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Abstract

Understanding the genesis of shared trial-to-trial variability in neural activity within 1

sensory cortex is critical to uncovering the biological basis of information processing in 2

the brain. Shared variability is often a reflection of the structure of cortical connectivity 3

since this variability likely arises, in part, from local circuit inputs. A series of 4

experiments from segregated networks of (excitatory) pyramidal neurons in mouse 5

primary visual cortex challenge this view. Specifically, the across-network correlations 6

were found to be larger than predicted given the known weak cross-network connectivity. 7

We aim to uncover the circuit mechanisms responsible for these enhanced correlations 8

through biologically motivated cortical circuit models. Our central finding is that 9

coupling each excitatory subpopulation with a specific inhibitory subpopulation 10

provides the most robust network-intrinsic solution in shaping these enhanced 11

correlations. This result argues for the existence of excitatory-inhibitory functional 12

assemblies in early sensory areas which mirror not just response properties but also 13

connectivity between pyramidal cells. 14

1 Introduction 15

Determining a structure – function relationship in a cortical circuit is a central goal in 16

many neuroscience research programs. While the trial averaged responses of a network 17

to a fixed stimulus or repeated behavior does give some information about the 18

underlying circuit, the dynamic or trial-to-trial fluctuations of neuronal activity 19

provides another important glimpse into network structure (Urai et al., 2022). Such 20

neuronal variability is a salient feature of cortical responses (Faisal et al., 2008), and of 21

particular interest is how that variability is distributed over a population of neurons 22

(Cohen and Kohn, 2011). The shared fluctuations of a pair of neurons, termed noise 23

correlations, are often thought to reflect the circuit structure of the network within 24

which the neuron pair is embedded (Doiron et al., 2016; Ocker et al., 2017). 25

Understanding how neural variability is shaped by the connections and local circuit 26

dynamics can provide rich insight into the structure and function of cortical circuits. 27

An early hope was that pairwise correlations in neuronal activity could be used to 28

infer the underlying connectivity in a straightforward fashion (Mishchencko et al., 2011; 29
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Roudi et al., 2015). Indeed, experiments in the mouse primary visual cortex (V1) 30

demonstrated that the magnitude of the pairwise correlation between two pyramidal 31

cells increases with their probability of connection (Ko et al., 2011; Cossell et al., 2015). 32

Theoretically, this result can be thoroughly explained in a weakly coupled excitatory 33

network, where correlations are dominantly determined by direct, monosynaptic 34

connections. However, recent experiments investigating the functional properties of two 35

distinct subpopulations of pyramidal cells in mouse V1 complicate this narrative (Kim 36

et al., 2018b). These subpopulations project to separate downstream higher visual areas 37

and are inter-connected with lower probability than that of randomly sampled 38

pyramidal cells within V1. Despite this weak connectivity, it was found that the 39

correlations between these distinct subpopulations were much higher than predicted by 40

their sparse inter-connectivity. In fact, the magnitude of the correlated variability across 41

the two subpopulations approached that between any randomly chosen pair of 42

excitatory neurons. In this same vein, another experiment examining callosal projection 43

neurons in mouse V1 found that these cells also cluster and connect more strongly as a 44

class (Hagihara et al., 2021). Yet their correlated variability is similar when comparing 45

within-class and out-of-class, again illustrating that significant, positive correlations can 46

persist in the absence of direct strong connections. In total, these results are at odds 47

with previous intuition, namely that this anatomical segregation would correspond to a 48

functional one as well. 49

Theoretical work has also highlighted how the simplistic structure-dynamics 50

relationship originally put forth can break down. For example, it has been shown that 51

inferring connectivity from activity becomes difficult as recurrent connection strengths 52

grow and inhibition is required to stabilize the network (Das and Fiete, 2020; Biswas 53

and Fitzgerald, 2022). Most notably, a densely connected network with strong synaptic 54

weights that exists in the so-called balanced state, a robust parameter regime where 55

excitatory and inhibitory inputs to a neuron largely cancel out, results in near-zero 56

average correlations (Renart et al., 2010; Rosenbaum et al., 2017). Nonetheless, progress 57

has been made in overcoming these difficulties, with studies having developed methods 58

for linking connectivity motifs to the structure of correlations in arbitrarily large 59

networks (Pernice et al., 2011; Trousdale et al., 2012; Ocker et al., 2017)). 60

In this work, we seek to apply some of these techniques to characterize the neural 61

circuit properties which could explain the significant positive shared variability across 62

segregated cortical subpopulations observed in Kim et al. (2018b). With the use of 63

mean field circuit models we show that the solution depends on the dynamical regime of 64

the circuit, and relies on the structure of inhibition. In a weakly coupled regime, 65

correlations can be characterized through inheritance from outside sources, or increased 66

through shared inhibitory inputs. By contrast, in a strongly coupled regime, shared 67

inhibition would largely act to anticorrelate activity across the populations. Critically, 68

we show that this anticorrelation can be mitigated if inhibition is similarly clustered 69

with excitation, forming instead excitatory-inhibitory assemblies. Additionally, this 70

regime of strongly coupled dynamics with clustered inhibition provides the most robust 71

solution space to explain the elevated correlations. This prediction further suggests that 72

other apparent correlation conundrums could be solved by supplementing excitatory 73

recordings with activity from inhibitory neurons. 74
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2 Results 75

2.1 Segregated synaptic wiring does not produce segregated 76

functional responses 77

Our work is motivated by an apparent inconsistency in a series of experimental studies 78

exploring the relation between the recurrent circuitry and functional responses of 79

neuronal populations in sensory neocortex. Ko et al. (2011) and Cossell et al. (2015) 80

used a combination of in vivo population imaging and in vitro electrophysiology to show 81

that the activity correlations between pairs of pyramidal neurons in mouse primary 82

visual cortex (V1) increase monotonically with the probability of there existing synaptic 83

connections between them. Later work from the same group (Kim et al., 2018b) 84

investigated two excitatory populations in mouse V1: neurons that are either 85

anterolateral (AL)- or posteromedial (PM)- projecting. Despite neurons being in close 86

spatial proximity to each other, these neuronal subpopulations exhibit high within 87

group connectivity (prob. AL ↔ AL connection ∼ 0.21, prob. PM ↔ PM connection 88

∼ 0.18) and low between group connectivity (prob. AL → PM connection ∼ 0.04, prob. 89

PM → AL connection ∼ 0.05). To streamline our presentation we will label these two 90

populations E1 and E2 (Fig. 1A). Given the low connection probability between E1 and 91

E2 and the established relation between connectivity and activity correlations shown in 92

Ko et al. (2011) and Cossell et al. (2015), one would predict that the degree of 93

correlations between the activities of E1 and E2 would be low (Fig. 1B, held out light 94

green square; from Kim et al. (2018b) we estimate this value to be approximately -0.05). 95

However, Kim et al. (2018b) reported substantially higher than predicted mean E1 and 96

E2 correlations (Fig. 1B, dark green square; Kim et al. (2018b) measured it to be about 97

0.027, close to the within-group values of about 0.035-0.04). In total, while pyramidal 98

neurons in mouse V1 projecting to distinct targets show segregated synaptic 99

connectivity, the degree of functional segregation between these subpopulations is below 100

what is expected. 101

The central goal of our study is to put forth a circuit-based model framework that 102

can robustly and self-consistently account for both of these experimental observations. 103

It is important to note that Kim et al. (2018b) only considered total correlations (of the 104

raw neural activity traces) in computing this expected correlation value. However, given 105

the similarities observed in the signal and noise correlation structure in both this and 106

previous studies (Ko et al., 2011; Kim et al., 2018b; Hagihara et al., 2021), we focus 107

here on noise correlations which relate more directly to the underlying structure of 108

connectivity (Ocker et al., 2017). 109

2.2 A circuit model of fluctuations in segregated subpopulations 110

To study the structure of correlations in anatomically segregated networks and 111

investigate the possible mechanisms responsible for the unexpectedly enhanced 112

correlations, we consider a phenomenological dynamic mean field model for the 113

aggregate activity of each neural population (Renart et al., 2004; Getz et al., 2022; 114

Kanashiro et al., 2017). Assuming that the network has a steady state solution (rss), 115

the linearized dynamics of population A around this equilibrium are given by (see 116

Section 5 for additional details): 117

τA
d∆rA
dt

= −∆rA +
∑
B

WAB∆rB + σA
[√

1− c · ξA(t) +
√
c · ξS(t)

]
(1)

where ∆rA = rA − rss,A, τA is a time constant, and WAB is the effective strength of 118

connections from population B to A. For the purely excitatory network A and B range 119
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Figure 1. Mean field model of segregated E populations. A: Illustration of
experimentally observed connectivity motif; the red (E1) and orange (E2) populations
connect with lower probability than average. B: Schematic of main experimental
observations: E1 − E2 correlations were higher than would be predicted from their
low connectivity. C: Model schematic. Black traces and arrows denote noise sources.
Red arrows indicate excitatory recurrent connections where the dashed line connotes
weakened connection strength. Feedforward stimulus drive omitted for clarity. D:
Example realization of network activity to a sustained, fixed stimulus. Colors as in
(A). E: E1 auto-correlation function and F: E1 − E2 cross-correlation function for the
illustrated rate traces. For panels D, E and F: c = 0.5.

over E1 and E2; when inhibitory connections are included in later sections A and B will 120

include those as well. The stochastic processes ξA(t) and ξS(t) represent private and 121

shared global fluctuations, respectively, modelling stochastic inputs that are external to 122

the network. ξA(t) and ξS(t) are taken to be independent Gaussian processes with 123

⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t− t′). The parameter c ∈ [0, 1] scales the proportion of 124

shared noise relative to private noise (Fig. 1C), while σA > 0 represents the total 125

intensity of the external fluctuations given to population A. 126

We make two assumptions: 1) the network has a stable solution rss about which the 127

population dynamics fluctuate (Fig. 1D), and 2) connections within and inputs to the 128

network are symmetric across the two E populations, with WE1E1
=WE2E2

=WEE , 129

WE1E2 =WE2E1 = αWEE , and σE1 = σE2 = σ. Note that parameter 0 < α≪ 1 130

represents the degree to which the inter-population connections are weaker than the 131

within-population connections (Fig. 1C). Since the system of recurrently coupled 132

stochastic differential equations in Eq. 1 is a multi-dimensional Ornstein-Uhlenbeck 133

(OU) process, we can derive (see Section 5) an analytical formula for its stationary 134

autocovariance function 135
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C̃(h) = ⟨∆r(t),∆r(t+ h)⟩,

which agrees well with numerical simulations (Fig. 1E, F). Further, and of particular 136

interest in this work, is the long-time covariance matrix defined as 137

C :=

∫ ∞

−∞
C̃(h)dh.

This may be expressed (see Methods 5.2) as 138

C = (I−W)−1D
[
(I−W)−1D

]⊤
, (2)

where W is a matrix of effective connection strengths and D is a matrix that scales the 139

fluctuations. We define the correlations between E1 and E2 as 140

Corr(E1, E2) :=
CE1E2√

CE1E1
CE2E2

=
CE1E2

CE1E1

, (3)

where CAB is an element of C and the second equality follows by the assumed 141

symmetry in the system. This framework enables us to formalize the motivating 142

question of our study: what are the mechanisms that enable higher than expected 143

correlations across anatomically segregated populations? For the sake of specificity, we 144

choose the threshold Corr(E1, E2) > 0.6 as an approximation of the ratio of mean 145

across-population to within-population noise correlations in Kim et al. (2018b). 146

2.3 Inheritance model of correlations between weakly coupled 147

excitatory populations 148

We begin by exploring how the strength of recurrent excitation (WEE) and the 149

proportion of fluctuations that are shared (c) shape correlations between the segregated 150

E populations. In this section, to ensure that the network admits a stable activity 151

solution we require WEE < 1, else recurrent excitation would lead to runaway activity. 152

Note that while we allow WEE to vary, we maintain the concept of segregated 153

populations by keeping α small and fixed. We find that while increasing WEE leads to 154

moderate increases in Corr(E1, E2), a much more significant increase occurs by 155

increasing c (Fig. 2A). 156

To better understand the underlying mechanisms responsible for these higher 157

correlations within this parameter regime (i.e., to the right of the pink line in Fig. 2A), 158

we perform a pathway expansion of the covariance matrix Eq. 2. Since the steady state 159

emitted by the system in Eq. 1 is stable, the term (I−W)−1 can be expanded as a 160

series. This allows us to write Eq. 2 as (see Methods 5.3) 161

C =

∞∑
n=0

[
n∑

i=0

Wn−iDD⊤ (W⊤)i] , (4)

where each term in the inner sum corresponds to an nth-order path through the
network. Writing out the first three terms of this sum for the cross-covariance yields

CE1E2
= σ2

[
c+ (2c+ 2α)WEE + (3(1 + α2)c+ 6α)W 2

EE

]
+O(W 3

EE).

Rewriting this equation as

CE1E2
= σ2[c · (1 + 2WEE + 3(1 + α2)W 2

EE)︸ ︷︷ ︸
(1)

+(2αWEE + 6αW 2
EE)︸ ︷︷ ︸

(2)

] +O(W 3
EE) (5)
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Figure 2. Highly correlated regime in weakly coupled excitatory network
relies on correlated feedforward inputs. A: Corr(E1, E2) as a function of WEE and
the magnitude of shared input noise c. Dashed pink line indicates Corr(E1, E2) = 0.6,
approximating the value reported in Kim et al. (2018b). B: Schematic of example synaptic
paths through the network, along with their contribution to the cross-covariance, relating
to the path expansion Eq. 4. The inherited row refers to correlated paths stemming
from correlations in the feedforward input, while the recurrence row arises from the
recurrent connections across the populations. C: Contributions of paths of given order
to networks (left) and the total correlation (right) for the parameters WEE = 0.25 and
c = 0.65 (star from panel (A)). All panels: α = 0.1.

reveals that each term contributing to this cross-covariance can be thought of as arising 162

from one of two sources: 1) inherited from the shared correlated input and dependent 163

on the parameter c (Fig. 2B, top), and 2) purely arising from the recurrent connections 164

(Fig. 2B, bottom). We note that the ‘propagation’ of the inherited contribution to 165

higher-order paths does not only rely on the E1 ↔ E2 connections (proportional to 166

αnc). This is because the correlated activity is fed directly into each subpopulation at 167

the 0th order, from which it can propagate into higher-order paths via self loops 168

contained within each population. We emphasize that eliminating the 0th order term 169

(i.e., setting c = 0) eliminates all contributions from the inherited global source. 170

We now utilize this pathway expansion to compare the contributions from
feedforward and recurrent mechanisms to the net cross-covariance for an example point
lying in the highly correlated regime (Fig. 2A, star; WEE = 0.25 and c = 0.65). We first
note that this series converges quickly and only a few paths significantly contribute to
the total correlation (Fig. 2C). The convergence of this series depends directly on the
largest eigenvalue of W (Methods 5.3), namely

λmax =WEE · (1 + α),

which is small for our choice of parameters. Our numerical results also illustrate that the 171

contribution from the inherited source largely dominates at each order (Fig. 2C; left), 172

and contributes ∼90% of the total cross-correlation (Fig. 2C; right). These results hold 173

qualitatively across this parameter regime, and lead us to conclude that it corresponds 174

to a model in which large shared input fluctuations explain the heightened correlations 175

between the separate E populations. Taken together, we characterize this solution 176

which exhibits enhanced E1 − E2 correlations as a feedforward inheritance model. 177

However, under the condition where the shared input fluctuations are small, we still 178

lack a potential mechanism for significant positive correlations. To surmount this 179

shortcoming, we first need to extend our model to also include inhibitory populations. 180
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2.4 Weak recurrent excitation with global inhibition 181

Parsimoniously, we begin by modelling inhibition as a single global population, 182

consistent with observations that inhibition simply connects densely and non-specifically 183

within cortex (Hofer et al., 2011; Packer and Yuste, 2011) (Fig. 3A). To understand the 184

effect of inhibition in this circuit, we explore how the strength of recurrent inhibitory 185

connections (WEI < 0 and WIE > 0) shape correlations between the excitatory 186

populations in the case when c = 0. Assuming WEE remains weak (i.e., WEE < 1), we 187

find a large portion of the parameter regime yields negative cross-correlations (Fig. 3B; 188

purple region). However, there is a region that satisfies our correlation condition, namely 189

the dark green region that corresponds to strong I → E and weak E → I connections. 190
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Figure 3. Weakly coupled network. A: Network model schematic as in Figure
1C. Blue lines indicate recurrent inhibitory connections. B: Corr(E1, E2) as a function
of |WEI | and WIE . C: Illustrations of first and second order paths. D, E: (Left)
Contributions of E (red outlined bars) and I (blue outlined bars) to the net Corr(E1, E2).
(Right) Schematic of dominant correlating pathway. Colored stars denote locations in
B. Red star: WEI = −1,WIE = 0.07; blue star: WEI = −0.05,WIE = 2. For all panels
α = 0.15.

We again make use of a pathway expansion of Eq. 2 to help decipher this 191

observation, this time accounting for the new inhibitory pathways (Fig. 3C). Writing 192

out the expansion to second order in W yields 193

CE1E2
= σ2[2αWEE + 6αW 2

EE︸ ︷︷ ︸
exc. paths

+2WEIWIE +W 2
EI︸ ︷︷ ︸

inh. paths

] +O(W 3), (6)
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where we have noted the terms involving only the excitatory components and terms 194

which involve paths through the inhibitory population. We first observe that 195

contributions to the cross-covariance due to the excitatory subnetwork at each order are 196

the same as the previous network without the inhibitory connections (Eq. 5 for c = 0). 197

This leads us to decompose the total covariance into an excitatory component and an 198

inhibitory component (neglecting the O(W 3) terms in Eq. 6) 199

CE1E2
= Cexc

E1E2
+ C inh

E1E2
. (7)

As Eq. 6 suggests, depending on the strength of the underlying inhibitory connections, 200

C inh
E1E2

can either be positive (positively correlating the excitatory subpopulations; 201

Fig. 3B, along WEI axis) or negative (anti-correlating the subpopulations; Fig. 3B, 202

purple region). By contrast, Cexc
E1E2

is clearly bounded below by zero. 203

Specifically, Eq. 6 reveals a ‘tug of war’ that can arise early on in the pathway 204

expansion between the E → I → E (i.e., WEIWIE < 0) and the I → E (i.e., W 2
EI > 0) 205

inhibitory pathways. Choosing |WEI | > WIE ≈ 0, we find that the positive term 206

dominates, and the the inhibitory population acts as a strong correlator of excitatory 207

activity (Fig. 3D). We term this an inhibitory inheritance model by analogy to the 208

feedforward inheritance model described above. 209

On the other hand, when WIE > |WEI | ≈ 0, the negative term dominates, leading 210

the inhibitory population to weaken the strength of cross-correlations. In this case, the 211

primary correlating source across the excitatory populations are the weak E1 ↔ E2 212

connections (Fig. 3E). But as we noted previously (Fig. 2), this pathway alone is 213

incapable of yielding high cross-correlations without strongly correlated feedforward 214

input. 215

The regime of weakly coupled neural populations thus permits two solutions for 216

correlating E1 and E2 to a sufficiently high degree, both of which can be characterized 217

in terms of inheritance models. Namely, enhanced positive correlations can be inherited 218

from outside sources or from local recurrent inhibition. Nevertheless, the ambiguity in 219

the former solution and the fine-tuning required to achieve the latter solution push us to 220

uncover a more robust mechanism. 221

2.5 Strong recurrent excitation with global inhibition 222

Up to this point, by virtue of our assumption that the recurrent excitatory coupling is 223

weak the stability of the equilibrium point was independent of the inhibitory currents. 224

Such a network is commonly referred to as a non-inhibition-stabilized network 225

(non-ISN) (Tsodyks et al., 1997; Ozeki et al., 2009; Sadeh and Clopath, 2021) (see 226

Appendix for additional details). However, recent experimental evidence suggests that 227

mouse cortex operates in the ISN regime, where strong recurrent excitation is tracked 228

and balanced by strong inhibitory feedback (Adesnik, 2017; Sanzeni et al., 2020). Since 229

the ISN regime is known to exhibit sometimes perplexing dynamics, such as the 230

well-studied paradoxical effect (Tsodyks et al., 1997), it is initially unclear how shifting 231

into this parameter regime will shape the correlations under investigation. 232

In view of this, we now strengthen the recurrent excitatory connections WEE such 233

that our model network lies in the ISN regime. Performing a similar analysis as before 234

(i.e., fixing WEE and WII , while varying WEI and WIE) and assuming that the 235

feedforward inputs are uncorrelated (c = 0), we find results that at first glance appear 236

familiar (Fig. 4A). Namely, a portion of the parameter regime results in negative 237

correlations (purple region), with a narrow parameter regime yielding positive 238

correlations (green region). However, unlike the previous network, these correlations are 239

much larger across this band of parameter values, approaching unity as the system loses 240

stability due to the inhibitory feedback becoming too weak to be able to balance out the 241

strong excitation (gray and red-hatched region). 242
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Figure 4. Global inhibition in ISN regime. A: Corr(E1, E2) as a function
of WEI ,WIE with c = 0. B: Top: Corr(E1, E2) along the yellow path in A. Gray
region: unstable; green region: positive correlations; purple region: negative correlations.
Bottom: eigenvalues of the circuit along the yellow path in A. C, D: Top: example rate
traces (colors as in Fig. 3B). Bottom: auto- and cross-correlation functions computed
numerically (black) and theoretically for the dominant timescale (blue dashed). Stars
indicate parameter values shown in B. Here, α = 0.2.

Unlike the non-ISN regime, where the weak recurrent excitatory connections 243

corresponded with small eigenvalues and quick convergence in our path-expansion, here 244

the eigenvalues of the system lie much closer to the boundary separating stability from 245

instability. As result, many more terms are needed before the series in Eq. 4 converges, 246

complicating its interpretation. Instead, we seek to understand the mechanism driving 247

these high correlations by exploring their apparent connection to the system’s stability. 248

We start by considering the slice of the parameter space where |WEI | =WIE that
captures the system’s transitions from negative correlations to positive correlation to
instability (Fig. 4A, yellow line; Fig. 4B, top). Analysis of the eigenvalues of W reveals
a pair of eigenvalues (λ1 and λ2) dependent on the strength of inhibitory connections
and another eigenvalue that remains constant (and close to one) along this parameter
slice (λ3 =WEE(1− α)) (Fig. 4B, bottom). Interestingly, we find that decay for the
stationary autocovariance function for the inhibitory population (Fig. 4D and 4E
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bottom; see Eq. 9 in Section 5) is well approximated by

ψ = max (Re(λ1),Re(λ2)) .

From this link, we see that when |WEI | =WIE is large, then ψ is small, meaning the 249

timescale of inhibition is fast. This allows the inhibitory population to rapidly and 250

effectively cancel the net excitatory inputs (Fig. 4C, top). We observe that in this 251

parameter regime, ∆rI remains small, while ∆rE1
≈ −∆rE2

, leading to strong negative 252

correlations between E1 and E2. As |WEI | =WIE decreases, ψ increases towards one, 253

which slows down the inhibitory timescale (Fig. 4D, top). This slower cancellation of 254

the excitatory currents allows for larger deviations away from baseline for all neuronal 255

populations. However, since the system is still stable, we observe that the populations 256

co-vary together, leading to correlated excursions in the rates. 257

In total, the ISN regime yielded a more robust set of parameter values corresponding 258

to high correlations across the segregated excitatory populations than the non-ISN 259

regime observed previously. However, even in this improved scenario, the viable 260

parameter regime is still limited to a relatively thin band, and further, this band lies 261

precariously close to regions of instability. 262

2.6 Strong recurrent excitation with clustered inhibition 263

The fine tuning required to capture large Corr(E1, E2) despite having weak E1 ↔ E2 264

coupling (α << 1) for both the purely excitatory and global inhibitory networks places 265

doubt on these mechanisms being operative in real neuronal circuits. In this section we 266

hypothesize that if the sources of inhibition for each excitatory subpopulation are 267

similarly clustered, then this decoupling of inhibition may permit a larger stable region 268

of positive correlations in the ISN regime, largely by limiting the effects of the 269

anticorrelating E1 → I → E2 and E2 → I → E1 pathways. 270

We implemented inhibition to be co-clustered with the excitatory subpopulations by 271

separating the inhibitory population in two, with I1 and I2 corresponding to the 272

respective excitatory populations E1 and E2 (Fig. 5A). In this case, each Ei/Ii cluster 273

constitutes an ISN (i = 1, 2). The model contains no inter-population connections 274

except those between E1 and E2, and without any source of shared input correlations 275

(c = 0). We have again assumed symmetry in the connection strengths such that the 276

pairs (E1, I1) and (E2, I2) are identical in their connectivity and dynamics. 277

If we again fix WEE ,WII and proceed by exploring the space of WEI ,WIE 278

connections, we find that this network structure now yields a robust region in which 279

correlations are strong and positive (Fig. 5B, green). This can only be due to the strong 280

dynamic recruitment of the inter-population connection αWEE . This result emphasizes 281

three important points. First, that there exists a large space of connection parameters 282

in which our criteria (large Corr(E1, E2) and α << 1) may be met. Given the 283

heterogeneity of neural circuits and plasticity of connections within cortex this 284

parametric result is much more satisfying than a fine-tuned solution like that required 285

in the model with global inhibition (Sections 2.4, 2.5). Second, this result does not 286

depend on the presence of external correlated fluctuations. Thirdly, this result is robust 287

to the presence of external correlated input noise as it would only further amplify the 288

observed correlations. 289

A natural question is whether incorporating inter-population Ei ↔ Ij or Ii ↔ Ij 290

connections would affect this result. We therefore considered fixed values of WEI ,WIE , 291

and WII , and introduced scaling parameters β, γ, ζ, respectively, to adjust the 292

between-population strengths of each connection (Fig. 5C). We found that only 293

WII > 0 was able to further enhance correlations above the value we found when ζ = 0 294

(Fig. 5C, left). In contrast, any non-zero values of β, γ only reduced correlations (Fig. 295
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Figure 5. Segregated I subpopulations produce robust positive correlations.
A: Model schematic. Input structure is consistent with Fig. 3A but omitted for clarity.
B: Corr(E1, E2) as a function of WEI ,WIE with c = 0. C: Corr(E1, E2) as a function
of added connections between I1, I2 (left); I1 → E2 and I2 → E1 (middle); E1 → I2 and
E2 → I1 (right). Added connections Wij are initialized to the same as elsewhere in the
network, and scaled by: ζ, I ↔ I; β, I → E; γ,E → I. Dashed turquoise line denotes
ζ, β, γ = 0, WEI =WIE = 1.

5C, middle and right). This is due to the same mechanism discussed previously in which 296

strong excitatory recruitment of inhibition induces anti-correlations between the 297

populations. Further, this same relationship also held when WEI ,WIE , WII were 298

co-varied. Only I → I connections served as a correlating force; all others induced a 299

reduction in correlations (AFig. 2). Hence, we conclude that while inhibition can be 300

promiscuously connected with other inhibitory units, it must be strongly co-clustered 301

with excitatory subpopulations and sparse in its connectivity with other excitatory 302

subpopulations to yield the significant positive inter-population excitatory correlations 303

observed in Kim et al. (2018b). 304

3 Discussion 305

In this study we sought to uncover possible neural circuit mechanisms underpinning the 306

experimental observation that pyramidal neurons projecting to different downstream 307

targets connect with a much lower probability than random pairs of excitatory neurons, 308

yet still exhibit correlated variability that is almost as large as the rest of mouse V1 309

(Kim et al., 2018b). Notably, the magnitude of these correlations is much stronger than 310

would be predicted given their weak connectivity. We found that a model with global 311

inhibition resulted in highly constrained regions in which the data could be matched, 312

encompassing two distinct solutions. In the case of weak network coupling, positive 313

correlations resulted from two forms of inheritance model : either I → E connections 314

induced increased correlated activity through I affecting both excitatory populations in 315
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the same way, or an unobserved external source of strong correlations fed these 316

fluctuations across both E units. When connectivity strengths grew, placing the circuit 317

in an inhibition-stabilized (ISN) regime, the network needed to live right at the edge of 318

stability to observe positive correlations. By contrast, we found that a more generally 319

robust solution in the ISN regime could be achieved by splitting the inhibitory 320

population into two separate subpopulations co-clustered with one of the excitatory 321

subnetworks. 322

We argue that, on the basis of this robustness, our results thus predict that 323

inhibition should cluster together with excitation in mouse sensory cortex with a 324

specificity that mirrors that of the excitatory connectivity. The other inferred models by 325

contrast depend upon narrow parameter regimes to capture experimental observations. 326

This fragility would require significant constraints on the properties of neural circuits. 327

Yet, connections are plastic, connection strengths are heterogeneous, and neuron 328

properties are affected by neuromodulation (Turrigiano, 2008; Marder, 2012). Given 329

this stochasticity in the circuit structure itself, a fine-tuned solution is unlikely to 330

capture the data. 331

Rigorous experimental validation of our model predictions could be obtained 332

through physiological or connectomics experiments which specifically target the 333

relationship between excitatory projection neurons and local inhibitory neurons. While 334

it is well-appreciated that inhibitory interneurons are very diverse in physiology and 335

connectivity (Tremblay et al., 2016), we did not explicitly model this diversity in our 336

study. Nevertheless, we anticipate that parvalbumin (PV)- positive cells may display 337

the identified signatures of our I units, as they appear to play a critical role in 338

stabilizing excitatory activity (Bos et al., 2020). Recent experimental evidence appears 339

to support this claim from the perspective of stimulus tuning: while PV cells connect 340

with most nearby pyramidal neurons, they were found to more strongly connect with 341

those whose tuning properties they share (Znamenskiy et al., 2018). 342

Recent theoretical work has argued that E/PV assembly formation requires 343

plasticity from both E → PV and PV → E connections (Mackwood et al., 2021). This 344

bidirectionality could result in local, winner-take-all effects in E ↔ I connectivity as 345

any discrepancies in functional response properties between nearby pyramidal cells will 346

bias the PV connectivity. This could result in the more specific co-clustering of 347

inhibition we predict. Motivated by these results, a potential indirect way to 348

differentiate between the global and clustered inhibition models would be to record 349

activity of AL- and PM-projecting neurons together with inhibitory interneurons. 350

Comparison of their respective tuning functions could suggest whether the inhibitory 351

cell is biased in its connectivity (by extension of Znamenskiy et al. (2018)). Indeed, 352

Najafi et al. (2020) recently argued for co-clustered excitation-inhibition in the context 353

of posterior parietal cortex decision circuitry on the basis of neural response properties. 354

Furthermore, in mouse visual cortex, it has been shown that PM and AL exhibit 355

distinct functional representations with some overlap (Andermann et al., 2011), 356

consistent with the tuning properties of V1 projection neurons (Kim et al., 2018b). Of 357

course, it is possible that inhibitory-excitatory interactions may span a continuum 358

between the global and clustered motifs identified here. This raises the possibility that 359

heterogeneity in inhibitory connectivity motifs at small spatial scales may explain 360

heterogeneity in pairwise covariance between AL- and PM-projecting pyramidal cells. 361

A central issue in the extension of our results concerns the dynamical regime of 362

cortex, a topic which has received a significant amount of attention lately (Ahmadian 363

and Miller, 2021; Morales et al., 2021; Huang, 2021). One question concerns whether 364

intracortical interactions are strong enough to require inhibition as a key stabilizer of 365

activity, that is, whether sensory cortex is an inhibition-stabilized network (Tsodyks 366

et al., 1997; Sadeh and Clopath, 2021). Theoretical work predicts that in this regime 367
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the ratio of excitatory to inhibitory input drive to a neuron decreases with increasing 368

stimulus intensity (Rubin et al., 2015). Recent experimental evidence from recordings of 369

mouse primary visual cortex supports this claim (Adesnik, 2017). Another study used 370

optogenetic perturbation of inhibitory neurons across mouse cortex to test for 371

inhibition-stabilization without sensory stimulation, finding evidence that all considered 372

cortical regions operate as an ISN (Sanzeni et al., 2020). 373

Given this evidence for an ISN regime, a second question regards whether the 374

network dynamics are poised near a change in stability. In our model, loss of stability 375

would result in large positive correlations through a slowing down of the dynamics (Fig. 376

4). Analysis of large-scale recordings in mice has suggested that cortex may in fact live 377

close to an instability (Morales et al., 2021). This could suggest that either the global or 378

clustered inhibition model in an ISN regime may explain the data. Together with the 379

foregoing evidence that PV and E neurons sharing tuning properties connect more 380

strongly, we argue that this further supports a model of co-clustered inhibition. 381

Other mechanisms by which correlations can grow near a change in stability have 382

been identified in previous studies. Ginzburg and Sompolinsky (1994) observed that 383

near a bifurcation - in their case, a saddle node or Hopf - correlations in a weakly 384

connected network grow from O(1/N) to near O(1) where N is the network size, 385

together with a slowing down in the dynamics. Darshan et al. (2018) derived conditions 386

on what they term the interaction matrix (similar to our W matrix) under which 387

correlations are amplified without critical slowing down. These network models thus 388

suggest distinct mechanisms by which our results could be extended to 389

spatially-distributed spiking network models. Additionally, Litwin-Kumar and Doiron 390

(2012) studied the effect of clustered connectivity in balanced spiking networks on the 391

structure of correlations, however this work did not compare across-cluster to 392

within-cluster correlations. Rosenbaum et al. (2017) did consider a structure similar to 393

our three-population global inhibition motif, demonstrating that, consistent with our 394

conclusions, a spatially distributed spiking neural network with distinct subpopulations 395

would show close to zero correlations on average due to strong positive correlations 396

within a cluster and large negative correlations between the two clusters. Yet it remains 397

for future work to determine the precise parametric values to recapitulate our results in 398

spiking neural network models. 399

Our work can be seen as a case study of a particular network structure in the context 400

of the theoretical investigation of dynamics on graphs (that is, a collection of nodes and 401

edges). In general, graphical analysis has been used in a wide range of neuroscientific 402

applications, from the determination of fixed points of dynamics (Morrison and Curto, 403

2019) to network controllability (Kim et al., 2018a). In relating connectivity motifs 404

(elements of W and their combinations) to correlation structure in the circuit, our 405

approach relates to a more general mathematical concept of relating process motifs on 406

networks to underlying structure motifs of the graph (Schwarze and Porter, 2021). 407

Ultimately, this work demonstrates how ostensibly straight-forward observations of 408

connectivity and response properties from cortical cells have the capacity to lend fruitful 409

insight into the structural and dynamical regimes of cortex, which are critical to further 410

understanding of information processing in the brain. 411
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5 Methods 419

5.1 Firing rate model 420

As done previously (Kanashiro et al., 2017; Getz et al., 2022), we consider the firing rate 421

dynamics of neuronal populations A given by the following 422

τA
drA
dt

= −rA + fA

(
µA +

∑
B

JABrB + σ̂A
[√

1− c · xA(t) +
√
c · xs(t)

])
,

where τA is the time constant, µA is a constant stimulus drive, and JAB is the strength 423

of connections from population B to A. The stochastic processes xA(t) and xs(t) 424

represent private and shared global fluctuations, respectively. Each is taken to be the 425

limiting process from 426

τx
dx

dt
= −x+

√
τxξx(t),

for τx → 0, with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξi(t′)⟩ = δ(t− t′). Intuitively, one may think of 427

x(t) as a “smoothed” white noise process (Kanashiro et al., 2017). The parameter 428

c ∈ [0, 1] scales the proportion of shared noise relative to private noise, while σ̂A 429

represents the total intensity of the fluctuations. 430

We assume that the system of equations has an equilibrium point at rss, and that 431

the noise is weak enough so that the fluctuations about this equilibrium (∆r := r − rss) 432

can be approximated by 433

τA
d∆rA
dt

= −∆rA + LA

∑
B

JAB∆rB + LAσ̂A
[√

1− c · xA(t) +
√
c · xs(t)

]
,

where LA = f ′A(rss) is the gain of population A at the equilibrium point. We define the 434

effective coupling as WAB := LAJAB and σA := Laσ̂A, and approximate xA(t) and 435

xs(t) as independent, zero-mean Gaussian processes ξA(t) and ξs(t) satisfying 436

⟨ξ(t)ξ(t′)⟩ = δ(t− t′). This yields Eq. 1, which in matrix form can be written as 437

T
d∆r

dt
= (W − I)∆r(t) +Dξ(t). (8)

For notational simplicity, throughout we will assume unit time constants τA = 1, so that 438

T = I. For example, in the case of two excitatory populations and one inhibitory 439

population {E1, E2, I} the matrices are 440

W =

WE1E1
WE1E2

WE1I

WE2E1
WE2E2

WE2I

WIE1
WIE2

WII

 , D =

√(1− c) · σE1
0 0

√
c · σE1

0
√

(1− c) · σE2 0
√
c · σE2

0 0 σI 0

 .
The network structure is determined through the weight matrix W. Since we are 441

explicitly interested in segregated excitatory populations, we consider weak the 442

cross-population connections and set 443

WE2E1 = αWE1E1 , WE1E2 = αWE2E2
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for α ∈ (0, 1). The two excitatory populations, E1 and E2, are increasingly disconnected 444

as α→ 0. To obtain analytical expressions and constrain the searchable parameter 445

space, we assume various symmetries in the network connectivity. Specifically, we 446

consider the following forms for connectivity matrices for the two (Fig. 1A), three (Fig. 447

3A) and four (Fig. 4A) population models: 448

W =

[
WEE αWEE

αWEE WEE

]
,

W =

 WEE αWEE WEI

αWEE WEE WEI

WIE WIE WII

 ,
and 449

W =


WEE αWEE WEI βWEI

αWEE WEE βWEI WEI

WIE γWIE WII ζWII

γWIE WIE ζWII WII

 ,
where β, γ, ζ ∈ (0, 1). 450

5.2 Covariance calculation 451

The autocovariance function for the OU process defined in Eq. 8 is given by 452

C̃(h) = ⟨∆r(t)∆r(t+ h)⟩.

Let M = W − I and define Σ := C̃(0) = ⟨∆r(t)∆r(t)⟩ as the stationary covariance 453

matrix. Then Σ is obtained as the solution to the Lyapunov equation 454

−MΣΣΣ+ΣΣΣ(−M)⊤ = DD⊤ (Gardiner, 2009). It follows that 455

C̃(h) =

{
e−Mh ·Σ, h < 0

Σ · eM⊤h, h ≥ 0.
(9)

Integrating C̃(h) in each element over long times h yields the following compressed form 456

for the long-time covariance matrix C 457

C =

∫ ∞

−∞
C̃(h) dh

= M−1D
(
M−1D

)⊤
.

If CV =
√
diag(C), then the correlation matrix is obtained 458

ρ = C−1
V CC−1

V . (10)

5.3 Path expansion 459

If the spectral radius s(W) = max{|λi| : λi is an eigenvalue of W} < 1, then M−1 has
a convergent series representation

−M−1 = (I−W)
−1

=
∞∑
k=0

Wk
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known as a Neumann series (Einsiedler et al., 2017). Intuitively, one may think of the 460

Neumann series as a matrix analogue of the familiar geometric series. Under this 461

representation, the long-time covariance matrix is 462

C =

( ∞∑
k=0

Wj

)
DD⊤

( ∞∑
k=0

Wk

)⊤

.

It is useful to rewrite this expansion as 463

C =
∞∑

n=0

[
n∑

i=0

Wn−iDD⊤ (W⊤)i] ,
where the terms in the inner sum can be interpreted as contributions due to nth-order 464

paths through the network (Trousdale et al., 2012; Pernice et al., 2011). 465

If the outer sum converges quickly, the covariance matrix can be approximated as

C ≈
N∑

n=0

[
n∑

i=0

Wn−iDD⊤ (W⊤)i] .
The rate of convergence of this approximation depends on the magnitude of s(W). In 466

particular, the closer s(W) is to 0, the faster the terms shrink. Consider the N -th order 467

terms of this approximation, 468

N∑
i=0

WN−iDD⊤ (W⊤)i .
If || · || is the operator norm, then 469

∥∥∥∥∥
N∑
i=0

WN−iDD⊤ (W⊤)i∥∥∥∥∥ ≤
N∑
i=0

∥∥∥WN−iDD⊤ (W⊤)i∥∥∥
≤

N∑
i=0

∥∥∥DD⊤
∥∥∥ · ∥∥∥WN−i

(
W⊤)i∥∥∥

Diagonalize W and write W = PΛP−1, where Λ is a diagonal matrix of eigenvalues of 470

W. It follows that 471

∥∥∥WN−i
(
W⊤)i∥∥∥ =

∥∥∥(PΛP−1
)N−i (

(P−1)⊤ΛP⊤)i∥∥∥
=
∥∥∥PΛN−iP−1(P−1)⊤ΛiP⊤

∥∥∥
≤ ∥P∥2

∥∥P−1
∥∥2 ∥Λ∥N

Then 472

N∑
i=0

∥∥∥DD⊤
∥∥∥ · ∥∥∥WN−i

(
W⊤)i∥∥∥ ≤ N

∥∥∥DD⊤
∥∥∥ · ∥P∥2 ·

∥∥P−1
∥∥2 · ∥Λ∥N

≤ N
∥∥∥DD⊤

∥∥∥ · ∥P∥2 ·
∥∥P−1

∥∥2 · s(W)N

This bound shrinks quickly as N → ∞ if s(W) is small (≪ 1), as is the case when the 473

system is in the weakly coupled regime. 474
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5.3.1 Path expansion for weakly coupled E1 ↔ E2 475

In Fig. 2B we illustrate this quick convergence by showing the first three terms of this 476

sum, namely 477

0th - order: DD⊤,

1st - order: WDD⊤ +DD⊤W⊤,

2nd - order: W2DD⊤ +WDD⊤W⊤ +DD⊤ (W⊤)2 .
Using these terms, the cross population covariance can be approximated by Eqn. 5 in 478

the main text. 479

We note that for a nth-order path, we multiply on the left and right by C−1
V to 480

obtain path contributions to the correlation matrix. In particular, we are interested in 481

the contributions to ρE1E2
(that is, the element ρ1,2 of Eqn. 10). 482

5.4 Parameters & Simulations 483

All relevant code will be made available at the author’s github upon publication. 484

Simulations were performed using an Euler-Maruyama scheme with time constants 485

τE = τI = 15 msec, dt = 0.01 msec. 486

Table 1. Strength of connections from pop. B (columns) to A (rows) for the weakly (strongly) coupled model.

WAB E I

E 0.5 (1.15) 0.5 (0.8)

I 0.5 (0.8) 0.5 (0.5)

Table 2. Default parameter values. Changes to any parameter are indicated in the figure caption.

Parameter Default value Description

α 0.15 Inter-excitatory population strength

σA 1 Total intensity of outside fluctuations

c 0 Scales the proportion of shared noise relative to private noise

6 Supplemental Information 487

6.1 Network stability 488

The deterministic version of Eqn. 8 (Fig. 1A) 489

d∆r

dt
= (W − I)∆r(t)

is asymptotically stable if the eigenvalues λi of W − I satisfy ℜ[λi] < 0, meaning that a 490

perturbation of the excitatory rates is quenched and rates are returned to their 491

steady-state values (AFig. 1B, top) (Wiggins, 2003). An equivalent condition for 492

stability is if the eigenvalues λi of W satisfy ℜ{λi} < 1. We say that a network is stable 493

if it admits a stable equilibrium solution, otherwise we say the network is unstable. 494
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Supplemental Figure 1. Dynamical regimes and limitations on α. A: Network
schematic. B: Illustrations of a small change in the input +δ to E1 and −δ to E2.
Top: stable network regime; bottom: unstable (winner-take-all) regime. C: WEE − α
space. Yellow region: inhibition-stabilized (ISN); black hatched region: winner-take-all
(unstable). Solid yellow line: WEE = 1/(1 + α). Solid red line: α = 1 − 1/WEE .
Parameters as in Fig. 5. α changed to 0.1 for the unstable regime in B.

6.1.1 The inhibition-stabilized network (ISN) 495

A linear network is an inhibition stabilized network (ISN) (Ozeki et al., 2009) if it 496

satisfies two conditions: 497

(1) The network is unstable in the absence of (dynamic) feedback inhibition, 498

(2) The network is stable with sufficiently strong inhibition. 499

We consider the conditions under which the global inhibition motif (i.e., two excitatory 500

populations with one shared inhibitory population) is an ISN. The corresponding weight 501

matrix is 502

W =

 WEE αWEE WEI

αWEE WEE WEI

WIE WIE WII

 ,
which has eigenvalues 503

λ1 = (1− α) ·WEE ,

λ2,3 =
1

2

[
(1 + α) ·WEE +WII ±

√
(1 + α)2W 2

EE + 8WEIWIE − 2(1 + α)WEEWII +W 2
II

]
.

We note that λ1 does not depend on any of the inhibitory connections. As a result, if 504

λ1 = (1− α) ·WEE > 1 the system is unstable and inhibition is unable to stabilize it, so 505

we necessarily require (1− α) ·WEE < 1. On the other hand, λ2,3 do depend on the 506

inhibitory connections. Absent feedback inhibition (i.e., WEI = 0) these eigenvalues 507

become 508

λ2 = (1 + α) ·WEE and λ3 =WII .

In this work the latter is always less than 1. Meanwhile, it is possible to increase 509

recurrent excitation such that λ2 = (1 + α) ·WEE > 1. Unlike the previous condition 510

derived with λ1, we can choose inhibitory parameters WEI , WII such that this 511

eigenvalue decreases below 1, restoring the stability of the system. Thus, this system 512

lies in the ISN regime when 513

(1 + α) ·WEE > 1 and (1− α) ·WEE < 1.
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If the first condition is satisfied, while the second condition is violated, the system 514

exhibits winner-take-all dynamics, where one excitatory population increases away from 515

steady state while the second decreases away from it (AFig. 1B, bottom). All three 516

regions (non-ISN, ISN, and winner-take-all) are shown in AFig. 1C. The same constraint 517

to lie in the ISN regime can also be derived for the specific inhibition motif. 518

6.2 Covarying cross-population connections 519

It is possible that in the segregated Ei/Ii subpopulation model (Fig. 5A), covarying 520

cross-population connections might induce synergetic effects different from those 521

observed by adding singular bidirectional connections (Fig. 5C). We tested this 522

numerically by adding pairwise combinations of E → I, I → E, and I → I (AFig. 523

2A-C). Only when ζ (scaling of I → I) dominated either β or γ was an increase in 524

correlations observed; E → I and I → E always reduced correlations, consistent with 525

the results presented above. 526

A B C

-1.0

-0.5

0.5

0

C
or

r(
E

1,E
2)

0 0.2 0.4 0.6 0.8 1.0
ζ

0 0.2 0.4 0.6 0.8 1.0
ζ

β γ

γ

β
0 0.2 0.4 0.6 0.8 1.0

ζWII

βWEI γWIE

ζWII

βWEI

γWIE

Supplemental Figure 2. Covarying cross-population connections in segregated
ISN. A: Top: Corr(E1, E2) as a function of ζ; colored lines indicate different values of
β. Black lines indicate when ζ = β. Bottom: network schematics indicating connection
weights co-varied in the above plot. Green dashed line indicates value of Corr(E1, E2)
for WEI =WIE . Parameters as in Fig. 5. B: same as (A) for ζ and γ. C: same as (A)
for β and γ.
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