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Abstract 

A key feature of animal and human decision-making is to balance exploring unknown options 

for information gain (directed exploration) versus exploiting known options for immediate 

reward, which is often examined using restless bandit problems. Recurrent neural network 

models (RNNs) have recently gained traction in both human and systems neuroscience work 

on reinforcement learning. Here we comprehensively compared the performance of a range 

of RNN architectures as well as human learners on restless four-armed bandit problems. The 

best-performing architecture (LSTM network with computation noise) exhibited human-level 

performance. Cognitive modeling showed that human and RNN behavior is best described by 

a learning model with terms accounting for perseveration and directed exploration. However, 

whereas human learners exhibited a positive effect of uncertainty on choice probability 

(directed exploration), RNNs showed the reverse effect (uncertainty aversion), in conjunction 
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with increased perseveration. RNN hidden unit dynamics revealed that exploratory choices 

were associated with a disruption of choice predictive signals during states of low state value, 

resembling a win-stay-loose-shift strategy, and resonating with previous single unit recording 

findings in monkey prefrontal cortex. During exploration trials, RNN selected exploration 

targets predominantly based on their recent value, but tended to avoid more uncertain options. 

Our results highlight both similarities and differences between exploration behavior as it 

emerges in RNNs, and computational mechanisms identified in cognitive and systems 

neuroscience work. 

 

Introduction 
 

Reinforcement learning (RL) theory (Sutton & Barto) is of central importance in psychology, 

neuroscience, computational psychiatry and artificial intelligence as it accounts for how 

artificial and biological agents learn from reward and punishment. According to both the law 

of effect in psychology (Thorndike, 1927) and the reward hypothesis in machine learning 

(Sutton & Barto, 2018), agents optimize behavior to maximize reward and minimize 

punishment. In computational psychiatry, RL theory has yielded valuable insights into changes 

in learning and decision-making associated with different mental disorders (Huys et al., 2016; 

Maia & Frank, 2011; Yahata et al., 2017).  

To maximize reward, agents have to solve the exploration-exploitation dilemma 

(Sutton & Barto, 2018) that can be stated as follows: Should one pursue actions that led to 

reward in the past (exploitation) or should one explore novel courses of action for information 

gain (exploration)? In stable environments, where rewards corresponding to actions are fixed 

across time, the exploration-exploitation dilemma can be effectively solved by first exploring 

all available actions to identify the most rewarding one, and subsequently exploiting this action. 

In contrast, in volatile environments, rewards corresponding to actions change across time, 

such that exploration and exploitation need to be continuously balanced by an agent. A high 

level of exploitation would make an agent unable to adapt to changes in the environment, 

whereas too much exploration would reduce reward accumulation, as optimal actions would 

oftentimes not be selected.  

 A number of computational strategies have been proposed to address the exploration-

exploitation tradeoff (Sutton & Barto, 2018). In 휀-greedy and softmax choice rules, exploration 

is achieved via choice randomization. While such “random” exploration appears to be one core 

component of both human and animal exploration (Daw et al., 2006; Ebitz et al., 2018; Schulz 

& Gershman, 2019; Wilson et al., 2014, 2021), computational modeling of behaviour strongly 

suggests that humans additionally use “directed” or strategic exploration strategies (Chakroun 
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et al., 2020; Schulz & Gershman, 2019; Speekenbrink & Konstantinidis, 2015; Wiehler et al., 

2021; Wilson et al., 2014, 2021). This is typically modeled via an “exploration bonus” 

parameter that increases the value of options with greater information value (Chakroun et al., 

2020; Speekenbrink & Konstantinidis, 2015; Wiehler et al., 2021; Wu et al., 2018). In volatile 

environments, the uncertainty associated with the outcome of a specific action is often taken 

as a proxy for information gain (Wilson et al., 2021). Exploring uncertain courses of action can 

thus increase information gain, over and above a simpler random exploration strategy. 

 In humans, exploratory choices are associated with increased activity in the fronto-

parietal  network (Beharelle et al., 2015; Chakroun et al., 2020; Daw et al., 2006; Wiehler et 

al., 2021) and regulated by dopamine and norepinephrine neuromodulatory systems 

(Chakroun et al., 2020; McClure et al., 2005; Swanson et al., 2020). Choice predictive signals 

in prefrontal cortex neural populations are disrupted during exploratory choices, reflecting a 

potential neural mechanism for random exploration (Ebitz et al., 2018).  

Such neuroscientific lines of work have increasingly been informed by computational 

neuroscience approaches (Mante et al., 2013). Here, artificial neural network models are 

applied to shed light on the computational principles underlying task performance. In the 

context of reinforcement learning problems, recurrent neural network models (RNNs) are 

particularly powerful tools. They constitute deep artificial neural network models for sequential 

data (LeCun et al., 2015) and can be trained to solve RL problems using training signals 

derived from RL theory (Botvinick et al., 2020). Agents interact with the environment, and 

receive environmental feedback (e.g., rewards) based on their actions, which then informs 

subsequent choices. RNNs can be applied to such learning problems due to their recurrent 

connectivity pattern. Each time step, RNN hidden units receive information regarding the 

network’s activation state at the previous time step via these recurrent connections, thereby 

equipping the network with memory about what has happened before. Training and analysis 

of such models offer potential novel insights with implications for neuroscience (Botvinick et 

al., 2020). For example, the representations that emerge in a network’s hidden unit activation 

pattern following training (or over the course of training) can be directly analyzed (Findling & 

Wyart, 2020; Mante et al., 2013; Tsuda et al., 2020; Wang et al., 2018), similar to the analysis 

of high-dimensional neural data (Cunningham & Yu, 2014; Ebitz et al., 2018; Mante et al., 

2013). This can reveal insights into the computations and representations underlying a 

network’s performance.  

Neural network modeling approaches also complement computational modeling as 

typically done in psychology and cognitive neuroscience (Farrell & Lewandowsky, 2018). In 

this classical approach, computational mechanisms and representations hypothesized to 

underlie performance of a given task are explicitly and rigidly build into a quantitative model. 

While this approach is helpful to compare candidate models, the rigid dependency of these 
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models on built-in a priori assumptions preclude the discovery of novel mechanisms and 

representations that could underlie task performance. In contrast, RNN dynamics and 

representations might reveal novel potential mechanisms and representations that support 

similar tasks by virtue of the RNNs independent data-driven learning capacity (Botvinick et al., 

2020). Reward learning (Findling & Wyart, 2020; Tsuda et al., 2020; Wang et al., 2018) and 

decision-making (Findling & Wyart, 2020; Mante et al., 2013) are prominent recent examples. 

 To this end, RNNs have recently been successfully trained on reinforcement learning 

and decision-making tasks from the human and animal neuroscience literature (Findling & 

Wyart, 2021; Mante et al., 2013; Song et al., 2017; Tsuda et al., 2020; Wang et al., 2018). 

Such networks achieved a form of “meta-learning”, where eventhough weights were held fixed 

following extensive training, the models had acquired the capability to solve novel 

instantiations of tasks from the same task family (Dasgupta et al., 2019; Findling & Wyart, 

2021; Tsuda et al., 2020; Wang et al., 2018). In meta-learning, reinforcement learning 

operating over a large number of training episodes via slow adjustments of network weights, 

gave rise to a much faster reinforcement learning algorithm embedded in the network 

dynamics, and not involving further weight changes (Botvinick et al., 2020; Findling & Wyart, 

2021; Wang et al., 2018). Finally, evidence suggests that RNNs with noisy computations might 

be more resilient to adverse conditions (e.g. contingency reversals, volatility) than their 

counterparts with deterministic computations (Findling & Wyart, 2020). This resonates with 

findings from the machine learning literature suggesting improved performance of neural 

networks with noisy computations under some conditions (Dong et al., 2020; Fortunato et al., 

2019; Qin & Vucinic, 2018). Likewise, mental representations (Drugowitsch et al., 2016) and 

neural representations (Findling et al., 2019; Findling & Wyart, 2021; Renart & Machens, 2014) 

might benefit from some degree of representational imprecision (e.g., representations infused 

with task-independent noise). Thus, RNNs trained on multiple instantiations from a task family 

(meta-learning) and equipped with noisy computations are potentially excellent candidates to 

solve cognitive tasks.   

Allowing RNNs to learn on cognitive tasks and comparing their behavior to human 

agents is a promising endeavour. However, it should be noted that RNNs can diverge from 

human behaviour in terms of strategy deployed or tasks that they can solve. RNNs might show 

human-like behavior by mere statistical learning without the use of human-like abstract rule 

learning (Kumar et al., 2022). Also, while deep RL agents show superhuman ability in games 

like Go, Shogi, Chess and Atari games (Mnih et al., 2015; Silver et al., 2017, 2018) they fail to 

perform better than an agent with random action selection on a standard T-maze task from 

animal learning (Wauthier et al., 2021). In the artificial intelligence and machine learning 

literature, one of the most prominent differences between human and artificial agents is the 

number of interactions with the environment required to learn the task (Botvinick et al., 2019; 
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Lake et al., 2015; Marcus, 2018; Tsividis et al., 2021). This is in part related to exploration 

inefficiency (“sampling inefficiency”) with respect to collecting sufficient informative 

experiences during training (Hao et al., 2023). Even though there is ongoing work on endowing 

deep RL agents with improved exploration strategies (Hao et al., 2023; Ladosz et al., 2022; 

Tsividis et al., 2021), direct comparisons to human agents suggests differences. For example, 

Binz & Schulz (2022) showed that the large state-of-the-art artificial neural network model 

GPT-3 shows no evidence of directed exploration in a modified bandit task (“Horizon Task”), 

were reward and information are decorrelated (Wilson et al., 2014). Taken together, artificial 

agents can show exceptional problem-solving capabilities, but still diverge from human-level 

intelligence under some circumstances, especially in how exploration is used to guide 

learning. 

Bandit tasks constitute a classical testing bed for RL agents (Sutton & Barto, 2018), 

and are regularly applied to study human and animal exploration (Beharelle et al., 2015; 

Chakroun et al., 2020; Daw et al., 2006; Ebitz et al., 2018; Findling et al., 2019, 2019; Hamid 

et al., 2016; Mohebi et al., 2019; Wiehler et al., 2021). In non-stationary (restless) bandit tasks, 

agents select among a number of options (“bandits”) with dynamically changing reinforcement 

rates or magnitudes (Fig. 1 b & c). In contrast, in stationary bandit problems reinforcement 

rates are fixed. RNNs achieve state-of-the-art performance on stationary bandit tasks (Wang 

et al., 2018) and adapt to volatility in reversal schedules (Behrens et al., 2007; Wang et al., 

2018). Furthermore, RNNs with computation noise can solve restless bandit tasks when 

trained on stationary bandits (Findling & Wyart, 2020), in contrast to their counterparts with 

deterministic computations. Human exploration behavior in restless bandit tasks is typically 

better accounted for by models with dynamic uncertainty-dependent learning rates such as 

the Kalman Filter (Daw et al., 2006; Kalman, 1960). Furthermore, humans regularly apply a 

directed exploration strategy on restless bandit tasks. This is modeled using an additional 

“exploration bonus” parameter that typically takes on positive values, reflecting directed 

exploration of uncertain options (Beharelle et al., 2015; Chakroun et al., 2020; Speekenbrink 

& Konstantinidis, 2015; Wiehler et al., 2021; Wilson et al., 2021; Wu et al., 2018).   

 Initial work on RNN mechanisms supporting bandit task performance (Findling & 

Wyart, 2020; Song et al., 2017; Wang et al., 2018), have predominantly focused on stationary 

bandits (Wang et al., 2018). However, stationary bandits preclude a comprehensive analysis 

of exploration mechanisms, because exploration behavior is restricted to the first few trials. 

Furthermore, previous work often focused on two-armed bandit problems (Findling et al., 

2019; Findling & Wyart, 2020; Song et al., 2017). However, these tasks are limited in that only 

one alternative can be explored at any given point in time. Although previous work has begun 

to use classical computational modeling to better understand RNN behavior (Fintz et al., 2022; 

Wang et al., 2018), a comprehensive comparison of human and RNN behavior and 
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computational mechanisms when solving the exact same RL problems is still lacking. In 

addition, similar to so-called researcher’s degrees of freedom in experimental work (Wicherts 

et al., 2016), the study of RNNs is associated with a large number of design choices, e.g. with 

respect to the specifics of the architecture, details of the training schemes as well as 

hyperparameter settings. Yet, a comprehensive comparison of different network architectures 

and design choices in the context of RL tasks from the human cognitive neuroscience literature 

is still lacking. Here, we addressed these issues in the following ways. First, we 

comprehensively compared a large set of RNN architectures in terms of their ability to exhibit 

human-level performance on restless four-armed bandit problems. Second, to compare 

computational strategies between RNNs and human subjects, we used comprehensive 

cognitive modeling for both human and RNN behavior during performance of the exact same 

RL problems. Finally, we expanded upon previous approaches to the analysis of RNN hidden 

unit activity patterns (Findling & Wyart, 2020; Mante et al., 2013; Wang et al., 2018) by 

applying dimensionality reduction techniques previously applied in the study of primate 

exploration behavior (Ebitz et al., 2018). 

Methods 

RNN unit types 

The present study systematically compared network architectures consisting of four different 

types of RNN units, standard recurrent units (“vanilla” units) (Elman, 1990), standard LSTM 

units (Hochreiter et al. 1997), as well as both unit types endowed with computation noise. 

Vanilla RNN 

This is a simple Elman recurrent neural network (Elman, 1990) (“Vanilla” RNN). Let 𝑋𝑡 denote 

the input to the network at time t, 𝐻𝑡 the recurrent state of the network and 𝑌𝑡 the output of the 

network. Then the network is governed by the following equations:  

�̂�t = 𝑊𝐻𝑡−1
⋅ 𝐻𝑡−1 + 𝑊𝑋 ⋅ 𝑋𝑡 + 𝐵 (1) 

𝐻𝑡 = σ𝑡𝑎𝑛ℎ(�̂�𝑡) (2) 

𝑌𝑡 = σ𝑠𝑚(𝑊𝐻 ⋅ 𝐻𝑡) (3) 

 

The input 𝑋𝑡 is a vector of length 5 with the first element corresponding to the reward observed 

on the previous trial (𝑟𝑡−1) and the remaining elements containing a one-hot encoding of the 

previously chosen action (𝑎𝑡−1). The latter is a vector of length 4 (No. of actions) with all 

elements being “0” except the element which corresponds to the previous action being set to 
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“1”. The parameters of the network are weight matrices 𝑊𝐻𝑡−1
, 𝑊𝑋 and 𝑊𝐻 and the bias vector 

𝐵, which are optimized during the training process. Non-linear activation functions σ𝑡𝑎𝑛ℎ and 

σ𝑠𝑚 denote the hyperbolic tangent and the softmax function, respectively. 

 

The forward pass of the model starts by passing information from the input layer to the hidden 

layer by calculating the updated state  𝐻�̂� as a linear combination of the input 𝑋𝑡 and the 

previous recurrent activity 𝐻𝑡−1 weighed by corresponding weight matrices 𝑊𝑋 and 𝑊𝐻𝑡−1
and 

an additive bias term 𝐵 (Eq. 1). Within the hidden layer,  �̂�𝑡 is non-linearly transformed by the 

hyperbolic tangent function which results in the current recurrent activity 𝐻𝑡 (Eq. 2). Recurrent 

activity 𝐻𝑡 in the hidden layer is then transformed to action probabilities 𝑌𝑡  by applying the 

softmax function to 𝐻𝑡 weighed by matrix 𝑊𝐻 (Eq. 3).  

Noisy Vanilla RNN  

Computation noise might aid in adverse conditions during decision-making (Findling & Wyart, 

2020). Following Findling et al. (2020), we therefore modified the standard RNN unit by adding 

update-dependent computation noise to the recurrent activity 𝐻𝑡.  

�̂�𝑡,𝑘
𝑛𝑜𝑖𝑠𝑦

 ~𝒩 (�̂�𝑡,𝑘 , ζ ⋅ |𝐻𝑡−1,𝑘
𝑛𝑜𝑖𝑠𝑦

− 𝐻𝑡,𝑘|) (4) 

 

To transform the exact recurrent activity 𝐻𝑡,𝑘  in unit 𝑘 in trial 𝑡 to noisy recurrent activity 

𝐻𝑡,𝑘
𝑛𝑜𝑖𝑠𝑦

 we added noise according to a Gaussian distribution with mean equal to the exact 

updated state �̂�𝑡,𝑘 (see Eq. 1) and a standard deviation of the absolute magnitude of the 

difference between the previous noisy recurrent activity 𝐻𝑡−1,𝑘
𝑛𝑜𝑖𝑠𝑦

 and the current exact recurrent 

activity 𝐻𝑡,𝑘 (see Eq. 2). Because of this difference term the spread of the noise added to a 

unit scales with the amount of reconfiguration in recurrent activity between subsequent trials 

similar to a prediction error. The standard deviation is further scaled by the hyperparameter 

ζ  >  0 denoted the Weber fraction (Findling & Wyart, 2020). Finally, after having sampled the 

noisy updated state �̂�𝑡,𝑘
𝑛𝑜𝑖𝑠𝑦

 the hyperbolic tangent activation function is applied (see Eq. 2) to 

calculate noisy recurrent activity 𝐻𝑡,𝑘
𝑛𝑜𝑖𝑠𝑦

. Importantly, similar to Findling et al. (2020) we treated 

computation noise as an endogenous constraint to the network were the source of the noise 

is not modifiable, thereby ignoring the gradients resulting from it in the optimization procedure 

during gradient descent.  
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LSTM 

One issue with standard vanilla RNN units is that during gradient descent, they can suffer from 

exploding and vanishing gradient problems, resulting in the network not learning the task 

(Rehmer & Kroll, 2020). Long short-term memory networks (LSTMs) solve this problem by 

using gated units that control the information flow, which allows the network to learn more long 

term dependencies within the data (Hochreiter & Schmidhuber, 1997). 

  

LSTM behaviour is governed by the following standard equations:  

𝐼t = σ𝑠𝑚(𝑊𝑋𝐼 ⋅ X𝑡 + 𝑊𝐻𝐼 ⋅ H𝑡−1 + 𝑊𝐶𝐼 ⋅ 𝐶𝑡−1 + 𝐵𝐼) (5) 

𝐹t = σ𝑠𝑚(W𝑋𝐹 ⋅ Xt + WHF ⋅ 𝐻t−1 + WCF ⋅ 𝐶t−1 + 𝐵𝐹) (6) 

𝐶𝑡 = 𝐹𝑡 ∘ 𝐶t−1 + 𝐼𝑡 ∘ σ𝑡𝑎𝑛ℎ(𝑊𝑋𝐶 ⋅ Xt + 𝑊𝐻𝐶 ⋅ 𝐻𝑡−1 + 𝐵𝐶) (7) 

𝑂𝑡 = σ𝑠𝑚(𝑊𝑋𝑂 ⋅ Xt + 𝑊𝐻𝑂 ⋅ 𝐻𝑡−1 + 𝑊𝐶𝑂 ⋅ C + 𝐵𝑂) (8) 

𝐻𝑡 = 𝑂𝑡 ∘ σ𝑡𝑎𝑛ℎ(𝐶𝑡) (9) 

 

Here, 𝑋 is the same input as in Vanilla RNNs, 𝐼 is the input gate, 𝐹 is the forget gate (also 

called the maintenance gate), 𝐶 is the cell state, 𝑂 is the output gate, 𝐻 is the hidden state, 𝑡 

indexes trials and σ𝑠𝑚 and σ𝑡𝑎𝑛ℎ denote the softmax or the hyperbolic tangent activation 

function, respectively. The trainable parameters of the network are weight matrices 𝑊 and the 

bias vectors 𝐵, where subscripts indicate the connected gates/states.  

Noisy LSTM  

Following Findling & Wyart (2020), we introduce Weber noise at the level of the hidden state 

𝐻 of an LSTM unit 𝑘 at trial 𝑡: 

𝐻𝑡,𝑘
𝑛𝑜𝑖𝑠𝑦

 ~𝒩 (𝐻𝑡,𝑘 , ζ ⋅ |𝐻𝑡−1,𝑘
𝑛𝑜𝑖𝑠𝑦

− 𝐻𝑡,𝑘|) (10) 

 

That is, noisy LSTM units are the direct analogue to the noise extension outlined above for 

vanilla units. 

Training and test environments 

Networks were trained and tested on four-armed restless bandit tasks (Daw et al., 2006). On 

each trial, agents choose between one of four actions (bandits). Associated rewards slowly 

drift according to independent gaussian random walks. A single episode during training and 

testing consisted of 300 trials.  
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During training, the reward associated with the 𝑖th bandit on trial 𝑡 was the reward on trial t-1, 

plus noise: 

�̂�𝑖,𝑡  = 𝑅𝑖,𝑡−1 + ϵ𝑖,𝑡 (11) 

 

 

 

Noise ϵ was drawn from a gaussian distribution with mean 0 and standard deviation 0.1: 

 

ϵi,t ~ 𝒩(0,  0.1) (12) 

 

 

To ensure a reward range of [0,100], reflecting boundaries were applied such that  

Ri,t = {
 𝑅𝑖,𝑡−1 + 𝜖𝑖,𝑡

𝑅𝑖,𝑡−1 − 𝜖𝑖,𝑡

𝑖𝑓 0 < �̂�𝑖,𝑡 < 100

            𝑖𝑓 �̂�𝑖,𝑡   < 0 𝑜𝑟 �̂�𝑖,𝑡 > 100
 

(13) 

 

Following training, networks weights were fixed, and performance was examined on three 

random walk instances previously applied in human work (Chakroun et al., 2020; Daw et al., 

2006; Wiehler et al., 2021). Here, the reward associated with the ith bandit on trial t was drawn 

from a gaussian distribution with standard deviation 4 and mean μ𝑖,𝑡 and rounded to the 

nearest integer.  

 

𝑅𝑖,𝑡  ~ 𝒩(μ𝑖,𝑡, 4) (14) 

On each trial, the means diffused according to a decaying gaussian random walk:  

  

μ𝑖,𝑡+1 = λμ𝑖,𝑡 + (1 − λ)θ + ϵi,t (15) 

 

 

with decay λ =  0.9836 and decay center θ =  50. The diffusion noise ϵi,t was sampled from a 

gaussian distribution with mean 0 and SD 2.8:  

ϵi,t ~ 𝒩(0,  2.8) (16) 

 

 

Each network was exposed to the same three instantiations of this process used on human 

work (Chakroun et al., 2020; Daw et al., 2006; Wiehler et al., 2021).  
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Training procedure 

The networks were trained to optimize their weights and biases by completing 50.000 task 

episodes. For each episode, a new instantiation of the environment was created according to 

the equations above. We compared two training schemes, the standard REINFORCE 

algorithm (Williams & Peng, 1991) and advantage actor-critic (A2C, Mnih et al., 2016). The 

objective of the network was to maximize the expected sum of discounted rewards according 

to following equation:  

L(π) = Eπ [∑ ∑ γ𝑘

k≧0t≧1

⋅ 𝑟𝑡+𝑘] 
(17) 

 

Here, t is the trial number, γ the discount factor, 𝑡𝑡+𝑘 the observed reward at trial 𝑡 + 𝑘 

(k is a positive integer) and π is the policy followed by the network.   

 

Following each episode, one of the following algorithms was used to update the 

network parameters to improve the policy. REINFORCE (Williams & Peng, 1991) relies on a 

direct differentiation of the objective function: 

∇Lπ = 𝐸π [∑ ∇𝑙

t≧1

𝑜𝑔π(𝑎𝑡) ⋅ (∑ γ𝑘

k≧0

⋅ 𝑟𝑡+𝑘)] 
(18) 

 

Here the gradient of the policy loss (∇Lπ) is calculated by summing the derivatives of the log 

probabilities of chosen actions (𝑙𝑜𝑔π(𝑎𝑡)) weighted by the discounted sum of expected 

rewards from the current trial until the end of the episode. Note that this ensures that action 

probabilities will increase or decrease according to the expected rewards following these 

actions. If the expected returns (∑ γ𝑘
k≧0 ⋅ 𝑟𝑡+𝑘) are positive, the gradient will be positive and 

therefore gradient descent will increase the log probabilities of chosen actions. Conversely, if 

expected returns are negative, the gradient will be negative and therefore gradient descent 

will decrease the log probabilities of chosen actions. Thus, action probabilities for actions that 

led to rewards will be increased, and action probabilities for actions that led to punishments 

will be decreased.  

 

Advantage Actor-Critic (A2C, Mnih et al., 2016) uses a weighted sum of the policy gradient 

(𝛻𝐿𝜋), the gradient with respect to the state-value function loss (𝛻𝐿𝑣), and an optional entropy 

regularization term (𝛻𝐿𝑒𝑛𝑡), defined as follows:  

 

𝛻𝐿 = 𝛻𝐿𝜋 + 𝛻𝐿𝑣 + 𝛻𝐿𝑒𝑛𝑡 (19) 
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 =
∂logπ(𝑎𝑡|θ)

∂θ
δ𝑡(θ) + β𝑣δ𝑡(θ)

∂V

∂θ𝑣
+ βe [

∂H(π(𝑎𝑡|θ))

∂θ
] 

 

δt(θ𝑣) = [Gt − V(θv)] (20) 

𝐺𝑡 = ∑[γ𝑖𝑟𝑡+1 + γ𝑘𝑉(θ𝑣)]

𝑘

𝑖=0

 

(21) 

 

Here, on a given trial 𝑡, the chosen action is denoted by 𝑎𝑡, the discounted return is 𝐺𝑡 with 𝑘 

being the number of steps until the end of the episode, the actor component with the action 

policy π is parameterized by RNN parameters θ, the critic component with the value function 

𝑉 estimating the expected return is parameterized by θ𝑣, the entropy of policy π is denoted by 

𝐻(π), the advantage function that estimates the temporal-difference error is denoted by δ𝑡(θ𝑣). 

A2C in this formulation contains two hyperparameters β𝑣 and βe scaling the relative influence 

of the state-value function loss and the entropy regularization term, respectively.  

Note that in equations 19 – 21, RNN parameters corresponding to the policy θ and to 

the value function θ𝑣 are seperated, but in practice, as in Wang et al. (2018), they share all 

layers except the output layer where the policy corresponds to a softmax output and the value 

function to a single linear output. Weights and biases for REINFORCE and A2C were updated 

using the RMSProp algorithm as implemented in Tensorflow 1.15.0. 

 A common problem of policy gradient methods such as REINFORCE is high variance 

in the gradients used during the stochastic gradient descent (SDG) optimization procedure 

(Sutton & Barto, 2018). This is the case because the magnitude of the gradients depends on 

the empirical returns (sum of collected rewards in a given episode). We therefore mean-

centered rewards to reduce the variance in the gradients, which improved the training process 

and performance.  

 A subset of hyperparameters were systematically varied, as outlined in Table 1. The 

entropy cost (β𝑒) was either set to 0.05 (fixed entropy), linearly annealed over the course of 

training from 1 to 0, or omitted (none). In networks with computation noise, the Weber fraction 

ζ was set to 0.5 (Findling et al., 2020). Additional hyperparameters (learning rate, discount 

factor, no. of training episodes etc.), were selected based on previous work (Wang et al., 2018) 

and held constant across all architectures (see Table 2).  

 

Table 1. Overview of factors that are systematically explored in RNN training. Total number of RNN models: 2 (Unit 

type) x 2 (Computation noise) x 3 (Entropy cost) x 2 (Learning algorithm) = 24 RNN models.   

Factor  
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Unit type Vanilla / LSTM 

Computation noise None / Update-dependent 

Entropy cost β𝑒 None / Fixed / Annealed 

Learning algorithm REINFORCE / A2C 

 

Table 2. Hyperparameter values used during RNN training. 

Hyperparameters  

Number of hidden units 48 

Learning rate 0.0001 

State-value estimate cost β𝑣 0.5 

Weber fraction ζ 0.5 

Discount factor  0.5 

Training Episodes 50.000 

Trials per Episode 300 

 

 

Human data 

For comparison with RNN behavior, we re-analyzed human data from a previous study 

(placebo condition of Chakroun et al. (2020), n=31 male participants). Participants performed 

300 trials of the four-armed restless bandit task as described in the environment section.  

Cognitive modeling 

Our model space for RNN and human behavior consisted of a total of 14 models (see Table 

3). Each model consisted of two components, a learning rule (Delta rule or Bayesian learner) 

describing value updating, and a choice rule mapping learned values onto choice probabilities.  

 

Delta rule: Here, agents update the expected value (vct
) of the bandit chosen on trial t (ct) 

based on the prediction error (δ) experienced on trial t:  

 

𝑣𝑐𝑡,𝑡+1 = 𝑣𝑐𝑡,𝑡 + αδ𝑡 (22) 

δ𝑡 = 𝑅𝑡 − 𝑣𝑐𝑡,𝑡 (23) 
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The learning rate 0 ≤ α ≤ 1 controls the fraction of the prediction error used for updating, and 

𝑅𝑡 corresponds to the reward obtained on trial t. Unchosen bandit values are not updated 

between trials and thus remain unchanged until a bandit is chosen again. Bandit values were 

initialized at 𝑣1 = 50.  

 

Bayesian learner: Here we used a standard Kalman filter model (Daw et al., 2006; Kalman, 

1960), where the basic assumption is that agents utilize an explicit representation of the 

process underlying the task’s reward structure. The payoff in trial 𝑡 for bandit 𝑖 follows a 

decaying Gaussian random walk with mean μi,t and observation variance θ𝑜
2 = 42. Payoff 

expectations (�̂�𝑖,𝑡
𝑝𝑟𝑒

) and uncertainties (variances σ̂𝑖,𝑡
2 𝑝𝑟𝑒

) for all bandits are updated between 

trials according to 

�̂�𝑖,𝑡+1
𝑝𝑟𝑒

= �̂��̂�𝑖,𝑡
𝑝𝑜𝑠𝑡

+ (1 − �̂�)�̂� (24) 

 

and  

σ̂𝑖,𝑡+1
2 𝑝𝑟𝑒

  =  λ̂2σ̂𝑖,𝑡
2 𝑝𝑜𝑠𝑡

 +  �̂�𝑑
2 (25) 

 

 

with decay 𝜆 =  0.9836, decay center 𝜗 =  50 and diffusion variance �̂�𝑑
2 = 4.   

The chosen bandit's mean is additionally updated according to 

μ̂𝑐𝑡,𝑡
𝑝𝑜𝑠𝑡

= �̂�𝑐𝑡,𝑡
𝑝𝑟𝑒

+ κ𝑡δ𝑡 (26) 

 

with 

δ𝑡 = 𝑟𝑡 − �̂�𝑐𝑡,𝑡
𝑝𝑟𝑒

. (27) 

 

 

Here, κ denotes the Kalman gain that is computed for each trial 𝑡 as: 

κ𝑡 = �̂�𝑖,𝑡
2 𝑝𝑟𝑒

/(�̂�𝑖,𝑡
2 𝑝𝑟𝑒

+ �̂�𝑜
2) (28) 

 

 

κ𝑡 determines the fraction of the prediction error that is used for updating. In contrast to the 

learning rate in the delta rule model, κ𝑡varies from trial to trial, such that the degree of updating 

scales with a bandit’s uncertainty �̂�𝑖,𝑡
2 𝑝𝑟𝑒

. The observation variance �̂�𝑜
2 indicates how much 

rewards vary around the mean, reflecting how reliable each observation is for estimating the 

true mean. Initial values 𝜇1
𝑝𝑟𝑒

and 𝜎1
2 𝑝𝑟𝑒

 were fixed to 50 and 4 for all bandits, respectively. 
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Estimates of the random walk parameters �̂�, �̂�,  �̂�𝑜
2 and �̂�𝑑

2 were fixed to their true values (see 

Table 3).  

 

Choice rules: delta rule models  

Choice rule 1 used a standard softmax function (SM): 

Choice rule 1 (SM):  𝑃𝑖,𝑡 =
𝑒𝑥𝑝(β𝑣𝑖,𝑡)

∑ 𝑒𝑗 𝑥𝑝(β𝑣𝑗,𝑡)
 

(29) 

 

Here, 𝑃𝑖,𝑡 denotes the probability of choosing bandit 𝑖 on trial 𝑡 and β denotes the inverse 

temperature parameter controlling the degree of choice stochasticity.  

 

Choice rule 2 extended choice rule 1 with a heuristic directed exploration term:  

Choice rule 2 (SM + T):  𝑃𝑖,𝑡 =
𝑒𝑥𝑝(𝛽[𝑣𝑖,𝑡 + 𝜑(𝑡 − 𝑇𝑖)])

∑ 𝑒𝑗 𝑥𝑝(𝛽[𝑣𝑗,𝑡 +  𝜑(𝑡 − 𝑇𝑗)])
 

(30) 

 

This simple “trial heuristic” (Speekenbrink & Konstantinidis, 2015) models a bandit’s 

uncertainty as linearly increasing with the number of trials since it was last selected (𝑡 − 𝑇𝑖), 

where 𝑇𝑖 denotes the last trial before the current trial 𝑡 in which bandit 𝑖 was chosen. The free 

parameter 𝜑 models the impact of directed exploration on choice probabilities. 

 

Choice rule 3 then replaced the trial-heuristic with a directed exploration term based on a 

“bandit identity” heuristic:  

Choice rule 3 (𝑆𝑀 + 𝐵): 𝑃𝑖,𝑡 =
𝑒𝑥𝑝(β[𝑣𝑖,𝑡 + φ𝑥𝑖])

∑ ej xp(β[vj,t + φxj])
 

 

(31) 

 

Here, 𝑥𝑖 denotes how many unique bandits were sampled since bandit 𝑖 was last sampled. 

E.g., 𝑥𝑖 = 0 if bandit i was chosen on the last trial, and 𝑥𝑖 = 1 if one other unique bandit was 

selected since i was last sampled. 𝑥𝑖 therefore ranges between 0 and 3. 

 

Choice rule 4 then corresponds to choice rule 1 with an additional first-order perseveration 

term:  

Choice rule 4 (SM + P): Pi,t =
exp(β[𝑣𝑖,𝑡 + 𝐼𝑐𝑡−1=𝑖

ρ])

∑ exp (β [vj,t + Ict−1=j
ρ])j

 
(32) 
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The free parameter ρ models a perseveration bonus for the bandit selected on the preceding 

trial. 𝐼 is an indicator function that equals 1 for the bandit chosen on trial 𝑡 − 1 and 0 for the 

remaining bandits.  

 

Choice rules 5 and 6 likewise extend choice rules 3 and 4 with perseveration terms:  

𝐶ℎ𝑜𝑖𝑐𝑒 𝑟𝑢𝑙𝑒 5 (𝑆𝑀 + 𝑇𝑃):  𝑃𝑖,𝑡 =
𝑒𝑥𝑝(𝛽[𝑣𝑖,𝑡 + 𝜑(𝑡 − 𝑇𝑖) + 𝐼𝑐𝑡−1=𝑖

𝜌])

∑ 𝑒𝑗 𝑥𝑝 (𝛽[𝑣𝑗,𝑡 +  𝜑(𝑡 − 𝑇𝑗) + 𝐼𝑐𝑡−1=𝑗
𝜌])

 
(33) 

 

𝐶ℎ𝑜𝑖𝑐𝑒 𝑟𝑢𝑙𝑒 6 (𝑆𝑀 + 𝐵𝑃): 𝑃𝑖,𝑡 =
𝑒𝑥𝑝(𝛽[𝑣𝑖,𝑡 + 𝜑𝑥𝑖 + 𝐼𝑐𝑡−1=𝑖

𝜌])

∑ 𝑒𝑗 𝑥𝑝(𝛽[𝑣𝑗,𝑡 + 𝜑𝑥𝑗 + 𝐼𝑐𝑡−1=𝑖
𝜌])

 
(34) 

 

Choice rules: Bayesian learner models  

with �̂�𝑖,𝑡
𝑝𝑟𝑒

 instead of 𝑣𝑖,𝑡 in Equations 29, 30, 31, 32, 33 and 34 yields choice rules 1-6 for the 

Kalman filter models (equations omitted for brevity). Given that the Bayesian Learner models 

include an explicit representation of uncertainty, we included two additional models: 

𝐶ℎ𝑜𝑖𝑐𝑒 𝑟𝑢𝑙𝑒 7 (𝑆𝑀 + 𝐸): 𝑃𝑖,𝑡 =
𝑒𝑥𝑝(β[�̂�𝑖,𝑡

𝑝𝑟𝑒
+ φ�̂�𝑖,𝑡

𝑝𝑟𝑒
])

∑ ej xp (β [�̂�𝑗,𝑡
𝑝𝑟𝑒

+ φ �̂�𝑗,𝑡
𝑝𝑟𝑒

])
 

(35) 

 

 

Here, 𝜑 denotes the exploration bonus parameter reflecting the degree to which choice 

probabilities are influenced by the uncertainty associated with each bandit, based on the 

model-based uncertainty �̂�𝑖,𝑡
𝑝𝑟𝑒

. Again including first order perseveration yields choice rule 8: 

𝐶ℎ𝑜𝑖𝑐𝑒 𝑟𝑢𝑙𝑒 8 (𝑆𝑀 + 𝐸𝑃): 𝑃𝑖,𝑡 =
𝑒𝑥𝑝(β[�̂�𝑖,𝑡

𝑝𝑟𝑒
+ φ�̂�𝑖,𝑡

𝑝𝑟𝑒
+ 𝐼𝑐𝑡−1=𝑖

ρ])

∑ ej xp (β [�̂�𝑗,𝑡
𝑝𝑟𝑒

+ φ �̂�𝑗,𝑡
𝑝𝑟𝑒

+ 𝐼𝑐𝑡−1=𝑗
ρ])

 
(36) 

 

 

 

Table 3. Free and fixed parameters of all computational models. 

Note: Choice rules for the Delta rule: Choice rule 1: softmax; Choice rule 2: softmax with 

directed exploration (trial heuristic); Choice rule 3: softmax with directed exploration (bandit 

heuristic); Choice rule 4: softmax with perseveration; Choice rule 5 and 6 are choice rules 

2 and 3 with perseveration. Choice rules for the Bayes learner rule: Choice rule 1: softmax; 

Choice rule 2: softmax with directed exploration (Kalman-Filter); Choice rule 3: softmax with 

directed exploration (trial heuristic); Choice rule 4: softmax with directed exploration (bandit 

heuristic); Choice rule 5: softmax with perseveration; Choice rules 6 – 8 are choice rules 2-
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4 with perseveration; α: learning rate; β: inverse temperature; φ: exploration bonus; ρ: 

perseveration bonus; 𝑣1: initial expected reward values for all bandits; λ: decay parameter; 

�̂�: decay center; σo
2:  observation variance; σ𝑑

2 : diffusion variance; μ1
𝑝𝑟𝑒

: initial mean of prior 

expected rewards for all bandits; σ1
𝑝𝑟𝑒

:initial standard deviation of prior expected rewards 

for all bandits.  

 Delta rule  Bayesian 

learner 

 

Choice rule 1 α, β Fixed: 𝑣1 β Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 2 α, β, φ Fixed: 𝑣1 β, φ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 3 α, β, φ Fixed: 𝑣1 β, φ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 4 α, β, ρ Fixed: 𝑣1 β, φ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 5 α, β, ρ, φ Fixed: 𝑣1 β, ρ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 6 α, β, ρ, φ Fixed: 𝑣1 β, φ, ρ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 7   β, φ, ρ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Choice rule 8   β, φ, ρ Fixed: �̂�, �̂�,  �̂�𝑜
2,  

�̂�𝑑
2, �̂�1

𝑝𝑟𝑒
, �̂�1

𝑝𝑟𝑒
 

Model estimation and comparison 

Models were fit using Stan and the rSTAN package (Stan Development Team, 2022) in R 

(Version 4.1.1). To fit single subject models to human and RNN data, we ran 2 chains with 

1000 warm-up samples. Chain convergence was assessed via the Gelman-Rubinstein 

convergence diagnostic �̂� and sampling continued until 1 ≤ �̂� ≤ 1.02 for all parameters. 1000 

additional samples were then retained for further analysis. 

 Model comparison was performed using the loo-package in R (Vehtari et al., 2022) 

and the Widely-Applicable Information Criterion (WAIC), where lower values reflect a superior 

model fit (Vehtari et al., 2017). WAICs were computed for each model and human subject/ 

RNN instance. RNN model comparison focused on the model architecture with the lowest 
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cumulative regret (see Eq. 37). For visualization purposes, we calculated delta WAIC scores 

for each model by first summing WAIC values for each model over all participants/RNN 

instances and then subtracting the summed WAIC value of the winning model (Model with the 

lowest WAIC value if summed over all participants/RNN instances).  

Cumulative regret 

Task performance was quantified using cumulative regret, i.e. the cumulative loss due to the 

selection of suboptimal options, a canonical metric to compare RL algorithms in machine 

learning (Agrawal & Goyal, 2012; Auer et al., 2002; Wang et al., 2018). Formally, this 

corresponds to the difference between the reward of the optimal action (Ra∗,t) and the obtained 

reward (Rat,t), summed across trials: 

 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑟𝑒𝑡 =  ∑ Ra∗,t − Rat,t

𝑡

 (37) 

 

Lower cumulative regret corresponds to better performance.  

Hidden unit analysis 

Deep learning algorithms like RNNs are often described as “black boxes” due to difficulties in 

understanding the mechanisms underlying their behavior (Sussillo & Barak, 2013). To address 

this issue, hidden unit activity was analyzed in relation to behavior via dimensionality reduction 

techniques, in particular principal component analysis (PCA) and targeted dimensionality 

reduction (TDR, Mante et al., 2013; Ebitz et al., 2018). PCA was used to obtain a first intuition 

about internal dynamics, and TDR was used to analyze interpretable dimensions of the hidden 

unit data.  

For PCA, hidden unit values were first centered and standardized. Then, the time 

course of the first 3 principal components (PCs) was plotted for individual RNN instances, and 

color-coded according to chosen option, state-value estimate, and stay versus switch 

decisions. Across network instances, the first three PCs accounted for on average 73% of 

variance (see Supplemental Figure 1). 

 In contrast to PCA, TDR is a dimensionality reduction technique where the resulting 

high-dimensional neural activation data is projected onto axes with a specific interpretation. 

This is achieved by first using PCA to obtain an unbiased estimate of the most salient patterns 

of activations in the neural data and then regressing the resulting principle components against 

variables of interest. The resulting predicted values form the interpretable axes (Ebitz et al., 

2018; Mante et al., 2013). Following previous work in primate neurophysiology (Ebitz et al., 
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2018; Mante et al., 2013), for discrete variables (e.g. choice, stay/switch behavior) we used 

logistic regression:  

𝑝(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑖|𝑋) = (
1

1 + 𝑒−(𝑋β𝑖)
) 

(38) 

 

For continuous state-value estimates, we used linear regression: 

�̂� = Β0 + 𝑋B1 (39) 

 

Here, X is are the principle components based on the standardized hidden unit predictor matrix 

of size N (no. of trials) x M (no. of hidden units) and B0 𝑎𝑛𝑑 B1 are vectors of size M (no. of 

hidden units). The resulting axis (�̂�), a vector of size no. of trials, now has a specific meaning 

- “Given the principle components on a given trial, what is the predicted value of the state-

value-estimate?”. For discrete outcomes, the PCA-based de-noised hidden unit data were 

projected onto a choice predictive (or stay/switch-predictive) axis by inverting the logistic link 

function, i.e. for the case of the choice axis:  

 

𝑐ℎ𝑜𝑖𝑐𝑒 𝑎𝑥𝑖𝑠𝑖 = 𝑙𝑜𝑔 (
𝑝(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑖|𝑋)

1 − 𝑝(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑖|𝑋)
) = 𝑋β𝑖 

(40) 

 

The 𝑐ℎ𝑜𝑖𝑐𝑒 𝑎𝑥𝑖𝑠𝑖, a vector of size no.of trials, again has a concrete interpretation: “Given the 

de-noised hidden units on a trial, what are the log-odds of observing 𝑐ℎ𝑜𝑖𝑐𝑒𝑖”? If the log odds 

are positive, it is more likely, if it’s negative it is less likely to observe 𝑐ℎ𝑜𝑖𝑐𝑒𝑖. If predicted 

occurrence and non-occurrence of 𝑐ℎ𝑜𝑖𝑐𝑒𝑖 is equiprobable the log odds are 0.  

 To decode decisions from de-noised hidden unit activity, we used the results of the 

logistic regression (Equation 40) to calculate the probability of each action. The action with the 

maximum probability in a given trial was taken as the predicted action, and the proportion of 

correctly predicted choices was taken as the decoding accuracy.   
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Figure 1. Artificial agent architectures and comparison of task performance to human agent. (A) The input 

to the artificial agent is the previous reward (𝑟𝑡−1) and the previous action (𝑎𝑡−1) which is transformed within the 

hidden layer to output an action in the current trial (𝑎𝑡) and an optional state-value estimate (𝑣𝑡) (if the loss function 

is A2C). We systematically trained different network architectures varying in the factors Cell type (RNN or LSTM), 

Noise (Weber noise or none), Loss (REINFORCE or A2C) and Entropy (none, fixed or annealed) resulting in 24 

design combinations (see methods section for details). (B) Example data from a human learner. (C) Example data 

from an LSTM network with computation noise solving the same task. In B and C, individual choices (colored dots 

on top) show selected action, and lines denote drifting rewards for each action. % Optimal: Proportion of choices 

of the most rewarding action. % Switches: Proportion of switches, i.e 𝑐ℎ𝑜𝑖𝑐𝑒𝑡 not equal to 𝑐ℎ𝑜𝑖𝑐𝑒𝑡−1. 
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Results 

Model-agnostic behavioral results 

Our first aim was to identify the best-performing RNN architecture, as deep learning algorithms 

can be sensitive to hyperparameter settings (Haarnoja et al., 2019; Henderson et al., 2019). 

The factors considered in the RNN model space are summarized in Table 1. According to 

cumulative regret (Supplemental Figure 2), the best-performing architecture used LSTM units 

in combination with computation noise (Findling & Wyart, 2020). All subsequent analyses 

therefore focused on this architecture.  

We next calculated cumulative regret for each agent (30 RNNs, 31 human subjects 

from the placebo condition of Chakroun et al., 2020) solving the identical bandit problem (see 

methods). A Bayesian t-test on the mean cumulative regret on the final trial showed moderate 

evidence for comparable performance of RNNs and human subjects (𝐵𝐹01 = 4.274). This was 

confirmed when examining the posterior distribution of the standardized effect size, which was 

centered at zero (Mdn = -0.008, Figure 2, B). 

Analysis of switching behavior revealed that RNNs switched substantially less than 

human subjects (Bayesian Mann-Whitney U-Test 𝐵𝐹10 > 100, Median switch probability: 

31.5% (human), 14.5% (RNN)). To further compare switching behavior between RNNs and 

human subjects, all switch trials were classified according to number of unique bandits 

sampled since a particular switch target was last sampled. For example, in a bandit choice 

sequence of [1, 2, 2, 3, 1], two unique bandits have been sampled since bandit 1 was last 

sampled, which can be taken as a measure of the uncertainty associated with this bandit. 

Therefore, if an agent exhibits strategic (directed) exploration, this measure should overall be 

higher. Figure 2D shows that, in RNNs, switch proportions tend to decrease with uncertainty, 

as defined this way. In contrast, human switch proportions appeared more balanced (Figure 

2D).  
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Figure 2. Behavioural data for LSTM networks with computation noise (“RNN”, blue) and human learners 

(Chakroun et al., 2020, Placebo condition, black). (A) Mean (+/- SEM) cumulative regret over trials for RNNs 

(blue) and human learners (black) (B) Posterior distribution of the standardized effect size (𝛿, Bayesian T-Test) 

showing moderate evidence against a difference in cumulative regret between RNNs and human learners (𝐵𝐹01 =

4.274).(C) Proportion of switches for RNNs (blue) and human learners (black). (D) Switch proportions sorted by 

number of unique bandits sampled between consecutive switch trials (x-axis), where higher numbers reflect higher 

uncertainty. Solid lines indicate means and thin lines indicate individual subject/instance data.  

 

Model comparison 

To better understand human and RNN performance on those tasks, a total of 14 computational 

RL models (see methods section) were fitted to the behavioral data. All models were fitted to 

individual agent data (both RNN instances from the best-fitting architecture and human data 

from the placebo condition of Chakroun et al., 2020) via Hamiltonian monte Carlo as 

implemented in STAN. Model comparison was carried out using the Widely Applicable 

Information Criterion WAIC (Vehtari et al., 2017) by computing WAIC scores for each model 

and agent (see methods section), yielding values of 0 for the best-fitting model. For both RNNs 

(Figure 3A) and human subject data (Figure 3B) the best-fitting model was a Bayesian-Learner 
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with perseveration and directed exploration terms (Eq. 8, SM+EP). For exact numerical values 

of WAIC scores for each model and agent see Supplemental Table 1 and Supplemental 

Table 2. To quantify absolute model fit, the posterior predictive accuracy of this model was 

examined for each agent. To this end, 500 data sets were simulated from the model’s posterior 

distribution, and the proportion of trials in which simulated and observed choices were 

consistent were computed and averaged across simulations. Predictive accuracy (Figure 4A) 

was higher for RNNs than for human agents (Human: 𝑀 =  0.673, 𝑆𝐷 =  0.119; RNN: 𝑀 =

 0.792, 𝑆𝐷 =  0.045; 𝐵𝐹10 > 100)  

 

Analysis of model parameters 

Next, we examined the model parameters (medians of individual subject posterior 

distributions) of the best fitting model and compared them between humans and artificial 

agents. Although the same model accounted for the data best, the resulting parameters 

differed considerably. Choice consistency (beta) was lower for RNNs than human data (Figure 

4B, RNN: Mdn = 0.115, range: [0.001, 0.197], Human: Mdn = 0.185, range: [0.0434, 0.316]). 

Artificial agents showed substantially greater perseveration (Figure 4C, RNN: Mdn = 12.4, 

range: [3.88, 24.5], Human: Mdn = 5.59, range: [-1.60, 24.8]), and lower directed exploration 

(Figure 4D). While human subjects exhibited an exploration bonus parameter that was 

significantly positive, RNNs showed a negative exploration bonus (RNN: Mdn = -0.608, range: 

[-5.20, 0.718], Human: Mdn = 0.901, range: [-3.70, 5.93]).  
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Figure 3. Model comparison via WAIC (see methods section) where smaller values indicate a superior fit. 

For both LSTM networks with computation noise (top panel) and human learners (bottom panel), the Bayesian 

learner with uncertainty and perseveration terms (SM+EP) accounted for the data best.  
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Figure 4. Median posterior values of model parameters for the best-fitting model (Bayesian learner with 

exploration and perseveration terms, SM+EP). A: Predictive accuracy, B: choice stochasticity parameter beta , 

C: perseveration parameter rho, D: exploration parameter phi for human learners (black) and RNNs (blue). 

 

Hidden unit analysis  

Finally, we investigated RNN hidden unit activity. This analysis is similar to the analysis of high 

dimensional neural data (Cunningham & Yu, 2014) and we first used PCA to visualize network 

dynamics. The first three principal components accounted for on average 73% of variance 

(see Supplemental Figure 1). The resulting network activation trajectories through principal 

component space were then examined with respect to behavioral variables. Coding network 

state by behavioral choice revealed separated choice-specific clusters in principal component 

space (see Figure 5A for hidden unit data from one instance, and see Supplement for the 

corresponding visualizations for all instances). The degree of spatial overlap of the choice-

specific clusters directly related to the state-value estimate of the RNN (Figure 5B). Coding 

network state by stay vs. switch behavior (repeat previous choice vs. switch to another bandit, 

as a raw metric for exploration behavior, Figure 5C) revealed that switches predominantly 

occured in the region of activation space with maximum overlap in choice predictive clusters, 

corresponding to low state-value estimates. Highly similar effects were seen for all RNN 

instances investigated (see Supplement).  
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 One downside of the PCA-analysis is that components are not readily interpretable. 

Therefore, targeted dimensionality reduction (TDR) (Mante et al., 2013) was applied, which 

projects the PCA-based de-noised hidden unit data onto novel axes with clear interpretations 

(see methods section).  

To understand what the state-value estimate corresponds to in terms of observable choices 

and reward history, we used TDR to project the PCA-based de-noised hidden unit data onto 

a value axis, i.e. the predicted state-value estimate given the de-noised hidden unit activity on 

a given trial. This predicted state value (pooled across all trials from all network instances) 

was highly correlated with the reward obtained by the network on the previous trial 

(𝑟(17998) =  .97), Figure 5 D).  

 To examine the relationship between state-value estimates and stay-switch behaviour 

across all network instances examined, we projected the hidden unit data onto a switch axis, 

via logistic regression (see methods section), corresponding to the log-odds of observing a 

switch. Positive log-odds indicated that a switch decision is more likely than a stay decision, 

and vice versa for negative log-odds. Results confirmed the results from the analysis of single 

network instances (e.g. Figure 5B, C): switches predominantly occurred when estimated state 

value was low, as reflected in a negative correlation of the value axis and the switch axis 

scores (𝑟(17998) =  −.80).  

Further we asked whether switching occurs randomly, or follows a predictable  pattern. 

To this end, a multinomial model was fitted to predict RNN choices given the current PCA-

based de-noised hidden unit activity. We then compared the accuracy of choice prediction 

between stay and switch trials. If RNNs follow a switching strategy, the accuracy of predicting 

switching decisions from de-noised hidden unit activity should be above chance level (0.25). 

The prediction accuracy was near perfect for stay decisions (M=0.996, see Figure 5F) and 

markedly disrupted but still substantially above chance level for switch decisions (M=0.702, 

see Figure 5F). This is consistent with the idea that RNNs rely on more than choice 

randomization to solve the exploration-exploitation dilemma. 

We next explored how RNNs select which option to explore during switch trials. To this 

end, we compared switch targets (the option selected on a switch trial) to switch non-targets 

(the other bandits not selected on a switch-trial). A first comparison focused on the last 

observed reward, and as second analysis focused on uncertainty (based on the trialwise-

heuristic, Eq. 30). Across RNN instances, we computed the mean rank of switch-targets and 

mean ranks of switch non-targets with respect to these two variables. A rank of 2 corresponds 

to selecting the highest valued bandit, and a rank of 0 corresponds to selecting the lowest 

valued badit. Therefore, the expected value of a random choice from the ranks ([0,1,2]) would 

be 1. Mean ranks higher or lower than 1 can thus be interpreted as switch-targets being biased 

towards higher or lower ranked bandits, respectively. Indeed, RNNs show a tendency to switch 
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to bandits with higher previous rewards (Figure 6, A) and lower uncertainty (Figure 6, B). 

Furthermore, in analogy to the analysis of behavioural data (Figure 2, D), the prediction 

accuracy of switch choices given the de-noised hidden units was better for less uncertain 

bandits (Supplemental Figure 4).  

  

  

Figure 5. Hidden unit activation dynamics for a single network instance (A-C) and across all instances (D, 

E). A-C: Hidden unit dynamics (first three principal components) of an example RNN agent color coded by choice 

(A), state-value estimate (B) and switching behavior (C, switch – red, stay - black). D, E: Targeted dimensionaility 

reduction. D: The state-value axis (y-axis) was highly correlated with previous reward (x-axis). D: Lower state-value 

(y-axis) was linked to greater log-odds of switching (x-axis). F: Accuracy of choice prediction given the PCA-based 

de-noised hidden unit activation state using a multinomial model revealed almost perfect accuracy for stay 

decisions (99%) and reduced, but above chance-level accuracy for switch decisions (70%). 
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Figure 6. Switch-target analysis regarding previous reward (A) and uncertainty (B). On a given switch trial 

the last observed reward and uncertainty of all 3 switch options were ranked (0=lowest, 2 = highest). Points denote 

the mean rank of the switch-target across all switch trials per RNN instance. Values below or above 1 denote a 

switch bias towards lower or higher ranked bandits, respectively. RNNs show substantial evidence to switch to 

higher valued (A) and less uncertain bandits (B).   

Discussion 

Here we comprehensively investigated exploration mechanisms in recurrent neural network 

models during reinforcement learning in volatile environments. We expanded upon previous 

work in four ways. First, in contrast to earlier work (Findling & Wyart, 2020; Wang et al., 2018) 

we focused on four-armed restless bandit problems, allowing for a more comprehensive 

analysis of exploration behavior. Second, we systematically investigated a range of neural 

network design choices and resulting impacts on performance. Third, we directly compared 

human and RNN behavior, both in terms of performance (cumulative regret) and using 

computational modeling, when solving the exact same task problem. Finally, we investigated 

exploration mechanisms in the best-performing network architecture via a comprehensive 

analysis of hidden unit activation dynamics.  

We extensively tested and transparently report upon a total of 24 RNN design factor 

combinations. The architecture exhibiting best performance was an LSTM network, combined 

with computation noise as previously suggested (Findling & Wyart, 2020), no Entropy 

regularization and trained with the advantage-actor-critic (A2C) algorithm (Mnih et al., 2016). 

The superior performance of the LSTM verus the vanilla RNN is not suprising. LSTMs are 

endowed with a more sophisticated memory process (Equations 5 - 9) where different gating 

mechanisms regulate the impact of past experiences (previous actions and rewards) on 

current decisions. These mechanisms allow LSTM networks to learn dependencies over 
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longer time scales than vanilla RNNs (Hochreiter & Schmidhuber, 1997). The performance 

benefit of LSTMs also resonates with a well-known computational model of learning and action 

selection mechanisms in prefrontal cortex (PFC) and basal ganglia (O’Reilly & Frank, 2006). 

This model is characterized by a combination of LSTM-like gating mechanisms that are 

combined with an Actor-Critic architecture. Here, the Actor (i.e., the basal ganglia) updates 

actions by gating working memory updating processes in the PFC. The Critic (i.e., midbrain 

DA neurons) estimates reward values of possible actions, thereby adjusting future actions to 

maximize reward. Similar to Findling & Wyart (2020) our results show that biologically-inspired 

computation noise (“Weber Noise”, Findling & Wyart, 2020) is a superior noise mechanism 

than entropy regularization, at least in the context of this task. The rationale behind entropy 

regularization is to add noise to the policy during training to discourage premature 

convergence to a suboptimal policy (Mnih et al., 2016). In contrast, Weber noise (Findling & 

Wyart, 2020) is noise added to hidden unit activity that scales with the degree of recurrent 

activity reconfiguration between subsequent trials. This “update-dependent” mechanism might 

thus entail exploration-specific noise that contrasts with the introduction of general 

stochasticity as implemented in entropy regularization schemes. This result further reinforces 

the perfomance-enhancing effect of computation noise observed in human reward-guided 

decision making (Findling et al., 2019) which is thought to be modulated by reciprocal 

connections of the locus coeruleus-norepinephrine system and the anterior cingulate cortex 

(Findling & Wyart, 2021; McClure et al., 2005). This also resonates with results from deep 

neural networks, were various noise-based schemes have been implemented to improve 

network performance and/or to increase the resilience of the networks under sparse 

information, e.g. noise at the input level, similar to dataset augmentation methods (Goodfellow 

et al., 2016), at the level of the weight update (An, 1996) or during computation (Dong et al., 

2020; Fortunato et al., 2019; Qin & Vucinic, 2018). 

 To better understand differences between human and neural network behavior, we 

applied comprehensive cognitive modeling (Farrell & Lewandowsky, 2018). Model comparison 

according to WAIC revealed that RNN and human behaviour were best accounted for by the 

same model: a bayesian learning rule (Kalman Filter, Chakroun et al., 2020; Daw et al., 2006; 

Kalman, 1960; Wiehler et al., 2021) combined with a softmax choice rule (SM+EP) 

incorporating a perseveration bonus (𝜌) and a directed exploration term (𝜑) modeling an 

“exploration bonus” for uncertain options. This model was previously found to account best for 

human data from the same restless bandit task (Chakroun et al., 2020; Wiehler et al., 2021), 

and exhibits good parameter and model recovery properties (Danwitz et al., 2022). Humans 

and artifical agents alike appear to estimate the underlying reward generating process from 

observed rewards of the bandits. In contrast to a constant learning rate in the delta rule 

models, in this model, the learning rate (kalman gain) varies from trial to trial, such that the 
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degree of updating scales with a bandit’s uncertainty. This suggests that RNNs and human 

subjects dynamically modulate the influence of past actions and rewards to current decisions 

according to an estimate of the uncertainty of a bandit. However, additional modeling revealed 

that the exact formalism used to model directed exploration may be negligible, since models 

with a trial-based exploration term (SM+TP) and a bandit-identiy-based exploration term 

(SM+BP) show similar patterns of directed exploration difference between humans vs. RNNs 

(See Supplemental Figure 3). 

Analysis of model parameters then revealed a tendency for uncertainty aversion in 

RNNs, reflected in an overall negative exploration bonus parameter 𝜑 (i.e., an “exploration 

malus”). In contrast, human learners typically show a positive effect of uncertainty on choice 

probabilities (directed exploration) (Chakroun et al., 2020; Schulz et al., 2019; Schulz & 

Gershman, 2019; Wiehler et al., 2021; Wilson et al., 2014, 2021). This divergence between 

human and artificial agent behavior suggests that directed exploration is not required for 

human-level task performance. Recent simulation work showed an inverted u-shaped 

influence of 𝜑 on reward accumulation (Danwitz et al., 2022) such that insufficient or excessive 

directed exploration are detrimental for performance. Directed exploration parameters of 

human subjects in this study (see Figure 4D) appear to scatter around the optimal point of the 

inverted u-shaped function of the simulation study (Figure 3C from Danwitz et al., 2022). One 

possibility is that RNNs compensate for a lack of directed exploration via excessive 

perseveration behavior, that is, the negative 𝜑 estimates in RNNs (reflecting uncertainty 

aversion) might reflect higher-order perseveration. The SM+EP model accounts for first-order 

perseveration, but RNNs might perseverate not only on the basis of the previous choice 

(𝑐ℎ𝑜𝑖𝑐𝑒𝑡−1) but also with respect to a longer choice history. Variance attributable to n-trial back 

perseveration could drive a negative 𝜑 parameter. Several models account for higher-order 

perseveration (Kovach et al., 2012; Lau & Glimcher, 2005; Miller et al., 2019) and future work 

could expand the model space further to examine these effects in RNN and human agents 

during restless multi-armed bandit tasks.  

However, even for first-order perseveration, RNNs showed substantially higher levels 

of perseveration than human subjects. According to the median parameter estimates, 

repeating the previous choice increases the value of a bandit by 12.36 (range [3.88, 24.46]) 

reward points for RNN agents and by 5.59 (range [-1.6, 24.83]) reward points for human 

agents. Perseveration is often thought to be maladaptive, as learners “stick” to choices 

regardless of reward or task demands (Dehais et al., 2019; Hauser, 1999; Hotz & Helm-

Estabrooks, 1995). For example, increased levels of perseveration are a hallmark of 

depression and substance use disorders (Zuhlsdorff, 2022), behavioral addictions (de Ruiter 

et al., 2009), obsessive compulsive disorder (Apergis-Schoute & Ip, 2020) and are tightly 

linked to intact PFC functioning (Goldberg & Bilder, 1987; Munakata et al., 2003). In the light 
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of these findings, it might appear suprising that RNN agents show such a pronounced tedency 

to perseverate. But perseveration might support reward accumulation by enabling the network 

to minimize losses due to excessive exploration. In contrast, human agents perseverate less 

and explore more (Figure 2C), thereby avoiding the costs of prolonged perseveration and 

finding the optimal bandit faster by continuously exploring the environment. Both strategies 

converge on comparable performance. Lastly, RNNs showed a lower inverse temperature 

parameter (β) than human learners. All things being equal, lower values of β values reflect 

more random action selection, such that choices depent less on the terms included in the 

model. A β-value of zero would indicate completely random choices, and as β-values increase, 

the policy would approach a deterministic policy in which choices depend completely upon the 

model terms. However, the absolute level of choice stochasticity reflected in a given value of 

β also depends on the other terms in the model. Whereas the absolute magnitude of value 

and exploration terms was comparable between human and RNNs, the perseveration term 

was about twice the magnitude in RNNs, which explains the lower β-values in RNNs. The 

results from the analysis of predictive accuracy also confirmed that a greater proportion of 

choices was accounted for by the best-fitting computational model in RNNs compared to 

humans, showing that these differences in β do not reflect a poorer model fit.  

 To investigate the computational dynamics underlying RNN behaviour, we initially 

applied dimensionality reduction of hidden unit activations patterns via Principal Component 

Analysis (PCA) (Findling & Wyart, 2020; Mante et al., 2013; Wang et al., 2018). The first three 

principal components accounted for on average 73% of variance in hidden unit activity (see 

Supplemental Figure 1). Visual inspection of activation patterns in principal component space 

then revealed three effects: First, coding network state by behavioral choice revealed clearly 

separated choice-specific clusters in principal component space, an effect that was observed 

across all RNN instances examined (see Supplement). Second, the degree of spatial overlap 

of the choice-specific clusters directly related to the state-value estimate of the network. Action 

representations on trials with higher state-value estimates were more seperated than during 

trials with lower state-value estimates. Again, this pattern was observed across all RNN 

instances examined (see Supplement) and resonates with systems neuroscience work 

showing neural populations are more predictive for high-value actions than for low-value 

actions (Ebitz et al., 2018). Oculomotor regions like the frontal eye field (FEF) (Ding & 

Hikosaka, 2006; Glaser et al., 2016; Roesch & Olson, 2003, 2007) and the lateral intraparietal 

area (LIP) (Platt & Glimcher, 1999; Sugrue et al., 2004) show more pronounced choice-

predictive activation patterns during saccades to high vs. low value targets. Third, to 

investigate the link between RNN dynamics and exploration, we coded network state in PC-

space by stay vs. switch behavior. This revealed that switches predominantly occured in the 

region of activation space with maximum overlap in choice predictive clusters, corresponding 
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to low state-value estimates. Again, this effect was observed across all network instances 

examined. Generally, these observations show that 1) switches occurred predominantly 

during trials with low state value, 2) low state value was associated with less pronounced 

choice-predictive activation patterns. Although these patterns were qualitatively highly similar 

across RNN instances (see Supplement), the geometrical embedding of these effects in 

principal component space differed. This illustrates one downside of PCA - the components 

as such are not directly interpretable, and the different rotations of patterns in principal 

component space complicate the aggregation of analyses across network instances.   

 To address this issue, and to obtain interpretable axes, we applied targeted 

dimensionality reduction (TDR) (Ebitz et al., 2018; Mante et al., 2013). TDR projects the PCA-

based de-noised hidden unit activation patterns onto novel axes with clear interpretations (see 

methods section), allowing for a quantification of the intuitions gained from PCA. We projected 

the de-noised hidden unit data onto a value axis, i.e. the predicted state-value estimate given 

the de-noised hidden unit activity on a given trial. Across all network instances, this measure 

was highly correlated with the reward obtained on the previous trial (Figure 5D). Likewise, we 

projected the de-noised hidden unit data onto a switch-axis, i.e. the predicted log-odds of 

observing a switch, given the de-noised hidden unit activity on a given trial. Across all network 

instances, this axis showed a strong negative correlation with the value-axis, confirming that 

indeed the log-odds of switching increased with decreasing state value, and decreased with 

increasing state value, resembling a Win-Stay-Lose-Shift (WSLS) strategy (Herrnstein, 1997) 

that accounts for substantial choice proportions also in human work (Worthy et al., 2013). 

However, pure WSLS would predict much higher switch rates than observed in RNNs, 

suggesting that RNNs show a mixture of a WSLS-like strategy in conjunction with high 

perseveration.  

 Finally, we decoded choices from de-noised hidden unit activation dynamics, and 

compared prediction accuracy for stay vs. switch decisions. The decoder showed near perfect 

accuracy for stay decisions, which resonates with animal work showing that neural choice 

decoding is improved during perseveration (Coe et al., 2002; Ebitz et al., 2018). Importantly, 

performance of the decoder was lower, but still substantially above chance-level for switches. 

The de-noised hidden units therefore represent an activation pattern that can be utilized to 

correctly predict switch-targets, suggesting that switching behavior is not entirely based on 

choice randomization. Further analyses revealed that RNNs tended to switch to bandits with 

higher previous reward and lower uncertainty. Switching to bandits with higher observed 

rewards could be explained by value-based exploration (“Boltzman Exploration”, Sutton & 

Barto, 2018) as implemented in standard RL-models with a softmax action selection function, 

where choice probabilities are proportional to trial-by-trial value estimates. As probabilities in 

the softmax function sum to 1, decreases in the value of one bandit increase the choice 
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probabilities of other bandits proportional to their value estimates. Switching to bandits with 

lower uncertainty resonates with our cognitive modeling results showing negative exploration 

bonus parameters in the networks. Generally, these findings confirm that RNNs explore in an 

uncertainty averse and value-based manner, in contrast to human agents, who show a postive 

exploration bonus. 

One caveat of this work is that, although often applied in the context of RL in volatile 

environments (Domenech et al., 2020; Kovach et al., 2012; Swanson et al., 2020), the 

comparison between stay and switch trials does not unequivocally map onto the exploitation 

vs. exploration distinction. For example, stay decisions can be due to greedy choices 

(choosing the option with the highest expected reward) but also due to perseveration. In 

contrast, switch decisions can be due to random or strategic exploration (Wilson et al., 2021) 

and may involve more complex model-based strategies and/or simpler heuristics like following 

motor patterns such as exploring by choosing each available option once and then exploiting 

(Fintz et al., 2022). We nonetheless applied the stay vs. switch distinction, as it makes by far 

the least assumptions regarding what constitutes exploration vs. exploration.  

 Several limitations of this work need to be adressed. First, although our final network 

model space resulted in a total of 24 different RNN architectures, the impact of additional 

design choices such as network size, learning rate, discount factor, type of activation function 

or values for the Weber fraction (noise) were not systematically explored. Although the 

combination of LSTM with the A2C algorithm is robust to different hyperparameter settings 

(Mnih et al. 2016), a different RNN architecture or hyperparameter combination could have 

yielded even better performance or could have produced a form of directed exploration. Future 

research could benefit from the use of other architectures such as transformer models (Chen 

et al., 2021; Parisotto et al., 2020; Upadhyay et al., 2019) or explore the role of these additional 

factors. Second, a general limitation of this approach more generally is that neural network 

models, although roughly based on neuronal computations, suffer from a number of biological 

implausibilities (Pulvermüller et al., 2021). These include the backpropagation algorithm used 

to update the parameters of the network (Lillicrap et al., 2020), the lack of separate modules 

analogious to different brain regions, and lack of neuromodulation mechanisms (Pulvermüller 

et al., 2021). However, some recent work has begun to adress these shortcomings (Mei et al., 

2022; Robertazzi et al., 2022). Third, as outlined above, the negative exploration bonus that 

we observed in RNNs could be due to higher-order perseveration, i.e. perseveration behavior 

beyond the last trial, which would then result in a negative 𝜑 (see also Chakroun et al., 2020). 

Such higher-order perseveration was discussed in theoretical work (Miller et al., 2019) and 

observed in rats (Miller et al., 2019) and monkeys (Lau & Glimcher, 2005). Future work might 

benefit from exploring mechanisms underlying different types of perseveration more 

extensively.  
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 Taken together, we identified a novel RNN architecture (LSTM with computation noise) 

that solved restless four-armed bandit tasks with human-level accuracy. Computational 

modeling revealed that the same computational model (Bayesian Learner model with directed 

exploration and perseveration terms) accounted for human and RNN behavior best. However, 

in contrast to human learners, who exhibited a postive exploration bonus parameter 𝜑, in 

RNNs, this parameter was instead negative, reflecting uncertainty avoidance and/or higher-

order perseveration. First-order perseveration behavior was likewise substantially increased 

in artifical agents. Further analyses of the networks’ exploration behavior confirmed that 

exploratory choices were primarily driven by rewards and choice history. Hidden-unit dynamics 

revealed that exploration behavior in RNNs was driven by a disruption of choice predictive 

signals during states of low estimated state value, reminiscent of computational mechanisms 

in monkey PFC. Overall, our results highlight how computational mechanisms in RNNs can at 

the same time converge with and diverge from findings in human neuroscience. 
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Supplement 

 

Supplemental Figure 1. Cumulative variance explained in hidden unit activity by principal components of 

the best RNN architecture (LSTM cell with weber noise, A2C algorithm and no entropy regularization): Light 

blue lines denote cumulative variance explained for each RNN instance. Dark blue line denotes mean cumulative 

variance explained over all RNN instances.  
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Supplemental Figure 2. Mean final cumulative regret of all rnn architectures in the restless bandit task by 

different design factors. X-axis denote whether no computation noise (“None”) or weber noise (“Weber”) is added 

to hidden units. Error bars denote SEM.    

 

Supplemental Figure 3 

 

 

 

Supplemental Figure 3. Median exploration bonus parameter values (Phi) from the bayesian learner 

model for human subjects and RNN instances. SM+T denotes a softmax decision rule with a trial-based 

directed exploration mechanism. SM + B denotes a softmax decision rule with a unique-bandit-based 

directed exploration mechanism. SM +TP and SM+BP denote respective models with an additive first-order 

perseveration term. 
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Supplemental Figure 4. Switch accuracy given PCA-based de-noised hidden units of the RNN sorted by number 

of unique bandits sampled between consecutive switch trials (x-axis), where higher numbers reflect higher 

uncertainty. Solid lines indicate means and thin lines indicate individual instance data.  

 
Supplemental Table 1. Model Comparison for the best performing RNN architecture (LSTM network with 

computational noise) 

Model Delta Rule Bayesian Learner Rule 

SM 84.6 (54.7) 76.1 (41.9) 

SM + E -  21.3 (11.5) 

SM + T 53.1 (20.5) 48.6 (19.2) 

SM + B 22 (12.8) 19.7 (12) 

SM + P 7.52 (6.75) 5.2 (7.87) 

SM + EP - 3.15 (4.04) *  

SM + TP 7.57 (5.24) 4.73 (5.52) 

SM + BP 7.64 (6.25) 6.22 (8.59) 

Note: This table shows Delta WAIC values and standard deviations for each cognitive model 

in the model space (see Table 1) for the RNN data. The cognitive model with the lowest 

Delta WAIC value shows the best model fit.  
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Supplemental Table 2. Model Comparison for human data 

Model Delta Rule Bayesian Learner Rule 

SM 33.2 (21.7) 30.3 (18.8) 

SM + E -  20.2 (17.4) 

SM + T 23.7 (20.1) 19.7 (15.1) 

SM + B 26.7 (20.8) 23.8 (19.4) 

SM + P 21.9 (18.4) 20.3 (17.9) 

SM + EP - 4.40 (5.01) *  

SM + TP 9.82 (10.4) 7.70 (6.46) 

SM + BP 11.6 (9.59) 9.84 (9.56) 

Note: This table shows Delta WAIC values and standard deviations for each cognitive model 

in the model space (see Table 1) for human data. The cognitive model with the lowest Delta 

WAIC value shows the best model fit.  

 

 

 

 

Supplemental Figure 5. Hidden unit dynamics (first three principal components) of an example RNN agent color 

coded by choice (A), state-value estimate (B) and switching behavior (C, switch – red, stay - black). The pattern of 

choice-specific clusters (A), more overlap for actions corresponding to low state-value estimates (B) and switches 

occuring predominantly in this region of overlap (C) generalizes to all RNN instances under consideration (see 

below).  
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