑀𝑅 along time dimension in each task epoch, yielding vectors 𝑢𝐿 and 𝑢𝑅 

with size 𝑛𝑐𝑒𝑙𝑙𝑠 ×  1. In Fig. 3C we report average ± s.e.m. across cells of the vectors 𝑢𝐿  and 𝑢𝑅. For each 

of the two cases, we computed the 95th percentile values from the distribution of the fraction of bins 

averaged across cells 𝑢𝐿
𝑠ℎ and 𝑢𝑅

𝑠ℎ for 𝑛 = 1000 shuffles of the trials order, to be used as significance 

threshold to be exceeded (in Fig. 3C, non-significant bars are reported in white, with colored frame). The 

two vectors 𝑢𝐿 and 𝑢𝑅 were compared via non-parametric tests (Wilcoxon signed rank test; *p<0.05, 

**p<0.01 and ***p<0.001 in Fig. 3C). 

After this, we analyzed the fraction of neurons that encoded the left and right expected values 

depending on the subject’s gaze in each time bin within a task-related epoch. We divided trials into two 

groups: LookL trials, where average gaze position is < 0 in the 10 ms time bin in each of those trials; and 

LookR trials, where average > 0. Focusing on either offer 𝐸𝑉𝐿 and 𝐸𝑉𝑅, we re-run the neural encoding 

analysis again to compute the fraction of cells significantly encoding for either looking side (𝐸𝑉𝐿 LookL 

and LookR, Fig. 3D, top; 𝐸𝑉𝑅 for LookL and LookR, Fig. 3D, bottom). For both the 𝐸𝑉𝑠 and for the two 

trial pools, we computed again the vectors 𝑢𝐿 and 𝑢𝑅 as above, called them  𝑢𝐿
𝐿𝑜𝑜𝑘𝐿 and 𝑢𝑅

𝐿𝑜𝑜𝑘𝐿 for the 

LookL trials, and 𝑢𝐿
𝐿𝑜𝑜𝑘𝑅 and 𝑢𝑅

𝐿𝑜𝑜𝑘𝑅 for the and LookR trials. Like in Fig. 3C, we report average ± s.e.m. 

across cells of the vectors 𝑢𝐿
𝐿𝑜𝑜𝑘𝐿, 𝑢𝐿

𝐿𝑜𝑜𝑘𝑅 (Fig. 3E, top), and 𝑢𝑅
𝐿𝑜𝑜𝑘𝐿, 𝑢𝑅

𝐿𝑜𝑜𝑘𝑅 (Fig. 3E, bottom) (non-
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significant bars are reported in white, with colored frame). We compared the encoding of left expected 

value 𝐸𝑉𝐿 when the animal mostly looked at left versus the encoding when it mostly looked at right, that 

is, we compared 𝑢𝐿
𝐿𝑜𝑜𝑘𝐿 vs 𝑢𝐿

𝐿𝑜𝑜𝑘𝑅, again, via non-parametric tests (one-sided Wilcoxon signed rank test; 

*p<0.05, **p<0.01 and ***p<0.001 in Fig. 3E, top). This time we use one-sided tests as we are interested 

in LookL significance being more prominent than in LookR, and not just significantly different in their mean 

value. The same is done for the effect of gaze on the encoding of right expected value 𝐸𝑉𝑅, i.e., we applied 

non-parametric tests to compare 𝑢𝑅
𝐿𝑜𝑜𝑘𝐿 vs 𝑢𝑅

𝐿𝑜𝑜𝑘𝑅 (Fig. 3E, bottom), this time assessing whether LookR 

was larger than LookL, as we wanted to test stronger encoding of 𝐸𝑉𝑅.   

 

4.3 Neural encoding at delay times conditioned on previous looking side 

To determine whether memory traces and reactivation of activity in OFC are mostly due to trials where 

animals did not change their gaze (e.g., whether the animals look at the left side during delay 2 because it 

did not look at the right side during offer2), we repeated the encoding analysis during the delay periods but 

making sure that we used only trials where the animal actually looked at the offer immediately before them. 

We first focused on delay1 time and compared LookL vs LookR by conditioning on trials when subjects 

were previously looking at the left during the last 200 ms of offer1 (looking at the left is of course the most 

common gazing pattern). We find that the subject LookL during the last 200 ms of offer1 on 80.21% of the 

total amount of trials, they keep LookL during the last 200 ms of delay1 on 47.95% of total amount of trials, 

while they switch to LookR during the last 200 ms of delay1 on 32.26% of the total trials. For the two cases 

we applied independently the regression of 𝐸𝑉𝐿 and 𝐸𝑉𝑅, as described in previous section 4.2 (Fig. 3F). We 

find that the encoding of the first offer 𝐸𝑉𝐿 persisted if the subjects keep looking at the left side of the 

screen during delay1. Next, we focused our analyses on delay2 time and we compared looking conditions 

for trials when subjects were looking to the right during the last 200 ms of offer2, which is the most common 

pattern (78.8% of the total amount of trials). Again, we applied the time-resolved regression of offer 𝐸𝑉s 

to compare trials when subjects shifted to LookL (36.48% of total amount of trials) versus the trials when 

subjects kept LookR (42.32% of total amount of trials) during delay2 (Fig. 3G). We strikingly find 

significant increase in the encoding of left offer 𝐸𝑉𝐿 when subjects look back to first offer location during 

delay2, despite the screen was left blank; and this reactivation occurred even when the second offer was 

looked at, which means that reactivation is robust to distractors. For 𝐸𝑉𝑅, just like for 𝐸𝑉𝐿 in delay1, we 

find that its encoding persists only if the subjects keep staring at ipsilateral screen location. The analyses 

were run also for less common, complementary cases (LookR during offer1 and LookL during offer2), 

shown in Supp. Fig. S4A, Supp. Fig S4B. 

As a further analysis, we computed the correlation of regression weights for the linear regression 

weights 𝛽1 for the spike rate and 𝐸𝑉 of the offers (𝜂 = 𝛽0 + 𝛽1𝐸𝑉). We compared the weights for the two 
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look-at-nothing cases (LookL/LookR during delay 2) and the respective look-at-something cases 

(LookL/LookR during offer 1 / offer 2). In this analysis we computed the regression weights in the last 200 

ms of each epoch time (offer 1 / offer 2 / delay 2) by considering the average spike rate in the whole windows 

(instead of using a time-resolved approach used in the remainder of this section). This choice is motivated 

by the observation that both eye position and neural encoding results show steady patterns in these time 

windows. Lastly, we computed spearman correlations between the 𝛽1 of each cell in different pairs of task 

scenarios, i.e. for ipsilateral looking cases (Supp. Fig. S11A) and contralateral cases (Supp. Fig. S11B).  

 

4.4 Neural encoding of offer subjective value and the choice 

We further tested a more complete model where we applied the regression of both offer Subjective Values 

(𝑆𝑉) and the choice variable 𝑐ℎ𝑅 (𝑐ℎ𝑅 = 1 if choice is for right offer, 0 otherwise). The SVs are computed 

by using behavioral data in each session, as 𝑆𝑉𝐿 = 𝑤1𝐿 𝐸𝑉𝐿 + 𝑤2𝐿 𝜎𝐿
2 and 𝑆𝑉𝑅 = 𝑤1𝑅 𝐸𝑉𝑅 + 𝑤2𝑅 𝜎𝑅

2, 

regressing the choice variable as logit(𝑐ℎ𝑅) = 𝑤0 + 𝑤1𝐿𝐸𝑉𝐿 + 𝑤1𝑅𝐸𝑉𝑅 + 𝑤2𝐿𝜎𝐿
2 + 𝑤2𝑅𝜎𝑅

2. For the 

analysis of neural data, we fit the linear model 𝜂 = 𝛽0 + 𝛽1𝑆𝑉𝐿 + 𝛽2𝑆𝑉𝑅 + 𝛽3𝑐ℎ𝑅 to spike rate 𝜂 in each 

10 ms bins, using a sliding time window of 200 ms. In this analysis we followed the same methodology as 

for the time-resolved analysis previously run independently for the encoding of 𝐸𝑉𝐿 and 𝐸𝑉𝑅 described in 

Section 4.1. To investigate the modulatory effects of gaze position, we repeated the same analysis by either 

including all trials (Fig. 4A, top), or focusing on LookL trials (Fig. 4A, middle), and on LookR trials (Fig. 

4A, bottom). Interestingly, we found that our main results for the two 𝑆𝑉s qualitatively matched results for 

the encoding of the two 𝐸𝑉s in isolation, even when including the choice variable, which in turn is 

significantly encoded in the late task epochs. We first assess the mean fraction of significant cells by 

comparing them with the 95th percentile of the same quantities computed over 𝑛 = 1000 shuffles of the 

trial order, to be used as significance threshold (in Figs. 4B and 4D, non-significant bars are reported in 

white, with colored frame). Then, for the encoding of 𝑆𝑉s, we compared the fraction of significant bins in 

LookL and LookR (Fig. 4D, top and middle) via one-sided Wilcoxon signed-rank tests, to test that either 𝑆𝑉 

had higher encoding for ipsilateral inspection (following the derivation of the vectors 𝑢𝐿 and 𝑢𝑅 described 

in Section 4.2). For the encoding of 𝑐ℎ𝑅 (Fig. 4D, bottom), we compared LookL and LookR (again using 

𝑢𝐿 and 𝑢𝑅 computed as in Section 4.2) via two-tailed Wilcoxon signed-rank tests to test that the two 

conditions showed non-zero mean difference.  
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