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8 Abstract

9 Understanding how the brain solves demanding computational tasks is one of the most exciting
10 scientific challenges of our times. So far, recurrently connected artificial neural network models
11 (RANNSs) were primarily used to reverse-engineer brain computations. We show that it is now
12 also feasible to reverse-engineer computations of detailed data-based large-scale models of cortical
13 microcircuits. Furthermore, results of these analyses produce hypotheses that can readily be tested
14 in biological experiments since they clarify from which neurons one needs to record and what type
15 of information can be expected at specific time points during a trial. We apply this approach to a
16 demanding visual processing task that has often been used in mouse experiments. Both the cortical
17 microcircuit model and RANNs can solve this task as well as the mouse. But the resulting network
18 dynamics matches only for the cortical microcircuit model experimental data on the sparseness of
19 network activity and the impact of individual neurons on the network decision. Reverse-engineering
20 of the computation in the cortical microcircuit model suggests that a particular subset of neurons
21 causes a bifurcation of the network dynamics that triggers the network decision. Altogether, our
2 results introduce a new type of neural network model for brain computations.

23 Short title: Reverse engineering of cortical computations

2 Teaser: Large-scale modeling on supercomputers provides new tools for understanding how the brain
25 computes

» 1 Introduction

2z We tackle a central problem in computational neuroscience: How do neural networks of the neocortex
s compute? A major insight into brain function was the discovery that the mammalian neocortex is in
2 first approximation a continuous 2D sheet consisting of rather stereotypical local circuits that consist of
» many different types of neurons that are located in 6 parallel layers (laminae) with numerous vertical
s connections between these layers and primarily local horizontal connections (Mountcastle 1998; Douglas
» and Martin 2004; Harris and Shepherd 2015). This architecture offers hope that one can understand how
13 the neocortex solves demanding computational tasks by understanding the organization of computations
s in a representative patch of the 2D sheet that makes up the neocortex. Such representative patches are
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55 usually referred to as cortical microcircuits, in spite of the fact that models for them are typically quite
s large in order to provide a representative picture of interconnection patterns for many different types
s of neurons. Intense research in several labs on the anatomy of cortical microcircuits (Mountcastle 1998;
55 Thomson and Lamy 2007; Markram et al. 2015) and subsequent further work at the Allen Institute has
3 recently culminated in a detailed publicly available model for a cortical microcircuit consisting of 51,978
w0 neurons (Billeh et al. 2020). We refer to this model in the following as the Billeh et al. model.

s We address the fundamental question how this cortical microcircuit model computes. More precisely,
« since it is a model for a patch of V1 and comes together with a model for the LGN that serves as
s a gateway for visual input from the retina to V1, we examine how the model of Billeh et al. solves a
« demanding computational task that has frequently been used in experimental studies for visual processing
s in the mouse (Garrett et al. 2020; Joshua H. Siegle et al. 2021): the visual-change-detection task. In
s this task the subject receives a long sequence of natural images, with intermediate phases where just a
s gray screen is shown. The task is to report after each image presentation whether it differs from the
s previously shown image. This is a really demanding computational task since complex natural images
s are shown. Furthermore, the computational performance is tested for novel images that never occurred
so during training. Since a neural network is not likely to be able to retain all pixel values of the preceding
51 image in its working memory, it has to adopt a more sophisticated strategy that amounts to extracting
2 and retaining features of natural images that are generally useful for telling images apart, even for novel
53 1mages.

s« We trained both the data-based model of Billeh et al. and a generic RANN of the same size with
s the same training method, stochastic gradient descent, to solve this computational task. Successful
ss application of stochastic gradient descent is less standard for a network of spiking neuron models that
sz have been fitted to biological data. But it can be made to work with a suitable modification of BPTT
s (backpropagation through time) with pseudo-derivatives for spiking neurons as in (Bellec et al. 2018),
o and further modifications from (Chen et al. 2022) for the more complex generalized leaky integrate-and-
o fire (GLIF3) neuron models from Billeh et al. that had been fitted to recordings from diverse neurons
e from the Allen Brain Atlas Allen Institute 2018. Still, the application of stochastic gradient training to
62 such data-based cortical microcircuit models is computationally substantially more demanding than for
s RANNs. But it becomes feasible through the use of advanced software, TensorFlow (Martin Abadi et al.
s 2015), and computer hardware (GPUs) that have been developed to support fast training of artificial
e neural networks. Note that the connectivity structure of the cortical microcircuit model was not changed
e through this training process, only the values of synaptic weights within a biologically reasonable range.

ez We adopt a biologically realistic convention for extracting the network decision for each image, change or
e no-change, from the model: Network decisions have to be reported by a rather small subset of pyramidal
e cells on layer 5 of the model that represent projections of V1 to subcortical targets. This modeling
7 convention is supported by experimental data of (Houweling and Brecht 2008; Marshel et al. 2019) and
n  others which showed that stimulation of just 1 or 2 pyramidal cells on layer 5 suffices for triggering a
7 behavioral response. This readout convention has a substantial impact on the computational analysis of
7 a cortical microcircuit model, since the customarily used linear readout from all neurons in the network
7 tends to mask the computational contribution of the network itself, as we will show.

s We find that the computation for the visual-change-detection task achieves in the model a similar perfor-
7% mance as in-vivo. Furthermore, each computation engages the network in a way that has been reported
77 in numerous experimental data on cortical computation but which provides a stark contrast to typical
7z computations in generic recurrent artificial neural network models (RANNSs): Neural activity is very
7o sparse, and therefore implemented in a very energy-efficient manner, with most neurons firing mostly
s during a rather short phase within a trial. Furthermore, the temporal order of their peak activity is
a1 different for different task conditions. In addition, a surprisingly small subset of neurons extracts from
s the currently presented image the information whether it agrees with the previous one, and controls the
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s  bifurcation of the trajectory of network states, thereby triggering the network decision. The sensitivity
& of the network decision to the activity of very small subsets of neurons is another characteristic feature
s of computations of biological neural networks (Houweling and Brecht 2008; Doron et al. 2014; Marshel
s et al. 2019; Dalgleish et al. 2020; Doron et al. 2020) which is reproduced by the model of Billeh et al. but
&7 not by RANN control models of the same size that are trained for the same task. This result provides
s evidence that the model of Billeh et al. operates in a critical regime, in spite of its very sparse activity,
s where it is highly sensitive to even a few spikes of individual neurons in the network. A closer analysis
o of these pivot neurons reveals that most of them have slowly changing internal variables, which most
o biological neurons have according to the Allen Brain Atlas (Allen Institute 2018), that provide implicit
o2 information about the preceding image while the network processes the current one.

o3 We expect that the analysis and supercomputing methods that we present pave the way for research on
o a new generation of models in computational neuroscience that integrate a substantially larger body of
os experimental data, and can reproduce features of cortical computations that are difficult to reproduce in
o artificial neural network models. Also, their predictions can be tested more directly through biological
o7 experiments because neurons in the model can be immediately related to the specific types and laminar
¢ locations of neurons that are examined in wetlab neuroscience. Going forth and back between detailed
9 modeling and biological experiments is likely to be needed to elucidate the computational function of
w0 the neocortex. Since the neocortex achieves its superior computational performance with an energy
i consumption that is by several orders of magnitudes lower than that of current computer hardware,
102 an understanding how the cortex is able to combine energy-efficient very sparse activity with superior
103 computational performance is likely to have also important technological implications.

w 2 Results

ws 2.1 Setting up a data-based V1 model for reverse engineering of cortical
106 computations

w7 The V1 model of (Billeh et al. 2020) represents one of the most comprehensive efforts to integrate the
s available experimental data on the anatomy and neurophysiology of area V1 in mouse that is currently
0o available (Fig. 1A-C). It distinguishes 17 different neuron types (listed in each row and column of Fig. 1B).
1o These neuron types are further split into 111 different variations based on response profiles of individual
w neurons from the Allen Brain Atlas (Allen Institute 2018), to which generalized leaky integrate-and-fire
2 (GLIF3) neuron models with 3 internal variables had been fitted. These neuron models have in addition
us  to the membrane potential two further internal variables that model after-spike currents (Fig. 1D).
s The resulting model for a patch of V1 receives visual input from an LGN model that consists of 2,589
us filters (Billeh et al. 2020) that had been fitted to experimental data. This LGN model produces input
us currents to neurons of the V1 model in a retinotopic and lamina-specific manner (Billeh et al. 2020). We
ur  will refer in the following to this model of V1 in conjunction with the LGN model of (Billeh et al. 2020)
us  as the V1 model of Billeh et al.

1o We employed a data-driven noise model based on experimental data from area V1 of the awake mouse
o (Stringer et al. 2019). This noise model was not present in (Billeh et al. 2020) and had subsequently
21 been introduced in (Chen et al. 2022). It models both quickly changing forms of noise and slower forms
122 of noise that contribute to experimentally found trial-to-trial variability (Methods). The resulting V1
123 model was trained to solve the visual-change-detection task, which has frequently been used in mouse
e experiments (Garrett et al. 2020; Joshua H. Siegle et al. 2021). A sequence of natural images was
15 presented to the model, interleaved by periods without visual input. The subject had to report whenever
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Figure 1: Structure and components of the data-based cortical microcircuit model of (Billeh et
al. 2020). (A) Side view of the 3D architecture of the model, which consists of with 51,978 neurons from 1
excitatory and 3 inhibitory neuron classes (Htr3a, Sst, Pvalb) in a column with 800 pm diameter. These neurons
are distributed over 5 laminar sheets (L1 to L6, where L2 and L3 are lumped together). (B) Base connection
probabilities between these neuron classes on different laminae, which are valid if the horizontal distance between
neurons is at most 75 pm. (C) Scaling function for connection probabilities in dependence of the class to which
the pre- and postsynaptic neuron belongs. The probability of a synaptic connection between the two neurons is
the product of the base connection probability from panel (B) and this scaling function. (D) Main equations
defining the GLIF3 neuron models of (Billeh et al. 2020) with 3 internal variables. Assignments to their parameters
(highlighted in red) define the 111 neuron models of the networks, based on experimental data from the Allen
Brain Atlas (Allen Institute 2018).


https://doi.org/10.1101/2023.04.28.538662
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538662; this version posted April 28, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B Stimulus identity changes
| I |
100 ms 200 ms 50 ms response

stimulus gray screen window (50 ms after
image offset)

Onset Offset

25897 = 70

= N
c =3
LGN Response o = s
=} = -
E—— ()] — E
Z ()]
z =
o =
- 0 T T -0 LL
50 0 150 . 950
Time (ms)

D
40 training images
ImageNet @
100 testing images
E L1
L2/3
Population of 30 readout L4
, neurons shown in red % L5
y}\,x L6
The single readout neuron
F 1

0.870.83 0.85 30 readout neurons
mmm 1 readout neuron

Global linear readout
- — Chance level

Testing
accuracy
o
[e¢]

o
o

T
Trained V1 model Untrained V1 model with
trained global readout

(caption next page)

ot


https://doi.org/10.1101/2023.04.28.538662
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538662; this version posted April 28, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2 (previous page): Visual-change-detection task. (A) A sequence of natural images is presented,
interleaved with gray screen periods. (B) The visual-change-detection task requires to give during a 50 ms
response window that begins 50 ms after image offset an output signal whenever the current image is different
from the preceding one. (C) We used the LGN model from (Billeh et al. 2020) to transform visual stimuli into
the outputs of 2,589 filters that model firing rates of LGN neurons and are connected to neurons in the V1 model
according to data-based rules. These outputs provide input currents to V1 neurons using data-based rules. (D)
We used 40 natural images for training and a separate set of 100 natural images for testing. Images were drawn
from ImageNet (Russakovsky et al. 2015) and presented in grayscale because of the insensitivity of LGN model of
Billeh et al. to color. To ensure the robustness of our findings, we trained 10 V1 models using 10 different sets of
training data (each with its own 40-image set). We found that all results presented below were consistent across
all models, demonstrating that our conclusions are not reliant on specific training datasets or coincidences. (E)
The network was trained to provide the network decision through projection neurons within the network, either
a single (black circle) or 30 (red dots) randomly selected pyramidal cells in layer 5 (within a sphere of 55nm)
depending on the experiment. Their task was to report an image change through an increased sum of firing rates
during the response window. (F) Testing accuracy of the trained V1 model of Billeh et al. for reporting network
decisions through increased firing activity of 1 or 30 projection neurons is shown on the left. One sees that the
chosen number of projection neurons has little impact on the network performance. The green bar on the right
shows a control result for the case when one uses instead of projection neurons from within the network a global
linear readout from all neurons in the network. One sees that in case it is not even necessary to train the V1 model
for the task: Training of the weights of the artificial global linear readout suffices, indicating that the computation
within the V1 model can be effectively masked by such a global linear readout. The error bars, which are small
(< 0.01), represent the standard error of the mean (SEM) across 10 models with different training datasets.

s the most recently presented image differed from the one before (Fig. 2A-C). We randomly selected a pool
17 of 140 natural images from the Imagenet dataset (Deng et al. 2009) that we used as network inputs. We
s used 40 of them for training, similar to the biological experiments of (Garrett et al. 2020), and 100 of
120 them for testing (Fig. 2D).

10 Projections neurons on layer 5 of cortical microcircuits extract computational results of the microcircuit
wm  and transmit them to other brain areas, thereby triggering behavioral responses (Harris and Shepherd
12 2015; Marshel et al. 2019). Therefore we selected a set of pyramidal cells on layer 5 as readout neurons of
1 the V1 model (Fig. 2E). These readout neurons had the task to fire during a specific response window after
134 an image presentation if the preceding image differed from the one that had been presented before that.
135 The size and spatial distribution of this readout population had little impact on the results (Fig. 2F).
1 For simplicity, we used a single readout neuron unless stated otherwise.

137 A more common output convention in modeling brain computations is to use an external readout neuron
s that receives synaptic input from all network neurons. We found that this convention is not suitable
130 for probing the computational capability of a network model. First, such global readout neurons that
uo receive synaptic inputs from all neurons in a large patch of the neocortex have not been found in the
1w brain. Secondly, a global linear readout neuron that receives synaptic inputs from a large set of neurons
w2 in a recurrent neural network through trained synaptic weights is a too-powerful device that masks
13 the computational contribution of the recurrent neural network. Instead, the recurrent neural network
e plays in this case just the role of a liquid or reservoir (Maass et al. 2002; Maass and Markram 2004).
us  Concretely, if one takes the V1 and LGN model as defined in (Billeh et al. 2020), without changing any of
us its synaptic weights or other parameters, and just trains a linear readout from all of V1 neurons for the
w7 visual-change-detection tasks, one gets already a very high average accuracy of 0.85 (see the rightmost
us  bar in Fig. 2F).

1 We trained all synaptic weights from the LGN to V1 and within the V1 model using stochastic gradient
150 descent for a suitable loss function that assumed a low value only when the readout neuron(s) fired within
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151 a short response window 50 ms after the presentation of an image in case that this image differed from
152 the preceding one (Methods). We included regularization terms similarly as in (Chen et al. 2022) in the
153 loss function in order to keep the firing activity of the network in a biologically realistic sparse firing
15« Tegime. Synaptic connectivity was not changed through this training process. We also did not allow
15 synaptic weights to change their sign, thereby obeying Dale’s law. In particular, the average firing rate
156 after training was 3.86 Hz. Hence the model computed in an energy-efficient sparse firing regime. The
157 new values of synaptic weights after training remained in a biologically reasonable range, see Fig. S1
s and S2.

10 The trained V1 model achieved high performance for the visual-change-detection task (Fig. 2F), lying
10 in the same range as the performance achieved by mice (Garrett et al. 2020). The model was also able
11 to generalize well, achieving almost the same performance for images that were not used during training
12 (Fig. 2F). Hence the model had acquired a network algorithm that generalized, i.e., was not constrained
163 to a particular set of previously seen images.

w 2.2 The data-based V1 model reproduces characteristic features of cortical
165 computations

166 Simultaneous recordings from large numbers of neurons in the awake brain show that neural networks of
17 the neocortex exhibit a peculiar type of network dynamics that is rarely seen in artificial neural networks:
s Most neurons fire only during a rather short time window during a trial, see e.g. (Driscoll et al. 2017)
1o and Fig. 2 of (Koay et al. 2022). Furthermore, different neurons have different preferred firing times,
1w and the relative order in which they fire depends on the task condition and the sensory input. Hence,
i similarly as in synfire chain models (Abeles et al. 2004), the network activity has a prominent sequential
2 character, but in contrast to synfire chain models only a very small fraction of neurons is active during
3 each segment of the sequence.

s Since this type of network activity is hard to reproduce in neural network models, we wondered whether
s the data-based V1 model would be able to do that. We considered trial-averaged neural activity as in
ws  (Koay et al. 2022) and followed the same routine to order the neurons according to the time of the
w7 peak activity. Furthermore, as in their data analysis we normalized the firing activity, averaged over 200
s trials, of each neuron over the 300 ms of the computation on each image, consisting of a segment of the
179 continuous input- and processing stream that contained the 100 ms of the image presentation, a 50 ms
10 delay, the subsequent 50 ms of the network response window, and a 100 ms delay before the presentation
11 of the next image, marked at the top of Fig. 3 A-C. We found that the neural activity in the V1 model was
122 indeed very similar to that in the experimental data. Fig. 3 A-C show that most neurons of the V1 model
183 participated in the network computation, but focused their firing activity to a very short segment of the
18« 300 ms time window. Furthermore, as in the experimental data, the relative order of these short segments
15 of high activity depended on whether the currently processed image was the same as the preceding one
16 or not, see Fig. 3. The neurons are plotted in panel C in the same order as in panel A, but in panel A for
17 the change condition and in panel C for the no-change condition. Panel B, where we have ordered the
188 neurons according to their preferred firing time for the no-change condition, shows that the neurons have
19 also for the no-change condition a clear order of preferred firing times. But the order is different from that
1o for the change condition, as panel C shows: The resulting sequence is blurred and lacks the characteristic
1 thin-line pattern observed in Fig. 3A and B. In other words, the network employed temporal coding
12 through the relative timing of the peak-firing activity of neurons for distinguishing between these two
103 experimental conditions. Furthermore, this temporal coding was simultaneously expressed in all layers
14 of the laminar cortical microcircuit model. Note that this type of temporal coding, through the order to
15 peak activity of different neurons, takes place in spite of substantial noise both in the brain and in our
106 V1 model, see (Chen et al. 2022) for details, that substantially affects the timing of individual spikes in
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17 a single trial. The V1 model predicts that cortical microcircuits employ an even more refined type of
s temporal coding: The order of peak activity also depends on the identity of the current image (Fig. S3).
10 This prediction needs to be tested through neurobiological experiments.

20 The experimental data of (Houweling and Brecht 2008; Doron et al. 2014; Marshel et al. 2019; Dalgleish
20 et al. 2020; Doron et al. 2020) have elucidated another characteristic feature of cortical computations:
22 The network computation is surprisingly sensitive to the activity of a tiny fraction of neurons of these
203 very large networks, since stimulation of a few selected neurons could change the result of the network
24 computation, i.e., the behavioral response. This high sensitivity of the neocortex on the activity of
25 particular neurons is surprising insofar as it has to cope with a substantial amount of noise, see the
206 analysis and resulting noise model of (Chen et al. 2022) that we also used in this study. Since artificial
207 activation of a small set of neurons in a network is likely to activate also other neurons, a factor that
28 had not been quantified in these biological experiments, we used a slightly different paradigm for testing
20 the sensitivity of the network decision of the V1 model to the activity of a small set of neurons: We
a0 silenced, rather than activated, selected neurons. Like in the experimental data on the neocortex, we
an found that the result of the network computation is not equally sensitive to the activity of all of the
212 neurons, but that there are particular neurons that are pivotal for the network decision. In order to
a3 avoid artifacts resulting from silencing of the readout neurons or neurons that directly activate them, we
2 focused on early-informer-neurons which produced the first information on whether the current image
25 was the same as the preceding one well before the response window, while the image was still processed.
26 Fig. 3D shows that the first information about this arises during the time window from 50 to 100 ms after
2 image onset, when the first information about the image reaches the V1 part of the model. Hence we
218 defined early-informer-neurons as neurons whose spike output contained already during this time window
20 substantial mutual information (MI, Methods) with the upcoming network decision. Fig. 3E shows that
20 while the network is not very sensitive to silencing of randomly selected neurons, silencing of just 100
o early-informer-neurons has a drastic impact on the network performance. Also, the number of readout
22 neurons does not affect the conclusion of the lesion experiment (Fig. S4).

»» 2.3 RANN models cannot reproduce these characteristic features of cortical
24 computations

»s  Randomly connected recurrent networks of artificial neurons (RANNs) have commonly been used as
»s models for computations in cortical neural networks (Sussillo and Barak 2013; Sussillo et al. 2015; Yang
27 et al. 2019; Yang and X.-J. Wang 2020; Pollock and Jazayeri 2020). We show here that RANNs are not
28 able to reproduce the two previously discussed fingerprints of cortical computations: a short period of
29 peak activity for most neurons, a characteristic sequential order of this peak activity according to the
20 trial type, and the sensitivity of the network to the activity of small subsets of neurons. In order to
2 eliminate a possible impact of differences in the network size or training procedure, we trained through
2 stochastic gradient descent a randomly connected RANN with the same number of neurons and synapses
23 as the V1 model of (Billeh et al. 2020), for the same computational task. Furthermore, we used the same
2 preprocessor (the LGN model of (Billeh et al. 2020)) for transforming images into temporally dispersed
25 inputs to random subsets of neurons in the network. We used a standard neuron model from RANN
zs  models for neural networks of the neocortex (Sussillo et al. 2015; Pollock and Jazayeri 2020): A non-
o3 spiking neuron with tanh as activation function and a membrane time constant of 50 ms. For extracting
28 the network decision we used the same global linear readout from all neurons in the RANN as in these
29 paradigms.

20 This RANN model was after training able to perform the visual-change-detection task at a higher perfor-
o1 mance level than the data-based V1 model and the subjects in the neurobiological experiments (Garrett
22 et al. 2020). But it could not reproduce the two previously discussed fingerprints of cortical computations.
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Figure 3 (previous page): Temporal organization of computations in the V1 model. (A) As in
the experimental data, neural activity is sparse and exhibits a clear sequential organization with high temporal
resolution. Shown are normalized average responses over 200 trials with the change condition but different images,
with neurons ordered according to the time of their peak activity under the change condition. The gray and black
bars at the top denote the image presentation and response windows, respectively. (B) Same as in (A), but
for the no-change condition, with neurons ordered according to the time of their peak activity for the no-change
condition. (C) The same data as in (B) for the no-change condition, but with neurons ordered as in (A). The
resulting blurred sequence indicates that the order of peak activity of neurons is quite different for the change
and no-change conditions. (D) Demixed principal components analysis. In order to visualize the formation of
the network decision, we carried out demixed principal component analysis for trial-averaged network activity
(Methods). Its projection onto the first principal component is shown. One sees that the network decision starts
to emerge during the time window from 50 to 100 ms after image onset. The light and dark gray rectangles
denote the window of image presentation and response, respectively. (E) Causal impact of specific neurons on
the network decision: Task performance quickly decreases when early-informer-neurons are silenced (in the order
of their MI with the network decision), see the blue curve. On the other hand, task performance is robust to
silencing the same number of randomly selected neurons (dotted yellow curve). Both curves show average values
for 10 V1 models where different sets of training data were used. The shaded area represents the SEM across 10
models.

23 Fig. 4 A and B show that neurons of the RANN do not have a similarly short time period of high activity
a4 during the computation on the same task as the V1 model. Furthermore, the same analysis of the firing
25 order as in (Driscoll et al. 2017; Koay et al. 2022) does not reveal a substantial dependence of the order
a6 of peak activity of neurons on the trial type, see Fig. 4C. We also tested a different way of plotting the
a7 activity of the RANN where we did not normalize the activity of each neuron as in the data analyses of
2 (Driscoll et al. 2017; Koay et al. 2022). Resulting plots (Fig. S5) show that neurons in the RANNs have a
20 wide range of different activity levels. But the analysis of the role of temporal order as in (Driscoll et al.
0 2017), which was also employed in Fig. 3, did still not provide any indication that the temporal order of
1 peak activity in the RANN depended in a significant way on the trial type. Since the activity level of
»2  neurons in the RANN depends on the weight of the regularization term in the loss function for stochastic
3 gradient descent, we repeated the training of the RANN with different weights of this regularization term
s« that controls the average activity of neurons in the network (Fig. S6); see Fig. S7 for the same results
255 without normalizing the activity of each neuron. Also in these controls, the neurons of the RANN do not
6 constrain their activity to a short time window like in the experimental data and the V1 model. The same
57 holds for a further control (Fig. S8) where we changed the threshold of the regularization term in the
s loss function (Methods). These results suggest that it is not possible to reproduce in the RANN model
9 under common configurations the sparse neural activity with trial-type-dependent temporal sequences of
w0 neural peak activity that has been found in the neocortex.

s We also tested the sensitivity of the RANN to the activity of small sets of its neurons. We found that about
%2 6,000 neurons need to be silenced in the RANN to reduce the accuracy of the network computation to
23 0.6 (Fig. 4D), a performance level which was reached in the V1 model according to Fig. 3D by silencing
24 just 200 neurons. Note that we silenced here RANN neurons in descending order of the MI of their
%5 activity during the second half of an image presentation with the upcoming network decision, like in the
26 V1 model. The RANN has more high-MI neurons than the V1 model (Fig. S9). These results suggest
s that the RANN is substantially less sensitive to the activity of small subsets of its neurons.

8 Altogether, these results suggest that the computation for the visual-change-detection task is organized
%0 in the RANN quite differently than in the mouse brain and in the V1 model. In particular, the in-vivo
oo data and the V1 model suggest that neurons become “experts” for particular phases of a particular
an computation and otherwise remain silent, reminiscent of mixture-of-experts models (Yuksel et al. 2012)
22 and hidden Markov models (Kappel et al. 2014). In contrast, information and impact on the network
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o3 output are distributed in the RANN over substantially larger subsets of neurons. This is likely to result
aa from the random connectivity of the RANN, which makes it harder to accumulate specific information in
s specific parts of the network, the neuron models of the RANN, which do not induce its neurons to restrict
a6 their activity to a particular phase of computation, and the use of a global readout from all neurons for
o extracting the network decision.

s 2.4 Computational progress of the V1 model becomes visible as nested bi-
279 furcations of the network dynamics

20 Analyses of results of simultaneous recordings from large numbers of neurons in the brain have shown that
1 low-dimensional projections of the high-dimensional network activity provide interesting links between the
22 network dynamics and the computations that it performs (Broome et al. 2006; Kato et al. 2015; Allen et al.
23 2017; Steinmetz et al. 2019). We wondered whether similar analyses could elucidate computations of the
28« V1 model. We embedded its activity vectors, defined for every ms by the low-pass filtered spiking activity
285 oOf its 51,978 neurons, into 2 dimensions with the help of PCA and a subsequent application of UMAP
286 (McInnes et al. 2018). The processing of each particular image gives rise to a bundle of trajectories, with
27 trial-to-trial variability resulting from the preceding images and noise within the network. Two nested
s bifurcations in these bundles of trajectories mark the computational progress of the dynamical system, see
20 Fig. HA. First, the trajectories of network states bifurcate during the first 50 ms of an image presentation
20 from the mid-region of the plotted state space and move into a region that is characteristic for the identity
21 of the currently presented image, see Fig. 5B. Afterward, between 50 and 100 ms after image onset, the
22 second bifurcation occurs in dependence on whether the current image is the same or different from
203 the previously presented image, see Fig. 5C. These modeling results provide concrete predictions for the
24 way how these computations are carried out by cortical microcircuits of the brain, viewed as dynamical
205 systems. Among various options on how these could compute, as discussed in (Rabinovich et al. 2006),
26 nested bifurcations of bundles of trajectories emerge as the clearest visible fingerprint of these network
207 computations.
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Figure 4 (previous page): Temporal organization of the same computations in the RANN model.
(A) Neuronal activity in the equally large RANN model was plotted for the same network inputs and task
condition as in Fig. 3A. Here, the activation regularization was not used in the RANN; in other words, the weight
of activation regularization is 0 (Methods). (B) Same as in (A), but for the no-change condition as in Fig. 3B.
(C) Same data as in panel (B), but with neurons ordered as in panel (A). In contrast to Fig. 3, little difference
emerges between panels (B) and (C), indicating that the order of peak activity is less dependent on the task
condition in the RANN. (D) Lesion experiments corresponding to those in the V1 model (Fig. 3E). The blue
curve for the V1 model is the same as in Fig. 3E. One clearly sees that the network decision is substantially less
sensitive to the activity of 100 neurons. The shaded areas represent SEM across 10 RANNs where different sets
of training data are used.
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Figure 5 (previous page): Nested bifurcations of trajectories of network states provide links be-
tween network dynamics and network computations. Spiking activity of the 51,978 neurons was first
filtered with an exponentially decaying kernel (time constant: 20 ms), and then projected onto its first 1,500 PCA
dimensions (capturing 38% of the variance, which indicates that the network activity is quite high-dimensional).
These data were then projected into 2 dimensions with the UMAP method. Each dot represents network activity
at a particular ms of a 250-ms long fragment of the computation of the V1 model on a sequence of natural images.
Short black bars mark 50-ms long subsections of network trajectories. (A) Network trajectories of the V1 model
during the presentation of 8 (out of the 100) test images that had not been presented during training. Two colors
indicate whether the current image was identical (blue) or different (brown) from the preceding image. One sees
that the network state moves for each image into a different region of the state space, no matter whether it was
the same or different from the preceding image. (B) The first bifurcation occurs according to the identity of the
current image, highlighted here for the case where the trajectory starts in both cases from the same state, which
largely results from the identity of the preceding image. This first bifurcation occurs within the first 50 ms after
image onset. (C) The second bifurcation after image onset. It does not depend on the identity of the current
image, but on whether it is the same or different from the preceding image. This 2nd bifurcation is more difficult
to visualize since the trajectory arrives from two different regions that are characteristic of the identity of the
preceding image. (D) A small set of early-informer-neurons is causal for the second bifurcation. Here two times
the image 7 is shown, both in the intact model and when 100 early-informer neurons are silenced. One clearly
sees that these neurons are causal for the second bifurcation occurring within 50 to 100 ms after image onset,
since silencing them lets the trajectory flip to the bundle for the no-change condition. Silencing of these neurons
also flips a trajectory for the no-change condition to the bundle for the change condition, see Fig. S10.
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» 2.5 Causal relations between the activity of individual neurons and the net-
200 work decision

30 The results of our lesion experiments in Fig. 3E indicate that the firing activity of a specific small set
sn  of neurons was causal for the network decision. These early-informer-neurons were distinguished by the
s fact that their firing activity during 50 to 100 ms after image onset contained substantial MI with the
33 upcoming network decision. We show in Fig. 5D that their firing activity was also pivotal for the network
s dynamics. Silencing the 100 early-informer-neurons with the highest mutual information (MI) with the
s upcoming network decision flips the trajectory of the network dynamics at the 2nd bifurcation to another
w6 bundle, see the magenta curve in Fig. 5D. This suggests that these bundles of trajectories had a certain
sr  attractor quality for time-varying network states. The model received for both trajectories shown in this
ws  panel exactly the same network input, hence differences were only caused by the silencing of the 100
w0 early-informer-neurons (with some further variance possibly caused by ongoing noise in the network).
a0 This was a no-change trial, as the blue curve in Fig. 5D indicates for the intact network (compare with
au  the trajectory bundles in Fig. 5A). Silencing of these 100 neurons can also flip the trajectory of a change
sz trial to the bundle of trajectories for no-change trials, see Fig. S10.

a3 We then investigated what mechanism enabled these 100 early-informer-neurons to decide whether the
s currently presented image differed from the previously presented one. These neurons were primarily
us  located in layers 2/3 and 4, see Fig. 6A. We selected 7 of them (Methods) from the 4 major neuron
a5 classes so that these had during the interval from 50 to 100 ms after image onset the largest MI with the
a7 subsequent network decision. Their firing activity is shown in Fig. 6B. One sees that they fired at different
ss  rates during the interval from 50 to 100 ms after image onset for the change and no-change conditions.
a9 These rate differences continued to be present during the subsequent delay and response window.

20 In order to determine the mechanism by which these neurons acquired their early information about
a1 the relationship between the identity of the current and preceding image we analyzed the dynamics of
32 their internal variables. Fig. 6C depicts the time course of their internal variable with the largest time
»23  constant. One sees that this internal variable had in many trials for 5 of these neurons already at the
s2¢  beginning of the presentation of the current image (indicated by the beginning of the light-gray zone)
s a strongly negative value. In order to understand the computational role of these internal variables, we
s analyzed whether their strongly negative values at image onset provided information about the identity of
37 the preceding image. The result of this analysis is plotted for the first 4 of these neurons, whose locations
»s are marked in Fig. 7A, in Fig. 7B. One sees that for those 3 among these 4 neurons that had an internal
3o variable with a large time constant, shown here in the 2nd to 4th column, this slow internal variable
a0 assumed its lowest values at image onset when a particular image (number 5) had been presented before.
s Note however that these neurons could not specialize in reporting this particular preceding image, because
sz the network was tested on new test images that had not been shown during training. Therefore, in order
313 to serve as early-informer-neurons, the image features that produced the lowest values of their internal
;4 variables at the beginning of the next image had to tile the image space. The neuron whose analysis is
35 plotted in the first column has only short time constants, and the value of its internal variable is less
35 characteristic for a particular preceding image. Hence it is likely to collect and transmit information that
s it receives from other early-informer-neurons. In order to further elucidate the causal relation between
133 the network decision and preceding activity (or non-activity) of early-informer-neurons with and without
130 long time constants, we separately silenced from each of these two neuron classes those which had the
o largest MI with the network decision. The result in Fig. 7C shows that the network performance is
s significantly reduced when we silence 100 neurons with long time constants, and more than 500 neurons
w2 with short time constants need to be silenced to produce a similar reduction of network performance.

us  The impact of early-informer-neurons on the firing or non-firing of the readout neuron was in general
s rather indirect, because they were in general not directly connected to the readout neuron (Fig. S11).
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us  This had to be expected, because the response window came 100 ms after the critical period of early-
us informer neurons (50 to 100 ms after image onset). Nevertheless, a direct impact of silencing the 100
wr  early-informer-neurons on the membrane potential of the readout neuron can be detected. The result
us is shown in Fig. 7D. One sees in the 2nd and 3rd row show that this silencing significantly moved the
s membrane potential of the readout neuron during the response window, thereby explaining why their
0 silencing caused errors in the network decision.

s We have shown that the silencing of 100 neurons in the V1 model is able to change the result of a network
2 computation. This high sensitivity of the network output to the firing activity of individual neurons is
33 consistent with experimental data. More specifically, it has been shown that artificial activation of very
3¢ few neurons on layer 5 in the brain is able to switch a behavioral decision (Houweling and Brecht 2008;
35 Doron et al. 2014; Marshel et al. 2019; Dalgleish et al. 2020; Doron et al. 2020). Note that it is difficult
3 to estimate how many further neurons were indirectly activated in these in-vivo experiments, hence it
37 remains open exactly how many neurons need to be manipulated in order to switch a network decision
s of a cortical microcircuit.

30 Finally, we would like to emphasize that the computational analyses in Figs. 3, 5 and 6 were carried
w0 out for a new set of images that had not been shown during training of the network. Hence our reverse
1 engineering has elucidated a generic computational network mechanism, rather than a mechanism that
2 only works for specific images. In particular, the diverse selectivity of the working memory of these
33 neurons shown in Fig. 6C in combination with their causal role for the network decision demonstrates
s that their working memory specializations tile the image space, thereby enabling correct network decisions
s for generic images.

w & Discussion

7 We have presented a new paradigm for modeling and analyzing computations in the neocortex. More
s specifically, we have trained a detailed model for a patch of neocortex with a diameter of 800 pm to carry
w9 out a demanding computational task that has often been used in mouse experiments: Deciding for a
s sequence of natural images, interleaved with delays where no image is shown, whether the most recent
sn image was the same as the preceding one. The V1 model was able to solve this task after training on one
sz set of images, like the mouse, and also for never presented new images with high accuracy. This task is
sz a demanding computational task for any neural network since salient information needs to be extracted
s from each image and stored, compared with information from the next image while simultaneously storing
ss  information from this next image that will be needed to compare it with the subsequent image, and the
s result of the comparison has to be reported at a time when none of the images are present. This task is
sn  especially demanding for a neural network that has to cope with a substantial amount of internal noise,
ss which is the case both for neural networks in the brain and our model.

s We have shown that a detailed model for a patch of V1 (Billeh et al. 2020), equipped with a data-based
;0  and more challenging noise model from (Chen et al. 2022), can be trained with stochastic gradient descent
s to solve this visual-change-detection task. We found that the resulting organization of its computation
s differed in essential aspects from that of a RANN with the same number of neurons and synapses that has
3 been trained with stochastic gradient descent for solving the same task. In particular, the computations
s of the data-based cortical microcircuit model revealed an exquisite temporal organization, where most
s neurons focused their activity onto a particular phase of the computation, as seen in Ca-imaging data
16 from the awake brain (Driscoll et al. 2017; Koay et al. 2022). The V1 model also reproduced the finding
;7 of (Driscoll et al. 2017) that this temporal order of peak activity depends on the trial type (in our case:
;s change or no-change), see Fig. 3. In addition, the rank order of peak activity depended in the data-based
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Figure 6 (previous page): Fine-scale analysis of the emergence of a network decision in the V1
model. (A) The mutual information (MI) between activities in 50 ms windows of single neurons and the
change/no-change decision of the network (as emerging during the subsequent response window) is estimated for
each neuron. For neurons that overlap in the projection from 3D to 2D, the maximum value is visualized to
avoid dark points arising from accumulation of small contributions from several neurons. The critical time period
from 50 to 100 ms after image onset is marked by dashed lines. (B) Spike responses of 7 early-informer-neurons,
selected to cover all four basic neuron types: excitatory (E), Htra3, Sst, and Pvalb neurons (color-coded as in
Fig. 1A). L2/3, L4, and L5 represent layer 2/3, 4, and 5, respectively. The value of the MI of the firing activity of
each of these neurons during [50, 100] ms with the network decision is indicated in bits at the top of each panel.
The periods of image presentation and subsequent response window are shaded in grey. Trials are separated
according to the change/no-change condition. Condition-dependent differences in the firing responses of these
neurons first appear at the start of the critical time window, 50 ms after image onset. (C) Time course of the
values of the internal variables of these neurons that had the longest time constant (and modeled after-spike
currents), for the same trials as in (B) (time constant shown on top). As GLIFs neurons have two after-spike
currents that could have different time constants, we only show the after-spike currents with the largest time
constant. Their values at image onset could potentially contain information about the identity of the preceding
image, shown 200 ms before the current one. This information will be analyzed in the next figure.

30 model not only on the trial type, but also on the identity of the current image (Fig. S3). This additional
30 dependence of the temporal order of peak activity on the sensory input (for the same trial type) is a
s prediction for future neurobiological experiments.

32 We found that the RANN was not able to reproduce the experimental data on the temporal organization
33 of cortical computations: Most of its neurons were active during rather long segments of a trial (see
s Fig. 4A), and a fairly large fraction of neurons was simultaneously active at the same time. The temporal
305 order of their periods of high activity appeared to have a stereotypical character (see Fig. 4B, C) with
s 10 apparent dependence on the trial type.

s7  Apart from this different temporal organization of the network computation, the data-based model also
s reproduced another characteristic feature of cortical computations: In spite of the large number of neurons
30 in the model (about 52,000), a rather small subset of neurons had a decisive impact on the time course
wo and outcome of the computation. Silencing of 100 neurons was sufficient to switch the trajectory of
w1 network states during the computation (Fig. 5D), thereby drastically reducing the accuracy of the network
w2 computation (Figs. 4D, 7C, D). This modeling result is consistent with experimental data which have
w3 shown that activation of a small number of neurons in a cortical microcircuit is able to switch the
ws  behavioral response of the mouse (Houweling and Brecht 2008; Doron et al. 2014; Marshel et al. 2019;
ws Dalgleish et al. 2020; Doron et al. 2020). This high sensitivity of network decisions to the activity of
ws  very small subsets of neurons is also of interest from a theoretical perspective: It suggests that the
w7 V1 model operates, like the brain, in a critical regime. Importantly, this can be reproduced in the V1
ws  model in spite of the substantial level of noise and trial-to-trial variability that we have placed, based
w0 on experimental data from (Stringer et al. 2019), into the model, see (Chen et al. 2022) for details. In
a0 contrast, we found that the RANN does not operate in a critical regime: Very large subsets of its neurons
an have to be silenced in order to strongly reduce its task performance. Altogether, our results show that
a2 the organization of computations is in RANNSs substantially different from the brain, and that data-based
a3 cortical microcircuit models provide a new family of models that can close this gap.

as Reverse-engineering will be essential for understanding the organization of cortical computations. Doing
a5 that in the living brain is still handicapped by limitations of current experimental techniques. But one
as  can spearhead such research by exploring and fine-tuning methods for reverse-engineering computations
a7 in data-based models that employ a similar architecture and neuron types as the brain. We have shown
ais that low-dimensional projections provide substantial information about the organization of computations
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Figure 7 (previous page): Inner workings of 4 sample neurons that are pivotal for the network
decision. (A) Spatial location and type of the 4 neurons labeled as Neuron I-IV in Fig. 6B and C whose
firing rates have during [50,100] ms after image presentation the largest MI with the network decision that is
made 100 ms later during the response window. (B) Analysis of the information contained in the after-spike
currents of the four neurons. The after-spike current with the largest time constant is analyzed at the onset of the
current image (see time point marked in the scheme above), in dependence on the identity of the PRECEDING
test image, marked on the horizontal axis. Its mean value is shown with error bars denoting the SEM across
1000 trials. One sees that this value depends strongly on the identity of the preceding image, especially for
neurons II - IV. (C) Silencing early-informer-neurons with after-spike currents that have large time constants
(Tase > 300 ms) in the descending order of their MI reduces testing performance much faster than silencing those
with shorter ones (7asc < 300 ms). The shaded areas represent the SEM across 10 models with different training
datasets. (D) The membrane potential of the readout neuron is significantly changed under both the change and
the no-change condition when 100 early-informer-neurons are silenced. We used the same stimuli but different
realizations of the noise model and initial states. The dashed green lines represent the firing threshold. Blue
curves represent the membrane potentials of single trials; the extended vertical bars denote the spikes in these
trials. Red curves represent the average membrane potentials across 100 trials. The shaded red area represents
the standard deviation across 100 trials.

a9 in the data-based model of Billeh et al., see Fig. 5. These results suggest that among the numerous
w20 potentially relevant dynamical principles (Rabinovich et al. 2006) bifurcations of the network activity
w21 turn out to be highly relevant for analyzing computational progress in these computations. While the
a2 functional role of bifurcations of neural activity had previously focused on single neuron models, more
w23 recent experimental data provide evidence that bifurcations are also essential for understanding the
«2¢  functional role of populations of neurons in the living brain (Z. Wang et al. 2022). We have exhibited
s in Fig. 5D a further-going prediction: These bifurcations are highly sensitive to the firing activity of
w6 small sets of neurons: Silencing of just 100 neurons is able to flip a trajectory to a different bundle of
w7 trajectories that produces a different network decision. This causal relationship between the activity of
w8 individual neurons during a network computation and the resulting network decision needs to be tested
a9 in future neurobiological experiments.

a0 The data-based model allows us also to take a closer look at the inner workings of these pivotal neurons,
s and to analyze how they can collect and transmit cues from two sequentially presented images which
a2 indicate whether the second image is a different one. We found that the values of internal variables with
.23 long time constants, which are abundantly present in the generalized leaky integrate-and-fire (GLIF3)
2 neuron models of Billeh et al. that had been fitted to data of specific neurons from the Allen Brain
a5 Atlas (Allen Institute 2018), assume values at the beginning of the processing of the current image that
w6 contain salient information about the identity of the preceding image (Fig. 6C and 7B). The specific
s causal impact of these neurons with long time constants on the network decision was verified through
s further lesion experiments in our model (Fig. 7D).

a9 Altogether, our work demonstrates the feasibility of a new methodology for understanding the organiza-
wo  tion of computations in the neocortex: One can achieve a direct alignment of computational modeling
a1 and neurobiological experiments by analyzing computations in detailed large-scale models, whose spatial
w2 organization and neuron types match directly those found in the corresponding region of the neocortex,
a3 and which solve the same computational task on the same ensemble of stimuli as the subjects in the neu-
as  robiological experiments. This approach has now become feasible through recent advances in software
ws  design, such as TensorFlow, and computing hardware, such as graphical processing units (GPUs), that
ws  have been produced for the purpose of accelerating deep learning applications in Al.

a7 An obvious next step in the direction of this work is an analysis of computations in detailed models
as  of cortical microcircuits in other cortical areas such as motor cortex, and of distributed computations
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wmo  In interconnected cortical microcircuits from different cortical areas. Furthermore, at least simplified
w0 models for the dendritic arborization of selected classes of neurons need to be added in order to make
1 the impact of top-down inputs more realistic. But this needs to be done in a way that still supports
s2  fast simulations of large-scale models, so that training of these models for specific computational tasks
»s3 remains computationally feasible. In addition, the computational role of projections to and synaptic
s« inputs from subcortical areas such as basal ganglia and the thalamus (see (Cruz et al. 2023) for a recent
5 review) needs to be modeled and analyzed through integrated large-scale models. Altogether, this work is
w6 likely to complement, challenge, and enhance experimental work that aims at clarifying the organization
ss7  of brain computations. In addition, it will provide paradigms for a new generation of artificial neural
s network models that can capture both the astounding functional capabilities and the energy efficiency of
w9 sparsely active neural networks in the brain.

« 4 Methods

w 4.1 Neuron models

w2 As in (Chen et al. 2022) we are focusing on the “core” part of the point-neuron version of the realistic
w3 V1 model introduced by (Billeh et al. 2020). To make it gradient-friendly, we replaced the hard reset
s+ of membrane potential after a spike emerges with the reduction of membrane potential z;(t) (vin — EL),
s where z;(t) = 1 when neuron j fires at time ¢t and z;(t) = 0 otherwise. wy, is the firing threshold of
w6 membrane potential. E the resting membrane potential. This causes no significant change in the neural
w7 response (Chen et al. 2022). We simulated each trial for 600 ms. The dynamics of the modified GLIF;
s model was defined as

v;(t+ 6t) = aw; (t) + 1‘% (1;(t +1)+ ;I}”(t +1)+ gEL + I;?yn(t)> — 2(t) (v — Ep)
Zj(t) =H (Uj(t) — 'Uth) (1)

I;(t) = Z le?gjz(t) + QK]C-luiCk(t) + SKEIOW,

(3

w0 where C' represents the neuron capacitance, I¢ the external current, I*¥" the synaptic current, g the
s membrane conductance, and vy, the spiking threshold. W is the synaptic weight from LGN neuron i to

an V1 neuron j. The scales of the quick noise K;lumk(t) and the slow noise KleW to neuron j are ¢ = 2 and
a2 8 = 2, respectively, unless otherwise stated. K; was randomly drawn from the empirical noise distribution
s which will be elaborated on later. The decay factor « is given by e~/ where 7 is the membrane time
aa constant. dt denotes the discrete-time step size, which is set to 1ms in our simulations. H denotes the
a5 Heaviside step function. To introduce a simple model of neuronal refractoriness, we further assumed that
as  2;(t) is fixed to 0 after each spike of neuron j for a short refractory period depending on the neuron type.
«r The after-spike current I"™(t) was modeled as

I™(t+ 6t) = fFI™(t) + 2()5I™; m =1, . .., Nase, 2)

w8 where the multiplicative constant f™ = exp (—k"dt) and an additive constant, 6I™. In our study, m = 1
a0 or 2. Neuron parameters have been fitted to experimental data from 111 selected neurons according to the
w0 cell database of the Allen Brain Atlas (Allen Institute 2018), see (Teeter et al. 2018; Billeh et al. 2020),
w1 including neuron capacity C, conductance g, resting potential Ey,, the length of the refractory period, as
s well as amplitudes dI™ and decay time constants k™ of two types of after-spike currents, m = 1, 2.
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@ 4.2 Synaptic inputs

ss The V1 model utilizes experimental data to specify the connection probability between neurons. The
w5 base connection probability for any pair of neurons from the 17 cell classes is provided in (Billeh et al.
w5 2020) in a table (shown in Fig. 1B), where white cells denote unknown values. The values in this table
w7 are derived from measured frequencies of synaptic connections for neurons at maximal 75 pm horizontal
w8 inter-somatic distance. The base connection probability was then scaled by an exponentially decaying
w0 factor based on the horizontal distance between the somata of the two neurons (Fig. 1C), also derived
w0 from experimental data. The synaptic delay was spread in [1,4] ms, as extracted from Fig. 4E of (Billeh
s et al. 2020) and rounded to the nearest integer as the integration step is 1ms.

The postsynaptic current of neuron j was defined by the following dynamics (Billeh et al. 2020):

syn — o e [ — T (rise
Bt + 61) = ¢ w1 (1) + bte” e CF (t) 3)
Crise t 4 6t) = *%Criie Wrec (4
it +ot) = e i E W : )

Tsyn

a2 where gy is the synaptic time constant, Wi is the recurrent input connection weight from neuron ¢ to
w3 j, and z; is the spike of presynaptic neuron i. The 7.y, constants depend on neuron types of pre- and
w4 postsynaptic neurons (Billeh et al. 2020).

ws 4.3 Initial conditions

ws The default initial conditions for spikes and membrane potentials were set to zero, unless otherwise
w7 specified. The initial conditions for W™ and W' were taken from (Billeh et al. 2020), unless otherwise
w8 stated.

w 4.4 Data-driven noise model

so  We used a noise model that was introduced in our previous study (Chen et al. 2022). The model was
s0  based on an empirical noise distribution that was obtained from experimental data of mice responses to
so 2,800 nature images (Stringer et al. 2019). The noise currents K;‘uwk(t) and K5'°% in Eq. 1 were drawn

s0s independently for all neurons from this distribution. The quick noise K;l“iCk(t) was drawn every 1ms

s« while the slow noise Kjlow was drawn once every 600 ms. The empirical noise distribution was derived
s from the variability (additive noise) collected from the experimental data. A detailed mathematical
s analysis of this method is available in the methods and supplementary materials of (Stringer et al. 2019).

v 4.5 Readout neurons

se  We employed a readout population in the V1 model, whose firing activity during the response window
soo encoded the network decisions for the visual-change-detection task. Each population consisted of a certain
so number (30 or 1) of randomly selected excitatory neurons in layer 5, located within a sphere of a radius
su of 55 um (Fig. 2E).
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2 4.6 Visual-change-detection task

s3. LGN model. The visual stimuli were processed by a qualitative retina and LGN model, as depicted in
s Fig. 2C and following (Billeh et al. 2020). Their full LGN model consists of 17,400 spatiotemporal filters
sis  that simulate the responses of LGN neurons in mice to visual stimuli (Durand et al. 2016). Each filter
si6  generates a positive output, which represents the firing rates of a corresponding LGN neuron. We used
siz - only a subset of 2,589 of these LGN filters that provide inputs from a smaller part of the visual field
sis to the core part of the V1 model, on which we are focusing in this study. The input images were first
s0  converted to grayscale and scaled to fit in the interval [—Int, Int], where Int > 0. The output of the
s20 LGN model was then used as an external current input in the V1 model as follows:

Lyi = W™ - LGN(Gr), (5)
s where Gp,; represents images scaled into [—1Int, Int] for Int = 2.

s2 Visual-change-detection task with natural images. We designed the visual-change-detection task
523 to be as close as possible to corresponding biological experiments while keeping them as simple as possible.
s In the mouse experiments of (Garrett et al. 2020; Joshua H. Siegle et al. 2021), mice were trained to
ss  perform a visual change detection task using static natural images presented in a sequence of 250 ms
s6 with short phases (500 ms) of gray screens in between. The mice had to report whether the most recently
sz presented image was the same as the previously presented one. To replicate this task while taking into
s2s  account GPU memory limitations, we presented natural images for 100 ms each with delays between them
s20 lasting 200 ms (Fig. 2A, B). The first image was presented after 50 ms, and all images were selected from
s a set of 40 randomly chosen images from the ImageNet dataset (Deng et al. 2009). The model had to
sn  report within a 50 ms time window starting 150 ms after image onset (response window) if the image had
s changed.

513 In the response window, we defined the mean firing rate of readout population as

1 Tresp Nyeadout

zj(t), (6)

Treadout = T

resp ° Nreadout =1 j=1

s where the sum over j is over the Nygaqout = 30 readout neurons and the sum over ¢ is over the time
s length of response window Tiesp = 50 ms. If 7 > ro = 0.01, the model reported a network decision that
s  the image had changed. Otherwise, it reported no-change.

s 4.7 Loss function

s The loss function was defined as
L= Lcross—entropy + )\fLrate reg. + )\ULV reg.» (7)

s39  Where Leross-entropy represents the cross-entropy loss, Ay and A, represent the weights of firing-rate regu-
s larization Lyate reg. and voltage regularization Ly yeq., respectively. As an example, the cross-entropy loss
sa of visual change detection tasks was given by

Leross-entropy = — Z [T(m) logo (9 (rﬁg)dout — 7’0)) + (1 — T(m)) log o (9 (ro — Tlgg;)dout))} , (8)

s where the sum over m is organized into chunks of 50 ms and rie";?iout denotes the mean readout population

s firing rate defined in Eq. 6. Similarly, T70™ denotes the target output in time window m, being 1 if a
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s« change in image identity should be reported and otherwise 0. The baseline firing rate rg was 0.01. o
ss  represents the sigmoid function. 6 is a trainable scale (6 > 0) of firing rate.

s.6  We used regularization terms in the loss function to penalize very high firing rates as well as values of
sev  membrane voltages that were not biologically realistic. The default values of their weights were A¢ = 0.1
s and Ay = 1075, The rate regularization is defined via the Huber loss (Huber 1992) between the target
s firing rates, y, calculated from the model in (Billeh et al. 2020), and the firing rates, r, sampled the same
sso  number of neurons from the network model:

N
En d; .
Liate reg. — Z |Tj - H{(sj < 0}| #, with

’ (9)

152 .
=05 {6, <
Loy =420 o Hllss
k(|6;] — 4k), otherwise
s where j represents neuron j, N the number of neurons, 7; = j/N, § = 0.002, §; = r; — r;.arget. I(z)=1

s2  when z is true; I(z) = 0 when z is false.
ss3 ' The voltage regularization is defined through the term
N N2 N
1 v — By v — By,
Ly rog. = — e B R S R , 10
& N;({%h—EL ] ) +<[ 'Uth_EL+ ] ) (10)

sss where N represents the total number of neurons, v;, the membrane potential of neuron j, [---]*, the
sss  rectifier function. vy is the firing threshold of membrane potential. E, the resting membrane potential.

s 4.8 Training and testing

ss7 - We applied back-propagation through time (BPTT) (Chen et al. 2022) to minimize the loss function. The
s non-existing derivative % was replaced in simulations by a simple nonlinear function of the membrane
ss0  potential that is called the pseudo-derivative. Outside of the refractory period, we chose a pseudo-

se0  derivative of the form
t 2
t Vpd B (Usc)
ex ,
¢ Vth — EL P < 0’2 )

t
+ V" — Uth

(11)
ven — Er’

s where the dampening factor v,4 = 0.5, the Gaussian kernel width o, = 0.28. During the refractory
ss2  period, the pseudo derivative was set to 0.

53 'To demonstrate how sensitive the performance is to the scale of the surrogate derivative, I trained the
s« model with yp,q = 0.25 and 0.75 and kept all other hyperparameters the same. When v,q4 = 0.25, the
ss  testing accuracy is 0.7; when 7,9 = 0.75, the testing accuracy is 0.75. Compared with the case of
s6 Ypd = 0.5 where the testing accuracy is 0.83, other values are worse. This demonstrates that the choice
ss7  of the derivative’s scale can substantially affect gradient-based learning performance in spiking neural
ses  networks (Zenke and Vogels 2021).

s0  We drew a batch of visual stimuli (64) and calculated the gradient after every trial for each synaptic
so  weight whether an increase or decrease of it (but without changing its sign) would reduce the loss function.
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s Weights were then updated by the average gradient across the batch. This method had originally only
s2 been applied to neuron networks with differentiable neuron models and was normally referred to as
si3  stochastic gradient descent.

sta - During the training, we added the sign constraint on the weights of the neural network to keep Dale’s
s,s  law. Specifically, if an excitatory weight was updated to a negative value, it would be set to 0; vice versa.
sts  In every training run, we used a different random seed in order to draw fresh noise samples from the
s empirical distribution, and to randomly generate/select training samples.

s+ 4.9  Other simulation details

s The BPTT training algorithm was implemented in TensorFlow, which is optimized to run efficiently on
sso  GPUs, allowing us to take advantage of their parallel computing capabilities. We distributed the visual-
ss1  change-detection task trials over batches, with each batch containing 64 trials, and performed independent
s2  simulations in parallel. Each trial lasted for 600 ms of biological time, and computing gradients for each
ss3  batch took around 5s on an NVIDIA A100 GPU. Once all batches had finished (one step), gradients were
s« calculated and averaged to update the weights by BPTT. We define an epoch as 500 iterations/steps.
sss This computation had to be iterated for 22 epochs to make sure the performance was saturated. This
.6 took 12 h of wall clock time on 32 GPUs.

= 4.10 Recurrent artificial neural network models (RANNS)

sss  IModel
ss9 ' The dynamics of a RANN can be defined as
dx
T = —x(t) + W,r(t) + WI(t) + b, (12)

soo where the « is the activation of the network units and the corresponding firing rate is defined as
r = tanh(x) (13)

s 7 is the single-unit timescale, I used 50 ms as in (Sussillo et al. 2015; Pollock and Jazayeri 2020). W, is
s the recurrent synaptic weights; W s is the feedforward synaptic weights; b,. is bias. The initialization of
s W, Wi and b, are Gaussian noise N'(0,02). o = 1/+/average # fan-in for W, and W ss; 0 = 0.1 for
s by, I(t) is the input to the network at time ¢. It is the output of LGN model (Billeh et al. 2020).

ss The linear readout y(¢) from activities of all neurons r(t),
y(t) = W r(t) + by, (14)

ss where b, is bias. Wy is the readout weight. Wy is a N x 2 matrix; N is the number of recurrent neurons;
so7 2 is the number of possible decisions.

ss  The number of neurons and synapses in our model are the same as those in Billeh’s model (Billeh et al.
s00  2020). We randomly shuffled the connectivity or kept it the same as in Billeh’s model.

e0 Loss function
e01 The loss function was defined as
L= Lcross—entropy + )‘reg.Lreg.y (15)
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502 Where Lcrogs-entropy represents the cross-entropy loss which was defined in Eq. 8, Ay represents the
sz weight of activation regularization L,es.. The activation regularization was defined as

2

+
1
chg. - lN ; ‘7’1‘ — 0‘| s (16)

sa  where r; is the “firing rate” of neuron 7. N is the number of neurons and 6 is a threshold (§ = 0.01),
es unless otherwise stated. [---]T is the rectifier linear unit function. The value of § was determined as X

1
ws of the mean value of |r| when training the RANN model without regularization.

e Training details
sz We used the same training methods as in the V1 model but the learning rate is 107%. We also used
oo dt =5 ms to alleviate the vanishing gradient problem, as the one used in (Sussillo et al. 2015).

s0  Details for calculating normalized averaged activity in Fig. 4A-C
su  As the “firing rate” of neurons in RANN, » is in [—1, 1], we took the absolute value of r to compare with
ez the neural activity in the V1 model.

as 4.11 Demixed principal component analysis

s Demixed principal component analysis (Demixed PCA) is a statistical method that decomposes high-
eis dimensional neural data into a set of orthogonal latent variables, each of which captures a unique aspect
s of the neural response Kobak et al. 2016. Briefly, let Xn x T" be the neural data matrix, where n is
ez the number of neurons and T is the number of time points. Let Sn x C' x T be the tensor of stimulus
eis  conditions, where C' is the number of experimental conditions. The goal of Demixed PCA is to find a
s10  low-dimensional latent space Y 4«7, where d is the number of latent variables, that captures the majority
&0 of the variance in the neural data X, while also separating out the variance that is specific to each
e experimental condition in S.

62 In Fig. 3D, the principal component used for the projection arises by analysis of the first eigenvector
&3 of the covariance matrix that reflects variation through joint dependencies of the network decision and
¢ relative timing, see marginalization procedure of (Kobak et al. 2016). Hence, this matrix does not reflect
e variation that is caused only through the course of time within a trial or through the network decision
e alone. Moreover, to emphasize the formation of the network decision, we include in the computation of
s the aforementioned covariance matrix only data within [-50, 50] ms of the image presentation.

ws 4.12 Mutual information

620 To estimate the mutual information between single neuron activity and the network decision, we binned
s the spike counts of each neuron into 10 uniformly distributed bins between the minimum and maximum
61 spike count observed for that neuron within 50 ms windows. We then established an empirical joint
62 distribution for the binned spike count and the network decision and computed the mutual information
633 using the below formula.

MIX:Y) = 30 3 Pley)log, b (17)

e (x)P(y)’

6 where X is the set of firing activities of each neuron within a 50 ms window, and Y is the set of network
s decisions (either change or no-change). P(x,y) is the joint probability distribution of spike count and
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s network decision, while P(x) and P(y) are the marginal probability distributions of spike count and
637 network decision, respectively.

ss  To estimate P(x,y), we calculated the spike count of each neuron within a 50 ms window and established
630 an empirical joint distribution by counting the number of occurrences of each possible combination of
s0 spike counts and network decisions across 100,000 trials. We then normalized the joint distribution to
s1 obtain a probability distribution. We estimated P(z) and P(y) in a similar way by counting the number
sz Of occurrences of each possible value of spike count and network decision, respectively, across all trials.

w 4.13 UMAP

ss  We applied an exponential filter with a time constant of 20 ms to the spike output of each neuron
ss for 8 new images that had not been used during training. We then discarded all but the 1,500 most
s important principal components of these network states (explain 38% of variance; compromise to the
w7 memory consumption), and embedded these into 2D space by UMAP. The number of neighbors is 200.
as These projected network states were recorded for every ms, represented by a dot in Fig. 5.

00 UMAP (Uniform Manifold Approximation and Projection) is a nonlinear dimensionality reduction algo-
0 rithm that aims to preserve the local structure of high-dimensional data in low-dimensional space (McInnes
o1 et al. 2018). In this study, UMAP was used to embed the network activity during task performance into
e2 2D space.

&3 First, we applied an exponential filter with a time constant of 20 ms to the spike output of each neuron
e for 8 new images that had not been used during training. We then computed the principal components
&5 of the resulting network states, discarding all but the 1,500 most important components that explained
oo 38% of the variance.

o7 Next, we used UMAP to embed the high-dimensional network states into 2D space, while preserving the
es local structure of the data. Specifically, we used the UMAP implementation from the Python library
60 umap, with the following parameters: n_.neighbors = 200, min_dist = 0.1, and metric = euclidean.

s0 The resulting 2D embeddings represent the low-dimensional trajectories of the network states during
61 image processing, and were recorded for every ms. Each point in the 2D space represents a network state
e2 at a given time point, and is displayed as a dot in Fig. 5. The trajectory of the network states can be
663 visualized by connecting these dots in chronological order.

e 4.14 Additional figure description

es INormalized activity in Fig. 3, 4, and S6

es  Opiking activity at a specific relative time step, regarding image presentation, was averaged over 200
e7 trials. These average activities per time step were then normalized with the maximum values of their
68 average activation.

e0 Fig. 6B and C

e0 7 neurons shown in Fig. 6B and C were selected from the 20 early-informer-neurons with the largest MI
e that represented each of the 4 neuron classes, taking within each neuron class (excitatory, PV, Htra3, or
e 3st neurons) the ones with the largest ML
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Figure S1:
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Changes in the distribution of synaptic weights through training. (A) Distributions of

input weights before training. (B) Same as (A), but after training. The mean of input weights increases from
24.1 to 25.2 through training. (C) Distributions of excitatory weights in V1 model before and after training. (D)
Distributions of inhibitory weights in V1 model before and after training. Note that the weights before training

were given by (Billeh et al. 2020).
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Figure S2:

Distribution of recurrent synaptic weights between each pair of populations before

(light blue) and after learning (dark blue). Each row represents a pre-synaptic neuron population, and
each column represents a post-synaptic neuron population. The histogram represents the distribution of synaptic
weights of all synaptic connections that share the same pre-synaptic and post-synaptic neuron population. Vertical
axis in each panel is log-scale. Horizontal axis is linear scale and horizontal range is from the smallest value to the
largest value of each population. The number is 1 — D where D is from the Kolmogorov—Smirnov test, quantifying
the similarity between distributions (Billeh et al. 2020). Exc., excitatory neurons.
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Figure S3 (previous page): The temporal order of peak activity encodes in the V1 model also
information about the identity of the current image. We have shown in Fig. 3 that the temporal order
of peak activity in the V1 model has characteristic differences for different trial types (change or no-change).
We show here that this temporal or rank-order coding is even more refined: the order contains in addition
information about the identity of the current image. (A) Normalized average responses over 200 trials with the
change condition and the same current image (image 1) but different preceding images, with neurons ordered
according to the time of their peak activity. The gray and black bars at the top denote the image presentation
and response windows, respectively. (B) Same as in (A), but all trials have the same current image 2 and neurons
were ordered as in (A). The resulting blurred sequence indicates that the order of peak activity of neurons is
different for images 1 and 2, also within the same trial type (change condition). (C) and (D) Same as in (A)
and (B), respectively, but for the no-change condition.
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Figure S4: Lesion experiments for two versions of the trained V1 model with 30 and 1 readout
neurons that are trained to report an image chance. Task performance quickly decreases when early-
informer-neurons are silenced (in the order of their MI with the network decision) in both versions. The 30-
readout-neuron model has also after silencing a given number of neurons slightly higher accuracy on test images
than the single-readout-neuron model, consistent with Fig. 2F. Both curves show average values for 10 V1 models
where different sets of training data were used. The shaded area represents the SEM across 10 models.
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Figure S5 (previous page): Another attempt to identify trial-type dependent sequential activity
in the RANN, similarly as shown in Fig. 3 for the V1 model (A-C) Same RANN and conditions as in
Fig. 4A-C but visualized without neuron-wise normalization. The fuzzy sequential order does not get sharper in
panel (B) than in panel (C), although the neurons are ordered in (B) for this particular trial type (no-change).
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Figure S6 (previous page): Different weights of the regularization term cannot produce sparse
sequential neural activity while maintaining high task performance. (A-D) The normalized average
responses of 200 change-condition trials in the RANN with different weights of regularization are plotted over
time, with neurons ordered based on the time of their peak activities under the change condition. One sees that
training the RANN for the same task with different weights of the regularization term (Methods) does not produce
a sparse sequential neural activity as in the experimental data and the V1 model. Furthermore, more aggressive
regularization strongly reduces task performance.
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Figure S7 (previous page): Plotting the same results as in Fig. S6 without neuron-wise normaliza-
tion still does not indicate a RANN regime with sparse sequential neural activity. (A-D) Here the
average absolute responses |r| of 200 change-condition trials in RANN with different weights of regularization are
plotted over time, with neurons ordered based on the time of their peak activities under the change condition.
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Figure S8 (previous page): Setting the value of the threshold in the activation regularization term
to 0 also does not produce sparse sequential activity in the RANN. The threshold, 6 in Eq. 16 was
changed here from its default value 0.01 to 0. Average responses of 200 change-condition trials in RANN with
different weights of the regularization term are plotted over time, with neurons ordered based on the time of their
peak activities under the change condition. Similarly as in Fig. S7, none of the weights of the regularization term
that we tried produces sparse sequential activity in the RANN while maintaining high task performance.
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Mutual information

Figure S9: Comparison of mutual-information distributions among neurons in the V1 Model and
the RANN. (A-D) The number of neurons that has a given level of MI with the network output is shown for
each 50-ms window in the V1 model and the RANN (image onset was at time 0). One clearly sees that for each
of these time windows that are by 1 or 2 orders of magnitude more neurons that have high MI with the network
output. This explains also why so much more neurons need to be silenced in the RANN in order to reduce the
task performance of the network to a given level.
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Silencing of 100 early-informer-neurons
also flips the decision from change to no-change

'
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Preceding image 5 and current image 7
== in the intact V1 model
== When 100 early-informer-neurons

are silenced

Figure S10: Silencing of 100 neurons can also flip a trajectory from the bundle for change to the
no-change bundle of trajectories. In Fig. 5D, we demonstrated that silencing 100 early-informer-neurons can
cause the trajectory of network states to flip from the bundle for no-change to the bundle for change trials. We
show here that silencing of the same 100 neurons can also flip the network bifurcation in the other direction.
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Figure S11: Histogram of the lengths (= number of synapses) of paths from 4 sampled early-
informer-neurons with high MI to the readout neuron. We selected early-informer-neurons with the
highest MI in four basic neuron types (excitatory, Pvalb, Sst, and Htra3 neurons). The paths from early-informer-
neurons to the readout neuron were found by the MATLAB function “allpaths” in the directed graph. One can
also find arbitrarily long paths; here we only demonstrate the short paths (length < 5) to the readout neuron
for each of the early-informer-neurons. This distribution of path lengths suggests that the firing activity of an
early-informer-neuron affects the membrane voltage of the readout neuron in multiple and diverse indirect ways.
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