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 50 
SUMMARY  
The adult human breast comprises an intricate network of epithelial ducts and lobules that are 
embedded in connective and adipose tissue. While previous studies have mainly focused on the 
breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we 
constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial 
resolution.  Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 
120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states.  These data 
revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal 
epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich 
ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular 60 
differences between ductal and lobular regions.  Collectively, these data provide an 
unprecedented reference of adult normal breast tissue for studying mammary biology and disease 
states such as breast cancer. 
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Introduction 
The human breast is an apocrine organ that plays an important physiological role in producing 
milk to nourish an infant after pregnancy1. This glandular function is mediated by an epithelial 70 
system consisting of highly branched lobular units producing milk that is transported via an 
intricate ductal network. The mammary epithelial system is embedded into an adipose-rich tissue 
and surrounded by a dense web of vasculature and lymphatic vessels that are directly connected to 
the regional lymph nodes (Fig. 1a). The human breast tissue is composed of four major spatial 
regions: 1) terminal ductal lobular units (TDLUs) and lobules of densely packed, branched 
epithelium, 2) tubular ducts of mostly bi-layered epithelium, 3) extracellular matrix (ECM)-rich 
connective tissue, and 4) adipose-rich regions. These areas consist of their own cellular 
neighborhoods and ecosystems that have been described in histopathological studies1-3. However, 
a comprehensive and systematic unbiased map of their cellular expression programs and spatial 
organizations in the breast remains lacking.  80 
 Previous studies have focused mainly on characterizing the epithelial cells, which 
comprise the inner layer of luminal cells and the outer layer of basal/myoepithelial cells within 
ducts and lobules4-6 (Fig. 1b).  This focus on epithelium is mainly due to its implication in breast 
cancer7,8, mammary stem cell and progenitor functions9,10 and its dynamic changes during 
menstruation, pregnancy, and lactation11,12.  Previous studies using single-cell RNA sequencing 
(scRNA-seq) of normal human breast tissues identified three major mammary epithelial cell 
types, laying the groundwork for the present HBCA4,13,6,14,15. Increasing evidence also suggests 
that the microenvironment directly surrounding epithelial structures contains numerous stromal 
cells that actively crosstalk with the epithelial cells16-19.  However, the intense focus on 
understanding epithelial cell biology has left a major gap in knowledge concerning the non-90 
epithelial cell types.  The goal of the HBCA is to generate a comprehensive atlas using unbiased 
single-cell and spatial genomic methods, which is part of the larger Human Cell Atlas (HCA) 
project20.  
 
Major cell types in the adult human breast tissues 
To identify the major cell types and their expression programs, we performed unbiased 3’ 
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scRNA-seq (10X Genomics) from 100 tissue samples collected from 62 women under informed 
IRB consent (Fig. 1b, Supplementary Table 1).  Fresh human breast tissue samples were 
obtained from disease-free women which included reduction mammoplasties (RM=30) and 
prophylactic mastectomies (PM=6), as well as breast cancer patients using the contralateral 100 
mastectomies (CM=26) from the other non-malignant breast.  These fresh tissue samples were 
collected at four institutions within 1-2 hours after surgery using mirrored protocols, to generate 
viable cell suspensions from large tissue specimens (50-100g) (Methods). We sequenced an 
average of 9,143 cells per specimen at 50K average reads per cell (Supplementary Table 2).  

  After filtering, scRNA-seq data from 535,941 cells was integrated and clustered revealing 
10 major breast cell types (Fig. 1c, Extended Data Fig. 1a, Methods). These cell types included 
three epithelial components: luminal hormone-responsive (LumHR), luminal secretory (LumSec) 
and basal/myoepithelial (Basal); two endothelial (lymphatic and vascular); three immune (T 
cells, B cells and myeloid cells) and two mesenchymal cell types (fibroblasts (Fibro) and 
Pericytes). While the frequency of the major cell types varied across women, all the cell types 110 
were detected in most women, irrespective of the tissue source (Extended Data Fig. 1b, 1g). 
Many cell types were consistent with histopathological1,2 and molecular studies13,14 of breast 
tissues, however the detection of a high number of pericytes (5.4% total cells) and immune cells 
(18.3% total cells) was unexpected. Many of the top expressed genes represented canonical cell 
type marker genes, thereby confirming their identities (Fig. 1d, Extended Data Fig. 1a). 
However, approximately half of the top marker genes have not previously been reported, 
providing a valuable resource for isolating or labelling specific breast cell types (Supplementary 
Table 3).  
  Notably, the scRNA-seq data did not identify any adipocytes, which represent a major 
component of breast tissue based on histological data2,21.  This issue was likely due to the large 120 
cell size of adipocytes (>50 microns), preventing their encapsulation on the scRNA-seq 
microdroplet platform22. To identify adipocytes and other challenging cell types, we also 
performed single nucleus RNA-seq (snRNA-seq) of 120,024 cells from 20 human breast tissue 
samples (Fig. 1e, Supplementary Table 1). Our snRNA-seq analysis detected all major cell types 
identified by scRNA-seq (except for B cells) and additionally included adipocytes and mast cells 
(Fig. 1f, Extended Data Fig. 1c, h).  The frequency of cell types differed for some cell types (e.g., 
fibroblasts) in the snRNA-seq and scRNA-seq data, reflecting differences in cell proportions 
after tissue dissociation (Extended Data Fig. 1h). Additionally, the top cell type marker genes in 
snRNA-seq often differed from the scRNA-seq data, likely reflecting biological differences in 
the cytoplasmic and nuclear RNA pools (Supplementary Tables 3,4). To identify key 130 
transcription factors (TFs), we performed a regulon analysis23 using both the scRNA-seq data 
(Fig. 1g) and the snRNA-seq datasets (Extended Data Fig. 1d). These data identified many 
known24 and novel TFs that regulate breast cell type identities.   
  One potential concern was that sampling different spatial areas in the breast could 
potentially lead to differences in cell type compositions.  To investigate this issue, we compared 
the cell type frequencies from matched (left/right) breasts from 22 women, which showed no 
significant differences based on Procrustes analysis (R=0.83, p=1.5e-6) (Extended Data Fig. 1e,f, 
Methods).  We also compared cell type frequencies across the three main tissue sources, which 
showed only minor differences (Extended Data Fig. 1g). Collectively, these data identified 11 
major cell types in adult mammary breast tissues. 140 
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Spatial mapping reveals cellular neighborhoods in breast tissues 
By histopathology human breast tissue can be divided into four major topographic regions: 
adipose tissue (A), connective tissue (C), and epithelial-rich regions, which are further 
subclassified into terminal ductal lobular units (TDLU), herein referred to as lobules (L), and 
ductal (D) regions2,3 (Fig.1a).  We utilized three orthogonal technologies to investigate the 
spatial organization of cell types in situ, including unbiased spatial transcriptomics (ST, 10X 
Genomics)25, targeted single molecule RNA FISH (smFISH, Resolve Biosciences)26 and co-
detection by indexing (CODEX, Akoya Biosciences) for proteomic analysis27. 
  ST analysis was performed on tissues from 4 patients and the data was integrated and 150 
clustered, revealing 10 major ST clusters (Fig. 2a-b, Extended Data Fig. 2a, c-e, Supplementary 
Table 5). Although ST spots are 55 microns and could potentially be mixtures of cell types, a 
direct comparison to the scRNA-seq clusters showed that most of the ST clusters corresponded 
to a single dominant breast cell type cluster, except for ST03 and ST04 (Extended Data Fig. 2b). 
Importantly, ST cluster signatures showed a high concordance with the top cell type marker 
genes defined by scRNA-seq, validating markers in situ (Extended Data Fig. 2f). Notably, the 
abundance and distribution of ST clusters corresponded to the four different tissue areas (A, C, 
D, L) that were annotated by histopathology. Regions A and C had a high proportion of ST06 
adipocyte and ST05 fibroblast clusters, respectively, while region D contained higher 
proportions of the ST04 LumSec and ST01 myoepithelial clusters and region L contained a 160 
higher proportion of the ST03 and ST02 epithelial clusters (Fig. 2c).   
  Since ST spots contain mixtures of cells, we also applied smFISH using a custom 100-
gene panel based on the top expressed marker genes from the scRNA-seq data to distinguish cell 
types at single cell resolution (Supplementary Table 6, Methods). The smFISH analysis of 12 
breast tissues from 5 women validated many top marker genes in situ (Fig. 2d-e, Supplementary 
Table 7). Most of the immune cell markers of T cells (CD3E), B cells (JCHAIN), and 
macrophages (CD68) were identified in the lobular and ductal regions, confirming their 
abundance in the scRNA-seq data (Fig. 2d). We further performed cell segmentation using 
combinations of the top markers of each cell type (Fig. 2f, Extended Data Fig. 3a, Methods). 
Using this data we computed a cell neighborhood proximity graph, which showed that the three 170 
epithelial cell types co-localized with B cells and T cells, while fibroblasts co-localized with 
vascular and lymphatic cells (Fig. 2g, Methods).  We also quantified the cell type frequency in 
three major tissue areas (C, L, D), which showed that C was composed mainly of fibroblasts and 
vascular endothelial cells, while D consisted mainly of basal cells and high levels of LumSec 
epithelial cells, and L was composed of basal cells and high levels of LumHR epithelial cells, as 
well as fibroblasts (Fig. 2f, h, Extended Data Fig. 3a-b).  The smFISH data also showed that 
overall cell density was low in connective tissue regions, and high in ductal and lobular regions. 
  We also investigated the spatial distribution of breast cell types in 4 patients using 
CODEX with a 34 antibody panel, which resolved 8 major cell types including T cells and 
myeloid cells (Supplementary Tables 8-9). One advantage of CODEX is that large tissue areas 180 
(approximately 1cm2) can be imaged, as well single cells in larger ducts and TDLUs (Fig. 2i).  
To perform a quantitative analysis, we performed cell segmentation and unsupervised clustering, 
followed by label transfer from the scRNA-seq data (Fig. 2j,k, Methods). This analysis showed 
that most cell types were consistent between the 4 tissue specimens in the CODEX data 
(Extended Data Fig. 3c). We also performed a proximity analysis, which was consistent with the 
smFISH data, but placed T cells closer to the fibroblasts (Fig. 2l). This data was used to define 
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the cellular composition of the topographic regions at the protein level, which was consistent 
with the smFISH data (Fig. 2m).  
 
Epithelial cell diversity in the ducts and lobules  190 
By histopathology, the ductal-lobular system of the breast consists of bi-layered epithelial cells, 
with an outer layer of basal cells and an inner layer of luminal cells1,2 (Fig. 3a).  However, 
additional epithelial subsets including stem and progenitor populations have been proposed 
within both the basal and luminal compartments16,10,13,14.  Our unbiased clustering of 114,967 
epithelial cells and 56,280 epithelial nuclei identified three major epithelial cell types: Basal, 
LumSec, LumHR, which comprised a large proportion of the breast tissue (21.5% of cells, 
45.4% of nuclei) and were consistent with previous scRNA-seq studies of human breast 
tissues4,6,13,14 (Fig. 3b,c). As expected, nuclear expression of genes encoding hormone receptors 
(ESR1, AR and PGR) was specific to LumHR cells (Fig. 3d).  We also performed an analysis of 
cytokeratin gene expression, which revealed basal specific, LumSec specific, and LumHR 200 
specific cytokeratins (Fig. 3e, Extended Data Fig. 4a-b).  
  To further resolve epithelial diversity, we clustered the scRNA-seq data from each 
epithelial cell type (Fig. 3f-h, k; Extended Data Fig. 4a). This analysis revealed that basal cells 
were remarkably homogenous, expressing ACTA2 and TP63, as well as low levels of EPCAM, 
consistent with their role in basement membrane production and myoepithelial functions (Fig. 3f, 
k, Extended Data Fig. 4b,d).  In contrast, a larger number of known and previously unrealized 
cell states were identified in the luminal cells (Fig. 3g,k).  Within LumHR cells, three distinct 
cell states were identified, including one major cluster representing the canonical hormone-
responsive cell state (LumHR-major) marked by EGLN3 expression, and two smaller clusters, 
one marked by secreted factors such as MUCL1, Prolactin-inducible protein (PIP), and 210 
secretoglobins (LumHR-SCGB), and the other cluster marked by genes downstream of hormone 
signaling such as FASN28 (LumHR-active) (Fig. 3g,i,k, Extended Data Fig. 4e). The LumHR-
active cluster also displayed expression of genes that may relay pro-proliferative signals on 
neighboring epithelial cells upon hormone sensing, such as epiregulin (EREG)29 (Fig. 3g,i,k).  
  The highest cell state diversity was detected within LumSec cells, harboring five distinct 
cell states (Fig. 3h).  The major canonical cell state marked by KRT23 expression (LumSec-
major) in addition to four smaller cell states (Fig. 3h,k Extended Data Fig. 4f). The LumSec-
HLA cluster expressed genes encoding MHC-I and MHC-II molecules, as well as the chemokine 
CCL20, suggesting a role in immune cell signaling (Fig. 3j,k, Extended Data Fig. 4f).  The 
LumSec-lac cell state was marked by genes involved in lactation such as caseins (CSN2, 220 
CSN1S1) and showed a higher lactation signature score (Fig. 3l, Extended Data Fig. 4f). The 
LumSec-prol cell state was characterized by genes involved in cell cycle and proliferation and 
showed an elevated G2/M score (Fig. 3m, Extended Data Fig. 4f). The LumSec-KIT cell state 
showed expression of the proto-oncogenes KIT and JUN as well as transcription factors 
including SOX4, HES1 and MAFB (Fig. 3k, Extended Data Fig. 4f). Altogether, nine epithelial 
cell states were discovered, which varied across the 62 women (Extended Data Fig. 4c, 
Supplemental Table 10).  
  Interestingly, epithelial cell proliferation was restricted to LumSec and LumHR clusters, 
whereas basal cell proliferation was not detected. Small percentages of proliferating cells were 
identified in the scRNA-seq and snRNA-seq data within LumSec (2.3% of cells, 4% of nuclei) 230 
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and LumHR (1.4% of nuclei) clusters (Fig. 3c,n). Consistent with S-phase activity, high levels of 
PCNA mRNA and protein expression were detected in luminal cells (Fig. 3o, Extended Data Fig. 
4f). Consistently, the S-phase signature scoring revealed highest S-phase scores within the 
LumSec-prol cluster in scRNA-seq data, and within LumSec-prol and LumHR-prol clusters in 
snRNA-seq data, respectively (Extended Data Fig. 4g,h). Luminal cell proliferation occurred in 
both ductal and lobular regions, as revealed by in situ anti-PCNA immunofluorescence and 
MKI67 transcript detection using smFISH (Fig. 3o, Extended Data Fig. 5d). Altogether, this data 
indicates that most proliferation occurs within the luminal compartment of the breast epithelium.  

Next, we compared ductal and lobular regions by leveraging three spatial technologies. 
Using ST, we performed DE analysis between histopathological breast regions annotated as 240 
ducts and lobules/TDLUs (Fig. 3p, Extended Data Fig. 5a). This analysis identified many genes 
enriched in ducts that were associated with the LumSec cell type (e.g. KRT17, LTF, KRT23), 
while lobules showed increased expression of LumHR specific genes (e.g. AZGP1, AGR2) (Fig. 
3q). In line with these findings, smFISH revealed increased expression of LumSec related genes 
in the ducts (e.g. LTF, SLPI, KRT15), while lobules were enriched for LumHR associated genes 
(ANKRD30A, AR, ESR1, PGR) (Fig. 3r,s, Extended Data Fig. 5c,d). On protein level, we found 
elevated levels of KRT5 and KRT14 in ducts versus lobules using CODEX (Fig. 3t). KRT5 
staining patterns were of particular interest, since KRT5 is considered a basal cell marker, yet a 
significant enrichment of KRT5+ cells was also found within the KRT19-positive luminal cell 
layer in ducts (Fig. 3t). Presence of KRT5/KRT19-double positive cells in ducts indicated an 250 
enrichment of cells with an intermediate basal-luminal expression profile within ductal 
structures, which have been linked to loss of lineage fidelity and cancer initiation30. Previous 
studies referred to the two luminal cell types (LumHR and LumSec) as alveolar and ductal14,16. 
However, our analysis indicates that while the abundance of LumHR and LumSec cells differs 
between ducts and lobules, both cell types exist within ducts and alveolar structures of lobules 
(Fig. 2h, m, Extended Data Fig. 5b,e,f). 
 
Immune Ecosystem of the Normal Breast  
The scRNA-seq data of 63,815 cells and 17,289 nuclei from 62 women showed that immune 
cells were organized into three major populations (myeloid, NK/T and B cells) and were 260 
unexpectedly abundant (11.9% total cells, 13.9% total nuclei) in all three different breast tissue 
sources (CM, PM, RM) (Fig. 4a,b). The abundance of the immune cells was also validated in the 
spatial CODEX and smFISH data (Fig. 4c-e), as well as our histological images (Extended Data 
Fig 7a). To further investigate immune cell diversity, we clustered cells within the myeloid, 
NK/T and B cell clusters and annotated the cell states using both unbiased and canonical marker 
genes31-33 (Fig.4f-k, Extended Data Fig. 6a-c). 

Within the NK/T cells, the scRNA-seq data of 35,797 cells identified 14 subsets (Fig 
4f,g, Extended Data Fig 6a). The CD4 T cells included naïve T cells (SELL), Th and Thlike 
(IL7R, CCR6, CCL20), T effector memory (Tem (LMNA) and T regulatory (Treg) (FOXP3) 
cells. We identified two populations of CD8 T cells, T resident memory (Trm) (ITGA1) and Tem 270 
(GZMK), as well as a cluster of gamma delta (GD) T (TRGC1) cells. We also detected clusters of 
CD4 and CD8 T cells that displayed upregulation of genes associated with TCR activation 
(PLCG2, ZNF683). The subclustering further resolved populations of natural killer (NK), NKT, 
and innate lymphoid cells (ILC) that were discriminated by their combinatorial expression of NK 
(GNLY), T cell (CD3D), and ILC (IL7R) markers. We detected a small proliferating cluster 
(MKI67) that contained cells from many NK and T cell subsets. Notably, most subsets expressed 
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the tissue resident marker RUNX334 and did not express high levels of checkpoint or exhaustion 
markers35, which is consistent with a homeostatic rather than disease-associated phenotype 
(Extended Data Fig. 6d). Clustering of the 6,977 integrated scRNA-seq data of the B cells 
showed populations of naïve, memory, and plasma B cells, which were distinguished by their 280 
expression of CD27 (memory), CD38 (plasma), or neither (naïve) (Fig. 4h,i, Extended Data Fig. 
6b). Among the memory B cells, we identified both switched (MYC) and unswitched (no MYC 
expression) cells. We also identified two populations of plasma B cells that separated based on 
their preferential expression of IgG or IgA immunoglobulins. 

Clustering of the 21,041 scRNA-seq myeloid cells resolved distinct subsets of dendritic 
cells (DC), monocytes, macrophages, and mast cells (Fig. 4j,k, Extended Data Fig. 6c). We 
identified four subpopulations of dendritic cells, including mature (mDC) (LAMP3), 
plasmacytoid (pDC) (LILRA4), and two conventional cell states (cDC1 (CLEC9A), and cDC2 
(CLEC10A)). Among the macrophages, we detected classically (Macro-m1, IL1B) and 
alternatively (Macro-m2, MRC1) activated subsets, a population defined by the expression of 290 
interferon response genes (Macro-ifn, IFIT1, IFIT2), and a lipid-associated macrophage 
subcluster (Macro-lipo, APOC, LPL, TREM2). We also identified populations of classical 
(EREG) and non-classical (FCGR3A) monocytes, as well as mast cells defined by their 
expression of TPSAB1. This analysis also identified a heterogenous cluster of proliferating 
myeloid cells (Mye-prol, MKI67). Although the NK/T, B and myeloid cell states showed 
variable frequencies, they were consistently identified across the 50 women, suggesting they play 
a ubiquitous function in normal breast homeostasis (Extended Data Fig. 6e-h). 

The spatial organization of seven major immune cell types (monocytes, macrophages, 
CD4 T, CD8 T, CD4 Treg, dendritic and B cells) was delineated using a total of 18 markers on 
the smFISH platform and 8 markers on the CODEX (Extended Data Fig. 7b,c, Supplementary 300 
Table 6, 9, respectively).  Spatial analyses showed that all seven cell types were present in three 
major tissue regions (C, D, L), excluding adipose which could not be assessed (Extended Data 
Fig. 7c-f). The highest density of immune cells was observed in the epithelial D and L regions, 
whereas the connective tissue showed only very sparse immune cell density (Extended Data Fig. 
7c-f). Importantly, most immune cells were found in the breast tissue parenchyma rather than in 
vessels, consistent with a tissue resident phenotype (Fig. 4l-n). Furthermore, many immune cells 
were embedded within the epithelial layers and had elevated levels of the RUNX3 protein, further 
indicative of a tissue resident phenotype34 (Fig. 4o,p,s). Collectively, these data show that normal 
breast tissues harbor an abundant and diverse milieu of immune cell types. 
 310 

Fibroblast Cell Diversity in the Breast  
Fibroblasts are mesenchymal cells responsible for the production of the extracellular matrix 
(ECM), which supports both the epithelial structures, as well as the connective tissue of the 
breast1. In our data, fibroblasts represented an abundant cell type in the breast (21.1% of cells, 
16.5% of nuclei). Previous histopathological studies have annotated breast fibroblasts as 
‘intralobular’ or ‘interlobular’ based on their tissue localization (Fig. 5a)1,2. We reclustered 
scRNA-seq data from 113,157 fibroblast cells across 62 women, which identified three distinct 
fibroblast cell states (Fig. 5b,c, Extended Data Fig. 8a-b). Unbiased signature analysis suggested 
that two cell states were enriched for integrin, ECM, and collagen gene signatures, while the 
third had signatures of antioxidant and chemokine activity (Fig. 5d). The ‘fibro-matrix’ cells 320 
showed high transcription of collagen genes and scored highest for a ‘collagen’ gene signature 
(Fig. 5d-e, Extended Data Fig. 8c,d). The ‘Fibro-prematrix’ cells displayed elevated pre-collagen 
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genes such as PCOLCE2, and genes involved in fatty acid metabolism (FABP4, CD36, PPARG). 
The ‘Fibro-immune’ cell state displayed elevated expression of cytokines and chemokines and 
therefore likely plays a role in immune cell regulation (Fig. 5c). We further investigated the 
expression of FAP, an activated fibroblast marker often reported in cancer associated fibroblasts 
(CAFs), which showed very low expression in the three cell states (Fig. 5f).  
To investigate the spatial distribution of the fibroblasts, we first used the pan-fibroblast marker 
vimentin (VIM) in our CODEX analysis, which revealed two prominent locations of fibroblasts 
in the interlobular and intralobular regions (Fig. 5g). To further distinguish the three cell states, 330 
we utilized four genes from our spatial smFISH panel, including COL1A1 and COL1A2 (Fibro-
matrix), as well as FBLN1 and SERPINF1 (Fibro-prematrix). This data showed that the pre-
matrix markers were expressed predominantly in the lobular regions (Fig. 5h, Extended Data Fig. 
8f). To further quantify this finding, we classified the smFISH genes into three groups (epi-
proximal, epi-middle and epi-distal), which confirmed that SERPINF1 and FBLN1 was elevated 
in the intralobular regions (Extended Data Fig. 8f,g,h). We also used RNAscope to investigate 
the expression of MMP3 in the Fibro-immune cell state, which showed higher levels in the 
fibroblasts proximal to lobular epithelial regions, consistent with the smFISH data (Extended 
Data Fig. 8i, Methods).   
 340 
Adipose Tissues of the Breast 
Adipose tissue represents a large proportion of the human breast and plays important roles as a 
source of energy and hormones12,22,36. Adipocytes are the main cell type in adipose tissues and 
are readily identified by histopathology (Fig. 5i).  However, adipocytes have been notoriously 
difficult to profile with single-cell genomics methods due to their large cell size, high lipid 
content and fragile nature6. Indeed, adipocytes were not captured by our scRNA-seq methods 
(Fig. 1c). Therefore, we leveraged snRNA-seq to capture the transcriptomic profiles of 4,917 
breast adipocytes (4.1% of nuclei) and spatial transcriptomics (ST) data from 4 women (Fig 
5j,k).  Collectively, these methods identified ADH1B, CD36, PLIN1, PLIN4, ADIPOQ, FABP4, 
LEP and LPL as the top genes expressed in breast adipocytes, which was consistent across the 350 
two orthogonal platforms (Fig 5l). Both the snRNA-seq and ST data showed that most adipocyte 
markers were expressed uniformly across all adipocytes, with limited cell state heterogeneity. 
We further interrogated our dataset for brown/beige and white adipocyte markers, which showed 
that breast adipocytes exclusively corresponded to white adipocytes (Fig. 5l).  
 
Vascular and Lymphatic Endothelial Cells  
The human breast is a highly vascularized organ containing a network of veins and arteries that 
diffuse into the ducts and lobules via capillaries and are often detected in histopathological 
sections (Fig. 6a). Our scRNA-seq analysis of 40,824 endothelial cells across 62 women showed 
that vascular endothelial cells (expressing PECAM1 and VWF) represent an abundant cell type 360 
(7.6% of cells, 7.3% of nuclei) in the normal breast (Fig. 6b). Re-clustering of scRNA-seq 
vascular endothelial cells identified 3 major cell states that corresponded to arterial endothelial 
(SOX17, GJA4), venous endothelial (ACKR1, SELP) and capillary endothelial (RGCC, CA4) 
cells based on canonical markers37,38, and further identified many new top marker genes (Fig. 
6b,c, Extended Data Fig. 9b,c). In addition to the vascular system, the lymphatic network 
represents a ‘passive system’ for removing cellular waste and is often identified in 
histopathological sections (Fig. 6d). Our data shows that lymphatic endothelial cells (expressing 
PROX1 and PDPN) occur at low frequencies (1.4% of cells, 3.9% of nuclei) in breast tissue. 
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Clustering of 7,530 lymphatic cells from the scRNA-seq data identified three major cell states 
that varied across women (Fig. 6e,f, Extended Data Fig. 9e). The Lym-major cell state expressed 370 
LYVE1 and CCL21 and represented the most abundant component of the lymphatic vessels 
(Extended Data Fig. 9f). The Lym-immune cell state expressed ACKR4 and NTS which 
resembles cells on the ceiling of subcapsular sinus in human lymph nodes38, as well as several 
chemokine ligands and signatures, suggesting a role in immune cell signaling (Extended Data 
Fig. 9g). The third cell states are the Lym-valve cells which expressed CLDN11 and play an 
important role in preventing lymphatic fluid backflow39. 

Using the three spatial platforms, we investigated the localization of the vascular and 
lymphatic cell states. The ST data showed two distinct clusters for vascular and lymphatic cells 
that corresponded to the histopathological vessel structures and validated many scRNA-seq cell 
type markers in situ (Extended Data Fig. 9h). The smFISH data showed that larger venous 380 
structures expressing ACKR1 and the vascular marker VWF are typically found in the connective 
tissues, while smaller capillary structures expressing RBP7 were closely integrated within 
epithelial lobular or ductal structures (Fig. 6g, R1 inset panel, Extended Data Fig. 9i). Spatial 
analysis using smFISH showed that the lymphatic cells (PROX1 positive) are located 
predominantly in connective tissues regions (Fig. 6g). This was also reflected in the CODEX 
analysis using anti-PDPN (Fig. 6h). Collectively, these data provide a molecular definition of the 
vascular and lymphatic cell states in the human breast. 
 
Pericytes of the Breast  
Pericytes have traditionally been described as ‘vascular accessory cells’ that play a role in 390 
regulating vasoconstriction in capillaries to regulate blood-flow into tissues40,41 (Fig. 6i). While 
pericytes have been studied extensively in the brain28, there is limited data on their role in normal 
breast tissues. Unexpectedly, our scRNAseq data from 27,720 pericytes across 62 women 
showed that pericytes are an abundant cell type (5.2% of cells, 2.1% of nuclei) in the human 
breast. Clustering of the scRNA-seq pericyte data identified 3 major cell states: myopericytes 
(Peri-myo), immune-pericytes (Peri-immune) and hormone-responsive pericytes (Peri-HR) (Fig. 
6j-k, Extended Data Fig.10a,b). These pericyte cell states were present at variable frequencies in 
most of the women in our study (Extended Data Fig. 10d). The Peri-myo were consistent with 
their classical role in constricting blood vessels to regulate blood flow41 (Fig. 6k, Extended Data 
Fig. 10c). The Peri-immune expressed gene signatures involved in chemokine and cytokine 400 
functions, suggesting they are involved in immune cell signaling (Extended Data Fig.10c).  The 
Peri-HR cells expressed genes such as CREM, CMSS2 and GCNA, and showed gene signatures 
associated with hormone and gluococorticoid receptor binding (Extended Data Fig. 10c).  Spatial 
analysis using smFISH showed that pericytes (RGS5 positive) were highly abundant in normal 
breast tissues in lobular regions, where they often co-localized with vascular cells (VWF 
positive) (Fig. 6l, Extended Data Fig. 10g-i). Similarly, CODEX proteomic analysis showed that 
pericytes (LIF-positive) were often located in lobular regions and co-localized with vascular 
markers (CD31-positive) (Fig. 6m). This data suggests that large numbers of pericytes 
congregate in lobular regions and may have diverse functions in breast tissues. 
 410 
Metadata Correlations with Cell Types and States 
We investigated the association of the breast cell type and state frequencies with clinical 
parameters, including age, menopausal status, body mass index (BMI) and parity (pregnancy) 
status (Extended Data Fig. 11). Menopause status and older age (>50 years) both correlated with 
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lower frequencies of cell types including the basal epithelial (p = 0.004, p = 0.019, Fisher Exact) 
and B cells (p = 0.002, p = 0.003, Fisher Exact) and decreased LumSec epithelial cells (p= 0.049 
in menopause, N.S. with old age, Fisher Exact) (Extended Data Fig 11a,c). Menopause and old 
age were also associated with many cell state changes, including the epithelial cell states 
(LumHR-active, LumSec-major, LumSec-KIT, LumSec-lac, LumSec-prol), a fibroblast cell state 
(Fibro-matrix) and many immune cell state changes, including B cells (Bnaive, Bmem-switched, 420 
Bplasma-IgA), T cells (CD4 naïve, CD4 Th1, CD4, Trm, CD8-Trm) and myeloid cells (Macro-
m1)  (Extended Data Fig 11b).  Additionally, this analysis revealed significant associations 
between obesity (overweight: > 25 BMI) and decreased lymphatic endothelial cells, as well as 
epithelial cell state changes (LumSec-KIT) and T cell changes (CD8-ZNF683) (Extended Data 
Fig 11e,f). Notably, this analysis did not identify any significant cell type changes associated 
with parity status, however, it identified significant associations with parity and increased CD4-
Tregs (Extended Data Fig 11g-h).  
 
Discussion 
Here, we report an unbiased atlas of the adult human breast tissues that comprises 11 major cell 430 
types and 53 unique cell states that are organized into 4 major spatial tissue domains 
(Supplementary Fig. 12).  In the epithelial cells, our data show limited basal cell state diversity, 
while the two luminal epithelial cell types comprise 7 distinct cell states reflecting diverse 
biological functions.  Our data estimate that only 2-4% of the breast epithelial cells are 
proliferative, and most are associated with the LumSec populations consistent with their previous 
annotation as ‘luminal progenitors’.  However, we also identified a small number (1.4%) of 
proliferating cells in the LumHR population snRNA-seq data.  Notably, no proliferating cells 
were detected in the basal cells, which may prompt the field to revisit the concept of a basal stem 
cell fueling epithelial homeostasis10.  Our detailed spatial comparison between epithelial ducts 
and lobules provided insights including the presence of luminal cells with basal-like features 440 
(e.g., KRT5 expression) as well as increased LumSec cells within ducts, while lobules and 
TDLUs were enriched in LumHR cells. 
  In the non-epithelial compartment, we identified an unexpectedly abundant (~12%) and 
diverse milieu of tissue-resident immune cells in the normal breast tissues.  Our spatial analysis 
shows that both lobules and ducts are immune-rich ecosystems, where many of the T cells, B 
cells and myeloid cells congregate.  Only a small number of immune cells overlapped with 
vascular structures, and most express the tissue resident marker RUNX3.  Understanding the 
variation and diversity of the immune cells is very important for breast cancer, where 
immunotherapy has recently become the standard of care for some subtypes42.  Additionally, our 
data shows that pericytes are an abundant cell type that is integrated in the lobular epithelium and 450 
may have additional biological functions beyond their classical role in vascular constriction40,41.  
The genomic references of lymphatic endothelial cells are of particular relevance, due to their 
wide use in the clinical evaluation in lymph-node positive breast cancers43.  Additionally, the 
snRNA-seq and ST provide one of the first genomic references of the genes expressed in breast 
adipocytes and show that they are exclusively white adipocytes44.   
 Our comprehensive metadata identified significant changes in the breast tissue 
architecture that corresponded to menopause, age, and BMI, consistent with some previous 
pathological studies45-47.    However, we did not find any significant associations with parity 
status, where previous studies have suggested differences in the epithelial populations14,48,49.  This 
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may reflect that our cohort did not include any pregnant or lactating women, which represents an 460 
important future direction for building this atlas15.  A notable drawback of our HBCA is the lack 
of ethnic and ancestral diversity, which mainly included Caucasian and African American 
women (Supplementary Fig 11i).  This bias should also be addressed in future studies to advance 
our understanding of diseases and improve outcomes for women of all backgrounds.  In closing, 
this human breast cell atlas significantly advances our knowledge of the epithelial and non-
epithelial cell types in adult human breast tissues, providing a comprehensive reference for 
studying mammary biology, development, and breast cancer.   
 

 
 470 
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EXPERIMENTAL METHODS 
 
Protocol Availability 620 
The breast tissue dissociation protocols for preparing cell suspensions and nuclear suspensions 
that were developed for the HBCA project have been deposited to protocols.IO 
(http://www.protocols.io) under the following accessions: 
 
Dissociation of viable cell suspensions from human breast tissues 
https://www.protocols.io/view/dissociation-of-single-cell-suspensions-from-human-
bp2l641bkvqe/v1 
 
Dissociation of nuclear suspensions from human breast tissues 
https://www.protocols.io/view/dissociation-of-nuclear-suspensions-from-human-bre-630 
x54v98ym4l3e/v1 
 
Collection of Normal Breast Tissue Samples 
Fresh breast tissue samples were collected from the University of California, Irvine, Baylor 
College of Medicine, St. Luke’s Medical Center and the Cooperative Human Tissue Network 
(CHTN).  The study was approved by the Institutional Review Boards at the respective 
institutions using mirror protocols, including MD Anderson Cancer Center (PA17-0503), Baylor 
College of Medicine (H-46622), UC Irvine (HS-2017-3552). Reduction mammoplasty tissues 
were collected mainly at Baylor St. Luke’s Medical Center, while prophylactic mastectomies and 
contralateral mastectomies from the other breast of cancer patients were collected at MD 640 
Anderson and UC Irvine.  With the exception of the CHTN samples, all of the fresh breast tissue 
samples were collected 1-2 hours after the surgical procedures and dissociated into viable cell 
suspensions using 1 hour, 6 hour or 24 hour dissociation protocols.  All of the tissue samples at 
the respective institutions were analyzed for normal pathology at the time of collection and any 
women within incidental tissues with pre-cancer diagnosis (eg. ADH or DCIS) were excluded. 
 
Breast tissue dissociation for single-cell RNAseq  
Detailed protocol for overnight breast tissue mechanical and enzymatic digestion for single-cell 
RNA sequencing (scRNAseq) were developed and optimized for the HBCA project and can be 
found with step-by-step instructions at Protocols.io (www.protocols.io).  Surgical tissue was 650 
transported in sterile DMEM medium (Sigma #D5796) on ice. Excess adipose tissue was 
removed prior to dissociation.  Large breast tissue pieces are divided into individual 1-2g 
preparations, which will be subjected to dissociation solution consisting of collagenase A 
(1mg/ml working solution, Sigma #11088793001) dissolved in DMEM F12/HEPES media 
(Gibco #113300) and BSA fraction V solutions (Gibco# 15260037) mixed at a 3:1 ratio, 
respectively or, 20ml of 4mg/ml Collagenase Type 1 (in 5% FBS DMEM). For each preparation, 
a 10cm dish with 2ml dissociation solution was used to mince tissue into homogenous 
suspension with paste-like consistency. Minced tissue was transferred into a 50ml conical tube 
with 40ml of dissociation solution in a rotating hybridization oven for 2 to 6 hours at 37°C until 
completely digested. Cell suspension was centrifuged at 500g for 5 minutes and supernatant was 660 
removed. The pellet was resuspended in 5ml trypsin (Corning #25053CI) at room temperature 
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and incubated in a rotating hybridization oven at 37°C for 5 minutes.  Trypsin was neutralized 
with 10ml DMEM containing 10% heat inactivated fetal bovine serum (FBS) (Sigma #F0926).  
The solution was mixed by pipetting up and down, and then filtered through a 70μm strainer 
(Falcon # 352350). A sterile syringe plunger flange was used to grind the leftover unfiltered 
tissue and DMEM was used to wash the remaining single cells off the filter.  The flow-through 
was centrifuged at 500g for 5 minutes and the supernatant was removed.  Resulting pellet was 
nutated at room temperature for 10min in 20ml 1x MACS RBC lysis buffer (MACS #130-094-
183) to remove red blood cells (RBCs).  To stop RBC lysis, 20ml DMEM was added and then 
centrifuged at 500g for 5min.  The cell pellet was washed in 10ml of cold DMEM and 670 
centrifuged at 500g for 5 minutes. Pellet was then resuspended in cold PBS (Sigma #D8537) 
+0.04%BSA solution (Ambion #AM2616) and filtered through a 40μm flowmi (Bel-Art 
#h13680-0040). Trypan blue stained cells were counted in the Countess II FL automated cell 
counter (Thermo Fisher) and their concentration was adjusted to 700-1200 cells/µl.  

For overnight digestions, after digestion the enzymatic tissue digestion mixture was 
centrifuged at 400g for 5mins. Supernatant was removed and the tissue pellet was washed with 
50mls of PBS. Supernatant was removed and 2ml of 0.05% trypsin was used to break up tissues 
into single cell suspensions in a 15ml conical and placed into a 37C water bath. Dissociation was 
accelerated by pipetting with a p1000 set at 1ml, pipetting up and down 10 times every 2 
minutes. 10mls of 10%FBS+DMEM was used to neutralize the enzymatic digestion and the 680 
sample was centrifuged for 5mins at 400g. The resulting pellet was resuspended in 100ul in 20 
U/mL DNase I (Sigma-Aldrich, D4263-5VL) and incubated at 37C for 5mins to liberate cells 
from DNA. 10mls of 10% FBS+DMEM was added and the tissue was centrifuged for 400g for 
5mins. The resulting single-cell suspension was passed through a 100um strainer filter. Cells 
were then stained for FACS using fluorescently labeled antibodies for CD31 (eBiosciences, 48-
0319-42), CD45 (eBiosciences, 48-9459-42), EpCAM (eBiosciences, 50-9326-42), CD49f 
(eBiosciences, 12-0495-82), SytoxBlue (Life Technologies, S34857). Only samples with at least 
80% viability as assessed using SytoxBlue with FACS were included in this study. For 
scRNAseq, we excluded doublets, and dead cells (SytoxBlue+), for FACS isolation. Flow 
cytometry sorted cells were washed with 0.04% BSA in PBS and suspended at approximately 690 
1000 cells/µL.  
 
Single cell RNA Sequencing 
Single-cell suspensions were immediately subjected to scRNAseq using the Chromium platform 
(10X Genomics). Single cell capture, barcoding and library preparation were performed by 
following the 10X Genomics Single Cell Chromium 3’ protocols (V2: CG00052, V3: 
CG000183, V3.1: CG000204). The final libraries were sequenced on the Novoseq 6000 system 
S2-100 flowcell (Illumina). Data were processed using the CASAVA 1.8.1 pipeline (Illumina 
Inc.), and sequence reads were converted to FASTQ files and UMI read counts using the 
CellRanger software (10X Genomics). 700 
 
Single-nucleus RNA sequencing  
Detailed protocol for overnight breast tissue mechanical isolation for single-nucleus RNA 
sequencing (snRNAseq) can be found at protocols.io (www.protocols.io).  To isolate single 
nuclei, 0.5-1g fresh breast tissue were placed in a 10cm dish with 2ml lysis buffer. Nuclei lysis 
buffer consists of NST-DAPI buffer with 0.1U/μl RNase Inhibitor (NEB #M0314L)1,2. Tissue 
was minced until tissue chunks are no longer visible. The suspension was filtered through a 
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40μm cell strainer (Falcon #352340). A sterile syringe plunger flange was used to gently grind 
the leftover tissue on the filter and then rinsed with 3ml of lysis buffer. The flow-through was 
transferred into 5ml DNA LoBind tubes and incubated on ice for 10min. The tube was 710 
centrifuged at 500xg for 5min at 4°C. The supernatant was removed, and nuclei were washed 
with 1ml cold lysis buffer and centrifuged again. The nuclei pellet was resuspended in 1% BSA 
(Sigma #SRE0036) in PBS supplemented with 0.2U/μl RNase Inhibitor. Nuclei were filtered 
through a 40μm Flowmi cell strainer, counted by hemocytometer under DAPI channel and 
concentration was adjusted to 700-1200 nuclei/µl. 10X Genomics RNA experiments proceeded 
immediately to avoid nuclei aggregation. Single cell capture, barcoding, library preparation and 
sequencing were the same as detailed above. For nuclei preparations sorted using flow 
cytometry, a 10ml dounce tissue homogenizer was placed on ice, and 40g of breast tissue was 
placed in a 10cm tissue culture dish on ice. Approximately 10g of tissue was minced into fine 
(~2mm x ~2mm) pieces, which was then added to the dounce homogenizer. 10ml of nuclear 720 
isolation buffer (400ul 1M Tris-HCL ph =7.5, 80ul 5M NaCL, 120 ul 1M MgCL2, 400ul 10% 
NP-40, 39mls DNase/RNase free sterile H2O) was pipetted over the tissue into the dounce 
homogenizer. Tissue was dounce-homogenized with the piston until running smoothly. 
Homogenization was repeated until all 40g of tissue was digested. Nuclei suspension is then 
centrifuged at 500g for 5 mins at 4C, washed in 1%BSA in PBS, and is stained with Hoechst for 
flow cytometry-based sorting of high-quality nuclei to be subjected to snRNAseq.  
 
Spatial Transcriptomic Profiling of Normal Breast Tissues 
Spatial Transcriptomics experiments were performed using the Visium Platform (10X 
Genomics), with the following modifications to the manufacturer’s protocols. 730 
Fresh breast tissues from four patients were embedded in cryomolds with OCT compound 
(Fisher #NC9542860, #1437365) over dry ice. The tissue blocks were stored at -80oC in sealed 
bags. 12μm sections were sections in a cryomicrotome (Cryostar NX70, Thermo Scientific) with 
chuck and blade temperatures set at -17 oC and -15 oC, respectively. The tissue section was 
placed within the capture area of the Visium spatial slide (10X Genomics PN-1000184). Protocol 
was optimized for normal breast tissue according to manufacturer’s Tissue Optimization protocol 
(10X protocol #CG000238) and the slides were permeabilized for 12 minutes. Sectioned slides 
were fixed and stained as detailed by manufacturer (10X protocol #CG000160). Imaging was 
conducted on the Nikon Eclipse Ti2 system following imaging guidelines (10X protocol 
#CG000241). The final libraries were constructed by following the user guide (10X protocol 740 
#CG000239) and sequenced on the Illumina Novoseq 6000 system S1-200 flowcell. 
 
Resolve Highly Multiplexed In situ RNA Profiling using smFISH 
Resolve Biosciences probes were designed to target 100 genes based on the top expressed genes 
in each of the breast cell types from the scRNA-seq data and are listed in Supplementary Table 6.  
To prepare the tissue for Resolve smFISH analysis, OCT embedded tissues were cut to 12μm 
sections in a microtome with chuck and blade temperatures set at -17 oC and -15 oC, respectively.  
Tissue sections were thawed and fixed with 4% v/v Formaldehyde (Sigma-Aldrich F8775) in 1x 
PBS for 30 min at 4 °C. After fixation, sections were washed for one minute in washed 50% 
Ethanol and 70% Ethanol at room temperature. Fixed samples were used for Molecular 750 
Cartography according to the manufacturer’s instructions (protocol 3.0; 
www.resolvebiosciences.com), starting with the aspiration of ethanol and the addition of buffer 
BST1 (step 6 and 7 of the tissue priming protocol). Briefly, tissues were primed followed by 
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overnight hybridization of all probes specific for the target genes (see below for probe design 
details and target list). Samples were washed the next day to remove excess probes and 
fluorescently tagged in a two-step color development process. Regions of interest were imaged 
as described below and fluorescent signals removed during decolorization. Color development, 
imaging and decolorization were repeated for cycles to build a unique combinatorial code for 
every target gene that was derived from raw images as described below.  Samples were imaged 
on a Zeiss Celldiscoverer 7, using the 50x Plan Apochromat water immersion objective with an 760 
NA of 1.2 and the 0.5x magnification changer, resulting in a 25x final magnification. Standard 
CD7 LED excitation light source, filters, and dichroic mirrors were used together with 
customized emission filters optimized for detecting specific signals. Excitation time per image 
was 1000 ms for each channel (DAPI was 20 ms). A z-stack was taken at each region with a 
distance per z-slice according to the Nyquist-Shannon sampling theorem. The custom CD7 
CMOS camera (Zeiss Axiocam Mono 712, 3.45 µm pixel size) was used.  
For each region, a z-stack per fluorescent color (two colors) was imaged per imaging round. A 
total of 8 imaging rounds were done for each position, resulting in 16 z-stacks per region. The 
completely automated imaging process per round (including water immersion generation and 
precise relocation of regions to image in all three dimensions) was realized by a custom python 770 
script using the scripting API of the Zeiss ZEN software (Open application development). 
 
Highly-multiplexed immunostaining using co-detection by indexing (CODEX)   
Formalin fixed paraffin embedded human breast tissue was analyzed using COdetection by 
inDEXing (CODEX®/PhenoCycler - Akoya Biosciences, Marlborough, MA).  The experiments 
were performed following manufacturer’s protocols.  Briefly, the tissue was sectioned at 5-7 µm 
and mounted onto 22x22 mm glass coverslips, previously coated with 0.1% poly-L-lysine. The 
tissue section was dewaxed and stained with a mixture of oligonucleotide-barcoded PhenoCycler 
antibodies and post-fixed according to the PhenoCycler user manual. The tissue was then imaged 
on the PhenoCycler-Open platform, whereby three fluorescent oligo reporters with spectrally 780 
distinct dyes are applied to the tissue in iterative imaging cycles. Imaging data were acquired 
with a Keyence BZ-X800 fluorescent microscope at 20x magnification.  The tissue was stained 
with a 34-antibody panel targeting proteins listed in Supplementary Table 10. 
 
RNAscope in situ hybridization combined with immunofluorescence 
To simultaneously detect MMP3 mRNA and Vimentin and Pan-Cytokeratin (PanCK) protein in 
situ in human breast FFPE tissue sections, RNAscope® Multiplex Fluorescent Reagent Kit V2 
(ACD Biotechne, Cat. 323100) was combined with immunofluorescence (IF). Manufacturer’s 
instructions were followed for RNAscope in situ hybridization unless otherwise inducated using 
a probe targeting human MMP3 gene (Hs-MMP3 RNAscope® Probe, Cat. 403421). 5μm FFPE 790 
tissue sections were baked at 60⁰C for 1h20min, followed by deparaffinization using Histoclear 
(10min, 2x) and 100% ethanol (2min, 2x). After pretreatment, hydrogen peroxide incubation, 
and target retrieval for 15min, a barrier was created with a hydrophobic pen and dried at room 
temperature (RT) for 40min. Following MMP3 probe hybridization for 2h at 40⁰C and washing, 
three signal amplification steps were performed and HRP signal was developed using Opal™ 
570 at 1:1500 dilution (Akoya Biosciences, Cat. FP1488001KT). IF was performed after the 
HRP blocker step with all steps conducted in the dark. Tissue was washed twice in TBST and 
blocked in 10% FBS in TBS + 0.1% BSA at 4⁰C overnight. Anti-Vimentin antibody (R&D, 
raised in goat, Cat. AF2105) and anti-PanCK antibody (GeneTex, raised in mouse, Cat. 
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GTX26401) were used at 1:200 and 1:500 dilution, respectively, in TBS + 0.1% BSA for 2h at 800 
RT. Following three TBS washes, donkey anti-goat-AF488 (for Vim) and donkey anti-mouse-
AF647 (for PanCK) were used as secondary antibodies at 1:500 dilution in TBS for 2h at RT. 
Tissues were washed 3x in TBS and mounted with VECTASHIELD® Antifade Mounting 
Medium with DAPI (Vector laboratories, Cat. H-1200). Images were acquired on a Keyence BZ-
X700 using DAPI, Cy3, Cy5 and GFP filter sets. 
 
COMPUTATIONAL METHODS 
 
Code Availability 
The scripts associated with the analysis are available at 810 
https://github.com/navinlabcode/HumanBreastCellAtlas.  
 
Single cell RNA and nuclei RNA data preprocessing and filtering 
Sequencing reads from single cells and single nuclei from the 10X Genomics Chromium were 
demultiplexed, aligned to the GRCh38.p12 human genome reference 3,4  using the default 
parameters of the Cell Ranger pipeline (version v3.1.0, 10x Genomics). Count matrices were 
generated for both datasets that were further analyzed using Seurat5(v. 3.2.3)5. Cells from each 
sample were further filtered for low quality by removing cells with fewer than 500 UMIs or 200 
genes detected. Potential doublets and multiplets were classified as cells that express more than 
20,000 UMIs or 5000 genes and were removed. Cells with higher than 10% mitochondrial or 820 
50% ribosomal transcripts were also filtered since they represented low quality or dying cells. 
Similarly, for single cell nuclei, the same filtering metrics were used for the single cell data, 
except the min number of genes used for filtering cells was 150, since nuclei data express fewer 
genes.  
 
Clustering of Major Cell Types in scRNA-seq and snRNA-seq Data 
The major cell types in the scRNA-seq data and nuclei in the snRNA-seq data clustering was 
done by integrating all samples together using Canonical Correlation Analysis (CCA) based 
integration from the Seurat package. The filtered gene matrices from each sample were 
normalized using NormalizeData function. To identify highly variable genes, we used the 830 
FindVariableFeatures that models the mean-variance relationship of the normalized counts of 
each gene across cells and identified 5000 genes per sample. We further identified anchors using 
FindIntegrationAnchors to integrate all patients using following parameters – dims=20, 
k.filter=30, anchor.features = 3000 and k.score = 30 which were used for the IntegrateData 
function with dims=20. The integrated dataset was then used for downstream analysis which 
included scaling and centering the data using ScaleData, finding the most significant principal 
components (PC) using RunPCA and utilizing the ElbowPlot to determine the number of PCs 
used for clustering. Different resolution parameters for unsupervised clustering were then 
examined to determine the optimal number of clusters. For the major cell type and nuclei 
clustering, the first 20 PCs were used for unsupervised clustering with a resolution = 0.2 yielding 840 
a total of 21 cell clusters and for nuclei the resolution = 0.3 yielding 21 nuclei clusters using the 
FindNeighbours and FindClusters functions. For visualization, the dimensionality was further 
reduced using eitherUMAP methods with Seurat function RunUMAP. The PC’s used to calculate 
the UMAP embedding were the same as those used for clustering. Each resulting cluster was 
further analyzed for potential doublets or low quality cells using a 3 step process – 1) Calculation 
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the quality metrics such as nCount_RNA and mitochondrial content and removed clusters with 
any outlier values (greater or less than 2 sd than the average of all clusters), 2) Checked the top 
15 differentially expressed genes of each cluster and removed the clusters where genes were 
predominantly mitochondrial, ribosomal or hemoglobin genes, 3) using the canonical cell type 
markers for each cell types, we determined if any cluster had cells expressing canonical markers 850 
from a different cell type, suggesting they are doublets with another cell types. Based on the 
above criteria, we identified 10 major cell type clusters and 12 nuclei clusters that were well-
separated in UMAP space.  
 
Assignment of Cell Type Annotations to Clusters 
To annotate the major cell type of each single cell or nuclei, FindAllMarkers was used to find 
differentially expressed genes in each cluster using the Wilcoxon rank sum test statistical 
framework. The top 12 most significant DEGs (ranked by average log fold change; adjusted P 
values < 0.05) were then carefully reviewed. Further, we further checked each cluster using the 
known canonical markers such as EPCAM for epithelial cells, PTPRC for immune cells, 860 
CD3D/E/G for T cells, CD19/MS4A1/CD79A for B cells, LUM/DCN/COL6A1 for fibroblasts, 
PECAM1 for endothelial cells and RGS5 for pericytes. We also applied SingleR6 to annotate the 
clusters.  The three approaches were combined to infer major cell types for each cell and nuclei 
cluster according to the resulting annotation designated by SingleR and the enrichment of 
canonical marker genes and top-ranked DEGs in each cell cluster.  
 
Identification of Cell States by Reclustering of Cell Type Data  
Each cell cluster was further extracted and underwent clustering and filtering as described above, 
however with different parameters. The different parameters used for clustering the expression 
states of major cells are as follows - B cells (dims = 12; k.param = 20, scaled by nCount_RNA, 870 
resolution = 0.3), T cells (dims = 20; k.param = 20, scaled by nCount_RNA, resolution = 0.4), 
Myeloid cells (dims = 30; k.param = 20, scaled by nCount_RNA, resolution = 0.4), Fibroblasts 
(dims = 30, k.param = 20, scaled by nCount_RNA, resolution = 0.4) 
, LumHR (dims = 35; k.param = 20, resolution = 0.075, scaled by nCount_RNA), LumSec (dims 
= 35; k.param = 20, resolution = 0.2 scaled by nCount_RNA), Pericytes (dims = 25; k.param = 
20, scaled by nCount_RNA, resolution = 0.4), Lymphatic (dims = 30; resolution = 0.05) and 
Vascular Endothelial cells (dims = 30; resolution = 0.1. For vascular cells, one cluster was only 
from overnight digestion. To avoid potential dissociation artifact, we removed this cluster OD 
from further downstream analysis). Each round of clustering was followed by filtering for low 
quality and doublets cells. Differentially expressed genes were calculated for each cell cluster 880 
relative to other cells within its cell type compartment using the “FindMarkers” function in 
Seurat with the Wilcoxon rank sum test for statistical significance. Expression states were further 
annotated by investigating the top 200 genes of each cluster and performing pathway enrichment 
on the cell states as described in the Pathway Enrichment section. For each cell type, we showed 
top genes of each cell state in the heatmaps based on the average log fold change.     
 
Cell cycle analysis 
We utilized the “CellCycleScoring” function from the Seurat package that is based on the cell 
cycle phase genes from the paper by Tirosh et al 7. Each cell and nuclei were given a quantitative 
score for G1, G2/M and S scores based on scoring of marker genes at each stage of the cell 890 
cycle. 
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Pathway enrichment analysis 
For Gene set enrichment analysis, ranked genes were selected based on the above test filtered for 
an adjusted p-value <=0.05 and arranged by average log foldchange values between each cluster 
and fed into the ‘fgsea’ R-package8 using 1000 permutations. Curated gene sets of KEGG, 
Biological Processes and Reactome were downloaded from the Molecular Signature Database 
(MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp) and were used to calculate 
enrichment scores.  Significantly enriched gene sets were identified with a Benjamini-Hochberg 
adjusted P value <= 0.05. For the identified cell states, we also selected top 200 genes and 900 
performed GO and KEGG enrichment analysis using the clusterProfiler package9. 
 
Regulatory network analysis 
On the raw count matrix, we applied SCENIC10 to inference the regulatory networks following 
the instructions from https://scenic.aertslab.org/. On the regulon score matrix, we performed 
differential expression (DE) analysis following the similar approach in DE gene analysis and 
identified top regulons for each cell type.  
 
Spatial analysis of smFISH Resolve data  
We applied QuPath (version 0.3.0)11 to segment cells based on their DAPI images, then applied 910 
ImageJ (version 1.52n)12 and the Molecular Cartography plug-in (Resolve Biosciences) to count 
genes in each cell. For the DAPI image, we also manually annotated different regions (duct, 
lobule, connective tissue and fibrocysts) by matched pathology H&E sections using ImageJ. The 
cell-gene count matrix was then input into Seurat (v. 3.2.3)5 for downstream analysis. For the 12 
samples of spatial resolve data, cells with less than 10 gene counts were filtered. Counts data 
were then normalized using the NormalizeData with default LogNormalize method. Afterwards, 
normalized counts were scaled and centered using ScaleData function. All genes were used for 
principal component analysis (PCA) using RunPCA with default parameters. ElbowPlot was 
used to determine the number of PCs for the downstream analyses and RunUMAP was applied to 
reduce data to a 2D space. We applied a two-steps approach to annotate cells. First, we curated a 920 
marker list of each cell type and used AddModuleScore from Seurat to calculate the cell type 
scores of each cell (Supplementary Table 6). By comparing cell type scores, we took the largest 
score to assign the cell types and assigned cells with all scores less than 0.5 as low confident 
cells. Then, a random forest machine learning model with a default of 500 trees was trained on 
the data while setting the cell type assignment as output and top 20 PCs as predictors using 
randomForest package13 (CRAN). Out-of-bag predictions were used as our final cell type 
annotation while cells with largest voting rate less than 0.5 were assigned to the low confident 
group and were filtered for the downstream analysis. Cell type differentially expressed (DE) 
genes were identified using FindAllMarkers. Cell spatial colocalization graph was calculated 
using scoloc function with DT method from CellTrek package14. 930 
 
Spatial transcriptomics data analysis 
Sequencing reads from Visium ST (10X Genomics) experiments were first preprocessed with 
Space Ranger v1.2.0 (10X Genomics) and mapped to the GRCh38 reference genome. The count 
matrices were subsequently analyzed using Seurat v3. We filtered out spots with a total count 
less than 100. The UMI counts were normalized using SCTransform. Similar to the scRNA-seq 
analysis, we then used Seurat anchor-based integration with the default parameters for the four 
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samples. After integration, dimensionality reduction was performed using the RunPCA function. 
Clustering was done using the FindClusters function. Differentially expressed genes for each ST 
cluster were identified using FindAllMarkers with two-sided Wilcoxon rank sum test. P values 940 
were adjusted by Bonferroni correction and genes with adjusted P < 0.05 were retained. 
 
Procrustes analysis between the left and right breast 
In contralateral samples, we calculated Bray-Curtis dissimilarity between samples using the 
vegdist function from the vegan package (2.5-6) using R studio 
[https://cran.rproject.org/web/packages/vegan/index.html] based on the cell type count matrix 
and then performed a multidimensional scaling using cmdscale. To compare the cell type 
composition between the left and right breast, we applied Procrustes analysis using the protest 
function from the vegan package and performed a 9,999 times of permutation test. Pearson’s 
correlation test was used to measure the similarities on top-2 dimensions between the left and 950 
right breast on after Procrustes rotations. 
 
Statistics and reproducibility 
The Wilcoxon signed-rank test was used to evaluate associations between clinical metavariables 
for comparing celltype frequencies. Fisher exact test was used to compare counts of patients 
having a minimum of 20 cells of each cellstate. The p values from the 2-tailed tests are reported 
for each comparison and only the significant ones are shown in the Extended Data Fig 11.  
 
Computational analysis of CODEX data 
StarDist trained on TissueNet dataset (https://datasets.deepcell.org/data) was used for cell 960 
segmentation. Then, the average intensity of each protein was calculated for individual cells 
using the segmentation masks and the protein images. If the protein was localized in nuclei, e.g., 
Ki67, PCNA, FoxP3, then the average intensity was calculated from the nuclear mask obtained 
with StarDist. Otherwise, if the protein was localized in the cell membrane, e.g., CD4, CD3, E-
Cadherin, then the average intensity was calculated from the membrane mask. The average 
protein intensities were then z-scored across all cells. Unsupervised clustering using Leiden 
algorithm was performed based on the normalized average protein intensities to assign cluster 
labels for all cells in each sample individually. The average intensity of each protein was then re-
calculated for each cluster and displayed on a heatmap to identify cell types manually based on 
marker expression, e.g., basal, luminal, fibroblast, T cells, myeloid, endothelial cells. Tissue 970 
regions were manually annotated into lobules, ducts, and connective tissue based on their 
histological structure and morphology. The number of cell types in each annotated region was 
counted, and the relative cell percentages and densities (cell count per area unit) were compared 
between the different regions. For the immune cell-specific analysis, we took out the previously 
identified myeloid and T cells clusters and increased the clustering resolution and identified CD8 
T cells, CD4 T cells, T regulatory cells, monocytes, macrophages, and dendritic cells. RunX3 
positive cells were defined by examining the gene expression distribution. 
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Figure 1 – The Major Cell Types in the Adult Human Breast 
a, Anatomy of the adult human breast and pathological H&E section, with illustrations showing 
the major cell types. b, Overview and workflow of the HBCA project, in which breast tissue 
samples were collected from different sources, followed by single cell and single nucleus RNA 
sequencing, as well as spatial analysis using CODEX, smFISH and ST. c, UMAP of scRNA-seq 
data from 535,941 cells integrated across 100 tissues from 62 women, showing 10 clusters that 
correspond to the major cell types. d, Consensus heatmap of the top 7 genes expressed in 
each cell type cluster from averaging scRNA-seq data. e, UMAP projection and clustering of 
120,024 nuclei from snRNA-seq data across 20 tissues from 20 women, showing 11 clusters 
that correspond to the major cell types.  f, Consensus heatmap of top 7 genes expressed from 
each cell type, averaged across the snRNA-seq data. g, Dot plot of the top 7 transcription 
factors identified from scRNA-seq data for each cell type cluster. 
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Figure 2 – Spatial Analysis of Cell Types in Human Breast Tissues 
a, ST experiment from P35, showing the unbiased clustering and histopathological image with 
topographic regions annotated. b, Heatmap of top 3 marker genes in each ST cluster for 4 
tissue samples, showing the dominant cell type identity assigned. c, Frequencies of the ST 
clusters across the 4 topographic tissue areas in 4 combined tissue samples.  d, smFISH 
experiments (Resolve Biosciences) using a custom 100-gene panel, showing a subset of 10 
genes that mark different cell types in two women (P46-S1 and P47-S1). e, Heatmap of the top 
5 targeted maker genes for each cell type in the smFISH data from 12 combined tissue 
samples. f, smFISH data after cell segmentation using combinations of markers.  g, Spatial 
colocalization of cell types in smFISH data from 12 tissues, where node size represents the cell 
number and edge width represents the probability of colocalization. h, Frequencies of cell types 
and cell densities across three topographic areas using 12 tissues profiled by smFISH. i, 
CODEX data from P66 showing ductal-lobular structure with 6 protein markers, with an 
expanded region of one lobule in the right panel. j, Heatmap showing protein levels for markers 
that were used to identify different cell types.  k, Cell segmentation using combinations of 
markers to identify cell types in the CODEX data from one tissue sample, with topographic 
areas annotated. l, Spatial colocalization graph of segmented cell types in the CODEX data 
from 4 tissues. m, Cell type and cell density frequencies from the CODEX data summarized 
across 4 tissue samples. 
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Figure 3 – Epithelial cells of the Human Breast 
a, Histopathological section of breast tissue showing the epithelial bilayer of a duct. b, UMAP of 
114,967 epithelial cells, showing three major epithelial types. c, UMAP of 56,280 epithelial 
nuclei, showing 3 major epithelial types and two clusters of proliferating cells. d, UMAPs of 
snRNA-seq data showing the expression of hormone receptor genes. e, Dot plot of Keratin 
genes expressed across the 3 major epithelial cell types. f, UMAP of 42,901 basal epithelial 
cells. g, UMAP of 46,033 Luminal Hormone Responsive (LumHR) epithelial cells, showing 3 cell 
states. h, UMAP of 26,033 Luminal Secretory (LumSec) epithelial cells, showing 6 cell states.  
i, Expression of secretoglobin genes across the epithelial cell states.  j, Expression of HLA-class 
I and HLA-Class II genes for the epithelial cell states k, Heatmap of top genes expressed for 
each epithelial cell state averaged across the scRNA-seq data. l, Lactation gene signature 
scores for the epithelial cell states. m, G2/M cell cycle scores across different epithelial cell 
states. n,Stacked barplots showing the fraction of proliferating epithelial cells in the scRNA-seq 
and snRNA-seq data among all epithelial cells. o, CODEX data from P66 showing proliferating 
cells in ducts and lobules labelled with PCNA. p, ST clusters for ductal and lobular regions 
labelled in H&E images q, Heatmap of ST top differentially expression genes between ducts 
versus lobules combined from 4 tissue samples.  r, smFISH data (P46-S1 and P46-S4) showing 
genes that are expressed specifically in ductal and lobular regions. s, smFISH data showing in 
situ validation of genes that are expressed uniquely in the ducts and lobules in the scRNA-seq 
and ST data. t, CODEX data from P67 showing KRT5 in ducts and KRT19 in lobules/TDLU 
regions, with enlarged panels of the right. 
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Figure 4 – Immune Cell Abundance and Diversity in the Human Breast 
a, immune and non-immune cell type frequencies among total cells in the scRNA and snRNA-
seq data  b, immune and non-immune cell type frequencies by tissue source in the scRNA-seq 
data. c, immune cell type frequencies quantified from the CODEX N=4 and Resolve smFISH 
N=12 tissue samples. d, CODEX data from P66 showing TDLU region with localization of 6 
immune cell types, where segmented cells are shown as colored dots overlaid on image of IF 
staining of SMA (myoepithelial) and CD31 (vessel) for spatial reference. e, smFISH data (P46-
S1) showing TDLU region with localization of 3 immune cell types, where segmented cells are 
shown as colored dots overlaid on image of IF staining of KRT5 (basal epithelial) and VWF 
(vessel) for spatial reference. f, UMAP of scRNA-seq data showing clustering of 35,797 NK/T 
cells into 14 cell states. g, heatmap showing top genes expressed for each NK/T cell cluster 
using average values across single cells. h, UMAP of 6,977 B cells scRNA-seq data showing 
five cell states. i, heatmap showing top genes expressed for each B cell state using average 
values across single cells. j, UMAP of 21,041 myeloid cell scRNA-seq data showing clustering 
of 12 cell types and states. k, heatmap showing top genes expressed for each myeloid cell 
cluster using averaged scRNA-seq values.  l, CODEX data from P66 showing co-localization of 
immune cells and vascular marker (CD31). m, smFISH segmented data (P46-S1) showing co-
localization of immune cells and vascular marker (VWF). n, frequency of immune cells that are 
in the proximity of vessel markers versus other cell type markers by neighborhood analysis in 
CODEX and smFISH data. o-r, CODEX data from P66 and P67 showing co-localization of 
different immune cells with epithelial marker KRT19 and vascular marker CD31. Yellow and 
white arrows indicate CD4 Tregs and DCs, respectively. s, frequency of T cells expressing 
Runx3 tissue residency marker in CODEX data.  
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Figure 5 – Breast Fibroblasts and Adipocytes  
a, Histopathological sections showing regions with intralobular and interlobular fibroblasts in the 
breast. b, UMAP of 113,157 fibroblast cells, showing 3 major cell states. c, Heatmap of top 
genes expressed for each fibroblast cell state, averaged from the scRNA-seq data. d, Unbiased 
gene set enrichment analysis of the top pathways and signatures associated with each cell 
state. e, Collagen gene signature scores of the fibroblast cell states. f, expression of FAP 
across the fibroblast cell states. g, CODEX data from P68 showing fibroblasts marked by VIM in 
the connective tissue (I) and interlobular (II) regions. h, smFISH data (P64-S3) showing a 
subset of four fibroblast genes and their distribution in the connective tissue (I) and intralobular 
(II) areas. i, Histopathological section of breast adipose tissue. j, UMAP of 4,917 adipocyte 
snRNA-seq data. k, ST showing adipocyte clusters identified and matching H&E images from 
two women (P10 and P46). l, Expression of top adipocyte marker genes in the ST data and 
snRNA data (left panels), top white adipocyte markers (middle panels), and top beige adipocyte 
markers (right panels). 
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Figure 6 – Vascular, Lymphatic and Pericyte Cells in the Human Breast 
a, Histopathological section showing veins and capillaries in breast tissue. b, UMAP of 40,824 
vascular endothelial cells, showing 3 major cell states. c, Heatmap of top genes expressed for 
each vascular endothelial cell state, using averaged values from scRNA-seq data. d, 
Histopathological section showing a lymphatic duct in breast tissue. e, UMAP of 7,530 lymphatic 
endothelial cells, showing 3 major cell states. f, Heatmap showing expression of top genes for 
each lymphatic cell state, averaged from the scRNA-seq data. g, smFISH data (P47-S1) 
showing a subset of vascular gene markers (VWF, ACKR1, RBP7 and GJA4) and lymphatic 
markers (PROX1), with enlarged right panels showing vascular (R1) and lymphatic cell (R2) 
regions h, CODEX data from P66 of a TDLU region showing vascular cells (anti-CD31) and 
lymphatic cells (anti-PDPN) cells, with myoepthelial cells labelled (anti-SMA). The two right 
panels show zoomed-in regions with vascular cells near lobules and a duct. i, Illustration of 
pericytes and histopathological section showing capillaries with pericytes attached. j, UMAP 
projection and clustering of 27,720 pericyte cells, showing 3 cell states. k, Heatmap of top 
genes expressed for each pericyte cell state from averaged scRNA-seq data. l, smFISH data 
showing vascular cells (VWF) and pericyte (RGS5) labelled in two different breast tissue 
samples (P46-S3 and P35-S1). m, CODEX results from P67 showing vascular cells (anti-CD31) 
and pericytes (anti-LIF) in a TDLU region. 
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