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Mark passed away on the 13th of January 2023. He was not only a valued colleague but also a friend 
and mentor to many of us. His brilliant mind and insightful contributions will be sorely missed. 
 
Abstract. The relationship between the geometry of neural representations and 
the task being performed is a central question in neuroscience1–6. The primate 
prefrontal cortex (PFC) is a primary focus of inquiry in this regard, as under 
different conditions, PFC can encode information with geometries that either 
rely on past experience7–13  or are experience agnostic3,14–16. One hypothesis is 
that PFC representations should evolve with learning4,17,18, from a format that 
supports exploration of all possible task rules to a format that minimises 
metabolic cost4,17,18 and supports generalisation7,8. Here we test this idea by 
recording neural activity from PFC when learning a new rule (‘XOR rule’) from 
scratch. We show that PFC representations progress from being high 
dimensional and randomly mixed to low dimensional and rule selective, 
consistent with predictions from metabolically constrained optimised neural 
networks. We also find that this low-dimensional representation facilitates 
generalisation of the XOR rule to a new stimulus set. These results show that 
previously conflicting accounts of PFC representations can be reconciled by 
considering the adaptation of these representations across learning in the 
service of metabolic efficiency and generalisation. 
 
Two seemingly discrepant accounts propose that PFC neural activity should track 
either low-8–13,19 or high-dimensional3,14–16 representations of the environment. 
Traditionally, it has been proposed that PFC cells are tuned adaptively to task-relevant 
information, leading to low-dimensional neural activity13. This results in the population 
displaying structured selectivity patterns, as commonly observed after training on a 
cognitive task (Fig. 1a, low-dimensional) 13. A contrasting hypothesis suggests that the 
PFC may rely on high-dimensional, randomly mixed representations of task features 
to support complex cognition (Fig. 1a, high-dimensional)3,14. According to this notion, 
the PFC serves as a nonlinear kernel such that when a low-dimensional input is 
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projected onto it, dimensionality expands, and a wide repertoire of responses can be 
generated15,16. 
 
Recently, it has been proposed that the PFC is capable of transitioning between high- 
and low-dimensional representations across learning, to accommodate the changing 
demands of the environment 4,17,18,20. For example, early in learning, high-dimensional 
representations may allow flexible exploration of all possible input–output mappings 
(“contingencies”) in order to discriminate which task rules are currently relevant 3,14,16. 
This is because a high-dimensional representation allows for a high number of linearly 
separable task features (Fig. 1a). Conversely, once an animal has learnt that only one 
set of contingencies is relevant, a low-dimensional representation may be used to 
minimise energy expenditure4,17–19. Moreover, these low-dimensional representations 
may enable generalisation to novel contexts, because the same representational 
geometry can be reused across both stimulus sets (Fig. 1b)7,8. In other words, different 
stages of learning impose different demands on the neural population. Learning could 
thus shape neural dimensionality and progressively push neural activity towards 
different solutions along the trade-off between discriminability and generalisability, i.e., 
from a high-dimensional random regime towards a low-dimensional structured 
regime18,20.  
 
Recent connectionist approaches propose that learning in neural populations is the 
outcome of optimising an objective function, which is often subject to constraints21–24. 
In this context, the minimisation of energy consumption is a critical consideration that 
can influence neural dimensionality and its structure25–27. Specifically, under these 
constraints, neural systems are incentivised to find the most efficient representation of 
information by constructing a small number of highly informative dimensions. This 
results in a progressive elimination of neural dimensions that do not contribute to 
performance over the course of learning. 
 
Here, we tested this idea in two macaque monkeys which learnt an exclusive-or (XOR) 
rule – a problem that can be solved by a range of representations, from low- to high-
dimensional (Fig. 1a)19. Importantly, we tracked how the dimensionality and geometry 
of PFC representations changed across multiple training sessions of an XOR rule that 
was entirely new to the animals at the start of recording (experiment 1) and during 
subsequent generalisation of this rule to a new stimulus set (experiment 2). We used 
a classical conditioning paradigm in which the nonlinear combination of the features 
of two objects presented in succession (XOR) predicted the outcome of the trial. 
Importantly, the animals were only required to fixate through both experiments. This 
classical conditioning design carries advantages relative to operant tasks in that 
changes in representation with learning are unlikely to be confounded with changes in 
behaviour28–31. Later, we also show that our results hold in a previously collected 
delayed match-to-sample task32–34. 
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We found that initially PFC selectivity was high-dimensional and randomly mixed with 
strongly linear representations. As learning progressed, PFC activity became low-
dimensional, manifesting a non-linear but highly structured selectivity pattern across 
the neural population. We compared these results against predictions from both 
normatively defined generative models and optimised artificial neural networks. 
Collectively, these models provide a theoretical foundation for why representations 
should change with learning — namely that PFC representations optimise for task 
performance while also contending with metabolic costs. Finally, we tested whether 
the learnt low-dimensional representation was reused in conditions where new unseen 
combinations of stimuli were presented. We found that during this generalisation of 
the XOR rule, the representation of these new stimuli became aligned with the low-
dimensional representation of the pre-existing stimulus set, allowing the same neural 
code to be used across different stimulus sets.   
 

Figure 1. Potential effects of learning on neural geometry in the prefrontal cortex. Learning can 
reduce or expand neural dimensionality, changing how many linear decoding axes can be implemented 
on neural firing rates (discriminability). a, High-dimensional representations enable high discriminability. 
A high-dimensional regime allows the separation of all task features using three possible readout axes 
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(left), whereas a low-dimensional representation only allows task-relevant features to be 
separated (right). b, Low-dimensional representations enable high generalisability. When the task 
representation is high-dimensional (left), XOR discriminant from one task (blue and green shapes) fails 
to correctly differentiate the XOR feature in the second task (pink and khaki); i.e., a rotation that aligns 
both XOR discriminant axes is not possible. When the neural code is low-dimensional, both tasks can 
be immediately aligned to a common axis enabling a shared XOR discriminant that generalises across 
tasks. c, In Experiment 1, animals were incentivised to combine two passively viewed task features 
(colour and shape) in a non-linear fashion (XOR). For example, blue+square and green+diamond 
combinations were rewarded, whereas blue+diamond and green+square were not. In experiment 2 an 
additional set of colour–shape contingencies was introduced. Monkeys could generalise the learned 
rule from experiment 1 to the new set of colours in experiment 2. d, Timeline of task events in a single 
trial. e, Neural data was collected from the lateral surface of the prefrontal cortex in two macaque 
monkeys (see Methods and Supplementary Figure 5 for further details). 

 
Results 
 
In experiment 1, the animals were trained to combine a colour stimulus (either blue or 
green) with a subsequently presented shape (either square or diamond) in a nonlinear 
fashion to predict the reward (the XOR between colour and shape) outcome of the trial 
(Fig. 1c-d). We recorded 376 neurons from the lateral PFC across both macaques 
(Fig. 1e; see Methods, data acquisition and pre-processing). Importantly, to capture 
learning dynamics, we started recording from the first session in which the animals 
were exposed to the stimuli. Experimental sessions were then pooled into four learning 
stages. All selectivity and decoding analyses were run in time windows before the 
animals received feedback about the outcome of the trial (i.e., reward; for details see 
Methods, data acquisition and pre-processing). 

Generative models of random and minimal selectivity 
We first wanted to understand how the geometry of the neural representations 
changed over the course of learning. We compared neural population activity at each 
stage of learning to the geometries produced by two generative models with different 
discriminability-generalisability trade-offs4,17: (i) a high-dimensional random 
geometry3,14–16,35 (high discriminability, low generalisability); and (ii) a low-
dimensional, structured geometry (low discriminability, high generalisability)10,12,36–40.  
The former is a well-established geometry (e.g., inherent in reservoir computing 
models15,16) whereas the latter was motivated by recent theoretical work which 
suggests that complex (nonlinear) tasks may require low-dimensional, highly 
structured population activity10,41. These models make distinct predictions about the 
distribution of selectivity to the task-relevant variables in a 3-dimensional selectivity 
space (colour, shape, and their interaction, i.e., XOR). 
 
In this selectivity space, each axis represents a neuron’s response to one stimulus 
variable (e.g., ‘shape selectivity’ = higher firing rate for square than diamond). 
Hypothetically, one could imagine different distributions of variable encoding within 
this selectivity space. The properties of these distributions are determined by a 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 5 

covariance matrix: the diagonal elements describe the strength of coding of each 
variable (variance) whereas the off-diagonal entries determine the strength of the 
relationship between variables (covariance). In our generative models neural firing 
rates were simply constructed as a linear combination of task variables (colour, shape 
and XOR inputs represented using one-hot encodings; see Methods, generative 
models for details) with a specified covariance matrix of selectivities to the task 
variables. In line with previous studies, the high-dimensional random mixed model was 
constructed by allowing selectivity to be distributed randomly according to a spherical 
Gaussian distribution (Fig. 2a). In contrast, in the minimally structured XOR selectivity 
model, only the interaction (i.e., the XOR) term carried variance (Fig. 2b). We derived 
this model mathematically and demonstrated that it minimises total firing rate activity 
(i.e., a metabolic cost) while maximising task performance (see Supp. Materials, 
section 1). Consistent with this, we found that feedforward networks trained using 
backpropagation to perform the task while also minimising a metabolic cost term 
converge to the minimal XOR selectivity model (see Supp. Fig. 1a-f; Methods, 
optimised feedforward networks). Additionally, in line with prior accounts17,42, XOR 
decoding in the minimal model was more robust to noise (Fig. 2e) and required fewer 
neurons to implement a stable readout (see Supp. Fig. 1g).  
 
We established a metric to measure whether neural activity is better described by the 
random or minimal model. We first fitted a linear model to surrogate data generated 
by both our generative models, in which task variables (colour, shape, and colour x 
shape (XOR)) were used as predictors of each unit’s firing rate (see Methods, model 
section; for similar analysis see41,43). Then we measured the average within-model 
distance between two random models (Fig. 2c, red line; Methods, eq. 4) and the 
average between-model distance between the random and the minimal model (Fig. 
2c, blue line, Methods, eq. 5). To test whether our measure captures learning 
dynamics, we constructed four artificial populations with varying proportions of random 
and minimal selectivity. As the proportion of the minimal model in this mixed population 
increased, it became more dissimilar to the average random model and more similar 
to the average minimal model (Fig. 2c, black line). A reflected version of these results 
held true when the minimal model was used as reference (Fig. 2d). 
 
Subsequently, to gain insight into the predictions of these models, we employed an 
established technique3,14 and trained linear decoders to decode all three task variables 
in both models. As previously suggested3,14, a randomly mixed selectivity model 
yielded a high-dimensional task representation, allowing for all variables, including the 
nonlinear XOR, to be decoded (Fig. 2f, red; cf. Fig. 1a, far left). In contrast, for the 
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minimal model, only the XOR combination of shape and colour, and not shape or 
colour independently, could be decoded (Fig. 2f, blue; cf. Fig. 1a, far right). 

Figure 2. Predictions from random mixed and minimal selectivity models. a, Each neuron can be 
represented as a point in the 3-dimensional selectivity space spanned by colour, shape, and XOR (their 
interaction). In the random mixed model, selectivity is distributed according to a spherical Gaussian 
distribution in this space (Methods, generative models); the covariance matrix is computed between the 
selectivity coefficients. b, Analogous to a but for the minimal model; neurons are selective only for the 
XOR (interaction between colour and shape), as this is the only feature that is necessary to solve the 
task.  c, Relative distance between the covariance matrices of either the random (red), minimal (blue) 
or the model with varying proportions of minimal selectivity (black) to the random selectivity model. d, 
Same as panel c but the distance is calculated relative to the minimal selectivity model. Red and blue 
error bars show standard deviations (±1	𝑠. 𝑑. over 1000 randomly drawn models; see Methods, 
measuring similarity between selectivity distributions) of the relative Euclidean distance between the 
covariance matrix of the random, minimal model (with matched total variance to the data) and the 
covariance matrix expected from random selectivity; black error bars show the standard deviation of 
the relative distance between the surrogate covariance (with varying proportions of minimal selectivity) 
and random covariance (±1	𝑠. 𝑑. over 1000 random models). e, XOR decoding as a function of noise 
(𝜎) in the neural activities for the random and minimal selectivity models. Dashed grey line shows 
chance-level decoding. f, Mean (over 100 models) decoding of task variables for the random (red) and 
minimal (blue) models. Dashed grey line shows chance-level decoding. g, Mean (over 100 models) 
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cross-generalised decoding of task variables for the random (red) and minimal (blue) models. Dashed 
grey line shows chance-level decoding. 
 
While both models can perform the task, we expected their representation of the XOR 
variable to differ fundamentally. On the one hand, the minimal model by design should 
represent the XOR in a format that generalises over all other task variables. On the 
other hand, this is not guaranteed in the random model. We verified this intuition using 
cross-generalised decoding, a method in which a linear decoder is trained to decode 
a given task variable (e.g., XOR = True vs. XOR = False) on a given set of task 
conditions (e.g., blue colour) and tested on a different set of task conditions7 (e.g., 
green colour; see Methods section, cross-generalised decoding). We found that for 
the random model, cross-generalised decoding was at chance-level for all task 
variables (Fig. 2g, red). This is because the random model, by design, exhibits no 
reliable structure in its representation of variables and therefore these dimensions are 
represented randomly in relation to each other. In contrast, the minimal model 
displayed maximal cross-generalised decoding for the XOR variable (Fig. 2g, blue), 
indicating that it can be decoded regardless of which set of task conditions the decoder 
is trained and tested on. This suggests that the minimal model is able to represent the 
XOR in a highly cross-generalisable format (Fig. 1a, far right). Consequently, the 
minimal model also exhibits below-chance cross-generalised decoding for colour and 
shape. 
 
 
A low-dimensional task relevant geometry emerges over learning 
 
We applied these metrics to our neural data (Fig. 3). Inspecting the neural 
representation of task variables on the population level suggested that the geometry 
in the PFC changed over the course of learning (Fig. 3a) and resulted in a lower-
dimensional, task-specific (XOR) representation by the end of learning (Fig. 3a, far 
right). To quantify this, we fitted a linear regression to our data, just as we did for our 
generative models (Fig. 2c), in which task variables (colour, shape, and colour x shape 
(XOR)) were used as predictors of each neuron’s firing rate. We then examined how 
selectivity coefficients changed over learning (Fig. 3b, learning stage 1 and Fig. 3c, 
learning stage 4).  We compared the covariance structure of these selectivity 
coefficients (Fig. 3b,c, bottom right) to the covariances obtained from the random 
selectivity model (Fig. 3b, red contours) and minimal selectivity model (Fig. 3c, blue 
line). At the beginning of learning (stage 1), PFC cells were randomly distributed in 
selectivity space resembling the random model (𝑝 = .219, one-sided, Fig. 3d and 𝑝 =
.858, one-sided, Fig. 3e). However, in late learning (stage 4), selectivity diverged away 
from randomly mixed selectivity (𝑝 = .000, one-sided, Fig. 3d, compare black and red 
lines) and converged towards the minimal model (𝑝 = .000, one-sided, Fig. 3e, 
compare black and blue lines). 
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We next applied our linear decoding analyses (Fig. 2f, g) to the neural recordings to 
establish whether these changes to selectivity distributions led to changes in the 
geometry of neural representations (Fig. 3f,g; Supp. Fig. 3e-l). At the beginning of 
training (learning stage 1), the animals exhibited a high-dimensional geometry that 
allowed for every variable to be decoded, reminiscent of the random mixed model 
(compare Fig. 2f, red to Fig. 3f, stage 1; see Supp. Fig. 3a-d for temporally resolved 
decoding). In line with the random model, the task variables also exhibited poor cross-
generalised decoding during early learning (compare Fig. 2g, red to Fig. 3g, stage 1). 
In late learning (stage 4), however, the representation became low-dimensional and 
task-specific. As predicted by our minimal model, the coding of the XOR strengthened 
(𝑝 = .008, one-sided) whereas the decoding of shape decreased (𝑝 = .000, one-sided; 
compare Fig. 2f, blue to Fig. 3f, stage 4). Moreover, the XOR variable became 
progressively represented in a format that generalised across the remaining task 
variables (𝑝 = .000, one-sided,) and cross-generalised decoding for shape decreased 
over learning (𝑝 = .02, one-sided; compare Fig. 2g, blue to Fig. 3g, stage 4). 
Unexpectedly, colour decoding remained high even in late learning (decoding:	𝑝 =
.518, one-sided; cross-decoding:	𝑝 = .17, one-sided; Fig. 2f; Supp. Fig. a, e). Finally, 
when we examined an additional task feature that was not predictive of reward (the 
width of the shape, see Methods section, data and task), we found a strong reduction 
in its representation in PFC over learning (decoding: 𝑝 = .014, one-sided; cross. 
decoding: 𝑝 = .002, one-sided; see Supp. Fig. 3c, g, k).  
 
We next explored whether these learning-related changes were accompanied by a 
decrease in neural dimensionality (as measured with shattering dimensionality; see 14 

for details). A neural representation described by three binary input dimensions 
(colour, shape and width) results in 35 dichotomies (division into two sets of four 
stimuli) that can be theoretically decoded. We found that the mean decoding accuracy 
of all dimensions (excluding colour, shape and XOR) decreased significantly over 
learning (𝑝 = .046, one-sided; Fig. 3h). Additionally, a principal component analysis 
computed on condition averages revealed that the proportion of variance explained  
by the first principal component increased as a function of learning (𝑝 = .01, one-sided; 
Supp. Fig. 3o; for details see Methods, Principal component analysis). Both the 
shattering dimensionality and the PCA analyses indicate that neural dimensionality 
decreased as a function of learning. Furthermore, as colour, shape, and width form a 
cube in the input space (when one-hot encoding is used) these dichotomies can be 
split into linear (a hyperplane can be used to divide all vertices into two sets) and 
nonlinear dimensions (a nonlinear function needs to be used to differentiate two sets 
of 4 vertices). We found that the decoding of linear dimensions decreased significantly 
over learning (𝑝 = .012, one-sided), while the decoding of non-linear dimensions did 
not (𝑝 = .22, two-sided; Fig. 3i). The progressive change over learning, not only in the 
neural dimensionality but also in the type of computations that are represented (linear 
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vs non-linear) conflicts with a static model of the PFC as a high-dimensional nonlinear 
kernel (e.g., such as that utilised in reservoir computing15,16). 
 

Figure 3. Analysis of neural representations in macaque PFC over learning. a, Trial-averaged 
population firing rate during the late shape period for each task condition projected onto the top three 
principal components as a function of learning (Methods, principal component analysis); the same scale 
was used for all plots. b,c, Neural selectivities in learning stages 1 and 4, respectively. Each point 
represents the selectivity of one neuron for each of the task variables (colour, shape and XOR). We 
show all 3 possible pairs of the 3 axes. In panel b, the 3 red rings show spherical Gaussian distributions 
corresponding to 1, 2, and 3 standard deviations of the data. In panel c, the 3 blue rings show ellipses 
from the minimal model that correspond to 1, 2, and 3 standard deviations of the data (note that they 
all lie on top of one another along the XOR selectivity axis). The bottom right panel shows the covariance 
matrix of the selectivities computed from the data for stage 1 of learning (b) and stage 4 of learning (c). 
d, Relative Euclidean distance between the covariance matrix of selectivity coefficients from the data 
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and the covariance matrix expected from random selectivity (with matched total variance) as a function 
of learning (Methods, measuring similarity between selectivity distributions). Red and blue, respectively, 
error bars show mean (±1	𝑠. 𝑑. over 1000  randomly drawn models) of the relative Euclidean distance 
between the covariance matrix of the random, respectively minimal, model (with matched total variance 
to the data) and the covariance matrix expected from random selectivity; black error bars show standard 
deviation of relative distance between the observed covariance and random covariance (±1	𝑠. 𝑑. over 
1000 random models). e, Same as panel d but we show the relative distance from the covariance matrix 
expected from minimal selectivity (with matched total variance). f, Linear decoding of task variables for 
learning stages 1 (grey) and 4 (black). g, Cross-generalised linear decoding of task variables for 
learning stages 1 (grey) and 4 (black). h, The learning dynamic of the decoding of all possible task 
dichotomies excluding colour, shape and XOR (shattering dimensionality); solid black line indicates the 
mean over these dichotomies. i, Mean ±1	𝑠. 𝑑. linear decoding of all linear dichotomies (dashed line), 
non-linear dichotomies (solid line), and the XOR dichotomy (dotted black) as a function of learning. All 
p-values were calculated from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 < 0.01; *, 𝑝	 < 	0.05; †, 𝑝	 < 	0.1; 
𝑛. 𝑠., not significant). Grey shading in panels f–g shows the mean ±1	𝑠. 𝑑. of chance-level decoding 
obtained by shuffling trial labels (for details see Methods, statistical testing). 
 
To replicate our findings, we also performed a re-analysis of an existing dataset32–34 in 
which recordings were taken from primate ventral and dorsolateral PFC before and 
after learning a delayed match-to-sample task that was similar in structure to ours (for 
details see Methods, existing lPFC dataset).  This task required active behaviour and 
the reward signal was disentangled from the XOR (i.e., match/no match) signal. We 
found that, as in our data, learning pushed neural activity in the PFC towards a minimal 
XOR regime (Supp. Fig. 4). 
 
Our findings indicate that neural activity in the PFC shifts between two distinct 
selectivity regimes throughout the learning process. Initially, the PFC maximally 
expanded the representational space by encoding all available variables. 
Subsequently, after a combination of task variables that predicted the trial's outcome 
was identified, the PFC reduced its dimensionality and maintained a minimal model of 
the task structure. Previous studies on cross-generalisation have suggested that such 
low-dimensional representations should improve learning of similar problems7. This is 
based on the notion that the classification of new stimuli can be rapidly improved by 
leveraging already learnt representations, thus resulting in a shared (abstract) 
representation of task variables between the old and new problems. We tested this 
prediction in experiment 2. 
 
 
Generalisation: abstract coding dominates task representations over learning 
 
In experiment 2, we introduced a new colour pair (stimulus set 2) that followed the 
same shape–outcome associations as the previous colour pair (stimulus set 1) (Fig. 
1c). Randomly interleaving stimulus set 1 trials and stimulus set 2 trials allowed us to 
test whether a shared neural representation would be used for both stimulus sets (Fig. 
1b). Similar to experiment 1, we recorded neural activity from the very first session in 
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which the animals were exposed to the new stimulus set and divided the experimental 
sessions into four distinct learning stages. To explore learning-induced changes to 
neural representations, we again employed the decoding and cross-generalised 
decoding metrics. We next compared these metrics to changes in the structure of 
neural selectivities. Specifically, for each neuron, we computed its selectivity profiles 
for each variable (colour, shape, XOR), separately for each stimulus set, and 
measured their correlation between different sets. Notably, given that the colour was 
presented before the shape in the experimental setup (Fig. 1c), these analyses were 
conducted for each learning stage in both the colour-locked and shape-locked time 
windows (Fig 4 and Fig. 5, respectively). 
 
Hypothetically, PFC could represent the new colours separately from the already 
learned pair (high-dimensional representation), or it could generate an abstract 
representation (shared across sets) of the colours’ contextual meaning (low-
dimensional representation). Through an exploration of neural activity in the colour-
locked period (Fig. 1d), we observed that the PFC collapsed the stimulus set 
dimension and progressively aligned corresponding colours from both sets according 
to their meaning (Fig. 4a). Although context was equally well decodable in early as 
well as in late learning (𝑝 = .56, two-sided, Fig. 4b, black, decoding; see Supp. Fig. 
5a for temporally resolved decoding), its format changed from an item-specific 
representation into an abstract code. We tested this explicitly by training a linear SVM 
classifier to decode the context in stimulus set 1 and tested this model on 
differentiating context in stimulus set 2, and vice-versa (see Methods, cross-stimulus 
set generalisation). We found that the representations of new and old colours became 
aligned as a function of learning, to allow for a single context readout (𝑝 = .000, one-
sided, Fig. 4b, purple, ‘cross. decoding’; see Supp. Fig. 5b for temporally resolved 
cross. decoding). This change in geometry was reflected in a change in neural 
selectivity, as with the progression of learning, PFC cells exhibited an increasingly 
positive correlation between selectivity for colour pair 1 and colour pair 2 (𝑝 = .004, 
one-sided; Supp. Fig. 5d; Fig. 4c-d). Additionally, no learning-induced changes were 
detected when colour decoding was analysed separately for set 1 and set 2 (𝑝 = .94, 
two-sided and 𝑝 = .16, two-sided, respectively; Fig. 4e). We also investigated the 
representation of the stimulus set (the old set 1 vs the new set 2) and found that the 
animals were able to clearly distinguish between the old and new colours during the 
early stages of learning (Fig. 4f, black, ‘decoding’). As learning progressed, however, 
we observed a reduction in stimulus-set decoding (𝑝 = .000, one-sided) and 
corresponding cross-context decoding of stimulus set (𝑝 = .02, one-sided, Fig. 4f, 
purple, ‘cross. decoding’), as well a reduction in the shared selectivity (𝑝 = .04, one-
sided, Supp. Fig. 5c; Fig. 4g, h). This indicates that the animals collapsed the set 1 
vs set 2 dimension. The emergence of an abstract representation of context before 
the appearance of the shape suggests that the network occupies a preparatory activity 
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state that permits the immediate, context-appropriate transformation of shape 
information to reward prediction (XOR representation).6,41,43,44 
 

Figure 4. The PFC aligns new and old colours as a function of learning to allow a single readout 
of context. a, Trial-averaged population firing rate during the late colour-locked period for each colour 
projected onto the top three principal components as a function of learning (Methods, principal 
component analysis); the same scale was used for all plots. b, Decoding (black) and cross-generalised 
decoding (purple) of context as a function of learning. The purple and grey shaded areas indicate 
chance-level cross. gen. decoding and chance-level decoding, respectively. c, d, Selectivity of PFC 
neurons in stage 1 and stage 4 for context in stimulus set 1 and stimulus set 2 in the colour-locked 
period. The line of best fit is shown in black. e, Decoding of colour separately for stimulus set 1 (grey, 
‘blue vs green’) and stimulus set 2 (black, ‘pink vs khaki’). f-h, Analogous to b-d but for set coding (f) 
and set selectivity (g, h). All p-values were calculated from permutation tests (***, p < 0.01; **, p <0.01; 
*, p < 0.05; n.s., not significant). Shading in panels b and f shows the mean ±1 s.d. of chance-level 
decoding. 
 
We next focused on the neural activity in the shape-locked period, which reflected the 
state of the PFC when all necessary information for outcome prediction was available 
(colour and shape). Inspecting the neural representation of task variables on the 
population level suggested that set 1 and set 2 geometries aligned as a function of 
learning to allow a single XOR readout (Fig. 5a). We found that in both early learning 
(stage 1) and late learning (stage 4), XOR decoding was high and no learning-induced 
changes to the XOR signal were detected (𝑝 = .572, two-sided, Fig. 5b, black, 
decoding). This suggests that the animals were able to rapidly cross-generalise the 
XOR representation between stimulus sets as early as in stage 1. We tested this 
explicitly by training a linear SVM classifier to decode the XOR in stimulus set 1 and 
tested this model on differentiating the XOR in stimulus set 2, and vice-versa. We 
observed high scores of cross-generalised XOR decoding in both stage 1 and stage 
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4, as well as a learning-induced increase in this measure (𝑝 = .032, one-sided, Fig. 
5b, purple, ‘cross. decoding’). We also observed a learning-induced increase in the 
shared selectivity for XOR between set 1 and set 2 (𝑝 = .042, one-sided, Supp. Fig. 
5h; Fig. 5c-d;). These results suggest that, although the PFC constructed an abstract 
(shared across sets) representation of the XOR early in learning, it continued to align 
the set-specific XOR boundaries until this abstract format fully dominated the XOR 
representation. A trend-level difference between shape decoding was detected across 
the learning stages (𝑝 = .084, two-sided, Fig. 5f, black, decoding). Additionally, both 
cross-generalised decoding (𝑝 = .000, one-sided, Fig. 5f, purple, ‘cross. decoding’) 
and selectivity analyses (𝑝 = .000, one-sided, Supp. Fig. 5g; Fig. 5g,h;) showed that 
the PFC progressively aligned the shape representation between stimulus sets. It is 
important to note that the same shapes were used in both stimulus set 1 and stimulus 
set 2. These results suggest that, at the start of the learning process, the PFC encodes 
shape differently (using a high-dimensional representation) depending on the stimulus 
set, and that only during late learning (stage 4), the representations converge to a 
single shared axis (become low-dimensional). We next explored the representation of 
context (which we already introduced in Fig. 4) during the shape-locked period. We 
found no learning-induced changes to the geometry (decoding: 𝑝 = .86, two-sided; 
cross. decoding: 𝑝 = .374, one-sided) or selectivity (𝑝 = .4, one-sided, Supp. Fig. 5f; 
Fig. 5j-l). We speculate that the PFC already transformed the context signal in the 
colour-locked period, so that after this preparatory state was used to guide early shape 
processing, context information did not serve any relevant function in the late shape-
locked period. Finally, we found that the decoding of colour and XOR in set 2 
approached the levels of decoding for these variables in set 1 with learning (𝑝 = .044, 
one-sided, and 𝑝 = .044, one-sided, respectively; Fig. 5e, m), whilst decoding of 
shape remained low in both sets (𝑝 = .25; one-sided, Fig. 5i). These changes to neural 
geometry were accompanied by slight changes in the dimensionality of 
representations (Supp. Fig. 5i-j). Specifically, as compared to the beginning of 
experiment 1, the mean shattering dimensionality of set 2 decreased slightly (but not 
significantly) over learning in experiment 2 (stage 1: 𝑝 = .11, one-sided; stage 4: 𝑝 =
.06, one-sided), whereas the dimensionality of set 1 in experiment 2 remained 
consistently lower (stage 1: 𝑝 = .04, one-sided; stage 4: 𝑝 = .042, one-sided).  
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Figure 5. The PFC utilised abstract stimulus representations when previously unseen stimulus 
combinations were introduced. a, Trial-averaged population firing rate during the late shape-locked 
period for each condition projected onto the top three principal components as a function of learning 
(Methods, principal component analysis); the same scale was used for all plots. b, Decoding (black) 
and cross-generalised decoding (purple) of XOR as a function of learning. The purple and dark grey 
shaded areas indicate chance-level cross. gen. decoding and chance-level decoding, respectively. c,d, 
Selectivity of PFC neurons for XOR in stimulus set 1 and stimulus set 2 in the shape-locked period in 
stage 1 and stage 4, respectively. The line of best fit is shown in black. e, Decoding of XOR shown 
separately for stimulus set 1 (grey) and stimulus set 2 (black). The grey shaded area indicates chance-
level decoding. f-m, Analogous to b-e but for shape (f-i) and context (j-m). All p-values were calculated 
from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 < 0.01; *, 𝑝	 < 	0.05; †, 𝑝	 < 	0.01; 𝑛. 𝑠., not significant). 
Shading in panels b, f, and j shows the mean ±1 s.d. of chance-level decoding and cross-set decoding. 
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Discussion  
 
The prefrontal cortex has the capacity to generate both low-dimensional and high-
dimensional representations, each of which presents a unique trade-off between 
generalisability and discriminability. However, the conditions under which each regime 
is employed currently remain unclear. Our study investigated how the dimensionality 
and geometry of neural activity changed over learning. We observed that, as learning 
progressed, neural activity in the PFC transitioned from being high-dimensional with 
high-discriminability to being low-dimensional and abstract. This transition in the 
representational strategy was accompanied by a change in population structure, from 
random and mixed, to minimal and structured. The structured representations that 
emerged during learning then supported the generalisation of the learned rule to a 
novel stimulus set. 
 
We found that the transition between high-dimensional and low-dimensional 
representations can be reproduced by a model that solves an XOR problem under 
metabolic cost constraints. One recent theoretical proposal45 used alternative 
constraints to argue that the emergence of structured selectivity is largely contingent 
on the complexity of the task. This was particularly evident in tasks that necessitate 
flexible input–output mappings, such as XOR rules. While our model explicitly defines 
the XOR nonlinearity as an input, this alternative model instead leveraged the temporal 
dimension to express the nonlinearity through recurrent dynamics45. However, the two 
models are not mutually exclusive, as both demonstrate that shortly before a decision 
is made, the system only retains relevant information (i.e., the XOR). This is 
accomplished by employing different forms of regularisation, such as an L2 cost on 
neural activities in our model, and a rank constraint on the recurrent connectivity matrix 
in the alternative model45. Another prominent theoretical proposal42 describes neural 
geometries similar to those found in our optimised networks: output variables are 
represented in an abstract, cross-generalisable fashion. However, one difference with 
this proposal is that the metabolic cost constraints in our model cause task-irrelevant 
variables to no longer be represented after learning (Supp. Fig. 1h-i); and this is 
consistent with the findings in our data (Fig. 3h). 
 
The acquisition of a low-dimensional representation following the learning of a single 
XOR rule raises the question of which regime the PFC might adopt when confronted 
with more complex tasks. Although XOR operations necessitate nonlinear integration 
and abstraction from sensory input, they can be reduced to simple stimulus-response 
pairings once the rule has been learnt or when a memory-based strategy is utilised. 
However, some tasks are more difficult to decompose, as they require switching 
between multiple orthogonal or conflicting subtasks. It has been suggested18,20 that in 
conditions requiring the performing of multiple tasks in series, a high-dimensional 
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representation could be employed by the PFC in order to maximise flexibility and 
prevent interference. 
 
We found that the PFC acquired a low-dimensional representation to solve a complex 
cognitive task. This corroborates the findings of Hirokawa et al.,12 who found that 
neural activity covaried with behaviourally relevant variables on a single cell level, thus 
occupying a low-dimensional manifold. On the other hand, some studies have 
suggested that an increase in neural dimensionality is predictive of performance14. It 
is possible that the structure of the task and training provides an explanation for these 
contrasting findings18. In our study, recordings were initiated from the onset of task 
training, spanning a period of five weeks, with animals experiencing the entire task 
structure from the first session. In contrast, many other investigations into the primate 
PFC's involvement in complex cognitive tasks train animals in a fashion that 
decomposes the task into multiple subcomponents and either builds up task 
knowledge across training14 or presents them in a serial (block-wise) manner7,46. 
Additionally, whereas in our study, one source of information (width) was always 
irrelevant, in other studies, information becomes periodically relevant and irrelevant 
across multiple blocks, which may promote encoding of currently irrelevant 
information43. These training differences may promote information encoding in a high-
dimensional manner that favours discriminability over metabolic efficiency. 
 
Although we operationalised the metabolic constraint using an L2 cost on neural firing 
rates, several other related formulations are possible. The energy expenditure of a 
population can be reduced not only through a global (population-level) reduction of 
firing rates but also through the reduction of the number of actively firing neurons. This 
would naturally correspond to an L1 (rather than L2) cost on neural firing rates, which 
encourages sparseness of representations. Indeed, different levels of sparseness of 
neural firing rates could affect whether the representation is low- or high-dimensional 
and would also indirectly reduce an L2 metabolic cost on neural firing rates. However, 
our results indicate that the PFC likely does not rely on sparseness as a mechanism 
for metabolic cost reduction, as we did not observe any learning-induced changes in 
this measure (Supp. Fig. 3p). Additionally, imposing costs on the strength of synaptic 
connections rather than on neural firing rates would also be an interesting avenue for 
future work, especially when considering more realistic models with recurrent 
connectivities. 
 
Many experimental efforts are guided by the implicit assumption that the animals have 
no prior knowledge nor received training related to the task being studied, thus 
constituting a tabula rasa system. Nevertheless, it is unlikely that the entirety of the 
animal's experience is unrelated to the experimental task, and that new 
representations do not interact with information already stored in the neural system. 
Our second experiment allowed us to address this issue and explicitly explore the 
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interactions between past and new knowledge. In line with previous predictions7,17, we 
found that when a new task instance is added, both the new and old instances were 
rapidly aligned to common axes and sensory differences between them were 
collapsed.  
 
An alternative strategy for generalising previously learnt knowledge is exemplified by 
neural networks that develop compositional representations47,48. After being trained 
on multiple cognitive tasks, these models have the ability to decompose a variety of 
complex operations into simple computational motifs. Furthermore, compositional 
models are able to recombine these basic operations to rapidly solve tasks that were 
not previously seen47,48. Neural dimensionality could thus depend on the similarity of 
the new problem to the already learnt operations and the number of computational 
motifs required to effectively solve it. 
 
It is perhaps surprising that, given the key role of the PFC in the development and 
acquisition of structured knowledge, only a few studies have investigated how the 
structure of PFC representations changes during several training days of an entirely 
novel task 49,50. By tracking changes in neural activity across learning, it is possible to 
identify the biological principles that are required to produce representations 
supporting higher cognitive functions21. In this study, we have demonstrated that the 
constraint of metabolic cost reduction parsimoniously describes the changes in neural 
selectivity and geometry in non-human primates learning a complex cognitive rule. 
This provides a foundation for explaining how PFC representations should change 
with learning. Future experiments should extend this paradigm, to track changes in 
learning even more complex and naturalistic tasks51; those that have a compositional 
structure47,52 the influence of different learning curricula53; and how these 
representations change within the same individual neurons as opposed to pseudo 
populations54–56.   
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Methods 
 
Data and task  
 
Animals and task. Two adult male rhesus macaques, monkey 1 and monkey 2, were 
trained in this study. The experiments were conducted in line with the Animals 
(Scientific Procedures) Act 1986 of the UK and licensed by a Home Office Project 
License obtained after review by Oxford University’s Animal Care and Ethical Review 
committee. The procedures followed the standards set out in the European 
Community for the care and use of laboratory animals (EUVD, European Union 
directive 86/609/EEC). The animals were seated in a sound- and lighting-attenuated 
experimental booth. Their heads were restrained and faced a 19-inch screen. The 
centre of the screen was aligned with a neutral eye position. The animals performed a 
passive object-association task (Fig. 1c,d). Importantly, the animals were accustomed 
to an experimental setting but had no previous exposure to the task or stimuli 
introduced in this protocol. Neural recordings were collected from the first session as 
one of the main aims of the study was to capture learning dynamics. In the first 
experiment, the animals were presented with a colour and a shape, a nonlinear 
combination of which predicted reward (Fig. 1c,d). In experiment 2, a second set of 
stimuli was additionally introduced to test whether the rule learnt in the first experiment 
cross-generalised to the new sensory domain (Fig. 1c). The colours used in the 
coloured circles were designed in the CIELab colour space57. The L parameter 
(luminance) was kept constant for every colour which ensured that the stimuli where 
approximately isoluminant; parameters a and b varied with regard to valence but not 
value which resulted in a circular colour representation57. As colours were randomly 
assigned to conditions for each animal, this circular representation ensured that 
regardless of which colour pair was assigned to which XOR mapping, the initial colour 
similarity/dissimilarity within colour pair was kept constant. Additionally, in both 
experiments, the second object had two features: one relevant for reward prediction 
(shape) and one irrelevant (width) (for the duration and sequence in which stimuli were 
presented see Fig. 1d) The trial sequence was randomised. All trials with fixation 
errors were excluded. The dataset contained on average 237.9 (𝑆𝐷 = 23.9) and 104.8 
(𝑆𝐷 = 2.3) trials for each of the 8 conditions in experiment 1, and 101.0 (𝑆𝐷 = 18.6) 
and 54 (𝑆𝐷 = 1.1) trials per each of the 16 conditions in experiment 2, for monkey 1 
and monkey 2, respectively. 
 
Data acquisition and pre-processing. Before the start of the experimental protocol, a 
titanium head holder with two recording chambers was placed and fixed with stainless 
steel screws in each animal. The frontal recording chambers were implanted over the 
lateral prefrontal cortex (lPFC) of the right hemisphere in both animals. Data from a 
second chamber targeting inferotemporal cortex in the right hemisphere are not 
considered here. A craniotomy was made beneath each chamber to enable 
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electrophysiological recording. Recording locations for each animal are shown in 
Supplementary Figure 5. Surgical procedures were carried out under general 
anaesthesia and were aseptic. A semi-chronic micro-drive system (SC-96, Gray 
Matter Research) with 1.5 mm interelectrode spacing, interfaced to a multichannel 
data acquisition system (Cerebus System, Blackrock Microsystems) was used for 
frontal recordings. Data were recorded over a total of 25 daily sessions in each monkey 
(monkey 1: 17 sessions in experiment 1 and 8 sessions in experiment 2; monkey 2: 
10 sessions in experiment 1 and 15 sessions in experiment 2). The switch to 
experiment 2 was made after the animal showed a robust reward prediction signal. 
Notably, electrodes were manually advanced by a minimum of 62.5	𝜇𝑚 before every 
session to ensure that activity from new cells was recorded. Neural activity was 
amplified, filtered (300	𝐻𝑧 − 10	𝑘𝐻𝑧), and stored for offline pre-processing and 
analysis. Cluster separation was applied (valley seeking algorithm), and the binary 
spike train was smoothed using a Gaussian window (𝜎 = 50𝑚𝑠). We collected spiking 
activity from 146 and 230 neurons in experiment 1 and from 205 and 151 neurons in 
experiment 2, for monkey 1 and monkey 2, respectively. Only cells sampled from the 
ventral and dorsal lateral frontal cortex were included in the data (Supp. Fig. 6). No 
neurons were excluded based on their selectivity profiles. Importantly, as the focus of 
this study was to track how learning influenced neural geometry and not the magnitude 
of firing rate (e.g., repetition suppression effects), we z-scored firing rates of each 
neuron across the whole session. During this procedure a small constant was added 
to the denominator to prevent small firing rates having large impact on neural 
representations (for similar normalisation see 58). The obtained firing rate data were 
then epoched from 200	𝑚𝑠 before to 1200	𝑚𝑠 after the colour onset. Next, all sessions 
were divided into four learning stages separately for each animal and experiment; the 
sessions within each stage were pooled across animals. All subsequent analyses were 
implemented in Python using custom-written code and run on combined data (monkey 
1 and 2). Two types of analyses were used in this study: (1) timepoint-resolved, where 
a specific method was applied to every time point in the epoch to track how 
representations evolved in trial time, and (2) time-averaged, where a method was run 
on time-averaged data (e.g., [t!""#$, t%""#$], colour-locked or shape-locked) in the 
time window preceding the shape display or trial outcome. In the former time window, 
we examined the neural geometry when only the colour information is known (i.e., 
context representation), whereas just before outcome onset (latter time window), we 
examined whether neural geometry reflected the colour and the shape and their 
combination (XOR) before the animals received feedback about the value of the trial. 
 
Constantinidis et al. 2016 dataset. We also used an existing dataset of 
electrophysiological recordings32 which have been described in detail previously33,34. 
In brief, neural activity was recorded from the ventral and dorsal lateral PFC (identical 
to the areas targeted in this study) in four rhesus monkeys who performed a feature 
match-to-sample task. More specifically, the animals were required to report after a 
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delay period whether the shape of the first stimulus was the same as the shape of the 
second stimulus. Note that a match/no-match rule is equivalent to an XOR rule. 
Importantly, neural activity was recorded before the animals were exposed to the task 
rule (passive viewing) and after they had learned the rule. As both correct match and 
correct no-match trials were rewarded, the match/no-match signal was not confounded 
with a reward prediction signal.  To test whether neural activity was pushed towards a 
minimal regime in such experimental conditions we employed the same decoding and 
selectivity measures as used in the analysis of our dataset (see Fig 2). We examined 
neural data averaged across the presentation of the second stimulus and the 
subsequent delay period ([t"#$, t&"""#$]; stimulus 2-locked).  Furthermore, neural 
activity was analysed for all stimulus pairs combined. For the 8 stimuli, we paired them 
into 4 sets of pairs and performed our analyses separately on each pair of stimuli (and 
averaged results over all 4 pairs) so that chance decoding was the same as in our 
dataset (i.e., 50%). 
 
 
Models 
 
Multiple linear regression. We can model the firing rate 𝒓 of a neuron (either from our 
generative models or our data) at a given time point as a linear combination of the 
three main task variables: colour, shape and the interaction between colour and shape 
(the XOR term):  
 
 

𝒓 = 𝐗𝜷 + 𝝐 
(1) 

 
where 𝒓 is a vector of 1x	K dimensionality containing the time-averaged firing rates for 
K trials; 𝐗 is the design matrix of dimensionality K	x	D where rows correspond to the K 
trials and columns correspond to the value of the D task variables such as colour, 
shape and XOR (D = 3) in each trial. 𝜷 is a D-by-1 vector populated with the 
coefficients for each of the task variable estimated for the 𝑛th neuron. Finally, 𝝐 
contains K residuals. The 𝜷 vector specifies the coordinates of the 𝑛th neuron in the 
selectivity space spanned by D task variables (Fig. 2a,b and Fig. 3b,c). That is, every 
neuron can be represented as a point in a space where each axis corresponds to the 
cell’s selectivity for a task variable.  
 
Generative models. Neural selectivity can be defined by the matrix 𝐒'()( =
(S*')+,*,-,+,',/, where the 𝑛th row corresponds to the 𝑛th neuron, and columns 
correspond to the regression coefficients for the three task variables colour, shape, 
and colour x shape (XOR) that form the axes of the considered space.5 This cloud of 
points is then centred by removing the mean (∑ 𝑆*' = 0' , for each of the 𝐷 task 
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variables). Here, we explored two types of selectivity distributions and their 
representational properties. Firstly, we examined a random mixed selectivity model in 
which selectivities are captured by a spherical multivariate Gaussian distribution 
𝐒0(*'1#	~	𝒩'(𝟎, 𝜎&𝚰𝒅). In such a model, all variables can be decoded equally well from 
the population resulting in a high-dimensional representation and there is poor cross-
generalisation between variables. The second selectivity model we examine results 
from a system performing the XOR task while being constrained to exhibit low overall 
firing rates (i.e., a form of metabolic cost). We derived analytically that maximising 
XOR decodability while minimising such a metabolic cost results in neurons being 
selective only to the interaction term (colour x shape; XOR) and having no selectivity 
to the linear terms (colour or shape; Supp. Materials Section 1). A matrix describing 
the selectivity of such a population can be thus formulated as 
𝐒#3*3#(4 	~	𝒩'Q𝟎, 𝜎&diag(0,0,1)V. We call this the minimal XOR model. Importantly, to 
allow comparisons between the observed selectivity and model selectivity (minimal or 
random), the generative models were constructed using parameters derived from the 
data.  Specifically, we used the mean value of diagonal entries of the covariance matrix 
𝚺X'()( estimated from 𝐒'()( to set the value of the variance parameter 𝜎& in both 
𝐒0(*'1# and 𝐒#3*3#(4 (note that this ensures that both models have the same total 
variance). Furthermore, we showed that multiple linear regression was able to recover 
the underlying minimal and random models from artificially generated firing rates under 
various levels of noise (Supp. Fig. 2).  
 
Optimised feedforward networks. We used 𝑁 = 400	neurons in these networks and 
their firing rates were described by eq. 1 with 𝜎 = 2. The output 𝒛 of these networks 
was given by a softmax readout 
 

𝒛 = Softmax(𝐖567𝒓 + 𝒃), 
(2) 

where 𝐖567 are the two sets of readout weights and 𝒃 is the readout bias. We 
optimized these networks with back-propagation using a canonical cross-entropy cost 
function 
 

ℒ = ℋ(𝒑, 𝒛) +	 8
&-
‖𝒓‖&&, 

 
(3) 

where the first part of eq. 3 denotes the cross-entropy loss ℋ(𝒑, 𝒛) between the true 
probabilities of reward 𝒑 (which were equal to 0 or 1, depending upon the stimuli for 
that trial) and the model’s readout probabilities 𝒛 and the second term corresponds to 
a metabolic cost on all firing rates. Before training, the values of the 𝜷’s were drawn 
randomly from a Gaussian distribution with 0 mean and variance 0.05, and elements 
of 𝐖567 and 𝒃 were set to 0. We trained two types of models: (1) with no regularisation 
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(𝜆 = 0) and (2) with high regularisation (𝜆 = 20;	Supp. Fig. 1a and 1b, respectively). 
In line with our predictions, selectivity to task variables in models trained with high 
regularisation converged on the minimal selectivity regime whereas models trained 
with no regularisation produced randomly mixed selectivity (Supp. Fig. 1).   
 
 
Analysis methods  
 
Decoding. To test what information was represented by the observed neural 
population as a function of learning, we employed linear SVM decoding7,14. In contrast 
to the regression analysis, where the regression coefficients could be estimated for 
every neuron separately, a decoding analysis required the construction of pseudo 
neural populations. To achieve this, sessions were divided into four learning stages. 
As each session had a different number of trials, the sessions were aligned to the last 
trial (to maximise learning effects) and the same number of trials per condition was 
used to construct the new pseudo-population (e.g. the last 99 and 49 trials per 
condition were selected from each of the sessions in experiment 1 and 2, respectively). 
This resulted in a matrix 𝐗 = (X9*))+,9,:,+,*,-,+,),; for each of the four learning 
stages, where the first dimension corresponds to K trials, the second dimension 
corresponds to N neurons (combined from two animals), and the last dimension 
corresponds to T time points. Then binary SVM classifiers were used to decode the 
task variables (colour, shape, width and XOR in experiment 1 and context, stimulus 
set, shape, width and XOR in experiment 2) at each time point for temporally resolved 
decoding (Supp. Fig. 3a-d and Supp. Fig. 5a,b) and from time-averaged firing rates 
([t<+""#$, t"#$]; outcome-locked, Fig. 3f, Fig. 5b,f,j; colour-locked, Fig. 4b,f). An 
equivalent decoding procedure was used when analysing generative models (Fig. 2f). 
Decoding was performed in a cross-validated way where K trials were split randomly 
into set 1 and set 2, with each containing 50% of trials. The decoder was fitted using 
the set 1 and tested on set 2. The procedure was then repeated using set 2 as the 
training set and set 1 as the test set. Both decoding scores were then averaged. This 
procedure was repeated 10 times for different random splits of trials in sets 1 and 2, 
and these 10 resulting scores were then averaged. To estimate shattering 
dimensionality7,14 in experiment 1(Fig. 3h) and 2 (Supp. Fig. 5i,j), we used the same 
decoding approach except that we averaged decoding scores over all 35 possible 
dichotomies that could be theoretically represented given the task structure (i.e., three 
linear variables form a cube in state space that can be dissected into two sets of 4 
vertices in 35 possible ways). We estimated the decodability of each of these 
dichotomies and tracked their mean decoding accuracy as a function of learning. To 
assess learning-induced changes to the linear and nonlinear components of neural 
dimensionality separately, we split the dichotomies into linear (n = 7) and nonlinear 
decoding axes (n = 28) and tracked their mean decoding accuracy as a function of 
learning (Fig. 3i). Please note that exploring the theoretically maximal dimensionality 
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of the neural representations in experiment 2 using shattered dimensionality, where 
four linear variables (colour, stimulus set, shape, width) were used, would result in the 
identification of 6435 theoretically possible binary decoding problems and thus be 
computationally expensive. Instead, we tracked shattering dimensionality separately 
for stimulus set 1 and stimulus set 2. 
 
Cross-generalised decoding. To examine the neural geometry of the task 
representation we used cross-generalised SVM decoding42. Trials were divided 
according to the to-be-decoded target variable labels as well as the splitting variable 
labels. More specifically, the splitting variable provides two instances of data which 
can be used to train and test the target variable classifier, respectively. In contrast to 
a typical cross-validation procedure, the testing happens not only on trials that were 
previously not seen but also on trials that correspond to different conditions. To 
achieve a high cross-generalisation score, it is therefore not sufficient to generalise 
across trial-wise noise but also to generalise across conditions7. As the task examined 
in experiment 1 has three linear variables (colour, shape, width),	36 possible cross-
generalisation axes can be identified (i.e., combinations of decoded variable and 
variable over which decoding was cross-generalised) per each of the 35 target 
variables. That is, the labels for 8 conditions (2	𝑐𝑜𝑙𝑜𝑢𝑟𝑠	𝑥	2	𝑠ℎ𝑎𝑝𝑒𝑠	𝑥	2	𝑤𝑖𝑑𝑡ℎ𝑠) are split 
into two sets of four labels (by colour, shape, or width). To identify training and testing 
exemplars within each of the sets, every possible binary combination of condition 
labels was determined (4	𝑐ℎ𝑜𝑜𝑠𝑒	2). This yielded 6 combinations for each of the sets. 
Thirty-six unique train-test splits (cross-generalisation axes) can be achieved by 
combining these two sets. Decoding accuracy scores estimated by running linear SVM 
decoders for each of these splits were then averaged to obtain a general cross-
generalisation score of the analysed target variable.  
 
Cross-stimulus set generalisation (decoding and selectivity analysis). Cross-
generalised decoding performed for experiment 2 data (both temporally resolved and 
run on time-averaged firing rates; Fig. 4b,f, Fig. 5b,f,j  and Supp. Fig. 3a-d, Supp. 
Fig. 5a,b, respectively) differed in one aspect from the algorithm described in the 
Cross-generalised decoding section. As the aim of the analysis described here was to 
identify the neural format of the main task variables used across stimulus sets, only 
one splitting variable was used (i.e., stimulus set) to obtain cross-generalisation scores 
for the task-relevant variables (context, shape, and XOR). This reduced the possible 
cross-generalisation decoding axes to four possible binary decoding problems (e.g., 
when performing cross-generalised decoding for the colour variable we can: (1) train 
on differentiating colour 1 from colour 2 in stimulus set 1 and test on differentiating 
colour 3 from colour 4 in stimulus set 2, (2) train on differentiating colour 3 from colour 
4 in stimulus set 2 and test on differentiating colour 1 from colour 2 in stimulus set 1, 
(3) train on differentiating colour 1 from colour 3 and test on differentiating colour 2 
from colour 4, and (4) train on differentiating colour 2 from colour 4 and test on 
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differentiating colour 1 from colour 3; these four decoding scores were then averaged). 
Using this procedure, we explored the cross-stimulus set generalisation potential of 
the colour, shape, width and XOR variables. Additionally, to test how selectivity of PFC 
cells changed as a function of learning in experiment 2 we employed a Pearson 
correlation metric. Specifically, we compared how similar the colour, shape and XOR 
coefficients in stimulus set 1 (Fig. 4c,g, and Fig. 5c,g,k) are to coefficients for the 
same variables in stimulus set 2 (Fig. 4d,h and Fig. 5d,h,l), which yielded three 
correlation scores for each of the main task variables (Supp. Fig. 5c-h). This was 
done for each of the four learning stages to explore whether selectivity for stimulus set 
1 aligns with selectivity for stimulus set 2 as a function of learning, consistent with a 
shared abstract representation. 
 
Measuring similarity between selectivity distributions. To test the observed neural 
population for the presence of random mixed or minimal selectivity (Fig. 2c,d, and Fig. 
3d,e), we firstly obtained regression coefficients for the three variables of interest 
(colour, shape and XOR; eq. 1) and constructed the selectivity space 𝐒'()(. To assess 
the similarity of 𝐒'()( to 𝐒#3*3#(4 and 𝐒0(*'1#	,	we computed the covariance matrix of 
𝐒'()( (𝚺X'()() as well as the covariance matrices of the expected random and minimal 
distributions given 𝐒'()( (𝚺X#3*3#(4 and 𝚺X0(*'1#; see Generative models). Finally, we 
calculated the normalised distance of the observed selectivity from model random 
selectivity 
 

𝑑3=01#	0(*'1#(𝚺X) =
?𝚺A<𝚺A!"#$%&'?𝟐<	𝔼(?𝚺

A!"#$%&'<𝚺A!"#$%&'?𝟐)

𝔼(?𝚺A!"#$%&'<𝚺A!'!$!'#)	?𝟐)<	𝔼(?𝚺
A𝒊"#$%&'<𝚺A𝒊"#$%&'?𝟐)

	, 

(4) 
and the normalised distance of the observed selectivity to minimal selectivity  
 

𝑑3=01#	#3*3#(4(𝚺X) =
?𝚺A<𝚺A!'!$!'#)?𝟐<	𝔼(?𝚺

A!'!$!'#)<𝚺A!'!$!'#)?𝟐)

𝔼(?𝚺A!"#$%&'<𝚺A!'!$!'#)	?𝟐)<	𝔼(?𝚺
A𝒊'!$!'#)<𝚺A𝒊'!$!'#)?𝟐)

. 

(5) 
where the subscript 𝑖 denotes a random draw and the expectations were computed 
over 1000 draws. From both the denominators and numerators, the distance within 
each of the models was subtracted to centre the measure around 0. More specifically, 
𝔼(x𝚺X𝒊0(*'1# − 𝚺X𝒊0(*'1#x𝟐)(the expected difference between two different randomly 
drawn selectivity distributions from the random model) was, for example, subtracted 
from the denominator and numerator of 𝑑=01#	0(*'1# to account for within model 
distance. Additionally, both 𝑑=01#	0(*'1# and 𝑑=01#	#3*3#(4 were normalised by the 
distance between selectivities generated using both generative models 
(𝔼(x𝚺X30(*'1# − 𝚺X3#3*3#(4	x𝟐)) which resulted in the metrics being bounded between 0 
and 1 (when x𝚺X'()( − 𝚺X#3*3#(4x𝟐 is equal or smaller than x𝚺X0(*'1# − 𝚺X#3*3#(4	x𝟐). This 
was done to allow for a comparison of similarity estimates across learning stages. The 
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Euclidean distance metric was chosen as the main analysis tool in this study based 
on simulations in which we generated different proportions of random and minimal 
selectivity across a single population (from 0% minimal and 100% of random to 100% 
minimal and 0% random) and compared the precision with which multiple metrics 
recovered the true proportions. We compared the Euclidean distance metric to the 
PAIRs metric, which has been used previously in the literature12,35, and to the 
symmetric Kullback–Leibler divergence estimate (KL divergence) which benefits from 
a strong theoretical basis and is assumption-agnostic. We found that, compared to the 
KL divergence and PAIRs metrics, the Euclidean distance measure yielded the highest 
precision of tracking learning-induced changes to neural selectivity (Supp. Fig. 7a,b). 
Specifically, our simulations showed that both the KL divergence and PAIRs can be 
used to precisely identify extreme selectivity regimes (either strong random selectivity 
or strong minimal selectivity) but fail at identifying intermediate selectivity regimes 
showing a strong bias towards random mixed selectivity (Supp. Fig. 7a,b). As the 
focus of this study was to track learning dynamics, a metric that allows to identify a 
broad range of selectivity regimes was chosen for the final analysis. Nonetheless, the 
results from experiment 1 (Fig. 3d,e) were broadly replicated using the symmetric KL 
divergence estimate (Supp. Fig. 7c,d) and PAIRs (Supp. Fig. 7e,f).  
 
Principal Component Analysis. PCA was used to visualise the population firing rate for 
different conditions in experiment 1 (Fig. 3a) and experiment 2 (Fig. 4a and 5a) and 
as a measure of neural dimensionality (Supp. Fig. 3o). Firstly, pseudo populations 
were constructed for each learning stage using the same procedure as described in 
the Decoding section. Then, firing rates were averaged in the time window preceding 
the shape presentation ([t!""#$, t%""#$] colour-locked; Fig. 4a) and outcome 
presentation ([t!""#$, t%""#$], shape-locked; Fig. 3a and 5a). Next, principal 
components were computed on condition averages and the population firing rates we 
projected onto the top three principal components. This was done separately for each 
learning stage. Note that width 1 and width 2 trials were pooled together. To compute 
how the variance explained (ratio) by the first PC changed as a function of learning 
(Supp. Fig. 3o), trials were randomly split into test and train 10 times; PCA was fitted 
then on train trials and the test trial firing rates were projected onto them to compute 
variance explained. The results from 10 random splits were then averaged. The null 
distribution for the permutation test was computed by randomly shuffling neurons 
between stage 1 and stage 4, and repeating the described PCA procedure (𝑛 = 500). 
 
 
Statistical testing 
 
Decoding and cross. gen. decoding. Throughout the study, we employed non-
parametric permutation tests to test statistical significance within each learning stage 
and between learning stages (learning-induced effects). Two types of null distributions 
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were thus constructed: (1) for statistical testing in time-resolved and time-specific 
decoding analyses the labels describing the trial dimension (𝑘) of the pseudo-
population matrix 𝐗 = (X9*))+,9,:,+,*,-,+,),; were randomly permuted 500 times; (2) 
to test for learning-induced effects, the matrices 𝐗$)(GH	+ and 𝐗$)(GH	! were 
concatenated along the neuron dimension (𝑛) and then 500 new 𝐗′$)(GH	+ and 𝐗′$)(GH	! 
matrices were generated by randomly assigning neurons to either 𝐗′$)(GH	+ or 𝐗′$)(GH	!. 
One-sided tests were used when testing the predictions of the minimal model and two-
sided tests were used when no differences were expected. Additionally, to control for 
time-related family-wise errors a cluster-based permutation correction was added to 
the time-resolved decoding59. 
 
Selectivity measures. To test whether observed selectivity was dissimilar to the 
random selectivity regime and similar to minimal selectivity regime 1000 random and 
minimal models were generated using data-derived parameters for each learning 
stage. Next, the 𝑑0(*'.=01#	0(*'. and 𝑑0(*'.=01#	#3*. distances were computed for 1000 
randomly generated models according to eq. 4 and eq. 5 (with 𝚺X0(*'1# as input) to 
serve as null distributions for both comparisons. Note that the observed selectivity was 
compared to random model selectivity when analysing the data’s similarity to random 
(Fig. 3d) as well as minimal selectivity (Fig. 3e). Furthermore, as in experiment 2 we 
tested whether selectivity for task variables was similar in stimulus set 1 to variables 
in stimulus set 2 and whether this selectivity alignment changed over learning, two null 
distributions were thus constructed: (1) statistically significant selectivity alignment 
was assessed by comparing the observed correlation to a distribution (𝑛 = 500) of 
correlations obtained after shuffling one of the selectivity vectors; (2) learning-induced 
effects in selectivity alignment were assessed by comparing the observed difference 
in alignment between stage 1 and stage 4 to a distribution of differences computed 
after randomly shuffling neurons between stage 1 and 4. 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 31 

Learning shapes neural geometry in the prefrontal cortex 
Supplementary materials  
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Section 1.1: How to set selectivity parameters for optimal XOR decoding 
 

We assume that neural activities 𝒙 of 𝑵 neurons are given by the following regression 
model  

𝒙 = 	𝜷"	 + 𝛿J,J,	𝜷K	 + 𝛿$,$,	𝜷L	 +	𝛿J,J,	𝛿$,$,	𝜷M + 𝜼 
(1) 

Where  𝜷K	, 𝜷L	, 𝜷M are the regression ‘coefficients’ for colour, shape, and the interaction 
term, respectively, 𝛿J,J,	 = 1 if the colour 𝑐 is colour 1 and -1 otherwise (same for 𝛿$,$,	 
for shapes 𝑠), and 𝜼~	𝒩(𝟎, 𝚺+). Therefore,  
 

𝒙|𝑟+	~	𝒩(𝝁0,	 , 𝚺+) 
 (2) 

𝒙|𝑟&	~	𝒩(𝝁0-	 , 𝚺&). 
(3) 

Where 𝑟+	 is one XOR condition (i.e., 𝑐 = 1, 𝑠 = 1 or  𝑐 = 2, 𝑠 = 2) and 𝑟&	 is the other 
XOR condition (i.e., 𝑐 = 1, 𝑠 = 2 or  𝑐 = 2, 𝑠 = 1) and 𝚺& is some noise covariance 
matrix. Note that with the inclusion of the interaction term, it is sufficient to separate 
the two XOR conditions. We now calculate 𝝁0,	 and 𝝁0-	: 
 

𝝁0-	 =	
𝜷"	 + 𝜷K	 + 𝜷L	 +	𝜷M

2 +
𝜷"	 − 𝜷K	 − 𝜷L	 +	𝜷M

2 	 

= 𝜷"	 + 𝜷M	 
(4) 

 
and, 

𝝁0-	 =	
𝜷"	 − 𝜷K	 + 𝜷L	 −	𝜷M

2 +
𝜷"	 + 𝜷K	 − 𝜷L	 −	𝜷M

2 	 

= 𝜷"	 − 𝜷M	 
(5) 

 
Therefore, 
 

𝒙|𝑟+	~	𝒩(𝜷"	 +	𝜷M , 𝚺&) 
(6) 

 
𝒙|𝑟&	~	𝒩(𝜷"	 −	𝜷M , 𝚺&). 

(7) 
 
Therefore, we need 𝜷M > 0 to be able to separate the two XOR conditions. 
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Section 1.2: An energy cost on unnecessary neural activity 
 
If we also consider minimising the squared norm of neural activity for each condition 
(i.e., an energy cost), we have 
 

𝔼 �x𝒙J,$x
&� = 𝔼�𝒙J,$�

N	𝔼�𝒙J,$� + Tr(𝚺+) 
(8) 

 
where the subscripts 𝑐 and 𝑠 correspond to colour and shape indices, respectively. 
Therefore, 

𝔼 �x𝒙+,&x
&� = (𝜷" − 𝜷K + 𝜷L − 𝜷M)N	(𝜷" − 𝜷K + 𝜷L − 𝜷M) + Tr(𝚺+) 

(9) 

𝔼 �x𝒙&,+x
&� = (𝜷" + 𝜷K − 𝜷L − 𝜷M)N	(𝜷" + 𝜷K − 	𝜷L − 𝜷M) + Tr(𝚺+) 

(10) 

𝔼 �x𝒙+,+x
&� = (𝜷" − 𝜷K − 𝜷L + 𝜷M)N	(𝜷" − 𝜷K − 𝜷L + 𝜷M) + Tr(𝚺+) 

(11) 

𝔼 �x𝒙&,&x
&� = (𝜷" + 𝜷K + 𝜷L + 𝜷M)N	(𝜷" + 𝜷K + 𝜷L + 𝜷M) + Tr(𝚺+) 

(12) 

Therefore, the total mean energy cost 𝑚 is given by 

𝑚	 =
1
4	 � � 𝔼�x𝒙J,$x

&�
$O+,&JO+,&

 

(13) 
=	𝜷"

N𝜷" +	𝜷K
N𝜷K +	𝜷L

N𝜷L +	𝜷M
N𝜷M 	+ Tr(𝚺+) 

(14) 
=	‖𝜷"‖& +	‖𝜷K‖& +	‖𝜷L‖& +	‖𝜷M‖& + Tr(𝚺+) 

(15) 
 
To minimise 𝑚 while keeping 𝜷M > 0, which we need for performance, we can set 
𝜷" = 𝜷K = 𝜷L = 𝟎		which gives  
 

𝑚	 = 	‖𝜷M‖& 	+ Tr(𝚺+) 
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(16) 
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Section 2: supplementary figures  
 

Supplementary figure 1. Optimised feedforward networks converge to the minimal XOR 
selectivity model. Twenty feedforward networks were trained (10 with high levels of regularisation and 
10 with no regularisation) to perform the XOR task. a, b, Selectivity observed in no and high 
regularisation networks, respectively; models of random (red ellipses) and minimal selectivity (blue 
ellipses) well approximated the observed selectivity. c, d, After training, low regularisation networks 
converged on a random mixed selectivity regime and high regularisation networks on a minimal XOR 
regime. e, XOR decoding (linear SVM) for both no and high regularisation models. f, No regularisation 
models exhibited substantially lower metabolic cost (cf. Supp. materials eq. 8). g, Comparison of XOR 
decoding obtained from minimal and random generative models as a function of population size. h, i, 
Colour and shape decoding (linear SVM) for no and high regularisation models, respectively.   
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Supplementary figure 2. Linear regression recovers underlying generative models. a, Pearson 
correlation and R2 computed between the covariance matrix of recovered selectivity and true underlying 
selectivity (when minimal generative model was used) for different levels of noise. b, Selectivity 
coefficients obtained after running a linear regression plotted for each neuron in selectivity space (for 
σ = 2); minimal model overlaid in blue; covariance matrix computed between the recovered selectivity 
coefficients. c,d, Analogous to a,b but when the random model was used to generate data; random 
model overlaid in red. Shaded areas in a and c indicate the mean ±1	𝑠. 𝑑. computed over 100 different 
initialisations. 
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Supplementary figure 3. Decoding of task variables as a function of learning in experiment 1. a-
d, Time resolved decoding in stage 1 and stage 4 of colour, shape, width and XOR, respectively; 
horizontal bars indicate statistical significance; dashed black bars indicate significant differences in 
coding between stage 1 and stage 4; dashed grey bars indicate trend-level significance in stage 1 vs 
stage 4 decoding. The pale orange area indicates the time window for which all subsequent decoding 
analyses were run. Vertical three dashed lines show the onset of the colour, shape and the outcome, 
respectively. e-h, The learning dynamics of the decoding of the main four variables. i-l, The learning 
dynamics of cross-generalised decoding of the main four variables. m, n, Statistical test for the 
difference in decoding and cross-generalised decoding, respectively, between stage 1 and stage 4 for 
three main task variables. o, variance explained (ratio) by the first principal component plotted as a 
function of learning (see Methods, principal component analysis for details). p, Distributions of the 
lifetime sparseness index observed in stage 1 (grey) and stage 4 (black). A Kolmogorov–Smirnov test 
revealed no differences between these distributions, 𝐷 = .06, 𝑝	 = 	 .99. Shaded areas in panels e-n 
indicate chance levels. All p-values were calculated from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 < 0.01; 
*, 𝑝	 < 	0.05; †, 𝑝	 < 	0.01; 𝑛. 𝑠., not significant).   
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Supplementary figure 4. The re-analysis of Constantinidis et al.32–34 dataset. We employed the 
same analysis methods as in Fig 2, and Fig 3 to test whether the PFC activity reported in Constantinidis 
et al. converged on a minimal XOR model. a, the covariance matrix describing relations between the 
selectivity for stimulus 1, stimulus 2 and their interaction (XOR) in the pre-learning phase of the 
experiment. b, Same as panel a but post learning. c, Relative Euclidean distance between the 
covariance matrix of selectivity coefficients and the covariance matrix expected from random selectivity 
(with matched total variance) plotted as a function of learning (Methods, measuring similarity between 
selectivity distributions). d, Same as panel c but we show the relative distance from the covariance 
matrix expected from minimal selectivity (with matched total variance). e, Decoding of task variables for 
pre- and post-learning stages. f, Cross-generalised decoding of task variables plotted as a function of 
learning. g, h, Learning-induced accuracy differences in decoding and cross-generalised decoding, 
respectively. Shaded areas in e-h illustrate chance-level decoding obtained by shuffling trial labels (for 
details see Methods, statistical testing). All p-values were calculated from permutation tests (***, p < 
0.01; **, p <0.01; *, p < 0.05; n.s., not significant). 
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Supplementary figure 5. a, Temporally resolved linear SVM decoding for main task variables in 
experiment 2. Turquoise shading in the far left panel indicates the time window in which subsequent 
selectivity analyses were performed for context and stimulus set (cf. panels c-d); pale orange shading 
indicates when the remaining selectivity analyses were performed (cf. panels e-h). Horizontal dotted 
lines represent chance-level decoding whereas vertical dotted lines indicate the onset of the colour, 
shape and the trial outcome. The grey, black and dotted black bars indicate the statistical significance 
of stage 1 decoding, stage 4 decoding and significant differences in decoding between stage 1 and 
stage 4, respectively. b, Temporally resolved cross-generalised decoding of main task variables (trained 
on set 1 and tested on set 2 (and vice-versa) for context, shape and XOR); cross-generalised stimulus 
set decoding was obtained by training on set1 vs set2 in context 1 and testing on context 2 (and vice 
versa) c, Correlation between selectivity coefficients for stimulus set (set 1 vs set2 2) from context 1 
and context 2 in late the colour-locked period (cf. turquoise in a) plotted as a function of learning; shaded 
areas indicate chance-level correlations between two random selectivity vectors obtained after shuffling 
trial labels. d, Correlation between selectivity coefficients for context (context 1 vs context 2) in stimulus 
set 1 and stimulus set 2 in late the colour-locked period plotted as a function of learning. e, f, Analogous 
to c and f but computed for the late target-locked period (cf. pale orange in a). g, h, Correlations of 
selectivity coefficients obtained from stimulus set 1 and stimulus set 2 for shape and XOR, respectively. 
i, Comparison of learning dynamics of mean shattering dimensionality for set 1 in experiment 1 and set 
1 in experiment 2. j, Comparison of learning dynamics of mean shattering dimensionality for set 1 in 
experiment 1 and set 2 in experiment 2. All p-values were calculated from permutation tests (***, p < 
0.01; **, p <0.01; *, p < 0.05; †, p < 0.01; n.s., not significant).   
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Supplementary figure 6. Electrode locations in monkey 1 (a) and monkey 2 (b) and their 
comparison (c).  
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Supplementary figure 7. The precision of Euclidean distance, symmetric KL estimate and PAIRS 
metrics in tracking learning-induced changes to neural selectivity. a, Relative Euclidean distance 
between the covariance matrix of selectivity coefficients obtained from a simulated mixed population 
(random-minimal) and the covariance matrix expected from pure random selectivity plotted as a function 
of minimal selectivity proportions (0-100%; for details see methods, measuring similarity between 
selectivity distributions). Coloured annotations indicate mean R2 values computed between the true 
proportions (dotted lines) and estimated proportions (coloured bold lines). b, Same as panel a but we 
show the relative distance from the covariance matrix expected from minimal selectivity; shaded areas 
illustrate mean ±1	𝑠. 𝑑. for each of the metrics computed from 1000 randomly drawn selectivity models. 
c, d Selectivity results from experiment 1(Fig. 3d, e) computed using symmetric KL divergence 
estimate. e, f Selectivity results from experiment 1(Fig. 3d, e) computed using the PAIRS metric.  
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