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Abstract 22 
Advances in deep learning have given rise to neural network models of the relationship between movement 23 
and brain activity that appear to far outperform prior approaches. Brain-computer interfaces (BCIs) that 24 
enable people with paralysis to control external devices, such as robotic arms or computer cursors, might 25 
stand to benefit greatly from these advances. We tested recurrent neural networks (RNNs) on a challenging 26 
nonlinear BCI problem: decoding continuous bimanual movement of two computer cursors. Surprisingly, 27 
we found that although RNNs appeared to perform well in offline settings, they did so by overfitting to the 28 
temporal structure of the training data and failed to generalize to real-time neuroprosthetic control. In 29 
response, we developed a method that alters the temporal structure of the training data by 30 
dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the 31 
online setting. With this method, we demonstrate that a person with paralysis can control two computer 32 
cursors simultaneously, far outperforming standard linear methods. Our results provide evidence that 33 
preventing models from overfitting to temporal structure in training data may, in principle, aid in translating 34 
deep learning advances to the BCI setting, unlocking improved performance for challenging applications. 35 
 36 
Introduction 37 
Rapid progress in machine learning and artificial intelligence has led to an impressive collection of neural 38 
network models capable of learning complex nonlinear relationships between large amounts of data (these 39 
approaches have been referred to as “deep learning”). Deep learning algorithms have produced significant 40 
success in a wide variety of applications1 including, computer vision2–4, natural language processing5–7, and 41 
robotics8–10. More recently, a promising application of neural networks has been towards modeling and 42 
decoding the brain activity associated with movement via brain-computer interfaces (BCIs), which holds 43 
great potential for improving performance of BCI systems. However, this intersection of deep learning and 44 
BCIs presents some unique challenges, including the often-limited quantity of data and changes in the 45 
distribution of data from the offline (open-loop) to online (real-time closed-loop control) settings.  46 
 47 
Intracortical BCIs are systems that aim to restore movement and communication to people with paralysis 48 
by decoding movement signals from the brain via microelectrodes placed in the cortex. Advancements in 49 
clinical research BCIs have enabled functional restoration of movement and communication, including 50 
robotic arm control11–14, reanimation of paralyzed limbs through electrical stimulation15–19, cursor control20–51 
22, decoding speech23–27, and most recently, decoding handwriting28. An abundance of prior work suggests 52 
that BCI decoding may be improved through neural networks, as demonstrated in various offline settings29–53 
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35. To date, however, there are only a few demonstrations of continuous online BCI control using neural 54 
networks, most of which are restricted to nonhuman primate (NHP) studies36,37 given the rarity of real-time 55 
human BCI data. Many prior motor decoding algorithms for real-time neuroprosthetic control – which 56 
convert movement-related brain activity into continuous control signals – have been based on linear 57 
methods13,38–43. Here, we apply a neural network for real-time neuroprosthetic control to assess whether it 58 
can generate advances in performance as suggested by prior work. 59 
 60 
Of the many network architectures, recurrent neural networks (RNNs) have been a popular decoding 61 
approach for BCIs29,33,36 since they can learn temporal dependence within data, aligned with the dynamical 62 
systems view that neural activity in the motor cortex evolves over time29,44,45. However, RNNs often require 63 
large amounts of training data and can overfit to the temporal structure within offline data which may not be 64 
present in online data, potentially reducing their utility as decoders for BCI applications. In this study, we 65 
investigate the usage and application of RNNs on a challenging nonlinear BCI problem: controlling two 66 
cursors simultaneously via decoded bimanual movement. 67 
 68 
Prior studies have shown that motor cortex contributes to both contralateral and ipsilateral movements and 69 
that neural tuning changes nonlinearly between single and dual-limb movements46–51. More specifically, 70 
during dual movement we found that the neural representation for one effector (‘primary’) stays relatively 71 
constant, whereas the other effector’s (‘secondary’) representation gets suppressed while its directional 72 
tuning changes. Additionally, there is significant correlation in how movement direction is represented for 73 
contralateral and ipsilateral movements. To date, studies that have investigated bimanual BCI 74 
control41,46,52,53 have mainly used linear decoding algorithms (e.g., Kalman filters and ridge regression) 75 
despite the seemingly nonlinear relationship between neural activity and bimanual movement. The need 76 
for exploration of nonlinear decoding methods for bimanual movement makes this problem an apt 77 
application and testbed for RNNs. 78 
 79 
Here, we demonstrate a surprising finding: that RNN decoders calibrated on stereotyped training data 80 
achieve high offline performance (consistent with prior work33,54–56), but do so in part by overfitting to the 81 
temporal structure of the task, resulting in poor performance when used for online, real-time control of a 82 
BCI. To solve this problem, we altered the stereotyped structure in training data to introduce temporal and 83 
behavioral variability which helps RNNs generalize to the online setting. In addition, we show that RNNs 84 
can leverage nonlinearities within the neural code governing complex bimanual movements to accomplish 85 
simultaneous two-cursor control, outperforming linear methods. Overall, our findings suggest that 86 
preventing overfitting to temporal structure within training data can help translate advances in deep learning 87 
to improve BCI performance on challenging nonlinear problems.   88 
 89 
Results 90 
Nonlinear neural coding of directional unimanual and bimanual hand movement 91 
We first sought to understand how bimanual hand movements are represented in motor cortex, including 92 
sources of nonlinearity that would motivate the use of RNNs. We used microelectrode recordings from the 93 
hand knob area of the left (dominant) precentral gyrus in a clinical trial participant (referred to as T5) to 94 
characterize how neural tuning changes between bimanual hand movement (both hands attempting to 95 
move simultaneously) and unimanual hand movement (one hand moving individually). T5 has a C4 spinal 96 
cord injury and is paralyzed from the neck down; attempted movement resulted in little to no motion of the 97 
arms and legs (see Willett*, Deo*, et al. 2020 for more details50). T5 was instructed to attempt hand 98 
movements. 99 
 100 
Using a delayed movement task (Fig. 1a), we measured T5’s neural modulation to attempted unimanual 101 
and bimanual hand movements. We observed changes in neural spiking activity across many individual 102 
electrodes as a function of movement direction during bimanual movements (Fig. 1b presents an example 103 
electrode’s responses; see Supplementary Fig. 1 for a count of tuned electrodes). We also observed 104 
nonlinear changes in tuning from the unimanual to bimanual context, including tuning suppression and  105 
 106 
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 107 
Fig. 1 | Neural tuning to unimanual and bimanual hand movement. a Participant T5 performed a delayed-movement 108 
task. Cursors on a screen prompted T5 to attempt to make concomitant joystick movements. One of three types of 109 
movements were cued on each trial: (1) bimanual: both hands, (2) unimanual left: only left (ipsilateral) hand, or (3) 110 
unimanual right: only right (contralateral) hand. b Matrix of spike rasters of example electrode no. 97 during bimanual 111 
movements. Raster plot (i,j) of the matrix corresponds to electrode 97’s response to right hand movement in direction 112 
i while the left hand moved in direction j (colored by right hand direction). Each row of a raster plot represents a trial 113 
and each column is a millisecond time-bin. A dot indicates a threshold crossing spike at the corresponding trial’s time-114 
bin. Different spiking activity can be seen for different bimanual movements, indicating tuning to bimanual movement 115 
direction. c Tuning curves of example electrodes show a range of tuning changes to each hand (rows) across 116 
movement contexts (red/blue). Solid dots indicate the mean firing rates (zero-centered) for movements in the directions 117 
indicated on the x-axes. Spikes were binned (20-ms bins) and averaged within a 300-700 ms window after the ‘go’ cue. 118 
Shaded areas are 95% CIs (computed via bootstrap resampling). Electrode no. 97 retained tuning for both hands 119 
between contexts, electrode no. 13 had suppressed tuning for both hands during bimanual movement, and electrode 120 
no. 23 had suppression in left hand tuning during bimanual movement. 121 
 122 
direction changes (Fig. 1c). Here, ‘nonlinear’ is considered any departure from linear tuning to the variables 123 
we intend to decode: the x- and y-components of movement direction41, as described in the encoding model 124 
(equation 1) below: 125 

          𝑓 = 𝑏! + 𝑏"#𝑑"# + 𝑏"$𝑑"$ + 𝑏%#𝑑%# + 𝑏%$𝑑%$          (1) 126 
Here, 𝑓 is the average firing rate of a neuron, the d	terms are the 𝑥- and 𝑦-direction components of the right 127 
(𝑑"#, 𝑑"$) and left (𝑑%#, 𝑑%$) hand velocities, and the 𝑏 terms are the corresponding coefficients of the velocity 128 
components (and 𝑏! is the baseline firing rate). Tuning angle changes (“decorrelation”) and a suppressed 129 
tuning magnitude from unimanual to bimanual movement breaks linearity, since the tuning coefficients 130 
change based on movement context. In addition, direction-independent laterality tuning (i.e., coding for the 131 
side of the body irrespective of movement direction) is another potential key source of nonlinearity. For 132 
clarity, Figure 2a illustrates these three nonlinear phenomena (decorrelation, suppression, and laterality 133 
tuning) with a schematic.  134 
 135 
Tuning decorrelation and a suppression of ipsilateral related neural activity have been seen previously 136 
during bimanual movement47,50. These phenomena can be reproduced even with a richer set of continuous 137 
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directional movements (Fig. 2b). The tuning strength of right hand (primary effector) directional movements 138 
remained relatively unchanged from unimanual to bimanual contexts (12% suppression during bimanual), 139 
whereas tuning strength of the left hand (secondary effector) was suppressed by 34% during bimanual 140 
movement. Similarly, directional tuning (Fig. 2c) of the right hand remained relatively unchanged (0.87 and 141 
0.84 correlations for x- and y-directions, respectively) while left hand directional tuning changed more 142 
substantially (0.42 and 0.45 correlations for x- and y-directions, respectively) from the unimanual to 143 
bimanual context. These results indicate that neural tuning to left hand movements exhibited suppression 144 
and decorrelation when moved simultaneously with the right hand, whereas tuning to right hand movements 145 
remained mostly unchanged.  146 
 147 
A large neural dimension codes for laterality of the hand 148 
Also consistent with our prior work, we found a salient laterality-related neural dimension (Fig. 2d) coding 149 
for the side of the body that the hand resides independent of the movement direction. We used principal 150 
component analysis (PCA) on both unimanual and bimanual neural data to visualize neural activity in the 151 
top principal components (PCs). A dimension emerged within the top two PCs clearly separating right from 152 
left hand unimanual movements. Interestingly, bimanual neural activity most closely resembled that of 153 
unimanual right hand activity in the top PCs, further indicating that the right hand is more strongly 154 
represented than the left hand during bimanual movement in the contralateral precentral gyrus. Next, we 155 
used demixed PCA57 (dPCA), which decomposes neural data into a set of dimensions that each explain 156 
variance related to one marginalization of the data, to quantify the size of the laterality factor in unimanual 157 
movement data only. We marginalized the data according to the following factors: time, laterality, movement 158 
direction, and the laterality-direction interaction. The laterality marginalization contained the highest fraction 159 
of variance (39% marginalized variance) indicating that tuning to laterality was stronger than tuning to 160 
direction (30% marginalized variance). From a decoding perspective, laterality dimensions can be useful in 161 
distinguishing right hand movements from left hand movements in a unimanual context. 162 
 163 
Overall, we found a strong presence of nonlinearities within the neural code governing bimanual hand 164 
movement, making this a well suited application for RNN decoding. 165 
 166 
RNNs overfit to the temporal structure of offline data and generate overly stereotyped online 167 
behavior 168 
Next, we used a simple RNN architecture (Fig. 3a and supplementary Fig. 2) – similar to the neural network 169 
model used in our recent report on decoding attempted handwriting28 – to decode bimanual movement from 170 
neural activity. During RNN calibration, neural activity was recorded while T5 attempted movements in 171 
concert with one or both cursors moving on a screen. The structure of this task followed a delayed 172 
movement paradigm where T5 prepared to move during a delay period, executed movement during a move 173 
period, and then rested at an idle state. This highly stereotyped temporal structure (prepare-move-idle) is 174 
typical of BCI calibration tasks in which neural activity can be regressed against the inferred behavior. The 175 
RNN was trained to convert neural activity into (1) left and right cursor velocities and (2) discrete movement-176 
context signals that denoted the category of movement being made at each moment in time (unimanual 177 
left, unimanual right, bimanual, or no movement). During closed-loop cursor control, the discrete context 178 
signals were used to gate the output cursor velocities. Velocity targets for RNN training were modified by 179 
introducing a  reaction time and saturating the velocity curve (Fig. 3b) to better approximate the participant’s 180 
intention to move maximally when far from the target58.  181 
 182 
To investigate the RNN’s decoding efficacy, we first focused on the unimanual movement case, which 183 
mitigates decoding challenges due to suppressed left-hand representation during bimanual movement. 184 
RNNs trained on open-loop unimanual movements achieved high offline decoding performance for both 185 
hands (Fig. 3d; average correlation of 0.9 and 0.83 for the right and left hand, respectively). Surprisingly, 186 
however, these RNNs generated pulse-like movements reflecting the velocity profiles used for offline 187 
training, making subsequent closed-loop online control difficult (Fig. 3e). Instead of being able to smoothly  188 
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 189 
Fig. 2 | Nonlinear neural code underlying bimanual hand movement. a Cartoon examples of three key sources of 190 
nonlinearity in the neural coding of directional bimanual and unimanual movement. Firing rates for two exemplary 191 
neurons are plotted for flexion (purple) and extension (brown) of an effector (left and middle panels) during unimanual 192 
and bimanual contexts, or for two effectors (right panel) during unimanual movement. Direction-related tuning changes 193 
consist of suppression (reduction in neural distance between movement representations), and decorrelation (change 194 
in tuning axis) between unimanual and bimanual contexts. Direction-independent laterality tuning can be viewed as a 195 
large dimension separating movements between effectors on opposite sides of the body. b Amount of tuning 196 
suppression in offline data. Each bar indicates the mean ratio of tuning strength between bimanual and unimanual 197 
contexts for right (blue) and left (purple) hand movement. Significance was determined by a 2-sample t-test. All black 198 
intervals on bar plots indicate 95% CIs. Left hand tuning was suppressed more during the bimanual context than right 199 
hand tuning. c Degree of tuning decorrelation in offline data. Each bar indicates the correlation between the neural 200 
population’s x- or y-direction coefficient vectors for pairs of movement types. See Supplementary Table 1 for p values. 201 
Right hand directional tuning remained largely unchanged while left hand directional tuning changed more substantially 202 
during the bimanual context. d Laterality information in offline data. Principal component analysis (PCA) on single trial 203 
Z-scored firing rates (SD denotes standard deviation) is used to visualize how movement types cluster (left panels; 204 
each dot and line is a single trial). Demixed PCA was used to compute the marginalized variance of different movement 205 
factors (right panel). Tuning to laterality was stronger than tuning to movement direction. 206 
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correct for inevitable errors that occur during online control, T5 had to make repeated attempted movements 207 
– mimicking the prepare-move-idle offline behavior – in succession to successfully acquire targets. In this 208 
scenario, offline RNN decoding on held-out test data yielded deceptively high performance which did not 209 
translate to high online performance.  210 
 211 
Fracturing the stereotyped temporal structure of open-loop training data helps RNNs transfer to 212 
online control  213 
Since the RNN decoders overfit to the stereotyped prepare-move-idle open-loop behavior, we hypothesized 214 
that introducing variability in the temporal and behavioral structure of the training data would help generalize 215 
to the closed-loop context. To accomplish this, we developed a simple method whereby we alter the training 216 
data by randomly selecting snippets of data (ranging between 200-800ms in duration), stretching or 217 
compressing the snippets in time using linear interpolation, and then shuffling the order of the modified 218 
snippets (Fig. 3c; see Methods). This approach aims to intermix variable size windows of neural activity 219 
across the various stages of behavior (prepare, move, and idle) to make the RNN decoder more robust to 220 
the rapid changes in movement direction that occur during closed-loop control. Comparing the RNN trained 221 
with temporally altered data (altRNN) to that trained with raw data (rawRNN) as described in the previous 222 
section, the altRNN did not overfit to the open-loop task structure, which resulted in slightly poorer decoding 223 
performance on offline held-out test data and the decoded output velocities appeared generally noisier (Fig. 224 
3d). However, the altRNN led to improved closed-loop control (see Supplementary Movie 4). The decoded 225 
cursor speeds were more continuous in nature and did not overfit to the pulse-like velocity profiles 226 
prescribed to the cursors during the open-loop task (Fig. 3e). 227 
 228 
In addition to enforcing that the RNN generalizes to data with less stereotyped structure, this data alteration 229 
technique allows for synthetic data generation which also helps to prevent overfitting to the limited amount 230 
of data that can be collected in human BCI research. Overall, we found that fracturing temporal and 231 
behavioral structure in the training data resulted in more continuous output velocities which translated to 232 
better closed-loop cursor control performance. 233 
 234 
RNN decoders enable online simultaneous control of two cursors 235 
Next, we tested whether an RNN decoder trained with temporally altered data could facilitate real-time 236 
neural control of two cursors at the same time – a challenging nonlinear decoding problem. To do so, we 237 
trained an RNN on offline and online unimanual and bimanual hand movements collected over multiple 238 
sessions (see Methods). T5 attempted a series of unimanual or bimanual hand movements to drive two 239 
cursors to their intended targets. To acquire targets, the cursors had to dwell within their corresponding 240 
target for 500 ms, simultaneously. T5 was asked to attempt all bimanual trials with simultaneous hand 241 
movements (as opposed to sequential unimanual movement of one cursor at a time). T5 successfully 242 
achieved bimanual control across many sessions (see Supplementary Movie 1), where time-to-acquisition 243 
(TTA) for bimanual trials was only slightly longer than the TTA for unimanual trials on average (Fig. 4a). 244 
Amongst unimanual trials, the average TTA for right- and left-hand trials was similar. The average angular 245 
errors for both hands were generally higher during bimanual movement than during unimanual movement.  246 
 247 
During online control, T5 remarked that sequentially moving the cursors during the bimanual context instead 248 
of moving them simultaneously was a more intuitive strategy to employ. To investigate this further, we 249 
trained two separate RNNs where one was recalibrated normally as mentioned above, and the other was 250 
recalibrated with just unimanual data. On average, the sequential unimanual strategy outperformed the 251 
simultaneous bimanual strategy (Fig. 4b, Supplementary Movie 2). Interestingly, the sequential strategy 252 
often led to equal performance between unimanual right and unimanual left trials, indicating that the RNN 253 
better learned to disentangle the hands when recalibrated on just unimanual movements. 254 
 255 
Lastly, we compared linear decoders (LDs) to RNNs for simultaneous two-cursor control. Optimizing linear 256 
decoders during online evaluation is difficult since it often requires hand tuning of parameters such as output 257 
gain. For the fairest comparison against RNNs, we tested a range of output gain scalars for both LDs and 258 
RNNs. However, sweeping the gains did not affect the result of RNNs outperforming the LDs on average  259 
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 260 
Fig. 3 | Fracturing temporal structure in offline training data helps RNN decoders generalize to the online 261 
setting. a Diagram of the decoding pipeline. First, neural activity (multiunit threshold crossings) was binned on each 262 
electrode (20-ms bins). Then, a trainable day-specific linear input layer transformed the binned activity from a specific 263 
day into a common space to account for day-to-day variabilities in signal recordings. Next, an RNN converted the day-264 
transformed time series activity into continuous left and right cursor velocities (𝑣! , 𝑣"), and discrete movement context 265 
signals (𝑒! , 𝑒", 𝑒#). The movement context signals were then used to gate the appropriate cursor velocity outputs. b 266 
Example open-loop minimum-jerk cursor velocity (black) and modified saturated velocities (gray/red). Saturated velocity 267 
with a prescribed reaction time of 200 ms (red) is used for RNN  training since it better approximates behavior. c Data 268 
alteration technique that introduces variability in the temporal and behavioral structure of training data. Data is 269 
subdivided into small snippets of variable length, each snippet is then dilated or compressed in time, and the order of 270 
the modified snippets are shuffled. This allows for synthetic data generation as well. d Offline decoding performance of 271 
RNNs trained with and without data alteration. Sample snippets of x-direction decoded velocities are shown for both 272 
cursors during unimanual movement with RNNs trained with and without alteration. Corresponding decoding 273 
performance (Pearson correlation coefficient) is summarized via bar plots. Offline performance is better without data 274 
alteration, mainly due to overfitting. e Decoders trained with unaltered data generated pulse-like movements online, as 275 
shown in the sample decoded cursor speeds for the right hand (top panel), whereas the RNN trained with altered data 276 
(bottom panel) allowed for quicker online corrections. Decoders trained with altered data acquired targets more quickly 277 
online.  278 
 279 
(Fig. 4c, Supplementary Movie 3). In fact, the LDs resulted in mostly failed trials due to their inability to 280 
isolate control to one cursor (i.e., intended movements of one cursor would inadvertently move the other 281 
such that target acquisition was near impossible). As a control, T5 was able to acquire unimanual targets 282 
when the non-active cursor was fixed using LDs, indicating that failures during bimanual control were due 283 
to the LD's inability to separate left from right hand control. 284 
 285 
Neural networks leverage laterality information for improved unimanual decoding 286 
Earlier, we found a large neural dimension coding for laterality, which we hypothesized would help identify 287 
which hand is moving at any given time – particularly useful if the tuning of the two hands is correlated 288 
during unimanual movement. Given that the RNNs outperformed linear decoders during unimanual 289 
movement, we sought to dissect the role of laterality information during decoding. First, we compared a 290 
simple linear decoder (LD; built via ridge regression) to a simple densely connected feed forward neural 291 
network (FFN) to assess each decoder’s ability to use laterality information for unimanual movement 292 
decoding. These basic decoders were chosen to mitigate temporal filtering factors (i.e., use of time history 293 
as seen with Wiener filters and recurrent networks). That is, which decoder better predicts movement 294 
encoded in a single time-bin of neural activity? Using data from unimanual trials, both decoders were trained 295 
to convert firing rate input features at a single time-bin (20ms bin) to x- and y-direction velocities for both 296 
cursors. Figure 5a shows an example snippet of offline decoded x-direction velocities for unimanual 297 
movement of both hands. The FFN outperformed the LD in predicting velocity magnitudes for the left hand,  298 
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 299 
Fig. 4 | RNN decoders enable two-cursor control and outperform linear decoders. a Median target acquisition 300 
time and angular errors are shown for 6 days of simultaneous bimanual two-cursor control as enabled by RNN 301 
decoders. Light gray lines connect data points corresponding to the same session day. Each trial had a 10 s timeout 302 
after which the trial was considered failed. Angular error was calculated within an initial movement window (300-500 303 
ms after go cue). All black bars are 95% CIs. Performance was generally good across most days, where decoders 304 
failed for only a few days. b A sequential unimanual control strategy (moving a cursor at a time; solid black line) was 305 
compared to simultaneous bimanual control (dashed gray line) over 2 sessions, of which the median target acquisition 306 
times are shown. The sequential unimanual control strategy led to faster target acquisitions.  c RNN decoders were 307 
compared to linear decoders on 2 session days. Each point is the median target acquisition time for the corresponding 308 
trial type. Solid lines connect points corresponding to the normal bimanual task (consisting of simultaneous dual 309 
movements and unimanual single movements). A variation of the task where only unimanual movements were tested 310 
(holding the non-active cursor fixed) was used as a control on trial day 1855 to confirm that linear decoders could 311 
succeed in a purely unimanual context (dashed lines). 312 
 313 
which is consistent with prior results50 indicating that ipsilateral representation is generally weaker than 314 
contralateral representation (left hand is 48% weaker; see Supplementary Fig. 1d). Figure 5b summarizes 315 
offline unimanual decoding performance where the FFN outperformed the LD across all movement 316 
dimensions, with the greatest performance boost for unimanual left hand decoding.  317 
 318 
To further understand the extent to which the decoders used laterality information, we fit and subsequently 319 
removed the laterality dimension from neural data (see Methods). Removal of the laterality dimension did 320 
not affect decoding performance of the LD whatsoever; however, it did result in a performance hit across 321 
all movement dimensions for the FFN (Fig. 5b). Generally, the FFN’s decoding performance was reduced 322 
to similar levels to that of the LD’s performance, although the FFN’s left hand decoding was still better than 323 
the LD (and its decoded outputs were larger in magnitude; see Supplementary Fig. 3a for distributions of 324 
decoded output magnitudes). Additionally, the FFN was better able to isolate movement decoding to the 325 
actively moving hand, which we quantified with cursor ‘stillness’ in Figure 5c. On average, the FFN 326 
outperformed the LD in keeping the left cursor still during right cursor movement, and vice versa. Removal 327 
of the laterality dimension led to a reduction in cursor stillness for the FFN. The LD was unable to keep the  328 
 329 
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 330 
Fig. 5 | Nonlinear decoders leverage laterality information to disentangle effectors. a Offline single-bin decoding 331 
on unimanual data. Neural activity was binned (20-ms bins) and truncated to 400 ms movement windows (300-700 ms 332 
after go cue). Linear ridge regression (RR) and a densely connected feed forward neural network (FNN; single layer, 333 
512 units) were trained, using 5-fold cross-validation, to decode left and right cursor velocities. Sample 8 s held-out 334 
snippets of decoded x-direction velocity traces are shown. b Each bar indicates the offline decoding performance 335 
(Pearson correlation coefficient) for the RR and FNN decoders across the x- and y-direction velocity dimensions. 336 
Striped bars indicate data where the laterality dimension was removed. The FFN outperformed the LD in decoding 337 
movements across all dimensions. Removal of the laterality dimension did not affect LD performance and only slightly 338 
reduced FFN performance. c Cursor stillness is quantified as the ratio of average cursor speed during rest periods to 339 
that during movement periods. A rest period is defined as the period in which the other cursor should be active. Lower 340 
ratios indicate more cursor stillness while the other cursor is active. The FFN was able to keep each cursor reasonably 341 
still, whereas the LD struggled to keep the left cursor still. The laterality dimension was useful to the FFN in keeping 342 
the cursors still, however, did not affect the LD. d Simulated neural activity during unimanual movement was generated 343 
with varying directional tuning correlation between hands and varying laterality dimension size. Each (i,j) cell of a matrix 344 
indicates the decoding performance (Pearson correlation coefficient) for a synthetic dataset with correlation i between 345 
hands and a laterality dimension size of j. e Cursor stillness for the simulated data in panel d is shown. The FFN 346 
leveraged the laterality dimension for improved decoding performance and cursor stillness as tuning between the hands 347 
became more correlated. The LD was unable to use the laterality information to disentangle the hands. 348 
 349 
left cursor still while the right was active and removal of the laterality dimension did not alter the LD’s ability 350 
to keep the cursors still. 351 
 352 
To gain deeper insight into the role of laterality information in decoding unimanual movement, we simulated 353 
unimanual neural activity with Gaussian noise (see Methods and equations 3,4) where we varied the 354 
directional tuning correlation between the hands and varied the size of the laterality dimension. Figure 5d 355 
shows decoding performance of LDs and FFNs across the simulated data. As expected, LD performance 356 
degraded as the hands became more correlated regardless of the scale of the laterality dimension. 357 
Conversely, when the size of the laterality dimension was sufficiently large, the FFNs were able to achieve 358 
high decoding performance irrespective of how correlated the hands became. Additionally, we saw that the 359 
LDs were unable to use laterality information in keeping the non-active cursor still and cursor stillness 360 
degraded as the hands became increasingly correlated (Fig. 5e). The FFNs used laterality information, 361 
when it was salient enough, to disentangle the cursors which resulted in increased cursor stillness 362 
regardless of how correlated the hands became.  363 
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 364 
Discussion 365 
Deep learning algorithms are being increasingly used to improve the performance of real-time 366 
BCIs28,32,36,37,59,60. Prior work investigating deep learning methods for BCIs has reported promising offline 367 
results33,54–56,61–64, although most remain to be evaluated in an online setting due, in part, to the rarity of 368 
human BCI data. Here, we tested a deep learning method for real-time BCI control by a person with 369 
paralysis. We confronted a challenging nonlinear BCI problem – the simultaneous bimanual control of two 370 
cursors – using an RNN, which should be able to exploit the nonlinear structure in the neural data better 371 
than linear methods which have been previously used28,29,33,36. Consistent with prior work33,54–56, the RNN 372 
performed exceedingly well on offline data. However, we found that the high offline performance was due 373 
to the RNN overfitting to the temporal structure of the offline data. This, in turn, translated to poor online 374 
performance. In response, we altered the temporal structure of the training data which helped the RNN 375 
generalize to the online setting, enabling it to far outperform linear methods. Thus, preventing neural 376 
networks from overfitting to stereotyped structure in training data may be necessary for translating deep 377 
learning methods to real-time BCI control and obtaining the associated performance benefits. 378 
 379 
The data alteration method proposed here is one way to approach the problem of neural network overfitting 380 
to offline BCI training data, which was accomplished by dilating/compressing smaller snippets of training 381 
data and shuffling the order of the modified snippets. There are likely many other methods of helping neural 382 
networks generalize to data with less stereotyped structure. For example, there has been a recent 383 
compelling approach in NHPs37 which recalibrates neural networks by using movement intention estimation 384 
techniques motivated by the ReFIT (recalibrated feedback intention-trained) algorithm39. In this same study, 385 
Willsey et al. deployed a shallow feed-forward network for online BCI control where only 150 ms windows 386 
of data were used at each time step. Similar to these short windows of data, we suspect that our data 387 
alteration method forced the RNN to learn smaller time histories of data, allowing it to learn the temporal 388 
characteristics of bimanual movement-related neural activity without overlearning the specific sequence of 389 
behaviors performed during open-loop trials.  390 
 391 
An additional useful feature of this method is that it generates synthetic data which helps prevent overfitting 392 
to the limited amount of data that is normally collected in human BCI research. Typically, BCI decoder 393 
calibration tasks are on the order of minutes and generally do not generate more than a few hundred trials 394 
worth of data12,13,20–22,38,50,65, whereas this method can easily increase this training data quantity by orders 395 
of magnitude, which may prevent overfitting (as shown in recent work on handwriting decoding28). Future 396 
studies could investigate the utility of altering temporal structure in training data across different network 397 
architectures and decoding algorithms. Snippet window widths and the quantity of synthetic data are 398 
additional hyperparameters that could be further optimized in future work. 399 
 400 
In addressing the challenge of decoding bimanual hand movements from neural activity, neural networks 401 
were better able to use the nonlinear structure in the neural data compared to linear methods. Laterality 402 
information (neural coding for the side of the body) was instrumental in helping the networks distinguish 403 
between left and right hand unimanual movements, particularly as neural tuning between the hands became 404 
increasingly correlated50,66,67. Linear decoders cannot leverage laterality information since it is independent 405 
of movement direction, resulting here in inadvertent decoded movements of the other effector during 406 
unimanual movement.  407 
 408 
In this study, we demonstrated bimanual two-cursor control, consistent with a trend towards decoding more 409 
challenging behaviors for BCI systems including fine dextrous hand control37,42 and the control of multiple 410 
effectors41,50,52. Deep learning methods will likely be increasingly useful for decoding these complex 411 
movements with potentially nonlinear neural representations (as highlighted here for bimanual movements). 412 
A key consideration in implementing RNN-based decoders will be to reduce overfitting to stereotyped 413 
structure in training data. In sum, altering the temporal and behavioral structure within training data can 414 
help translate deep learning methods to real-time BCI control – a potentially necessary step in helping these 415 
systems achieve clinical translation. 416 
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 417 
Methods 418 
Study permissions and participant details 419 
This work includes data from a single human participant (identified as T5) who gave informed consent and 420 
was enrolled in the BrainGate2 Neural Interface System clinical trial (ClinicialTrials.gov Identifier: 421 
NCT00912041, registered June 3, 2009). This pilot clinical trial was approved under an Investigational 422 
Device Exemption (IDE) by the US Food and Drug Administrations (Investigational Device Exemption 423 
#G090003). Permission was also granted by the Stanford University Institutional Review Board (protocol 424 
#20804) and the Mass General Brigham IRB (protocol #2009P000505). 425 
 426 
Participant T5 is a right-handed male (69 years of age at the time of study) with tetraplegia due to cervical 427 
spinal cord injury (classified as C4 AIS-C) which occurred approximately 9 years prior to enrollment in the 428 
clinical trial. In August 2016, participant T5 had two 96-channel intracortical microelectrode arrays 429 
(Blackrock Microsystems, Salt Lake City, UT; 1.5 mm electrode length) placed in the hand knob area of the 430 
left (dominant) precentral gyrus. The hand knob area was identified by pre-operative magnetic resonance 431 
imaging (MRI). Supplementary Figure 1a shows array placement locations registered to MRI-derived brain 432 
anatomy. T5 has full movement of the face and head and the ability to shrug his shoulders. Below the level 433 
of spinal cord injury, T5 has very limited voluntary motion of the arms and legs. Any intentional movement 434 
of the body below the level of injury is referred to as being “attempted” movement where small amplitude 435 
movements were intermittently observed.  436 
 437 
Neural data processing 438 
Neural signals were recorded from two 96-channel Utah microelectrode arrays using the NeuroPortTM 439 
system from Blackrock Microsystems (see [12] for  basic setup). First, neural signals were analog filtered 440 
from 0.3 to 7.5 kHz and subsequently digitized at 30kHz with 250 nV resolution. Next, common mode noise 441 
reduction was accomplished via a common average reference filter which subtracted the average signal 442 
across the array from every electrode. Finally, a digital high-pass filter at 250 Hz was applied to each 443 
electrode prior to spike detection.  444 
 445 
Spike threshold crossing detection was implemented using a -3.5 x RMS threshold applied to each 446 
electrode, where RMS is the electrode-specific root mean square of the time series voltage recorded on 447 
that electrode. Consistent with other recent work, all analyses and decoding were performed on multiunit 448 
spiking activity without spike sorting for single neuron activity68–70. 449 
 450 
Session structure and two-cursor tasks 451 
Neural data was recorded from participant T5 in 3-5 hour “sessions”, with breaks, on scheduled days (see 452 
Supplementary Table 2 for a comprehensive list of data collection sessions). T5 either sat upright in a 453 
wheelchair that supported his back and legs or laid down on a bed with his upper body inclined and head 454 
resting on a pillow. A computer monitor was placed in front of T5 which displayed two large circles indicating 455 
targets (one colored purple and one colored white) and two smaller circles indicating cursors with 456 
corresponding colors. The left cursor was labeled ‘L’ and colored purple and the right cursor was labeled 457 
‘R’ and colored white.  458 
 459 
During the open-loop task, the cursors moved autonomously to their designated targets in a delayed-460 
movement paradigm. On each trial, one of three movement types were cued randomly: (1) bimanual 461 
(simultaneous movement of both cursors), (2) unimanual right (only right cursor movement), and (3) 462 
unimanual left (only left cursor movement). Each trial began with a random delay period ranging from 1-2 463 
seconds where lines appeared and connected each cursor to its intended target. During the delay period, 464 
T5 would prepare the movement. After the delay period, indicated by a beep sound denoting the ‘go’ cue, 465 
the lines disappeared and the cursors moved to their targets over a period ranging 1-2 seconds in length, 466 
where cursor movement was governed by a minimum-jerk trajectory50,71 (black velocity profile in Fig. 3b). 467 
Both cursors arrived at their intended target at the same time. T5’s attempted movement strategy was to 468 
imagine that his hands were gripping joysticks (as illustrated in Fig. 1a) and to push on each joystick to 469 
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control the corresponding cursor’s motion. The end of each trial was indicated by another beep sound 470 
where T5 was instructed to stop all attempted movements and to begin preparing for the next trial’s 471 
movement. 472 
 473 
The closed-loop tasks generally mimicked the open-loop task except that the cursors were controlled via 474 
neural decoders (either an RNN or linear decoder) instead of having prescribed motion to their targets. 475 
During each closed-loop trial, T5 had a maximum of 10 seconds to acquire both targets. Target acquisition 476 
was defined as both cursors simultaneously dwelling within their intended target for an uninterrupted 477 
duration of 500 ms. If any one cursor moved outside of its target before the dwell period elapsed then the 478 
dwell timer was restarted. Both targets were illuminated blue during a proper simultaneous dwell (see 479 
Supplementary Movie 1). If the targets were not successfully acquired within the 10 second timeout period 480 
then the trial was considered failed.  481 
 482 
An “assisted” version of the closed-loop task was often used for decoder recalibration prior to true closed-483 
loop evaluation blocks. Assistance was provided in the form of “error assistance” and/or “push assistance”. 484 
Error assistance11,72 was accomplished by attenuating velocity commands in the dimensions orthogonal to 485 
each cursor’s straight-line path to the respective target. The attenuation factor was determined by a scalar 486 
value ranging from 0-1 where 0 provided no error assistance and 1 would remove all orthogonal velocity 487 
commands resulting in cursor movement along the line to the target. Push assistance was given for each 488 
cursor via adding a unit velocity vector in the direction of the corresponding target (referred to as “push 489 
vector”) which was scaled by the decoded cursor speed (magnitude of the velocity vector). The degree of 490 
push assistance was also governed by a scalar value ranging from 0-1 where 0 provided no push assistance 491 
and 1 would scale the push vector to the size of the decoded cursor velocity vector. The point of push 492 
assistance was to reinforce movement to the intended target by only aiding when the participant was trying 493 
to move. The amount of push and error assistance on each block was governed by the experimenter to 494 
ensure that the participant was able to acquire most, if not all, targets for recalibration purposes.  495 
 496 
Since performance during recalibration was generally suboptimal, unimanual trials would often result in 497 
movement of both cursors which then would require bimanual control to correct cursor deviation. This was 498 
not ideal when considering the balance of training data for trial and movement type. To address this, we 499 
instituted a “lock mode” where the non-active cursor’s motion was fixed so that the participant was able to 500 
focus on the cursor which was cued to move during unimanual trials. 501 
 502 
Offline population-level analyses 503 
Cross-validated estimates of neural tuning strength and tuning correlation between effectors 504 
We used cross-validated estimates of Euclidean distance for the quantification of neural tuning strength 505 
and other statistics requiring Euclidean distance, such as Pearson’s correlation between groups of linear 506 
model tuning coefficients. These methods are discussed in greater detail in our prior report50 (Willett*, Deo*, 507 
et al. 2020; see code repository https://github.com/fwillett/cvVectorStats).  508 
 509 
Tuning strength was quantified using a cross-validated implementation of ordinary least squares regression 510 
(cvOLS.m) to estimate the magnitude of columns of linear model coefficients. Tuning coefficients were 511 
found using the following model: 512 
 513 
 514 
 515 
 516 
               ,       ,            (2) 517 
 518 
 519 
                      520 
Here, 𝑓 is the N x 1 firing rate vector for a single time step where N is the number of electrode channels. 𝐸 521 
is an N x 5 matrix of mean firing rates (first column; superscript denotes electrode number) and directional 522 
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tuning coefficients (second to fifth columns; superscript is electrode number and subscript represents the 523 
hand as 𝑟 or 𝑙 and movement as the 𝑥- or 𝑦-direction). Variables 𝑑"# , 𝑑"$, 𝑑%# , and 𝑑%$ of the predictor vector 524 
represent the 𝑥 and 𝑦 components of the right (𝑟) and left (𝑙) hand’s intended movement defined as the 525 
corresponding difference between target position (𝑝 terms with superscript ‘target’) and cursor position (𝑝 526 
terms with superscript ‘cursor’). 𝐸 was fit via 5-fold cross-validated ordinary least-squares regression using 527 
20-ms binned data within a window from 300 to 700 ms after the go cue across all trials. This was 528 
accomplished by “stacking” the response (firing rate) and predictor vectors horizontally across all candidate 529 
timesteps. Block-wise means were calculated and subtracted from all neural data prior to analyses to adjust 530 
for nonstationarities and neural drift over time73,74. 531 
 532 
The data used in Figure 2 were from 5 session days (trial days 1776, 1778, 1792, 1881 and 1883) where 533 
we were able to collect large amounts of unimanual and bimanual open-loop data (since cross-validation 534 
requires each fold to have enough data to properly estimate regression coefficients). For each session day, 535 
we grouped consecutive blocks together in pairs to reach around 40 repetitions, at least, per trial type 536 
(unimanual right, unimanual left, and bimanual). Within each block set, we used the cvOLS function to 537 
compute the coefficient vectors and their magnitudes for each movement type. That is, we fit a separate 538 
model to all unimanual right trials, all unimanual left trials, and all bimanual trials. Notice that fitting the 539 
unimanual models reduces the encoding matrix 𝐸 to three columns (e.g., the last two columns related to 540 
the left hand are removed when fitting for unimanual right movement). We defined tuning strength for each 541 
hand (right or left) under the unimanual or bimanual contexts by averaging over the corresponding model’s 542 
x- and y-direction coefficient vector magnitudes. Ratios of these tuning strengths between models across 543 
each pair of block sets are reported in Figure 2b (gray dots; sample size of 25). Tuning correlation in Figure 544 
2c was quantified by computing the (cross-validated) Pearson correlation between corresponding x or y-545 
direction coefficient vectors between models (gray dots indicate correlations between models, as listed on 546 
the x-axis, across all block-sets). Correlations were computed using the cvOLS function. The x- and y-547 
direction correlations are shown separately since the hands are more correlated in the y-direction and anti-548 
correlated in the x-direction, as we have previously shown50, which would result in nullifying effects if 549 
correlations were averaged across direction dimensions. 550 
 551 
Principal component analysis (PCA) of laterality coding 552 
We used PCA to visualize the neural activity in a lower-dimensional space as illustrated in Figure 2d. Using 553 
data from one of the sessions (trial day 1881) described above (20-ms binned, block-wise mean removed, 554 
Z-scored), we computed each trial’s average firing rate vector within the 300-700 ms window after the go 555 
cue. We then stacked each trial’s N x 1 firing rate vector horizontally resulting in an N x T matrix where T is 556 
the number of trials. PCA was performed on this monolithic matrix and each firing rate vector was 557 
subsequently projected onto the top two principal components (PCs) as illustrated in the left panel of Figure 558 
2d. The single-trial projections were colored by the trial type (unimanual right trial, unimanual left trial, or 559 
bimanual trial) to show how the data clustered. Next, we projected each trial’s binned firing rates across 560 
time (-500 ms to 1.5 s relative to the go cue) onto the top PC to visualize a population-level peristimulus 561 
time histogram. Each thin line corresponds to a single trial’s projection, colored by trial type, and the bold 562 
lines are the mean projections shaded with 95% confidence intervals computed via bootstrap resampling. 563 
 564 
In order to quantify the size of laterality-related tuning, we used a variation of demixed principal component 565 
analysis57 (dPCA; Kobak et al., 2016; https://github.com/machenslab/dPCA). A central concept of dPCA is 566 
marginalizing the neural data across different sets of experimentally manipulated variables, or factors. Each 567 
marginalization is constructed by averaging across all variables that are not in the marginalized set, 568 
resulting in a data tensor that captures the effect of the factors on the neural activity. dPCA then finds neural 569 
dimensions that explain variance in each marginalization alone, resulting in a useful interpretation of neural 570 
activity according to the factors. Leveraging the existing dPCA library, we implemented a cross-validated 571 
variance computation to reduce bias by splitting the data into two sets, marginalizing each set, element-572 
wise multiplying the marginalized matrices together, and summing across all entries. The data was 573 
marginalized over the following four factors: laterality, movement direction, laterality x movement direction 574 
interaction, and time. For each dataset used in Figure 2b,c (trial days 1776, 1778, 1792, 1881 and 1883), 575 
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we computed the cross-validated variance in the aforementioned factors. The bar plots in Figure 2d 576 
(rightmost panel) summarize the average cross-validated marginalized variance for each factor (labeled 577 
along the x-axis) across all 5 sessions (gray dots). 578 
 579 
Single electrode channel tuning  580 
To assess neural tuning to unimanual or bimanual movement on a given electrode as seen in 581 
Supplementary Fig. 1, we used a 1-way ANOVA on firing rates observed during directional hand 582 
movements within each movement context. This analysis was performed on the same dataset used in 583 
Figure 1 (trial day 1750). We first computed the average firing rate vector for each trial within the 300 to 584 
700 ms window relative to the go cue. Next, we separated each of the computed average firing rate vectors 585 
into the following sets: unimanual right trials, unimanual left trials, and bimanual trials. Within each set, we 586 
grouped the vectors into their respective movement direction (4 directions defined by each quadrant in the 587 
unit circle) for each hand. Grouping the bimanual trials for right hand movement direction ignored left hand 588 
movement direction and vice versa. This resulted in 4 total sets of firing rate vectors grouped by their 589 
respective hand’s movement direction (unimanual right directions, unimanual left directions, bimanual right 590 
directions, and bimanual left directions) and a separate 1-way ANOVA was performed within each set. If 591 
the p-value was less than 0.00001, the electrode was considered to be strongly tuned to that movement 592 
context (unimanual or bimanual). To assess the tuning strength of each strongly tuned electrode, we 593 
computed FVAF (fraction of variance accounted for) scores50,65. The FVAF score was computed using the 594 
following equations: 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
Here, 𝑆𝑆&'&(% is the total variance (sum of squares), 𝑆𝑆)*" is the movement direction-related variance, 𝑁 is 608 
the total number of trials, 𝑓* is the average firing rate vector for trial 𝑖, f3 is the average firing rate vector 609 
across all trials within the set, and 𝑓3+[*] is the average firing rate vector for the particular movement direction 610 
cued on trial 𝑖. FVAF scores range from 0 (no direction-related variance) to 1 (all variance is direction-611 
related). 612 
 613 
Training data augmentation via dilation and randomization of training snippets 614 
The raw data as formatted for RNN training took the form of an input ‘feature’ data tensor of shape S x T x 615 
N and an output ‘target’ tensor of shape S x T x R. Here, S is the number of training snippets, T is the 616 
number of time points in a snippet, N is the number of electrode channels, and R is the number of response 617 
or output variables. The input tensor consisted of neural data which was binned at 20 ms, block-wise mean 618 
removed, and Z-scored. The output tensor contained the cursors’ velocities and movement context signals 619 
which were also binned at 20 ms (see Fig. 3 and Supplementary Fig. 2). Typically, we held our training 620 
snippet length at 10 s (T=500 at 20-ms bins). We generated a large number of synthetic training snippets 621 
by splicing together smaller pieces of the data stream which were also dilated in time and random in order. 622 
 623 
Our objective was to generate an augmented dataset which was balanced across movement direction and 624 
movement type. We defined 4 gross movement directions corresponding to each quadrant of the unit circle 625 
and movement type was defined as unimanual, bimanual, or no-movement. The types of no-movement 626 
were further subdivided into the following groups: (1) unimanual right delay period, (2) unimanual left delay 627 
period, (3) bimanual delay period, and (3) rest. This distinction in types of no-movement was so that we 628 
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may equally account and balance for preparatory activity as well as rest activity. The training data was 629 
preprocessed to label each data sample’s movement quadrant per hand and movement type. We generated 630 
roughly 2000 synthetic training snippets (each snippet of 10 s length) for training, which was chosen based 631 
on the time it took to perform the augmentation during an average experiment session (10-15 minutes). A 632 
synthetic 10 s training snippet was generated by appending dilated/compressed clips of raw data. Each 633 
raw data clip was selected to begin at a random time point, varied in duration (ranging between 0.2 to 0.8 634 
times the 10s total snippet length), and had an associated dilation/compression factor 𝑑. drawn from a 635 
uniform distribution over the interval [0.5, 2], where 𝑑. = 1	indicates no change, 𝑑. < 1	indicates 636 
compression, and 𝑑. > 1	indicates dilation. For a candidate clip to be considered valid, it had to abide by 637 
the current balancing record which was kept across all of the aforementioned movement conditions. 638 
Generally, the input data was balanced to achieve a sufficient amount of data for each of the movement 639 
types. If the candidate clip did not meet the balancing requirements, then another random clip was drawn. 640 
Linear interpolation was used to either compress or stretch both the input and output clips of raw data based 641 
on the dilation/compression factor (e.g., a 𝑑. of 0.5 would compress a clip array of length 60 into an array 642 
of length 30 by sampling every other element of the original clip). The data augmentation method generated  643 
both a training and held-out validation set that did not contain overlapping data. The input data was split 644 
into a training and validation set in advance, then from these isolated pools augmented sets of training data 645 
could be created. 646 
 647 
Online recurrent neural network decoding of two-cursors 648 
We used a single-layer gated recurrent unit (GRU) recurrent neural network architecture to convert 649 
sequences of threshold crossing neural firing rate vectors (which were binned at 20 ms and Z-scored) into 650 
sequences of continuous cursor velocities and discrete movement context signals. The discrete context 651 
signals coded for which movement (unimanual right, unimanual left, bimanual, or no movement) occurred 652 
at that moment in time and enabled the corresponding cursor velocity commands to be gated. We used a 653 
day-specific affine transform to account for inter-day changes in neural tuning when training data were 654 
combined across multiple days. The RNN model and training was implemented in TensorFlow v1. The 655 
online RNN decoder was deployed on our real-time system by extracting the network weights and 656 
implementing the inference step in custom software. The RNN inference step was 20 ms. A diagram of the 657 
RNN is given in Supplementary Fig. 2. 658 
 659 
Before the first day of real-time evaluation, we collected pilot offline data across 2 session days (trial days 660 
1752 and 1771) comprising 1 hour of 780 total trials (balanced for unimanual and bimanual trials) which 661 
were combined to train the RNN. All training data were augmented to generate around 2000 training 662 
snippets of ten second length amounting to roughly 6 hours of data (balancing equally for each movement 663 
type). We tuned the initial RNN model’s hyperparameters (input noise, input mean drift, learning rate, batch 664 
size, number of training batches, and L2-norm weight regularization) via a random search deployed across 665 
100 RNNs. On each subsequent day of real-time testing, additional open-loop training data were collected 666 
(approximately 25 minutes of 280 trials; roughly 6 hours of 30K trials after augmentation) to recalibrate the 667 
RNN which was subsequently used to collect 4 assisted closed-loop blocks (5 minutes each) for a final 668 
recalibration. For each RNN recalibration, all data that were used for training up until that point in time were 669 
included, where 40% of training examples were from the most recently collected dataset and the remaining 670 
60% of training examples were evenly distributed over all other previously collected datasets. During 671 
recalibration periods in which the RNN was training, firing rate means and standard deviations were 672 
updated via an elongated open-loop block (8-minutes in length) which were used to Z-score the input firing 673 
rates prior to decoding. This RNN training protocol was used for the unimanual and simultaneous bimanual 674 
data presented in Figure 4a. In total, performance was evaluated across 6 days (trial days 1752, 1771, 675 
1776, 1778, 1790, 1792) with each day containing between 4-8 blocks (5 minutes each) with balanced trials 676 
across each movement context. 677 
 678 
The RNN training varied slightly for the ‘sequential bimanual’ data presented in Figure 4b. The base RNN 679 
(prior to the first day of real-time evaluation) was calibrated in the same fashion as mentioned above, 680 
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however each subsequent dataset used for recalibration consisted of just unimanual trials and no bimanual 681 
trials. Data from two evaluation sessions (trial days 1881 and 1883) were used for Figure 4b. 682 
 683 
The data augmentation panels of Figure 3d,e were generated based on data from two session days (trial 684 
days 1867 and 1869). The two separate RNNs used were trained only on the data gathered during those 685 
sessions and did not include any historical data to focus on the effects of our data augmentation technique. 686 
One RNN was trained with data that was augmented and the other RNN was trained on the raw non-687 
augmented data. The open-loop results and sample speed traces shown in Figure 3d,e are from trial day 688 
1869.  689 
 690 
Online two-cursor control performance assessment 691 
Online performance was characterized by time-to-acquisition and angular error. Time-to-acquisition for a 692 
trial was defined as the amount of time after the go cue in which the targets were successfully acquired. 693 
Angular error was defined as the average difference between movement direction within the 300 to 500 ms 694 
window after the go cue to capture the ballistic portion of each movement prior to any error correction. Each 695 
trial timed out at 10 seconds, after which the trial was considered failed.  696 
 697 
Comparing linear regression and RNN decoding 698 
We tested a range of output gains for the comparison of online linear decoders and RNNs used for Figure 699 
4c (includes data from trial days 1853 and 1855) to ensure that performance differences were not due to 700 
variation in decoded output magnitudes. The range of gain values was determined on each session day by 701 
a closed-loop block (preceding data collection) where the experimenter hand-tuned values until the 702 
participant’s control degraded. Hand-tuning of gain values was done for the linear decoder and RNN, 703 
separately. Each session day had 4-5 equally spaced gain values for each decoder. For the data presented 704 
in Figure 4c, we averaged over all swept gains to summarize performance for each decoder since it turned 705 
out that the result was not affected by what gain was used (e.g., linear decoder results include data from 706 
each swept gain).  707 
 708 
Offline single-bin decoding of real and simulated unimanual data 709 
Real and simulated neural data for unimanual movement 710 
The real unimanual dataset analyzed for Figure 5a,b,c was from trial day 1883. The data were binned (20-711 
ms bins), block-wise mean removed, and each trial truncated to 400 ms movement windows (300 to 700 712 
ms after the go cue). In keeping with standard BCI decoding practice and to focus on directional movement 713 
decoding, we defined the velocity target for each time step as the unit vector pointing from the cursor to the 714 
target, resulting in discrete velocity steps as seen in Figure 5a (thick gray lines).  715 
 716 
When generating synthetic data for simulations, we attempted to match the ‘functional’ signal-to-noise ratio 717 
(fSNR) of the real dataset for a more practical comparison. The fSNR decomposes decoder output into a 718 
signal component (a vector pointing at the target) and a noise component (random trial-to-trial variability). 719 
We first generated the decoder output using a cross-validated linear filter to predict a point-at-target unit 720 
vector 𝑦& (normalized target position minus cursor position) given neural activity as input.  721 
 722 
We then fit the following linear model to describe the decoder output: 723 

ŷ& = 𝐷𝑦& + 𝜖& 724 
Here, 𝑦& is the 2 x 1 point-at-target vector,  ŷ& is the cursor’s predicted velocity vector at timestep t, 𝐷 is the 725 
2 x 2 decoder matrix, and 𝜖& is the 2 x 1 vector of gaussian noise at timestep t.  726 
 727 
We computed the functional SNR (𝑓𝑆𝑁𝑅) as: 728 

𝑓𝑆𝑁𝑅	 = 	
1
2 (𝐷/,/ +𝐷1,1)	/	𝜎 729 

Here, 𝐷/,/ and 𝐷1,1 are the diagonal terms (subscripts refer to row i and column j) of the 2 x 2 𝐷 matrix, and 730 
𝜎 is the standard deviation of ϵ (averaged across both dimensions). We estimated D by least squares 731 
regression. We estimated 𝜎	by taking the sample standard deviation of the model error. Intuitively, the 732 
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numerator describes the size of the point-at-target component of the decoder output, and the denominator 733 
describes the size of the trial-to-trial variability.  734 
 735 
To simulate neural activity, we used the laterality encoding model in equation 4 where we varied the 736 
directional tuning correlation between the hands and the size of the laterality dimension (as labeled along 737 
the x- and y-axes of Fig. 5d,e). We began by generating a synthetic target dataset containing unimanual 738 
velocities for the left and right hands. The synthetic targets consisted of approximately 2000 unimanual 739 
right trials and 2000 unimanual left trials. Trial lengths were 400 ms in duration to match the real dataset 740 
and binned in 20-ms bins. The synthetic target data were balanced across 8 movement direction wedges 741 
evenly distributed throughout the unit circle (see x-axes in Fig. 1c for direction wedges). Specifically, a 742 
uniformly random unit velocity vector was generated within a direction wedge for each trial ensuring even 743 
distribution across all wedges for both hands. Essentially, the synthetic targets resembled the sample real-744 
data targets seen in Figure 5a (thick gray lines). Next, we generated random tuning coefficients (𝑏 terms in 745 
eq. 4) for 192 synthetic neurons by sampling from a standard normal distribution. The population-level 746 
tuning vectors were then scaled to match the magnitudes of corresponding tuning vectors from the real 747 
dataset (using cvOLS). We then enforced a correlation (which was swept, see y-axes of Fig. 5d,e) between 748 
the x-direction tuning vectors for both hands as well as the y-direction vectors. Next, we passed the 749 
synthetic velocity targets through the tuning model to compute the population-level firing rates for each time 750 
bin. The fSNR for each hand was matched to the real data via adding gaussian noise to each individual 751 
channel (sweeping the standard deviation parameter) until the fSNRs of the synthetic data was close to 752 
that of real data. The simple noise model is described as follows: 753 
 754 
 755 

       (3) 756 
                    757 
 758 
 759 
Here, 𝑓2 is a T x 1 time-series vector of firing rates for channel 𝑛 where T represents the number of 20-ms 760 
time bins, Σ is the T x T diagonal covariance matrix, and σ is the standard deviation. This was a simple 761 
noise model with a diagonal covariance matrix used for all channels (i.e., the same σ was used for all 762 
channels) . We understand that more sophisticated noise models could have been used, but our simplified 763 
approach was well enough suited for single-bin decoding where one can assume independence between 764 
time bins which is further explained in Supplementary Figure 4. After matching the fSNRs, we scaled the 765 
laterality coefficient vector where a value of 0 removed the laterality dimension completely, and a value of 766 
1 matched the laterality coefficient magnitude of the real data. Finally, we enforced that no firing rates were 767 
below zero by clipping negative firing rates to 0.  768 
 769 
Linear ridge regression and feed forward neural network for single-bin decoding 770 
The real data was split into 5-folds for cross-validation with balanced unimanual right and unimanual left 771 
time steps of data within each fold. Cross-validation was necessary for the real dataset since the number 772 
of trials was relatively small (482 total trials) in comparison to the simulated dataset (4000 total trials).The 773 
simulated datasets were large enough and balanced in terms of trial types that in addition to cross-validation 774 
during decoder training, performance was based on completely held out test sets (20% of total simulated 775 
data) which were also balanced for trial type. 776 
 777 
Simple linear ridge regression was performed on the real and simulated datasets using a neural decoding 778 
python package (https://github.com/KordingLab/Neural_Decoding) and the Scikit-Learn library (RidgeCV 779 
function). The ridge parameter was swept until decoding performance (measured as the Pearson 780 
correlation coefficient) was maximized across all output dimensions. Each feed forward neural network 781 
(FFN) was designed as a single densely connected layer of 512 units (TensorFlow v.1). The FFNs were 782 
initialized with random weights and model parameters were tuned based on an offline hyperparameter 783 
sweep on pilot data. All  decoders were trained to convert firing rate input features (N x 1 vector) at a single 784 
time-bin (20ms bin) to x- and y-direction velocities for both cursors (4 x 1 velocity vector at each time step). 785 
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 786 
Removing laterality information from real unimanual data 787 
Laterality information was removed from real unimanual data by first fitting the linear tuning model below 788 
using cross-validation: 789 
 790 
 791 
 792 
                   (4) 793 
 794 
 795 
 796 
Here, the model resembles that in equation 2 except with the addition of a laterality predictor variable (𝑐%(&) 797 
which is +1 for unimanual right movement or -1 for unimanual left. There is an additional column of 798 
coefficients (𝑏%(& terms) in the encoding matrix 𝐸. After this model was fit, the neural activity was projected 799 
onto the laterality dimension (last column vector of 𝐸) and the projected neural activity was subsequently 800 
subtracted from the original neural activity. To ensure that laterality information was sufficiently removed, 801 
we built another linear filter on the laterality-removed data and confirmed that the laterality coefficients were 802 
all zero. 803 
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Supplementary Figures & Tables 1027 

 1028 
Supplementary Fig. 1 | Tuning to unimanual and bimanual movement is intermixed within electrodes 1029 
and has no clear somatotopic pattern. a Participant T5’s MRI-derived brain anatomy and microelectrode 1030 
array locations. Microelectrode array locations were determined by co-registration of post-operative 1031 
computed tomography (CT) images with preoperative MRI images. b The strength of each electrodes’ 1032 
tuning to right or left hand movement during unimanual and bimanual movement contexts is indicated with 1033 
a shaded color (darker colors indicate more tuning). Tuning strength was quantified as the fraction of total 1034 
firing rate variance accounted for by changes in firing rate due to the movement conditions 1035 
(unimanual/bimanual). Small white circles indicate electrodes that had no significant tuning to that 1036 
movement context as governed by a 1-way ANOVA. Broad spatial tuning to all movement categories can 1037 
be seen across all arrays. c Bar plots indicate the number of electrodes that were significantly tuned to 1038 
each movement context as computed in (a). Results show greater preference for right hand tuning across 1039 
both movement contexts. d Ratio of unimanual tuning strength between the right and left hand. Tuning 1040 
strength was computed using an unbiased estimate of neural distance between tuning coefficient vectors. 1041 
The right hand had almost twice as strong tuning than the left hand. e Pie chart summarizes the number of 1042 
electrodes that had statistically significant tuning to each possible number of movement sets (from 0 to 4).  1043 
 1044 
 1045 
 1046 
 1047 
 1048 
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 1049 
Supplementary Fig. 2 | Diagram of the RNN architecture. a We used a single-layer RNN with 512 gated 1050 
recurrent units (GRUs; ℎ&) to transform neural firing rates (𝑥&) binned in 20 ms to continuous cursor 1051 
velocities (𝑣&) and discrete movement signals (𝑒&). The 𝑣& vector describes the x- and y-direction velocities 1052 
for the right (first two dimensions) and left (last two dimensions) cursors at that moment in time (𝑡), and 𝑒&  1053 
is a one-hot vector (only one dimension is high at any given time) which codes for the type of movement 1054 
that the RNN detects (unimanual right, unimanual left, bimanual, or no movement) at that time point. Note 1055 
that we used a day-specific affine transform on the input firing rate vector 𝑥& to account for day-to-day 1056 
changes in neural activity. 1057 
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 1079 
Supplementary Fig. 3 | Offline unimanual and bimanual decoding. a Distributions of decoded velocity 1080 
magnitudes during unimanual movement (related to Fig. 5a,b). The feed forward neural network (FFN) was 1081 
able to decode higher velocity magnitudes than the linear decoder. Removal of the laterality dimension 1082 
resulted in less decoded velocities near 0 for the FFN, indicating worse cursor stillness without laterality 1083 
information. b Offline single-bin decoding on bimanual data. Neural activity was binned (20-ms bins) and 1084 
truncated to 400 ms movement windows (300-700 ms after go cue). Linear ridge regression (RR) and a 1085 
densely connected FFN (single layer, 512 units) were trained, using 5-fold cross-validation, to decode left 1086 
and right cursor velocities. Sample 8 s snippets of decoded x-direction velocity traces are shown. c Each 1087 
bar indicates the offline decoding performance (Pearson correlation coefficient) for the RR and FNN 1088 
decoders across the x- and y-direction velocity dimensions. Generally, right hand decoding accuracy was 1089 
higher than left hand decoding accuracy during bimanual movement. 1090 
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 1109 
Supplementary Fig. 4 | Decoding simulated data with a simple Gaussian noise model. a Using a 1110 
functional signal-to-noise ratio (fSNR; see Methods) metric, we quantify single-bin and window-average 1111 
decoding performance on real data (top row) and simulated data (bottom row). The simulated data was 1112 
created using a simple Gaussian noise model (using the left covariance matrix in b) which assumes 1113 
independence between firing rates across time bins for any given electrode channel. Decoders were built 1114 
using cross-validated linear regression on 20-ms binned data in the movement window from 300 to 700 ms 1115 
after the go cue of each trial. The single-bin decoders were calibrated on each 20-ms bin of data, whereas 1116 
the window-average decoders were calibrated on the averaged activity within the 400-ms window. Each 1117 
dot represents the decoded x- and y-direction velocity in either each 20-ms time bin (left column) or each 1118 
400-ms window of a trial (right column). The color of each dot corresponds to the true target direction of 1119 
movement indicated by the keys in the upper right of each panel. In this example, the simulated data was 1120 
generated to match the single-bin fSNR of real unimanual right hand movement data (2.03). Notice that 1121 
although the single-bin fSNRs of both the real and simulated datasets match, the window-average fSNRs 1122 
differ quite significantly. b The simple gaussian model on the left assumes independent noise, whereas the 1123 
covariance matrix on the right assumes correlated noise across time bins. σ is the standard deviation, and 1124 
ρ is the correlation coefficient. c In order to match the window-average fSNR, one could use the correlated 1125 
noise model and sweep the covariance parameters until a window-average fSNR is met. The scatter plots 1126 
indicate the single-bin and window-average fSNRs of synthetic datasets created by sweeping a range of 1127 
both σ and ρ parameters in the Gaussian model with correlated noise. Black stars indicate the real data’s 1128 
single-bin and window-average fSNR as seen in panel a. Both plots are identical except for the way in 1129 
which the points are colored. The plot on the left is colored according to the ρ value, and the plot on the 1130 
right is colored by the σ value. Notice that the correlated noise (ρ parameter) mainly affects the window-1131 
average fSNR and the single-bin SNR is mainly affected by the standard deviation parameter σ. With our 1132 
focus on single-bin decoding, the simple Gaussian noise model was sufficient when generating synthetic 1133 
datasets. 1134 
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X-direction  UniL-BiL UniR-UniL BiR-BiL 

UniR-BiR 7.82 x 10-10 4.89 x 10-40 2.39 x 10-11 

UniL-BiL  3.4 x 10-21 0.05 

UniR-UniL   1.04 x 10-12 

 1147 
Y-direction UniL-BiL UniR-UniL BiR-BiL 

UniR-BiR 3.3 x 10-9 9.32 x 10-27 4.0 x 10-16 

UniL-BiL  0.76 3.28 x 10-6 

UniR-UniL   8.51 x 10-13 

Supplemental Table 1 | Two-sample T-tests for significance between tuning correlations. These p-1148 
values correspond to the bar plots in Figure 2c. Bolded entries indicate significance as any value below 1149 
0.01. BiH denotes H hand during the bimanual context, and UniH denotes H hand during the unimanual 1150 
context.  1151 
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Date Session 
# 

Trial 
day 

Description Figure / 
Movie 

06.02.2021 320 1750 Cued unimanual and bimanual hand movement Fig 1b,c 
SFig 1b,c,e 

06.04.2021 321 1752 Cued unimanual and bimanual hand movement 
(pilot data used to initially calibrate RNNs for 
closed-loop) 

Fig 4a-c 

06.23.2021 324 1771 Cued unimanual and bimanual hand movement 
(pilot data used to initially calibrate RNNs for 
closed-loop) 

Fig 4a-c 

06.28.2021 325 1776 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2b-d  
Fig 4a 
SFig 1d 

06.30.2021 326 1778 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2b-d  
Fig 4a 
SMovie 1 

07.12.2021 329 1790 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 4a 

07.14.2021 330 1792 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2b-d  
Fig 4a 

09.13.2021 336 1853 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (RNN vs. linear 
regression) 

Fig 4c 

09.15.2021 337 1855 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (RNN vs. linear 
regression), ‘Unimanual task’ variant 

Fig 4c 
SMovie 3 

09.27.2021 340 1867 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (augmented vs. 
non-augmented training data) 

Fig 3e      
Fig 5a-c 
SFig 3a-c 

09.29.2021 341 1869 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (augmented vs. 
non-augmented training data) 

Fig 3d-e 
SMovie 4 

10.11.2021 344 1881 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (sequential 
unimanual vs. simultaneous bimanual strategy) 

Fig 2b-d  
Fig 4a-b 

10.13.2021  345 1883 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (sequential 
unimanual vs. simultaneous bimanual strategy) 

Fig 2b-d  
Fig 4a-b 
Fig 5a-c 
SMovie 2 

Supplemental Table 2 | List of data collection sessions with participant t5. The trial day refers to the 1185 
post-implant day. 1186 
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 1187 
Supplemental Movie 1 | Simultaneous bimanual control of two cursors via RNN decoding. In this 1188 
movie, participant T5 uses a BCI to control two cursors in real-time to targets on a computer monitor. An 1189 
RNN converts neural activity into velocities for both cursors at each timestep. On each trial, one of three 1190 
movement types are cued randomly: (1) bimanual (simultaneous movement of both cursors), (2) unimanual 1191 
right (only right cursor movement), or (3) unimanual left (only left cursor movement). Each trial begins with 1192 
a ‘prepare’ segment (of random duration) where lines connect each cursor to its intended target. T5 1193 
prepares to move during this segment but does not attempt movement until the lines disappear, indicating 1194 
the ‘go’ cue. Successful target acquisition occurs when both cursors simultaneously dwell within their 1195 
designated target (illuminates blue) for an uninterrupted period of 0.5 s. A trial times out at a maximum of 1196 
10 s. The RNN decoder is enabled at all times. This experiment block was recorded during a performance 1197 
evaluation session reported in Figure 4 (trial day 1778). 1198 

Supplemental Movie 2 | Sequential unimanual movement vs. simultaneous bimanual movement. 1199 
The same as Supplemental Movie 1, except T5 uses two different movement strategies: (1) sequential 1200 
unimanual (moving one cursor at a time), and (2) simultaneous bimanual (moving both cursors 1201 
simultaneously). A separate RNN decoder is used for each movement strategy. The RNN used for the 1202 
simultaneous bimanual strategy is trained normally (just like in supplemental video 1) with both unimanual 1203 
and bimanual data. The RNN used for the sequential unimanual strategy is trained only with unimanual 1204 
trials. Both experiment blocks were recorded during a performance evaluation session reported in Figure 1205 
4b (trial day 1883). 1206 

Supplemental Movie 3 | RNN vs. linear decoder for two-cursor control. The same as Supplemental 1207 
Movie 1, except with only unimanual trials. An RNN decoder is compared to a linear decoder for online 1208 
control of two cursors. This task was limited to unimanual trials to focus on the differences between 1209 
decoders. Both experiment blocks were recorded during a performance evaluation session reported in 1210 
Figure 4c (trial day 1855). 1211 

Supplemental Movie 4 | Online two-cursor control with raw and temporally altered training data. 1212 
Same as Supplemental Movie 1, except with only unimanual trials. During this task, one cursor is cued on 1213 
any given trial where the other cursor stays ‘locked’ in place. This version of the task was used to focus on 1214 
the differences between decoders. One decoder was trained with raw training data and the other decoder 1215 
was trained with temporally altered training data. Both experiment blocks were recorded during a 1216 
performance evaluation session reported in Figure 3e (trial day 1869). 1217 
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