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Abstract7

In complex environments, animals can adopt diverse strategies to find rewards. How distinct8

strategies differentially engage brain circuits is not well understood. Here we investigate this9

question, focusing on the cortical Vip-Sst disinhibitory circuit. We characterize the behavioral10

strategies used by mice during a visual change detection task. Using a dynamic logistic regres-11

sion model we find individual mice use mixtures of a visual comparison strategy and a statistical12

timing strategy. Separately, mice also have periods of task engagement and disengagement.13

Two-photon calcium imaging shows large strategy dependent differences in neural activity in14

excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image15

omissions. In contrast, task engagement has limited effects on neural population activity. We16

find the diversity of neural correlates of strategy can be understood parsimoniously as increased17

activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy which facil-18

itates task appropriate responses.19

Introduction20

Circuitry across the brain, including sensory cortex, does not operate in isolation but rather21

serves behavioral demands. As such, quantitative behavioral analysis is an essential step in22

detailed understanding of brain circuits (Carandini 2012; Gomez-Marin et al. 2014; Krakauer23

et al. 2017; Niv 2021). Recently a suite of computational tools has emerged for precise analysis24

of behavioral tasks used in neuroscience laboratories including the description of behavioral25

strategies (Brunton et al. 2013; Berman 2018; Roy et al. 2018; Roy et al. 2021; Ashwood et26

al. 2022; Jha et al. 2022; Le et al. 2022). These tools vary in their statistical structure but27

all parameterize a space of possible behaviors which are then constrained by behavioral data.28

This has lead to a greater appreciation of behavioral diversity during laboratory tasks, including29

across subject variability, and within subject variability across individual behavioral sessions30

and task learning.31

Behavioral strategies have been shown to alter which brain regions and pathways are active32

during a task. Gilad et al. 2018 found mice used either an active or passive whisking strategy33

which altered the location of short term memory in the cortex. Bolkan et al. 2022 found that34

both task difficulty as well as the subject’s behavioral state determined how striatal pathways35

influenced behavior. Other studies have demonstrated strategy dependent changes in neural36

dynamics across human fMRI (Venkatraman et al. 2009; Yang et al. 2023), rodent wide-field37

imaging (Pinto et al. 2019), and cellular activity in the fruit fly (Calhoun et al. 2019). Pre-38

frontal structures, including the anterior cingulate cortex and medial prefrontal cortex, have39

been proposed to track strategy preferences and control strategy execution (Tervo et al. 2021;40

Domenech et al. 2020; Schuck et al. 2015; Proskurin et al. 2022). Behaviorally relevant signals41

have also been shown to modify activity in sensory cortex (Tseng et al. 2022) including visual42

flow (Leinweber et al. 2017; Schneider 2020), amplifying task relevant signals (Kim et al. 2020),43

dynamically scaling the range of stimulus encoding (Waiblinger et al. 2022), and value signals44

(Banerjee et al. 2020).45

Simultaneously, there has been growing appreciation for the role neural cell types play in46
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mediating specific computations (Pinto et al. 2015; Sylwestrak et al. 2022). Merging lines47

of evidence suggest a disinhibitory circuit between vasoactive intestinal peptide-positive (Vip)48

interneurons, somatostatin-positive (Sst) interneurons, and excitatory cells (Pfeffer et al. 2013;49

Kullander et al. 2021; Campagnola et al. 2022; Karnani et al. 2016). The circuit is disinhibitory,50

whereby Vip neurons disinhibit pyramidal activity through inhibition of Sst inhibitory neurons51

(Kamigaki 2019). In the visual cortex, the Vip-Sst disinhibition circuit has been implicated in52

a variety of computational mechanisms. Millman et al. 2020 found that Vip-Sst antagonism53

controlled the dynamic range of stimulus contrast for excitatory cells. Keller et al. 2020 found54

that the Vip-Sst disinhibitory circuit mediates the influence of visual context on excitatory cells.55

Fu et al. 2014 found that running in mice activates the Vip-Sst disinhibition of excitatory cells.56

Finally, anatomical (Williams et al. 2019; Kamigaki 2019; Ma et al. 2021) as well as functional57

studies (Pi et al. 2013) demonstrate that top-down feedback is preferentially routed through Vip58

neurons, influencing local circuits through Vip disinhibition.59

Despite recent progress in analysis of behavior and cell type circuit dissection, it remains60

unclear how behavioral strategies influence cortical circuits through specific cell types. Given61

the range of circuit functions mentioned above, the Vip-Sst disinhibitory circuit is a promising62

substrate for mediating behavioral strategies. Here we investigate how the Vip-Sst circuit in63

visual cortex mediates strategy dependent demands. We used the recently collected Allen Insti-64

tute Visual Behavior - 2p calcium imaging dataset to examine how the activity of Vip, Sst, and65

excitatory cells depend on strategy preferences during a change detection task (Garrett et al.66

2023; brain-map.org). This dataset, collected with the Allen Brain Observatory experimental67

pipeline, contains two-photon calcium imaging in genetically defined cell types collected while68

mice performed a visual change detection task. This large systematic survey contains behavior69

from 376 imaging sessions from 82 mice thus permitting analysis of behavioral diversity. We70

used a dynamic logistic regression model (Roy et al. 2018) to identify strategies used by mice on71

this task. We find individual mice have stable strategy mixtures of a visual comparison strategy72

and a statistical timing strategy. Vip, Sst, and excitatory cells recorded from mice predomi-73

nantly using each of these strategies show dramatic differences in activity. Further, the effects74

of behavioral strategy were independent from task engagement and stimulus novelty. Finally,75

we show that strategy differences can be succinctly described by the degree of activation of the76

Vip-Sst disinhibitory circuit.77

Results78

Visual change detection task79

To examine the relationship between behavioral strategies and cortical circuits, we analyzed80

the diversity of behaviors in the Allen Institute Visual Behavior - 2p calcium imaging dataset81

(brain-map.org). This public dataset contains 2-photon calcium imaging from transgenic mice82

expressing the calcium indicator GCaMP6f in excitatory neurons (Slc17a7-IRES2-Cre;Camk2a-83

tTa;Ai93), Sst inhibitory neurons (Sst-IRES-Cre;Ai148), and Vip inhibitory neurons (Vip-IRES-84

Cre;Ai148). The data was collected with the Allen Brain Observatory experimental pipeline85

which uses standardized data collection and processing (Garrett et al. 2023; de Vries et al. 2020).86

We focused our analysis on recordings from two visual areas, V1 and LM, at multiple cortical87

depths. During imaging, mice performed a visual change detection task (Fig. 1A). In this task,88

head fixed mice were shown a series of natural images (250ms stimulus duration) interspersed89

with periods of a gray screen (500ms inter-stimulus duration). This task uses a roving baseline90

paradigm whereby an individual image repeats a variable number of times before a new image91

is presented and then itself repeats. Mice were given a water reward for licking in response to92

image changes. Premature licking delayed the time of the next image change. Further, to serve93

as distractors, 5% of image repeats were omitted and replaced with a continuation of the gray94

screen for the same duration as image presentations. Image omissions therefore did not disrupt95
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the rhythmic nature of the stimulus. Image changes as well as the image immediately before the96

change were not omitted. Mice performed the task on a running disk and were free to run or not97

run. Running had no bearing on the task. These mice learned the task through a standardized98

training pipeline and were selected for imaging based on a consistent criteria of minimum task99

performance (Garrett et al. 2023; Groblewski et al. 2020).100

Mice could potentially perform this task in multiple ways. In one possible strategy, mice101

could hold a memory of the previous image and perform a visual comparison to the subsequent102

image. This visual comparison strategy may be vulnerable to distraction from image omissions.103

Alternatively, mice could learn the statistical distribution of when images change and make104

educated guesses based on the time since the last image change (Fig. 1A). To illustrate these105

strategies we can examine licking patterns around time points relevant to each strategy (Fig.106

1B). For one example session we can see: (top left) licking aligned to image changes, which107

results in a water reward, (top right) licking during image omissions, which never results in a108

reward, (bottom left) licking on the image after an omission, which never results in a reward,109

and (bottom right) licking on the fifth image after the last lick, which sometimes results in a110

water reward. Supplemental Note 1 shows distributions of mouse behavior across the dataset.111

112

Behavioral strategy model113

In order to identify these strategy patterns across our dataset we used a dynamic logistic regres-114

sion model (Roy et al. 2018). Our model predicts whether the mouse will start a licking bout115

in response to each image based on the weighted influence of each strategy. Importantly, the116

strategy weights were allowed to vary across the course of the session constrained by a smoothing117

prior described in detail below.118

We will now describe how we processed the data and constructed our strategy model (Fig.119

1C). First, individual mouse licks were segmented into licking bouts based on an inter-lick interval120

of 700ms (Supplemental Note 2A). The duration of licking bouts was largely governed by whether121

the mouse received and then consumed a water reward (Supplemental Note 2B). Therefore, we122

focused our analysis on the start of each licking bout. Licking bout onsets were time-locked to123

image presentations, thus for each licking bout we identified the last image or omission presented124

before the bout started (Supplemental Note 2C). Since our model predicts the start of licking125

bouts, we ignore image presentations when the mouse was already engaged in a licking bout. The126

design matrix of our strategy model is composed of vectors that describe the probability each127

strategy would start a licking bout on each image presentation. For the licking bias strategy,128

which is simply a bias term, the licking probability is 1 on all images representing a constant129

drive to lick. For the visual strategy, the probability is 1 on image changes, and 0 otherwise.130

For the omission strategy, the probability is 1 during image omissions, and 0 otherwise. The131

post-omission strategy has a probability of 1 during the first image after an omission, and 0132

otherwise. For the timing strategy, the licking probability is a sigmoidal function of how many133

images have been presented since the end of the last licking bout. The licking probability is low134

immediately after a licking bout, rises to 0.5 at 4 images after a licking bout, and then a high135

licking probability at longer durations. The parameters of the sigmoidal function were learned136

from a subset of the data (Supplemental Note 3). All strategies other than the licking bias were137

mean-centered.138

Using standard, non-dynamic, logistic regression our strategy model would predict the prob-139

ability a mouse licked on a given image presentation, p(x⃗i), by using fixed weights, β⃗, to combine140

the strategy vector for that image, x⃗i, and passing that sum through a logistic function:141

p(x⃗i) =
1

1 + e−(β⃗x⃗i)
. (1)

However, by using the dynamic logistic regression model, developed in Roy et al. 2018, our model142

lets the weight for each strategy, k, vary for each image presentation subject to a smoothing143
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prior. The prior is implemented as letting the weights for each strategy undergo a random walk144

with standard deviation σk:145

βk,i+1 = βk,i +N (0, σ2
k). (2)

The smoothing prior σk is a hyper-parameter unique to each strategy during each session and146

controls the volatility of each strategy. These hyper-parameters were fit to the behavioral data by147

maximizing the model evidence as described in Roy et al. 2018. The smoothing prior constrains148

the strategy weights to evolve gradually over time. This balances the ability of the model to149

dynamically track changing behavioral patterns against over-fitting to the responses on each150

stimulus. The dynamic model has the same form as the standard model with the weights now151

a function of each image, β⃗i:152

p(x⃗i) =
1

1 + e−(β⃗ix⃗i)
. (3)

The strategy model was fit to each one-hour behavioral session by the maximum a posterori153

(MAP) estimate of the weights given the data and the hyper-parameters. Figure 1D shows154

the example output of the model for one session. For this session the licking bias and timing155

strategies have more volatile weights than the visual, omission, and post-omission strategies.156

The model successfully captures the time-varying probability of licking in the data as the mouse157

goes through epochs of hits, misses, as well as high and low licking rates.158

159

Mouse behavior is largely described by the visual and timing strategies160

We quantified the performance of the model with the area under the receiver operating char-161

acteristic (ROC) curve (Fig. 2A). In this analysis we use the model’s cross validated licking162

probability prediction on each image as a classifier of whether the mouse started a licking bout163

on each image presentation. The ROC curve computes the true positive rate and false positive164

rate of a classifier as the classification threshold is varied. The area under this curve (AUC)165

ranges from .5 (classifier at chance), to 1 (perfect classification across all thresholds). The static,166

or standard, logistic regression model performs poorly, often at chance. The dynamic model per-167

forms well, with an average AUC value of 0.83. See Supplemental Note 4 for additional model168

validation details.169

For each behavioral session we can analyze the best fitting strategy weights (Fig. 2B) and170

the smoothing prior for each strategy (Fig. 2C). The weights are multiplied against the strategy171

design matrix and then passed through the logistic function. The licking bias strategy sets the172

average licking probability on each image presentation. A licking bias weight of 0 would translate173

to a 50% licking probability, with smaller weights leading to lower licking probabilities, and larger174

weights leading to higher licking probabilities. The other strategies are mean-centered (the sum175

of their strategy design vectors equals 0), which means we can interpret the strategy weights176

relative to the licking bias term. A weight of 0 would have no influence on the licking probability,177

a negative weight would result in less licking than the bias term, and a positive weight would178

result in more licking than the bias term. Across our population, the omission strategy has a179

negative value, meaning on average mice are less likely to lick during image omissions. The180

other three strategies have, on average, positive values, meaning mice are more likely to lick on181

the image after an omission (post omission strategy), on image changes (visual strategy), and at182

the expected image change frequency (timing strategy). However there is significant variability183

across the behavioral sessions. Supplemental Note 5 shows additional characterization of how184

strategy weights are correlated with the number of hits, misses, and licking probability within185

each session. The smoothing priors for each strategy govern how variable the strategy weights186

can be within each session from image to image, and constrain the strategy weights to evolve187

gradually over time. On average the strategies have smoothing priors within the same order188

of magnitude, with the licking bias and timing strategies generally being the most variable.189

However, there is significant variability across behavioral sessions.190
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To evaluate the importance of each strategy, we measured the reduction in model evidence191

after removing each strategy (Fig. 2D). The model evidence, or marginal likelihood, measures192

the probability of the data given the hyper-parameters after integrating over possible parameter193

values. Model comparison metrics such as Bayes factor and Bayesian information criterion are194

based on comparing the model evidence of two models. In general, if the model evidence decreases195

after removing a strategy then the model performs worse at describing the data. We did not196

evaluate the model evidence without the licking bias term because it sets the average licking197

rate and removing it breaks the model in a trivial manner. Across our population, removing198

the omission strategy does not lead to a reduction in model evidence. We therefore conclude199

that the omission strategy is not a meaningful descriptor of mouse behavior. Removing the200

post omission strategy leads to a small decrease in model evidence, demonstrating a minor role201

in describing mouse behavior. Removing the visual and timing strategies leads to significant202

decreases in model performance, albeit with large variability across behavioral sessions.203

We focused the rest of our analysis on the visual and timing strategies based on three ob-204

servations. First, the lack of change in model evidence for the omission strategy. Second, we205

observed a strong correlation between the post omission strategy and visual strategy in terms of206

both the changes in model evidence, and their average weights (Fig. 2E). Third, after performing207

PCA on the matrix of changes in model evidence, we found the top two principal components208

explained 99.04% of the variance and are closely oriented with the timing and visual strategies209

respectively (Supplemental Note 6).210

Plotting the change in model evidence from the visual and timing strategies against each211

other we find that there is a continuous spectrum of behaviors that mix the visual and timing212

strategies together (Fig. 2F). We term the strategy index as the difference in the change of model213

evidence between the visual and timing strategies. A positive strategy index value indicates the214

session was well described by the visual strategy. A negative strategy index indicates the session215

was well described by the timing strategy. Plotting the strategy index against the rewards earned216

per session we see that all strategy mixes are able to earn a significant number of rewards per217

session (Fig. 2G). However higher values of the strategy index tend to result in higher number of218

earned rewards. Individual mice were fairly stable in their strategy preferences across multiple219

behavioral sessions (Fig. 2H, up to 4 sessions per mouse performed during calcium imaging).220

Mouse identity explains 72% of the variance in the strategy index across imaging sessions.221

Consistent with this finding we did not observe mice switching between strategies within a222

behavioral session. Further, strategy preferences emerged gradually over training (Supplemental223

Note 7). Taken together we find individual mice develop unique strategy preferences between224

the visual and timing strategies that are stable over many days.225

Given that strategy preferences are stable over multiple days, the remaining analyses cate-226

gorize each behavioral session by the dominant strategy (equivalently, the sign of the strategy227

index). We refer to sessions best described by the visual strategy (positive strategy index)228

as visual strategy sessions. Likewise, we refer to sessions best described by the timing strategy229

(negative strategy index) as timing strategy sessions. Figure 2I illustrates 90 seconds of behavior230

from each of the two dominant strategies. Supplemental Note 8 provides additional characteri-231

zation of the behavior for each of the two strategies.232

233

Task strategy is distinct from task engagement234

Rather than switching strategies during a session, we observed that mice had clear patterns235

of disengagement when they stopped licking altogether. To demonstrate this we generated236

a contour plot of the licking bout rate and reward rate aggregated across all the behavioral237

sessions (Fig. 3A). Mouse behavior is clearly divided between two regions. One region, which238

we term disengaged behavior, has low licking rates and low reward rates. The other region,239

which we term engaged behavior, is much broader, encompassing a wider range of licking and240
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reward rates. We define a simple threshold for disengagement as licking bout rates below 1241

bout/10 s, and reward rates below 1 reward/120 s. On average, mice are engaged 60.1% of the242

time. Figure 3B shows an illustrative example session in which the mouse transitions from task243

engagement to disengagement.244

In order to determine if task engagement was related to task strategy, we plotted the average245

strategy weights across the same landscape of licking bout and reward rates. Both the visual246

strategy weights (Fig. 3C) and timing strategy weights (Fig. 3D) are at their lowest values in247

the disengaged region. In the engaged region, the visual strategy is highest in the upper left248

when the ratio of rewards to licks is maximized. This can be understood as the visual strategy249

efficiently transforming licking bouts into rewards. The timing strategy is highest in the lower250

end of the engaged region, which can be understood as the timing strategy requiring more false251

alarm licks to generate rewards. From this analysis we conclude that task engagement is separate252

from each of the dominant strategies.253

Next, we asked if the temporal pattern of engagement across each session was related to254

task strategy (Fig. 3E). For both strategies, engagement is highest at the start of the ses-255

sion and gradually decreases throughout the session, presumably as the mice become sated. A256

slightly higher percentage of timing strategy sessions are in the engaged state at each time point,257

presumably because the timing strategy requires more trial and error to earn water rewards.258

Finally, we asked if the timing of licking was altered during disengaged periods by plotting259

histograms of when each licking bout started with respect to the latency since the last image260

presentation (Fig. 3F). By definition, the engaged periods have more licking bouts. However261

we see the disengaged licking bouts have altered timing relative to stimulus presentations. The262

engaged licking is time-locked to image onset, with the peak response time around 400ms.263

Disengaged licking lacks this clear time-locking to image onset. This pattern holds true for both264

behavioral strategies. Both visual and timing strategy sessions have clear time-locked responses265

in engaged epochs (Fig. 3G), and both lack clear time-locked responses in disengaged epochs266

(Fig. 3H). The fact that engaged licking in timing strategy sessions is time-locked to image267

presentations demonstrates that mice performing the timing strategy understand that rewards268

are tied to image presentations, and are synchronizing their timing-based guesses to image onsets269

rather than randomly licking without regard to the stimulus.270

We conclude that mice performing both strategies go through periods of engaged and dis-271

engaged behavior, which is a separate dimension of behavior from their strategy preferences.272

Mice performing both strategies gradually disengaged over the course of the one hour behav-273

ioral session as they got sated by water rewards. Finally, mice performing both strategies have274

image-locked licking while engaged, and randomly timed licking when disengaged.275

276

Strategy is reflected in neural activity across the Vip-Sst microcircuit277

We next wanted to assess whether the dominant behavioral strategy would be reflected in neural278

activity. To answer this question we turned to two-photon calcium imaging recordings during279

mouse behavior. We focused our analysis on two cortical visual areas, V1 and LM (Fig. 4A).280

Calcium imaging was performed in transgenic mice expressing the calcium indicator GCaMP6f in281

specific cell populations: excitatory neurons, Sst inhibitory neurons, and Vip inhibitory neurons.282

Recent surveys of neural cell types have proposed a taxonomy in which excitatory neurons and283

GABAergic neurons are classes, and Sst and Vip neurons are subclasses of GABAergic neurons284

(Tasic et al. 2018). In this paper, for simplicity we refer to excitatory, Sst, and Vip as cell285

classes. Each cell class was recorded in separate mouse populations. These three cell classes286

are thought to form a cortical microcircuit whereby Sst and Vip reciprocally inhibit each other287

(Fig. 4B). The dataset contains imaging while mice performed the task with both familiar and288

novel stimuli. Novel stimuli have dramatic effects on neural activity (Garrett et al. 2023), so we289

restricted our analysis to imaging during familiar image sessions. Our neural dataset contains290
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8,619 excitatory cells (21 imaging sessions, 9 mice), 470 Sst cells (15 imaging sessions, 6 mice),291

and 1,239 Vip cells (21 imaging sessions, 9 mice). We performed all of our analyses on discrete292

calcium events that were regressed from the raw fluorescence traces, thus removing the slow293

decay dynamics of the calcium indicator GCaMP6f (Fig. 4C). The extracted calcium events are294

of variable magnitude and correspond to a transient increase in internal calcium levels.295

Our neural analysis examines how each cell class responds to three stimulus types: image296

repeats, distracting image omissions, and image changes (Fig. 4D). We grouped cells by the297

dominant strategy used by the mouse during the behavioral session in which they were recorded.298

We first asked how each cell class responds to image repeats, and if strategy affects responses299

to image repeats. Excitatory and Sst cells respond to each repeated image presentation with300

no difference in the population average between strategies. Excitatory cells are image selective,301

with each cell typically responding to only one of the 8 images presented during the session. In302

contrast Sst cells are broadly image tuned, thus the population average for excitatory cells is an303

order of magnitude smaller than Sst cells. Vip cells are suppressed by image presentations and304

ramp their activity between image presentations. Notably, Vip cells from visual strategy sessions305

showed significantly larger activity ramps between image presentations (Average calcium event306

magnitude +/- hierarchically bootstrapped SEM, visual 0.0096 +/- 0.00094, timing 0.0070 +/-307

0.00092, p=0.025). We assessed significance and report the standard error of the mean (hb.308

SEM) by performing a hierarchical bootstrap (Saravanan et al. 2020). In summary, excitatory309

and Sst cells showed no strategy differences in response to image repeats, while Vip cells from310

visual strategy sessions showed increased activity between image repeats compared to cells from311

timing strategy sessions.312

We next asked if strategy affects how each cell class responds to image omissions. In response313

to image omissions excitatory cells show an amplified response on the first image presentation314

after the omission, compared with the pre-omission image, with no difference in the population315

average between strategies. Sst cells showed significant strategy dependent changes in activity316

during the second half of the omission interval. Cells from timing strategy sessions show in-317

creasing activity ramping up over the omission interval, while cells from visual strategy sessions318

show decreasing activity during the omission interval (Average calcium event magnitude +/-319

hb. SEM, visual 0.0052 +/- 0.0021, timing 0.019 +/- 0.0054, p=0.0037). Sst cells from both320

strategies show decreased responses on the first image presentation after the omission compared321

to the pre-omission image. Vip cells show large ramps of activity during the omission interval322

with significant differences between strategies (Average calcium event magnitude +/- hb. SEM,323

visual 0.036 +/- 0.0038, timing 0.019 +/- 0.0022, p=0.00). In summary, Sst cells from visual324

strategy sessions show lower activity following omissions compared to cells from timing strategy325

sessions, while Vip cells from visual strategy sessions show increased ramping activity following326

omissions compared to timing strategy sessions.327

We then asked if strategy affects how each cell class responds to image changes, including both328

hits (mouse licked) and misses (mouse did not lick). In response to image changes we see strategy329

dependent differences across all three cell classes. Figure 4E shows summary quantification of330

differences between hits and misses for each strategy.331

We find excitatory cells from visual strategy sessions show greater activity in response to332

hits compared to cells from timing strategy sessions (Average calcium event magnitude +/- hb.333

SEM, visual hit 0.014 +/- 0.0017, timing hit 0.0097 +/- 0.0014, visual hit vs timing hit p=0.04).334

Further, we find a significant difference between hits and misses for cells from visual strategy335

sessions, but not for cells from timing strategy sessions (Average calcium event magnitude +/-336

hb. SEM, visual hit 0.014 +/- 0.0017, visual miss 0.0081 +/- 0.0010, timing hit 0.0097 +/-337

0.0014, timing miss 0.0080 +/- 0.00095, visual hit vs visual miss p=0.0025). For Sst cells, cells338

from visual strategy sessions show lower activity during the interval after hits compared to cells339

from timing strategy sessions (Average calcium event magnitude +/- hb. SEM, visual hit 0.0015340
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+/- 0.00074, timing hit 0.013 +/- 0.0032, p=0.00). Further we find lower Sst activity following341

hits compared to misses for Sst cells from visual but not from timing strategy sessions (Average342

calcium event magnitude +/- hb. SEM, visual hit 0.0015 +/- 0.00074, visual miss 0.0059 +/-343

0.0021, timing hit 0.013 +/- 0.0032, timing miss 0.0098 +/- 0.0022, visual hit vs visual miss344

p=0.010). For Vip cells, in the interval before the image change we find significant differences345

in activation between the two strategies as well as between hits and misses for cells from visual346

but not from timing strategy sessions (Average calcium event magnitude +/- hb. SEM, visual347

hit 0.016 +/- 0.0022, visual miss 0.011 +/- 0.0011, timing hit 0.0070 +/- 0.00076, timing miss348

0.0072 +/- 0.00087, visual hit vs visual miss p=0.037, visual hit vs timing hit p=0.00, visual349

miss vs timing miss p=0.0003). In summary, cells from visual strategy sessions show differential350

activity in all three cell classes between hits and misses, while cells from the timing strategy351

shows no modulation between hits and misses. Further, we see strategy dependent differences352

in neural activity in responses to hits across all three cell types: excitatory cells from visual353

strategy sessions show greater activity after hits compared to cells from timing strategy sessions,354

Sst cells from visual strategy sessions show lower activity following hits compared to cells from355

timing strategy sessions, and Vip cells from visual strategy sessions show greater activity before356

hits and misses compared to cells from timing strategy sessions.357

Vip cells are known to be modulated by locomotion (Fu et al. 2014). This effect is seen in358

our data most visibly in figure 4D when the mice stop running after image changes to consume359

their water reward. With this in mind, we wanted to know whether the strategy differences we360

observe could be due to differences in running speed or patterns. To answer this we looked at361

the Vip response amplitude to images and omissions as a function of running speed (Fig. 4F,G).362

Broadly, we observe Vip activity in cells from visual strategy sessions is equal to or greater363

than cells from timing strategy sessions across all running speeds. From this we conclude that364

strategy differences in Vip cell activity cannot be a result of different running speeds or patterns.365

366

Microcircuit disinhibition dynamics are amplified in the visual strategy367

In order to make sense of the diverse strategy differences we observe in figure 4 we now turn368

to the Vip-Sst microcircuit as a unifying model (Fig. 5A). We first asked how the microcircuit369

components respond as a system to each stimulus type. We thus examined the neural population370

averages grouped by strategy allowing a direct comparison across cell classes (Fig. 5B). We371

emphasize here each cell class was recorded in a separate population of mice. Viewing the neural372

population averages in this manner highlights that excitatory and Sst cells are image responsive,373

while Vip cells are inhibited by image presentations. Notably Vip cells show ramping between374

image presentations. We can further condense this information by showing the three cell classes375

in a 3D state space plot (Fig. 5C), or for clarity in a 2D state space between excitatory and Vip376

cells. These state space plots reveal the dynamics of the three cell classes as a periodic cycle377

corresponding to the rhythmic stimulus presentations where the two strategies differ primarily378

in the Vip activation between image presentations. Importantly, in this periodic cycle excitatory379

and Sst cells are tightly correlated, each responding to image presentations, while Vip cells are380

suppressed by image presentations. Supplemental Note 9 shows 3D state space plots and all381

2D state space combinations of cell classes. We will next consider image omissions and image382

changes as perturbations to this underlying microcircuit cycle.383

Previous work (Millman et al. 2020) found that Vip-Sst antagonism regulates the gain of384

cortical circuits to broaden the range of stimulus contrast levels excitatory cells can encode.385

Comparing the dynamics of Vip and Sst cells in response to image omissions we can see this386

antagonism at work (Fig. 5E). When an image is omitted, the Vip cells continue their between-387

image ramping until they are finally suppressed by the post-omission image. Sst cells have388

smaller responses to the post-omission image compared to the pre-omission image and excita-389

tory cells have larger responses to the post-omission image compared to the pre-omission image,390
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presumably a result of the increased Vip activation. We can interpret this ramping as Vip cells391

responding to the lack of visual stimulus by amplifying the gain of the cortical circuit via inhi-392

bition of Sst cells and disinhibition of excitatory cells. In the state space view of microcircuit393

dynamics, the image omission is a perturbation to the periodic repeating image cycle. In re-394

sponse to this perturbation, Vip cells activate, releasing excitatory cells from inhibition thereby395

amplifying the response to the post-omission image before returning to the periodic image cycle396

on subsequent images. Notably, these gain dynamics are amplified in cells from visual strategy397

sessions compared to cells from timing strategy sessions (Fig. 5E).398

Image changes can also be understood as perturbations to the periodic image cycle. In399

response to both hits and misses excitatory cells show increased responses. For cells from visual400

strategy sessions we see notable differences between hits and misses in Vip activity before the401

image change (Fig. 5F,G). We do not observe these differences for cells from timing strategy402

sessions (Fig. 4E). One possible interpretation of these data is that mice performing the visual403

strategy are more likely to make the choice to respond or not based on visual cortex activity.404

On a trial by trial basis, a more active Vip population may prime excitatory cells for more405

robust change responses. Thus leading to increased Vip activity before hits compared to misses,406

increased excitatory activity on hits compared to misses, and decreased Sst activity after hits407

compared to misses. We emphasize here that the increased excitatory response on hits happens,408

on average, 200ms before the mouse responds and therefore cannot be interpreted as a reward409

response. In this interpretation, mice performing the timing strategy are less reliant on visual410

cortex activity to trigger responses, instead using some internal timing mechanism elsewhere411

in the brain. Thus, we see no differences in average Vip, Sst, or excitatory activity between412

hits and misses for timing mice. Increased Vip activity priming visual, but not timing, strategy413

mice to respond may also explain why visual strategy mice are more likely to respond to the414

post-omission image (Fig. 2E). In the state space view of microcircuit dynamics, the image415

change perturbs the ongoing periodic image cycle by elevating excitatory responses. For mice416

performing the visual strategy, but not the timing strategy, increased Vip activity can amplify417

excitatory responses and preferentially lead to behavioral responses.418

In summary, when comparing between visual and timing strategy circuits, we can succinctly419

describe the differences in population response to image repeats, omissions, and changes as am-420

plified Vip disinhibition dynamics. Excitatory and Sst cells respond in unison to repeating image421

presentations, while Vip cells are suppressed by each image presentation, instead ramping their422

activity between images. This between image ramping is elevated in cells from visual strategy423

sessions. When images are omitted, Vip cells continue to ramp their activity which in turn424

suppresses Sst and disinhibits excitatory cells during the post-omission image. This function-425

ally allows Vip cells to calibrate the subsequent gain of excitatory cells, and this mechanism is426

heightened in cells from visual strategy sessions. Finally, for the visual strategy elevated Vip427

activity before image changes facilitates increased excitatory responses which in turn potentially428

leads to mouse licking responses.429

430

Trial by trial neural activity is more correlated with behavioral choices for visual431

strategy mice432

Following the interpretation suggested above that visual strategy mice are more reliant on visual433

cortical activity to drive choices, we next wanted to determine if the differences in neural activity434

between strategies were behaviorally relevant on an trial by trial basis. To answer this we used a435

random forest classifier trained on neural activity to predict either image changes versus repeats436

(change decoder), or hits versus misses (hit decoder). Decoding was performed on neural activity437

in the first 400ms after each stimulus presentation. This time window is before the average licking438

response, and thus largely avoids reward signals.439

Across all three cell types, we found that image changes versus repeats could be decoded440
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equally well from cells from visual strategy sessions and timing strategy sessions (Fig. 6A). We441

then asked to what degree the image change signals were correlated with animal behavior. Since442

we observe differential activity on hits versus misses for cells from visual strategy sessions, but443

not cells from timing strategy sessions, we reasoned that change signals in visual cortex should444

be more correlated with behavior when mice are performing the visual strategy. We measured445

the correlation between the decoder’s predictions on image changes (change vs repeat) and the446

animal’s choice (hit vs miss). For excitatory, but not Vip or Sst cells, we find a stronger correla-447

tion for cells taken from visual strategy sessions compared to timing strategy sessions (Fig. 6B).448

For excitatory cells, the correlation between behavior and decoder predictions is more than twice449

as strong for visual sessions compared to timing sessions. This demonstrates that while image450

change information is equally present in neural activity from mice performing both strategies,451

it is more correlated with animal choices in visual strategy sessions. This finding is consistent452

with the interpretation that mice performing the visual strategy are more dependent on activity453

in visual cortex to drive behavioral responses. Finally, we asked how well we could decode hits454

versus misses. For excitatory and Vip cells, but not Sst cells, decoder performance was higher455

for visual strategy sessions compared with timing strategy sessions.456

457

Engagement state has limited modulation of neural activity458

We next asked if we could observe neural correlates of task engagement. Similar to figure 4D,459

we plotted the average neural activity aligned to either image omissions or image changes but460

now additionally split by engaged and disengaged states (Fig. 7). The disengaged state does461

not contain hits, so we restricted our comparison to misses. Excitatory cells from visual strat-462

egy sessions, but not timing strategy sessions, show elevated responses to misses when engaged463

compared to disengaged (Average calcium event magnitude +/- hb. SEM, visual engaged 0.010464

+/- 0.0016, visual disengaged 0.0069 +/- 0.00088, p = 0.032). We do not observe any other sig-465

nificant differences between average neural activity in engaged and disengaged states for either466

dominant strategy across any cell type. Further, we do not see major differences in Vip activity467

even when controlling for running speed differences during engagement periods (Supplemental468

Note 10). Thus, we conclude that the effects of strategy are separate from task engagement.469

470

Both dominant strategies show robust effects of image novelty471

Our analysis to this point has examined neural activity when mice are shown familiar stimuli they472

have seen many times. The Allen Institute Visual Behavior - 2p calcium imaging dataset also473

contains neural activity in response to novel stimuli. Garrett et al. 2023 examined this data and474

found exposure to novel stimuli dramatically altered neural activity, finding striking effects across475

all three recorded cell classes. We sought to extend the results reported in Garrett et al. 2023 by476

asking two questions. First, behaviorally, does strategy change with novel stimuli? Second, how477

do cells from each dominant strategy respond to novel stimuli? Supplemental Note 11 answers478

both questions. Analyzing behavior, we see a small but significant shift in strategy preference479

towards the visual strategy on the novel image session. This shift manifests as most mice480

slightly increasing their strategy index, rather than individual mice making dramatic changes in481

strategy. Analyzing neural activity we see cells from both strategies show the effects of novelty482

documented in Garrett et al. 2023. Further, on the novel session the primary effects reported in483

figure 4 are still present. Namely, Vip cells from visual strategy sessions had increased activity484

on image omissions, and before hits compared to cells from timing strategy sessions. As well as485

increased excitatory activity for hits compared to misses for cells from visual strategy sessions486

but not from timing strategy sessions. We conclude the effects of stimulus novelty are largely487

separate from strategy preference.488
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Discussion489

The Allen Institute Visual Behavior - 2p calcium imaging dataset (brain-map.org) is a large scale490

survey of neural activity in three neural cell classes in the context of a change detection task. We491

sought to identify behavioral strategies used by mice in this dataset. Using a dynamic logistic492

regression model we found that mice have unique mixtures of two strategies, a visual comparison493

strategy where mice respond to image changes, and a statistical timing strategy where mice re-494

spond at the expected duration between image changes. Individual mouse strategy preferences495

were relatively stable over multiple behavioral sessions and emerged gradually over training.496

Separately from strategy preference, we found mice have periods of task engagement and disen-497

gagement. Mice performing either strategy gradually disengaged from the task throughout each498

behavioral session. For both dominant strategies, engaged licking was time-locked to stimulus499

presentations, while disengaged licking was not time-locked to stimulus presentations.500

We then analyzed neural activity based on the dominant strategy preference. We found a501

diversity of neural correlates of strategy across excitatory, Sst inhibitory, and Vip inhibitory cell502

classes. We found that this diversity of responses can be understood through the lens of the503

Vip-Sst disinhibitory circuit. In response to image omissions, Vip cells increase their activity504

to change the gain on excitatory cells. In visual strategy sessions, this Vip gain dynamic is505

amplified. Further, in visual strategy sessions, but not timing strategy sessions, Vip activity506

is elevated before hits compared to misses, suggesting Vip cells potentiate excitatory cells and507

bias the decision to respond to each image presentation in mice performing the visual strategy.508

Supporting the view that visual strategy mice are more reliant on visual cortical activity, we509

found stronger hit decoding from visual strategy sessions, and the performance of an image510

change decoder is more correlated with animal behavior in visual strategy sessions. Additionally,511

the visual strategy mice show increased post-omission licking compared to timing strategy mice,512

suggesting Vip omission activity potentiates excitatory responses on the post-omission image.513

Despite clear effects of task strategy, we found only limited neural correlates of task engage-514

ment. Excitatory cells from visual strategy sessions show elevated responses to misses when515

engaged. This suggests the effects of strategy influence neural circuits on longer timescales.516

Additionally, we found the effects of strategy preference persist when the mice perform the task517

with novel stimuli, despite robust changes to population activity. Our findings demonstrate that518

behavioral strategy alters neural activity within visual cortex, and is mediated by specific cell519

classes.520

521

Behavioral diversity522

We note that it could have been possible to alter our training pipeline to push mice away from523

the timing strategy, skip over mice performing the timing strategy for neural imaging, or post-524

hoc exclude their data from neural analysis. Indeed, such practices are common in neuroscience525

laboratories where strict experimental control is demanded by the practicalities of limited ex-526

perimental resources and a desire to clearly isolate single behaviors or computations. Recently527

there has been considerable discussion over the advantages of naturalistic behavior and tightly528

controlled laboratory tasks (Juavinett et al. 2018; Musall et al. 2019). Naturalistic behavior529

offers ethological relevance and behavioral richness, while laboratory tasks can isolate behaviors530

and yield reproducibility. Our findings demonstrate a middle ground, through the use of large531

scale brain observatories with a behavioral task that subjects can solve in multiple ways. By532

recording from many mice we find considerable behavioral richness across our population, but533

still harness the advantages of well defined stimuli and task structure. This approach compli-534

ments the existing range of behavioral paradigms in the field.535

536

How do behavioral strategies arise?537

We found that strategy preferences emerge gradually over many days of training. How do mice538
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learn their strategy preferences? One possibility is mice could adopt one strategy or another539

based on a myriad subtle biases such as visual ability, cognitive ability, or difficulty licking the540

reward spout. Alternatively, mice could have been biased to one strategy based on variability541

in early behavioral exploration. Given that the visual strategy can earn a greater number of542

rewards per session we can consider the timing strategy as a local maximum in behavioral per-543

formance that some mice might settle into early in training. Finally, it is possible that prior to544

any task training, some mice could already have amplified Vip-Sst dynamics and thus be predis-545

positioned to adopting the visual strategy. This predisposition could be the result of genetics,546

or life experience. The learning processes that lead mice to each strategy may involve unique547

behavioral states and neural mechanisms (Rosenberg et al. 2021; Meister 2022).548

549

How does strategy preference amplify Vip-Sst circuitry?550

We found that the visual strategy resulted in amplified Vip-Sst disinhibition dynamics. If strat-551

egy preferences arise from outside visual cortex, then what mechanisms facilitate the diversity552

of neural correlates we observe? Vip cells are known to be preferential targets of top-down553

feedback (Kamigaki 2019; Ma et al. 2021). One possibility is that external feedback results in554

higher tonic activation of Vip cells during visual strategy sessions. Alternatively, neuromodula-555

tory input could alter intrinsic Vip firing patterns (Férézou et al. 2002; Fu et al. 2014; Prönneke556

et al. 2020).557

Strategy preference could also recruit different visual pathways and brain structures (Bolkan558

et al. 2022). We found cells from visual strategy sessions, but not timing strategy sessions, show559

differential activity between hits and misses. Further, we found a decoder trained to predict560

image changes made predictions that were more correlated with the animal’s choices for visual561

sessions compared to timing sessions. For excitatory cells, the correlation was more than twice562

as strong. These results suggest that the timing mice may execute this task primarily through563

other brain structures. We re-iterate here that licking bouts from timing mice are time-locked to564

image presentations. This demonstrates timing strategy mice still use visual input, but perform565

less processing of the visual stimulus. Retinal ganglion cells project to many sub-cortical struc-566

tures (Martersteck et al. 2017), which could facilitate the simpler visual processing required for567

the timing strategy.568

569

Engagement and novelty570

Mice performing both dominant strategies displayed periods of task engagement and disengage-571

ment (Ashwood et al. 2022). Across both dominant strategies we observed limited modulation572

of population activity with task engagement. This may be a puzzling finding, especially given573

some similarities between task engagement and visual attention. However, we caution that task574

engagement is a separate phenomena from visual attention and care should be taken before575

taking inspiration from attentional mechanisms. With this reservation in mind, we do note that576

Myers-Joseph et al. 2023 found that attention modulation operates distinctly from Vip disinhi-577

bition. Consistent with our findings, Pho et al. 2018 found little modulation of neural activity578

by engagement in V1 but significant modulation in posterior parietal cortex.579

One possibility for a lack of engagement correlates is the nature of our stimuli. Our stimuli580

are large full visual field images with relatively high contrast - they are not near perceptual581

thresholds. Perhaps our stimuli are salient enough to evoke visual responses regardless of task582

engagement. If our task operated at a perceptual threshold we might observe stronger modula-583

tion of neural activity by task engagement.584

The Allen Institute Visual Behavior - 2p calcium imaging dataset contains multiple behav-585

ioral dimensions, including novel stimuli. We did not focus on novel stimuli, but Garrett et586

al. 2023 found striking changes in neural activity in all three recorded cell classes. We found587

strategy alters neural activity in distinct ways from novel stimuli. Since strategy differences588
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are present during both task engaged and disengaged states, it is likely the strategy effects we589

observe are the result of long-term learning and firmly established in cortical circuits. This is590

further supported by the persistence of strategy differences during the novel stimulus presenta-591

tion. The neural correlates of strategy on this task are therefore not a fleeting activity pattern,592

or a flexible state to be switched on and off, rather it appears to be a deeply ingrained change593

in the cortical circuit that the mouse develops to solve the task consistently well.594

595

Future directions596

A naive view of sensory circuits might expect veridical encoding of the sensory world. However597

our findings highlight that task strategy is mediated through changes in neural activity in sensory598

cortex. This result raises general questions about how, when, and why cognitive states alter599

sensory processing. Future studies should seek mechanistic understanding of how cognitive600

states influence local circuit processing in visual cortex, how local circuit processing changes601

with learning, and how cognitive states influence the propagation of sensory information up the602

visual hierarchy into deeper brain structures.603
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Figure 1: Quantifying strategies during a change detection task. (A) Head-fixed mice
were shown a stream of natural images and were rewarded for licking in response to image
changes. Mice could perform this task using multiple strategies, including visually comparing
image presentations or learning statistical distributions of rewards. (B) Example lick rasters
demonstrate multiple strategies. Each row is an epoch within one example session. Up to 20
examples for each strategy are shown. Gray bands show time of repeated image presentations.
Blue bands show time of change image presentations. Dashed blue lines show time of omitted
images. Red markers show time of rewards. Top left - licking aligned to image changes. Top
right - licking aligned to image omissions. Bottom left - licking aligned to post-omission images.
Bottom right - licking aligned to a fixed time interval from the last licking bout. (C) Diagram
of task structure, data processing, and strategies. Images were presented for 250ms with 500ms
gray screens interleaved. 5% of all images were randomly omitted. Image changes were drawn
from a geometric distribution. Individual licks were segmented into licking bouts. Licking bouts
were assigned to the preceding image presentation. The licking model predicts whether a licking
bout starts during each image interval, and we therefore ignore image presentations where the
mouse was already licking. For each strategy we show the probability of starting a licking bout
during each image interval. (D) Top - Raster of licking bouts, hits, and misses for full 1-hour
behavioral session. Middle - time-varying strategy weights for each strategy for this example
session. Bottom - licking probability in the data and model prediction smoothed with a one
minute boxcar.
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Figure 2: Licking model reveals distinct task strategies (A) Cross validated model perfor-
mance. Histogram of area under the ROC curve for the dynamic model (blue) and static model
(gray) for each session (n=382). The red line marks the average dynamic model performance
(0.83). (B-H) Dots indicate individual sessions (n=382), and (B-D) black bars are population
averages. (B) Average strategy weights. (C) Learned smoothing prior σ for each strategy. (D)
Reduction in model evidence when removing each strategy. The absolute value for the visual
and timing strategies is shown in panel F. (E) Average weights of the visual and post-omission
strategies. Red line shows a linear correlation (R2 = 0.44). (F) Scatter plot of the absolute
value of the reduction in model evidence (termed here as an index) for the visual and timing
strategies. The strategy index is defined as the counter-diagonal difference between visual and
timing indices. (G) Rewards per session compared with the strategy index. (H) Mice were sorted
by their average strategy index. Each session from a mouse is shown in the same column. (I) 90
seconds of illustrative behavior for two example sessions with either a visual dominant strategy
(top) or timing dominant strategy (bottom). Gray bands show image repeats, blue bands mark
image changes, and dashed blue lines mark image omissions.
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Figure 3: Strategy is distinct from engagement (A) Contour plot of reward rate and lick
bout rate from all imaging sessions (n=382 sessions, 1,804,462 image intervals). Red line marks
our threshold for classifying engaged and disengaged behavior (1 reward/120s, 1 lick bout/10s).
60.1% of image intervals are classified as engaged. (B) Example session showing lick bout rate
(solid black), licking engagement threshold (dashed black), reward rate (red), and reward rate
threshold (dashed red). (C, D) Average value of the visual and timing strategy weights across a
range of licking and reward rates. Both panels show data from all sessions (n=382 sessions, 1.8
million image intervals) across a range of licking and reward rates. (E) Percentage of sessions in
an engaged state at each point in the hour long behavioral session, split by dominant strategy.
(F) Response latency histogram split by engaged and disengaged epochs. Response latency is
defined as the time from the start of each licking bout to the most recent image onset. (G)
Response latency histogram for engaged periods, split by visual or timing strategy sessions. (H)
Response latency histogram for disengaged periods, split by visual or timing strategy sessions.
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Figure 4: Neural correlates of behavioral strategy across multiple cell populations.(A)
Two-photon calcium imaging was performed in visual areas V1 and LM. (B) Cartoon of Vip-
Sst microcircuit. Vip and Sst inhibitory neurons reciprocally inhibit each other. (C) Discrete
calcium events were regressed from the fluorescence traces. (D) Average calcium event magnitude
of each cell class aligned to image omissions (left column), and hits (right column), split by
dominant behavioral strategy (* indicates p<0.05 from a hierarchical bootstrap over imaging
planes and cells, corrected for multiple comparisons). (E) Average calcium event magnitude
+/- hierarchically bootstrapped SEM in a interval around image changes split by strategy and
whether the mouse responded. Excitatory and Sst cells show average events after image changes,
(150, 250ms) and (375, 750ms) respectively. Vip cells show average events immediately before
image changes (-375, 0 ms). * indicates p<0.05 from a hierarchical bootstrap over imaging
planes and cells, corrected for multiple comparisons. (F) Average calcium event magnitude +/-
hb. SEM in the 750ms interval after image presentations split by running speed and strategy
(* indicate p<0.05 from a hierarchical bootstrap over imaging planes and cells, corrected for
multiple comparisons). (G) Same as F after image omissions.
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Figure 5: Microcircuit disinhibition dynamics are amplified in the visual strategy
(A) Cartoon schematic of microcircuit. (B) Population average response to image repeats,
grouped by strategy. (C) Population average response to image repeats plotted in 3D space.
(D) Population average response to image repeats for excitatory cells against Vip cells. (C,D)
Arrow marks forward progression of time. Black circle marks image onset in B. (E) Same as
B,D for image omissions. (F) Same as B,D for hits. (G) Same as B,D for misses.
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Figure 6: Stronger behavioral choice signals in cells from visual strategy sessions.
(A-C). Decoding was performed on neural activity in the first 400ms after image presentation.
Error bars are SEM over imaging planes. Each cell type is plotted as a separate color, with
marker size indicating the number of cells used for decoding from each imaging plane. (A)
Cross validated random forest classifier performance at decoding image changes and repeats
(% correct). (B) Correlation between decoder prediction on image changes (change vs repeat)
and animal behavior (hit vs miss). (C) Cross validated random forest classifier performance at
decoding hits and misses (% correct).

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538575doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Task engagement has minor effects on neural population activity. (A) The
average activity of cells from each dominant task strategy, split by epochs of task engagement
and disengagement, aligned to either image omissions (left), or image change misses (right).
Error bars are +/- SEM. (B) Average calcium event magnitude +/- hierarchically bootstrapped
SEM in a interval (150ms, 250ms) around image changes split by strategy and whether the
mouse responded. * indicates p<0.05 from a hierarchical bootstrap over imaging planes and
cells, corrected for multiple comparisons.
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Methods604

Data selection605

The collection and processing of all data in the study was previously described in Garrett et al.606

2023, and is available at https://portal.brain-map.org/explore/circuits/visual-beh607

avior-2p. For our behavioral analysis we used all active behavioral sessions from mice in the608

V1 and LM datasets across all image set experience levels (familiar images, novel images, and609

repeated exposure to novel images). For all analyses we combined mice trained on image sets610

A and B. For neural analysis we used neurons recorded during familiar image set presentations611

on the multi-plane imaging rig. Except where noted we combined across cells from V1 and LM612

and across cortical depths.613

614

Behavioral data processing615

We performed all of our behavioral analysis after assigning behavioral events to each image616

presentation interval. By image presentation interval we refer to the 750ms interval beginning617

with each image presentation. For image omissions we used the 750ms following the time of the618

omission, when the image should have been presented. Licks were segmented into licking bouts619

using an inter-lick interval of 700ms. This threshold was determined by visual inspection of the620

histogram of inter-lick intervals. The start and end of each licking bout was then assigned to an621

image presentation interval.622

623

Strategy model624

The strategy model predicts whether a licking bout started on each image presentation interval.625

We thus excluded from our model fits any image presentation intervals where a licking bout was626

on-going at the start of the interval. The licking bias strategy vector was defined as a 1 on every627

interval. The visual, omission, and post-omissions strategy vectors were defined as 1 on intervals628

with the respective stimulus and 0 otherwise. The timing strategy vector was a number between629

0 and 1 based on a sigmoidal function of how many image intervals since the end of the last630

licking bout. See supplemental note 3 for details on the timing strategy regressor. Except for631

the licking bias, all strategy vectors where then mean-centered.632

633

Fitting the strategy model634

We fit the strategy model using the PsyTrack package (Roy et al. 2018; Roy et al. 2021, https:635

//github.com/nicholas-roy/psytrack). The PsyTrack package fits the model through an636

empirical Bayes procedure. The hyper-parameters are first selected by maximizing the model637

evidence. Then the strategy weights were determined by the MAP estimate. The model hyper-638

parameters and strategy weights were fit separately for every behavioral session.639

Model performance was determined using the cross-validated model predictions as a classifier640

to determine whether a mouse initiated a licking bout on each image interval. The receiver op-641

erator curve determines the rate of true positives against false positives as a function of different642

classifier thresholds. The area under the curve provides a summary statistic to compare mod-643

els. Behavioral sessions were classified as visually dominant or timing dominant by determining644

which strategy lead to the greater decrease in model evidence when that strategy was removed.645

646

Task Engagement647

Task engagement periods were determined by applying a threshold to the reward rate and lick648

bout rate. Task engagement was determined for each image presentation interval. Both rates649

were calculated by annotating which image presentations intervals had rewards and lick bout650

initiation. We then smoothed across image presentations with a filter. We used a Gaussian651

filter with standard deviation of 60 images. We then converted both rates into units of events652

per second. We set the thresholds of 1 reward per 120 seconds and 1 lick bout per 10 seconds653
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through visual inspection of the behavioral landscape in figure 3A. If either rate was above its654

threshold, then the interval was labeled engaged.655

656

Neural data657

For all analysis of neural data we used the detected calcium events as described in Garrett et al.658

2023 and https://portal.brain-map.org/explore/circuits/visual-behavior-2p. This659

process produces, for each cell, a set of calcium events each with a time and magnitude. Except660

where noted we used familiar image set sessions collected on the multiplane calcium imaging rig.661

To generate the population averages traces we compute the behavioral event triggered re-662

sponse for each cell to each behavioral event and then average across all cells in each population.663

We compute the behavioral event triggered response by isolating the calcium events around the664

triggering behavioral event, then linearly interpolating onto a consistent set of 30hz timestamps665

relative to the triggering behavioral event. This produces a vector of calcium event magnitudes666

for each cell relative to each behavioral event (omission, image change, or repeat).667

To generate the average calcium response across a time interval, we first compute the event668

triggered response for each cell as described above. We then average across all time points in669

the same image interval, producing a single scalar for each cell on each image interval. Average670

calcium responses were computed for either the entire image interval (50, 800ms), the first half671

of each image interval (50, 425ms), the second half of each image interval (425, 800ms), or a672

more narrow stimulus locked window for excitatory cells (150, 250ms). We used a 50ms delay673

for the image interval, (50, 800ms) rather than (0, 750ms), to account for signal propagation to674

visual cortex.675

676

Hierarchical bootstrap analysis677

To determine significance for average calcium response metrics we applied a hierarchical boot-678

strap method (Saravanan et al. 2020). On each bootstrap iteration we sampled with replacement679

from first imaging planes, and then for each imaging plane we sampled with replacement from680

cells from that plane. Averaging across all of these cells produces one bootstrap sample. For681

all of our analyses, we used this procedure to generate 10,000 samples. The standard deviation682

of this set of samples produces an estimate of the standard error of the mean. To performance683

hypothesis testing we assigned samples from each condition into random pairs and performed684

pairwise comparisons to determine what fraction of samples from each condition was greater or685

less than the other condition. In this context an imaging plane is a specific cortical area and686

depth from one behavioral session, so by sampling imaging planes we are effectively sampling687

over sessions and mice. We corrected for multiple comparisons through the Benjamini-Hochberg688

procedure (Benjamini et al. 2001).689

690

Running speed691

Running speed traces were processed in the same manner as calcium event traces. For each692

behavioral session, we computed the event triggered running trace by isolating running time-693

points around the triggering behavioral event then linearly interpolating onto a common 30hz694

timeseries. We then averaged across all points in the relevant time window.695

696

Decoding analysis697

To decode task signals on an image by image basis we used a random forest classifier to predict698

either image changes versus repeats (change decoder), or hits versus misses (hit decoder). We699

iterated over the number, n, of simultaneously recorded neurons used in the decoding analysis.700

For each imaging plane we sampled neurons and performed decoding until there was a 99%701

probability all neurons had been used in decoding. For each sample we took n neurons without702

replacement and concatenated their neural activity on each image presentation to make a k×nt703
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matrix X. Here k is the number of images, and t is the number of timesteps from each neuron704

on each image. The change decoder used each image change and the image repeat immediately705

before the image change. The hit decoder used all image changes. We then performed 5-fold706

cross validated decoding using the RandomForestClassifier package from sklearn. We evaluated707

decoder performance as the percentage of test-set images correctly classified. We averaged the708

performance of all samples from the same imaging plane and report summary statistics as the709

mean +/- SEM over imaging planes. We computed the correlation between the change decoder’s710

predictions and the animal’s choices using the phi coefficient.711
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Férézou, Isabelle et al. (Sept. 2002). “5-HT3 receptors mediate serotonergic fast synaptic excita-757

tion of neocortical vasoactive intestinal peptide/cholecystokinin interneurons”. J. Neurosci.758

22.17, pp. 7389–7397.759

Fu, Yu et al. (Mar. 2014). “A cortical circuit for gain control by behavioral state”. Cell 156.6,760

pp. 1139–1152.761

Garrett, Marina et al. (2023). “Stimulus novelty uncovers coding diversity in visual cortical762

circuits”. bioRxiv. doi: 10.1101/2023.02.14.528085.763

Gilad, Ariel et al. (Aug. 2018). “Behavioral strategy determines frontal or posterior location of764

short-term memory in neocortex”. Neuron 99.4, 814–828.e7.765

Gomez-Marin, Alex et al. (Nov. 2014). “Big behavioral data: psychology, ethology and the foun-766

dations of neuroscience”. Nature Neuroscience 17.11, pp. 1455–1462. issn: 1546-1726. doi:767

10.1038/nn.3812.768

Groblewski, Peter A et al. (June 2020). “Characterization of learning, motivation, and visual769

perception in five transgenic mouse lines expressing GCaMP in distinct cell populations”.770

en. Front. Behav. Neurosci. 14, p. 104.771

Jha, Aditi, Zoe C. Ashwood, and Jonathan W. Pillow (2022). Bayesian Active Learning for772

Discrete Latent Variable Models. doi: 10.48550/ARXIV.2202.13426.773

Juavinett, Ashley L, Jeffrey C Erlich, and Anne K Churchland (Apr. 2018). “Decision-making774

behaviors: weighing ethology, complexity, and sensorimotor compatibility”. Curr. Opin. Neu-775

robiol. 49, pp. 42–50.776

Kamigaki, Tsukasa (Apr. 2019). “Dissecting executive control circuits with neuron types”. Neu-777

rosci. Res. 141, pp. 13–22.778

Karnani, Mahesh M et al. (Apr. 2016). “Cooperative subnetworks of molecularly similar in-779

terneurons in mouse neocortex”. Neuron 90.1, pp. 86–100.780

Keller, Andreas J et al. (Dec. 2020). “A disinhibitory circuit for contextual modulation in primary781

visual cortex”. Neuron 108.6, 1181–1193.e8.782

Kim, Jinho et al. (Dec. 2020). “Behavioral and neural bases of tactile shape discrimination783

learning in head-fixed mice”. Neuron 108.5, 953–967.e8.784

Krakauer, John W et al. (Feb. 2017). “Neuroscience needs behavior: Correcting a reductionist785

bias”. Neuron 93.3, pp. 480–490.786

Kullander, Klas and Lisa Topolnik (Aug. 2021). “Cortical disinhibitory circuits: cell types, con-787

nectivity and function”. Trends Neurosci. 44.8, pp. 643–657.788

Le, Nhat Minh et al. (2022). “Mixture of Learning Strategies Underlies Rodent Behavior in789

Dynamic Foraging”. bioRxiv. doi: 10.1101/2022.03.14.484338.790

Leinweber, Marcus et al. (Sept. 2017). “A sensorimotor circuit in mouse cortex for visual flow791

predictions”. Neuron 95.6, 1420–1432.e5.792

Ma, Guofen et al. (May 2021). “Hierarchy in sensory processing reflected by innervation balance793

on cortical interneurons”. Sci. Adv. 7.20, eabf5676.794

24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538575doi: bioRxiv preprint 

https://doi.org/10.1038/nn.3043
https://doi.org/10.1101/2023.02.14.528085
https://doi.org/10.1038/nn.3812
https://doi.org/10.48550/ARXIV.2202.13426
https://doi.org/10.1101/2022.03.14.484338
https://doi.org/10.1101/2023.04.28.538575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Martersteck, Emily M et al. (Feb. 2017). “Diverse central projection patterns of retinal ganglion795

cells”. en. Cell Rep. 18.8, pp. 2058–2072.796

Meister, Markus (2022). “Learning, fast and slow”. Current Opinion in Neurobiology 75, p. 102555.797

issn: 0959-4388. doi: https://doi.org/10.1016/j.conb.2022.102555.798

Millman, Daniel J et al. (Oct. 2020). “VIP interneurons in mouse primary visual cortex selectively799

enhance responses to weak but specific stimuli”. Elife 9.800

Musall, Simon et al. (Oct. 2019). “Harnessing behavioral diversity to understand neural compu-801

tations for cognition”. Curr. Opin. Neurobiol. 58, pp. 229–238.802

Myers-Joseph, Dylan et al. (2023). “Attentional modulation is orthogonal to disinhibition by803

VIP interneurons in primary visual cortex”. bioRxiv. doi: 10.1101/2022.11.28.518253.804

Niv, Yael (Oct. 2021). “The primacy of behavioral research for understanding the brain”. Behav.805

Neurosci. 135.5, pp. 601–609.806

Pfeffer, Carsten K et al. (Aug. 2013). “Inhibition of inhibition in visual cortex: the logic of807

connections between molecularly distinct interneurons”. Nat. Neurosci. 16.8, pp. 1068–1076.808

Pho, Gerald N et al. (July 2018). “Task-dependent representations of stimulus and choice in809

mouse parietal cortex”. en. Nat. Commun. 9.1, p. 2596.810

Pi, Hyun-Jae et al. (Nov. 2013). “Cortical interneurons that specialize in disinhibitory control”.811

Nature 503.7477, pp. 521–524.812

Pinto, Lucas and Yang Dan (July 2015). “Cell-type-specific activity in prefrontal cortex during813

goal-directed behavior”. Neuron 87.2, pp. 437–450.814

Pinto, Lucas et al. (Nov. 2019). “Task-dependent changes in the large-scale dynamics and ne-815

cessity of cortical regions”. Neuron 104.4, 810–824.e9.816

Prönneke, Alvar et al. (Mar. 2020). “Neuromodulation leads to a burst-tonic switch in a subset of817

VIP neurons in mouse primary somatosensory (barrel) cortex”. Cereb. Cortex 30.2, pp. 488–818

504.819

Proskurin, Mikhail, Maxim Manakov, and Alla Y. Karpova (2022). “ACC neural ensemble dy-820

namics are structured by strategy prevalence”. bioRxiv. doi: 10.1101/2022.11.17.516909.821

Rosenberg, Matthew et al. (July 2021). “Mice in a labyrinth show rapid learning, sudden insight,822

and efficient exploration”. en. Elife 10.823

Roy, Nicholas A. et al. (2018). “Efficient inference for time-varying behavior during learning”. In:824

Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran825

Associates, Inc.826

Roy, Nicholas A. et al. (Feb. 2021). “Extracting the dynamics of behavior in sensory decision-827

making experiments”. Neuron 109.4, 597–610.e6.828

Saravanan, Varun, Gordon J Berman, and Samuel J Sober (July 2020). “Application of the hi-829

erarchical bootstrap to multi-level data in neuroscience”. Neuron. Behav. Data Anal. Theory830

3.5.831

Schneider, David M (Oct. 2020). “Reflections of action in sensory cortex”. Curr. Opin. Neurobiol.832

64, pp. 53–59.833

Schuck, Nicolas W et al. (Apr. 2015). “Medial prefrontal cortex predicts internally driven strategy834

shifts”. Neuron 86.1, pp. 331–340.835

Sylwestrak, Emily L et al. (Sept. 2022). “Cell-type-specific population dynamics of diverse reward836

computations”. Cell 185.19, 3568–3587.e27.837

Tasic, Bosiljka et al. (Nov. 2018). “Shared and distinct transcriptomic cell types across neocor-838

tical areas”. Nature 563.7729, pp. 72–78.839

Tervo, D Gowanlock R et al. (June 2021). “The anterior cingulate cortex directs exploration of840

alternative strategies”. Neuron 109.11, 1876–1887.e6.841

Tseng, Shih-Yi et al. (Aug. 2022). “Shared and specialized coding across posterior cortical areas842

for dynamic navigation decisions”. Neuron 110.15, 2484–2502.e16.843

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538575doi: bioRxiv preprint 

https://doi.org/https://doi.org/10.1016/j.conb.2022.102555
https://doi.org/10.1101/2022.11.28.518253
https://doi.org/10.1101/2022.11.17.516909
https://doi.org/10.1101/2023.04.28.538575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Venkatraman, Vinod et al. (May 2009). “Separate neural mechanisms underlie choices and strate-844

gic preferences in risky decision making”. Neuron 62.4, pp. 593–602.845

Waiblinger, Christian et al. (Jan. 2022). “Emerging experience-dependent dynamics in primary846

somatosensory cortex reflect behavioral adaptation”. Nat. Commun. 13.1, p. 534.847

Williams, Leena E and Anthony Holtmaat (Jan. 2019). “Higher-order thalamocortical inputs848

gate synaptic long-term potentiation via disinhibition”. Neuron 101.1, 91–102.e4.849

Yang, Y., C. Sibert, and A. Stocco (2023). “Competing Decision-Making Systems Are Adaptively850

Chosen Based on Individual Differences in Brain Connectivity”. bioRxiv. doi: 10.1101/2023.851

01.10.523458.852

26

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538575doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523458
https://doi.org/10.1101/2023.01.10.523458
https://doi.org/10.1101/2023.01.10.523458
https://doi.org/10.1101/2023.04.28.538575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Materials853

The supplementary materials contains extended figures and control analyses for several as-854

pects of the study:855

1. Mouse behavior856

2. Segmenting licks into licking bouts857

3. Constructing the timing strategy858

4. Model validation859

5. Strategy characterization860

6. PCA on model strategies861

7. Strategy over training862

8. Strategy behavior over time863

9. Microcircuit dynamics864

10. Running speed and task engagement865

11. Transition to the novel image set866
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Supplemental Note 1 - Mouse behavior867

Figure 8: Quantification of mouse behavior. (A) Histogram of rewards/session. (B) His-
togram of misses/session. (C) Histogram of false alarms / session. (D) Histogram of omissions
with licks/session. (E) Histogram of post-omission-licks/session (F) Histogram of average lick
fraction per session. (G) Histogram of fraction of image changes with licks per session. (H) His-
togram of fraction of omissions with licks per session. (I) Histogram of fraction of post-omission
images with licks per session. (J) Average Response latency over time. (K) Average reward rate
over time. (L) Hit, Miss, False alarm, and correct reject rates over time.
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Supplemental Note 2 - Segmenting licks into licking bouts868

Figure 9: Licks were segmented into licking bouts and aligned to image onset. (A)
Histogram of interval between successive licks (n = 936,136 licks from 382 imaging sessions).
Dashed line indicates 700ms threshold used to separate licks within the same licking bout (<
700ms) and licks in separate licking bout (> 700ms). (B) Histogram of the number of licks in
each licking bout separated by whether the licking bout earned a reward (hit) or did not (miss)
(n = 190,410 licking bouts from 382 imaging sessions). (C) Histogram of the response latency for
the start of each licking bout with respect to the most recent image onset (n = 190,410 licking
bouts from 382 imaging sessions).
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Supplemental Note 3 - Constructing the timing strategy869

A subset of 45 sessions were used to construct the timing regressor. The strategy model870

was fit with 10 timing regressors, each using 1-hot encoding for different length delays since the871

image with the end of the last licking bout. Then a four parameter sigmoid was fit to the average872

weights of each of these 1-hot timing regressors. The equation of the four parameter sigmoid873

used to construct the timing regressor is given by:874

y(t) = ymin +
ymax − ymin

1 + (t/a)b
. (4)

Here, ymin and ymax scale the vertical limits of the sigmoid, a controls the midpoint of the875

sigmoid, and b influences the slope of the sigmoid. The slope of the sigmoid at the midpoint is876

given by −b/4a. The parameters used in the full model were: ymin=-1, ymax=0, a = 4, b = −5.877

The timing regressor for each session was mean-centered.878

Figure 10: Constructing the timing regressor. (A) Schematic illustrating how timing is
measured. Shaded bars indicate the time of stimulus presentations. Tick marks indicate the
time of each lick. Individual licking bouts are colored separately. Down arrows (▽) indicate the
start of each licking bout. Up arrows (△) indicate the end of each licking bout. Our model
predicts whether the mouse will start a licking bout on each image presentation. Therefore
images where the mouse was already in a licking bout are excluded from the fitting process.
Consequently, our timing regressor starts measuring how many images have been presented
since the end of the last licking bout starting at 1. The timing strategy is a sigmoidal function
of time since the end of the last licking bout. Note the timing strategy is undefined on image
when the mouse was already in a licking bout. (B) Average weight of each timing regressor (dots,
n=45 sessions) Black bars indicate the average across sessions. (C) A four parameter sigmoid
was fit to the average regressor weights from panel A (gray dots). The best fitting sigmoid is
shown in red. (D) The timing strategy uses the midpoint and shape parameters from panel C,
but scales the sigmoid to unit height. The strategy vector is later mean-centered.
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Supplemental Note 4 - Model validation879

Figure 11: Model validation. (A) Scatter plot of area under ROC curves for each session for
the dynamic model compared to static logistic regression (n=382 imaging sessions). Dashed line
marks unity. (B) Scatter plot of area under ROC curves for each session for the dynamic model
compared to the strategy index. (C-D) The lick hit fraction is the fraction of licking bouts that
resulted in a reward. (C) Lick hit fraction compared to the strategy index. (D) Lick hit fraction
compared to the visual strategy index.
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Supplemental Note 5 - Strategy characterization880

Figure 12: Average strategy weights are correlated with task events. Scatter plot
between the average weight of each strategy and task events. Hits (A) are image changes with
a reward, misses (B) are image changes without a reward, and lick fraction (C) is the fraction
of images with a lick bout start.
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Supplemental Note 6 - Principal Components Analysis881

To assess the variability of strategies across our behavioral dataset we performed PCA on the882

matrix of strategy indices containing 382 imaging sessions. Examining the component vectors883

we find that the first component is primarily aligned with the timing strategy, while the second884

is primarily aligned with the visual strategy. We find that these top two components contain885

99.04% of the total variance (72.13% and 26.90%, respectively). Indeed, 98.24% of all variance886

in contained in just the timing and visual strategy indices. This finding motivates our use of887

the strategy index, which is simply the difference between the visual and timing indices. The888

strategy index contains 59.95% of the total variance, and has a strong correlation with the top889

principal component (R2 = 0.88).890

Figure 13: Principal Components Analysis (PCA) on strategy index. (A) Variance along
each principal component (PC #), as well as the variance along the strategy index (SI). (B) The
top two principal components are aligned with the timing and visual strategies, respectively.
(C) Scatter plot between each session projected onto the first principal component and the
strategy index. (D) All sessions (n=382 imaging sessions) projected onto the first two principal
components and colored by the strategy index.
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Supplemental Note 7 - Strategy over training891

To examine how strategy preferences emerge with training, we classified mice by their dom-892

inant strategy (visual or timing) based on their behavior during imaging. We then fit our893

strategy model to the training sessions and examined how their strategy preferences changed894

over training. The training pipeline consisted of 7 stages before imaging:895

• Training 0 - Mice learned to lick for rewards896

• Training 1 - Mice earned rewards when a static grating changed orientation897

• Training 2 - Static gratings were interleaved with a gray screen898

• Training 3 - Static gratings are replaced with natural images899

• Training 4 - Rewards decrease in size, and free rewards are no longer given when the mouse900

misses 10 changes in a row901

• Training 5 - Performance must be consistently above a minimum threshold902

• Habitation - Mice performed the task on the imaging rig903

• Imaging - Mice performed the task with familiar images, then with novel images. Imaging904

was also performed during passive viewing of the same stimulus, which was not analyzed905

here.906

We did not fit the model to training stages 0 and 1 because the stimulus was continuous and not907

periodically presented. In general we find strategy preferences emerge slowly over the training908

stages. Visual dominant mice significantly increased their use of the visual strategy over training909

(Fig. 13B), while decreasing their use of the timing strategy (Fig. 13C). Timing dominant mice910

showed less change in strategy use over training. Both strategies show decreases in the number911

of licking bouts (Fig. 13G), increases in the fraction of licking bouts that result in a reward (Fig.912

13H), increases in the number of missed image changes (Fig. 13E), decreases in the fraction of913

the session they are engaged (Fig. 13F), while maintaining or slightly increasing the rewards per914

session (Fig. 13D). As mice increase their lick hit fraction, they need to lick less often to earn915

the same number of rewards. By increasing their lick hit fraction, this means they are licking916

on image changes more often rather than licking early which delays the next image change.917

Increasing their lick hit fraction means they can earn more rewards in less time, and thus they918

disengage earlier and miss more image changes while they are disengaged.919
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Figure 14: Strategy over training Metrics as described in Supplemental Note 1. Each dot
shows mean +/- SEM for each strategy group.
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Supplemental Note 8 - Strategy behavior over time920

Figure 15: Strategy behavior over time. (A) Average strategy weights over time for visual
strategy sessions (n = 116 sessions). (B) Same as A but restricted to timing strategy sessions
(n=260 sessions). (C) Hit fraction split by visual or timing strategy sessions. (D) Reward rate
split by visual or timing strategy sessions. (E) Lick hit fraction split by visual or timing strategy
sessions. (F) Lick bout rate split by visual or timing strategy sessions.
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Supplemental Note 9 - Microcircuit dynamics921

Figure 16: Microcircuit dynamics Average population activity of different cell classes plotted
against each other, similar to figure 5D. In response to (A) image repeats, (B) image omissions,
(C) hits, and (D) misses. NOTE - need to polish, remove Vip-Sst vs Exc column, add 3D plots.
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Supplemental Note 10 - Running speed and task engage-922

ment923

Figure 17: Running speed and task engagement. Similar to 4F,G. Vip activity in response
to images and omissions across running speeds split by dominant strategy and task engagement.
Stars indicates p <0.05 after a hierarchical bootstrap across imaging planes and cells, then
corrected for multiple comparisons.
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Supplemental Note 11 - Transition to the novel image set924

The mice were trained on one set of 8 images, we refer to this as as the familiar image set.925

After imaging during the familiar image set, the mice were transitioned to a new set of 8 images926

termed here as novel image set. We compare how this transition influenced mouse strategy.927

The familiar session is the last session using the familiar image set. Novel is the first exposure928

to the new image set. Novel+ is a repeated exposure to the new image set. The transition to929

novel stimuli is explored in-depth in Garrett et al. 2023. We make two notes here relevant to930

task strategy. First, there is a small but significant shift in the strategy index on novel sessions931

towards more visual strategy. Second, both strategies show the neural effects of novelty explored932

in Garrett et al. 2023. Thus any differences in strategy cannot explain the effects of novelty.933

Broadly, during the novel session we see increased Vip activation in response to image repeats,934

omissions, and before hits.935

Figure 18: Stimulus novelty has a small influence on strategy. (A) Scatter plot of the
strategy index for familiar and novel sessions. Each dot is a pair of sessions from the same
mouse. (B) Histogram of the difference between strategy index on the novel session compared
to the familiar session. (C) Average value of the strategy index across all mice relative to each
mouse’s average strategy index value. Significance determined with a paired t-test, p<0.05. (D)
Visual strategy weight over time split by experience level. (E) Same as D but for the timing
strategy weight. (F) Lick hit fraction over time split by experience level. (G) Lick bout rate
split by experience level.
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Figure 19: Both dominant strategies show robust changes to novel stimuli Average
population activity on sessions with novel stimuli for each cell class split by strategy aligned to
either image omissions (left), hits (center), or misses (right). Compare with figure 4D, which
show population activity on sessions with familiar stimuli.
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