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Abstract: Why do humans spontaneously dance to music? To test the hypothesis that motor 
dynamics reflect predictive timing during music listening, we built melodies with varying degrees 
of rhythmic predictability. Magnetoencephalography data showed that while auditory regions 15 

track the rhythm of melodies, intrinsic neural dynamics at delta (1.4 Hz) and beta (20-30 Hz) rates 
in the dorsal auditory pathway embody the experience of groove. Critically, neural dynamics are 
organized along this pathway in a spectral gradient, with the left sensorimotor cortex acting as a 
hub coordinating groove-related delta and beta activity. Combined with predictions of a 
neurodynamic model, this indicate that spontaneous motor engagement during music listening 20 

is a manifestation of predictive timing effected by interaction of neural dynamics along the dorsal 
auditory pathway. 

One-Sentence Summary: Interacting neural dynamics along the dorsal auditory pathway effect 
the experience of groove during music listening. 
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Main Text:  

Introduction 

Dancing to the beat of music is universal (1, 2). Music is most often considered as an auditory 

phenomenon, but under an ecological and phylogenetic perspective it is tightly coupled to dance 

(3, 4). Dance requires synchronizing body movements with the musical rhythm via audio-motor 5 

interactions (5–8). Not all music induce dance equally, but why some urge us to dance? What are 

the brain mechanisms supporting the musical wanting-to-move experience called groove (9–15)? 

 Combining a neurodynamic model (16, 17) with the concept of auditory active sensing 

(18, 19) provides a canonical dynamical framework to understand the spontaneous emergence 

of movements during music listening. Neurodynamic models offer a computationally rigorous 10 

and neurophysiologically plausible approach to understanding the emergence of music-related 

cognitive phenomena (16). Active sensing (20–23) refers to the fact that perception is strongly 

shaped by motor activity, which notably imposes temporal constraints on the sampling of sensory 

information, in particular in the delta band, the range of natural movements and of music (24). 

During auditory perception, the motor system is recruited through passive listening of temporally 15 

structured musical rhythms (25, 26), encodes temporal predictions information and can optimize 

auditory processing (7, 19, 27–29). Here, we hypothesize that manipulating the rhythmic 

properties of music suffice to induce a covert motor engagement during music listening, via 

changes in audio-motor neural dynamics. 

Results 20 

We created a stimulus set of 12 short melodies with a 2 Hz beat. To vary their level of rhythmic 

predictability, three variants were derived from each melody, using an ascending degree of 

syncopation (low, medium, high; Fig. 1a-c). As expected, the degree of syncopation was inversely 

proportional to the amplitude of the acoustic dynamics at 2 Hz (r2(34) = 0.81; p < 0.001; Fig. 1d). 

Nonetheless, when asked to reproduce the rhythm of their dance step while listening to the 25 

melodies, participants (n = 15) predominantly moved at the 2 Hz beat across conditions (Fig. 1e). 

Next, we recorded magnetoencephalography (MEG) data while participants (n = 29) listened to 

the melodies. A first analysis showed an absence of 1:1 mapping between the acoustic temporal 

envelope and neural frequencies. Instead, acoustic dynamics are encoded at 2 Hz and in a lesser 
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extent at its harmonics (q < 0.05, FDR-corrected; Fig. 1f; see Methods). Thus, both behavioral 

motor and neural cortical dynamics principally track the 2 Hz beat. 

We also asked participants, either online (n = 66) or during MEG recordings, to rate groove for 

each melody (Fig. 2a). Participants' desire to move highly correlates with the degree of 

syncopation, but in a nonlinear manner (Fig. 2b-c; see Supplementary Results). This inverse U-5 

shape profile is well approximated with a quadratic function (online: adjusted r2(33) = 0.73; MEG 

exp.: adjusted r2(33) = 0.67), confirming previous findings of moderately syncopated melodies 

inducing strongest wanting-to-move experiences (12, 14, 15, 30). This behavior shows that motor 

engagement neither indexes temporal predictability (highest in the low-syncopated condition), 

nor temporal prediction errors (highest in the high-syncopated condition) but is compatible with 10 

the notion of a precision-weighted temporal prediction error computation (5, 31). 

 

 Next, we created a neural network model composed of three layers, each layer 

representing a network of oscillators spanning a range of frequencies (16, 32, 33). Following 

previous modelling work on the perception of rhythmic pulse (16), the melodies’ rhythms were 15 

presented as input to a first network layer (layer 1), which modelled auditory cortical dynamics 

as an oscillatory network operating near a Hopf bifurcation, and two other network layers (layers 

2 and 3) which modelled motor cortical dynamics operating near a double limit cycle bifurcation 

(Fig. 2d; see Methods). This 3-layer neurodynamic model accounts for the nonlinear 

transformation from a syncopated stimulus rhythm to the subjective experience of groove. 20 

Indeed, we observed a dissociation between 1- a strong linear correlation of the degree of 

syncopation with the 2Hz activity in layer 1 (r2(34) = 0.85; p < 0.001; Fig. 2e) and 2- a strong linear 

correlation of groove ratings with the 2Hz activity in layer 3 (online experiment: r2(34) = 0.66; p 

< 0.001; Fig. 2f), with far less contributions of the other layers (see Supplementary Results and 

Fig. S1a).  25 

We then interpreted our model to understand the mechanisms that may underlie the 

experience of groove. The first two network layers were intended to reflect the auditory rhythm 

(auditory cortex) and the perception of pulse and meter (motor planning cortex) (16). Oscillations 

in layer 2 may be considered as temporal predictions, i.e., expectations about the timing of 

rhythmic events (34, 35). Critically, layer 2 resonances arise not based on a learned model but 30 
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based on mode-locking of neural oscillators to other frequencies in the rhythm. To these, we 

added a third layer that received inhibitory connections from layer 2 and excitatory connections 

from layer 1 (see Methods). Hence, layer 3 responds to the difference between the time-

dependent oscillations of layer 2 (pulse/meter) and layer 1 (auditory rhythm) and can thus be 

interpreted as reflecting the divergence between temporal predictions (layer 2) and the actual 5 

input (layer 1). That groove ratings only correlate with amplitude in layer 3 indicates that the 

groove phenomenon may be described in terms of the timing of auditory events (layer 1) relative 

to expectancies (layer 2) embodied in oscillations. 

 

We next analyzed the neural dynamics of cortical activity while listening to the melodies. 10 

We first estimated the 1/f-rectified power spectrum (1-100 Hz; see Methods) of neural activity 

at the source-level and observed that the spatial and spectral dimensions are closely related, in 

the form of a bilateral spectral gradient along the dorsal auditory pathways (Fig. 3a). The 

frequency of the dominant activity progressively increases from auditory regions (< 10Hz) to the 

motor cortex (20-30 Hz), up to the inferior frontal cortex (> 30 Hz; activity > 45 Hz was not 15 

observed).  

We quantified this spectro-spatial relationship by fitting the dominant frequency of each 

vertex to each spatial dimension (x,y,z) and confirmed that this gradient travels conjointly along 

the antero-posterior (Y) and ventro-dorsal (Z) dimensions, compatible with the localization of the 

dorsal auditory pathways (Fig. 3b). To investigate if this spectral gradient is specific to music 20 

listening or reflects a more generic neurophysiological signature of brain dynamics – i.e., with 

intrinsic timescales exhibiting a spatial gradient (36, 37) along the dorsal auditory pathways–, we 

performed the same analysis on resting-state data acquired on the same participants (n = 29). We 

failed to observe a close relation between spectral and spatial dimensions, as indexed by the 

much less spatially structured pattern of the spectral gradient (Fig. 3c). This dynamic 25 

reorganization in the form of a spectral gradient along the dorsal auditory pathways during music 

listening was confirmed by an individual level estimation of the quality of fit for the two datasets 

(rm-ANOVA: main effect of dataset: F(1,28) = 54.4, p < 0.001; Fig. 3d left). 

Further analyses showed that such spectral gradient is a general characteristic of music 

listening, independent of the specific acoustic, melodic or cognitive attributes of the music. 30 
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Indeed, we observed that the spectral gradient does not vary across conditions (low, medium, 

high), neither in shape (Fig. S2a) nor in its quality of fits (Fig. 3d right; repeated-measures ANOVA: 

main effect of condition: F(2,56) = 0.1, p = 0.9). This latter result was robust even at the level of 

individual melodies (Fig. S2b; repeated-measures ANOVA: main effect of melodies: F(35,980) = 

0.8, p = 0.7). 5 

Instead, multivariate pattern analyses first revealed that degree of syncopation and 

groove ratings are both primarily encoded in bilateral and surrounding auditory regions (Fig. 3e-

f; q < 0.005 FDR-corrected) in beat-related 2 Hz neural dynamics (Fig. 3h; q < 0.005 FDR-

corrected), in agreement with the neurodynamic model. While this neural pattern preferentially 

encodes the degree of syncopation (Fig. 3g, p < 0.005 uncorrected; Fig. 3h, q < 0.05 FDR-10 

corrected), groove is instead better encoded in the left parietal, supplementary motor, and right 

motor cortex, at delta (1.3-1.5 Hz) and beta (20-31 Hz and 38-39 Hz) intrinsic neural dynamics 

(spatial: Fig. 3g, p < 0.005 uncorrected; spectral: Fig. 3h, q < 0.05 FDR-corrected). A 

complementary regions-of-interest analysis (ROIs estimated from Fig. 3f) confirmed that bilateral 

auditory regions have a better coding precision for the degree of syncopation at 2 Hz, while more 15 

posterior regions better code for groove ratings in delta and (alpha-)beta neural dynamics (Fig. 

S3; q < 0.05 FDR-corrected; see Methods).  

Interestingly, this encoding of groove ratings is adjusted to the spectral gradient of activity 

along the auditory dorsal pathway (Fig. 3a-b): groove-related delta and beta activity are visible 

respectively along the inferior portion of the dorsal auditory pathway bilaterally (Fig. 4a; q < 20 

0.005, FDR-corrected) and in more posterior, motor and pre-motor regions (Fig. 4b; q < 0.005, 

FDR-corrected). Critically, the left sensorimotor cortex acts as the hub coordinating groove-

related delta and beta activity through phase-amplitude coupling (Fig. 4c; q < 0.005, FDR-

corrected). In this region, delta and beta activity monotonically increase and decrease with 

groove ratings (Fig. 4d), and the reported coupling is specific to delta (1.3-1.5 Hz) and beta (20-25 

30 Hz) dynamics and is, in particular, not visible for beat-related 2 Hz activity (Fig. 4e). These 

neural analyses evidence the distributed neural dynamics implicated in the nonlinear 

transformation from a syncopated stimulus rhythm to the subjective experience of groove, which 

empirically confirms the results of our neurodynamic model.  

 30 
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Discussion 

Why do humans spontaneously want to move to music? Here, we characterize the computational 

and neurophysiological bases of this phenomenon by demonstrating that: (i) behavioral motor 

and neural cortical dynamics principally track the beat of music (Fig. 1e,f); (ii) the pleasurable 

wanting to move to music -the experience of groove- depends on the temporal regularities 5 

present in the music (the degree of syncopation; Fig. 2b-c); (iii) this phenomenon is accounted 

for by a neurodynamic model and may be described in terms of the timing of auditory events 

relative to expectancies embodied in oscillations (Fig. 2d-f); (iv) an ascending spectral gradient 

along the dorsal auditory pathways emerges during music listening (Fig. 3a-d); (v) this gradient 

supports the encoding of the degree of syncopation in auditory regions and of the experience of 10 

groove more dorsally, selectively in delta (1.3-1.5 Hz) and beta (20-30 Hz) neural dynamics (Fig. 

3e-h; 4a-b); and (vi) the left sensorimotor cortex acts as a hub coordinating these groove-related 

neural dynamics (Fig. 4c-e). These results establish the neural dynamics of predictive timing and 

motor engagement in music listening.  

These results extend seminal studies on the quadratic relationship between rhythmic 15 

predictability and the experience of groove (9, 10). This relationship has been explained using 

Bayesian inference, with groove arising when precise temporal priors are violated by sensory 

evidence, here recurring syncopated rhythmic patterns (5, 38). Here we provide an alternative 

dynamical system account (16). Mode-locking of neural oscillations to complex rhythms allows 

the emergence of neural resonance at metrical frequencies. The groove experience is then 20 

parsimoniously explained as embodied resonance to a beat and results from the combination of 

excitatory and inhibitory inputs from two successive layers. This is implemented along the dorsal 

auditory pathway, which connects the auditory and motor dynamics. The Bayesian and dynamical 

models converge in the sense that groove may be described as affordance for movements that 

interact with the stimulus temporal structure, relying on the timing of auditory events relative to 25 

expectancies. The neurodynamic model further specifies temporal expectations as being the 

consequence of neural resonance, i.e. being embodied in oscillations, and hence provides a 

physiologically plausible model to predictive timing (7, 18, 39, 40) and the experience of groove 

(5, 15). 
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That the motor system contributes to auditory perception is also supported by human 

psychophysics and neuroimaging data, in particular when listening to rhythmic auditory streams 

(19, 25, 26, 29). Here we extend these findings to an ecological music listening situation and also 

show that the dissociation between auditory and higher-level cognitive functions in the dorsal 

auditory pathway is subtended by a spectral dissociation. This anatomo-spectral gradient could 5 

be instrumental in structuring the information flow. Our finding extends a few recent reports of 

the presence of a spectral gradient along ventral auditory or visual dorsal cortical pathways (36, 

37) and provide clear evidence of a tight relation between the anatomical and dynamical 

dimensions of the brain. Whether this gradient acts as a support for information transfer, or 

directly encodes information remains to be investigated, but our results indicate that it does not 10 

code for the sensory (degree of syncopation) or cognitive (groove ratings) investigated variables. 

During music listening, this gradient is organized around the left sensorimotor cortex, a hub 

implicated in feedback signaling during auditory perception (19, 41). This region might 

correspond to area 55b, a proposed keystone of sensorimotor integration critical in both music 

(42) and speech (43, 44) perception. This hub coordinates ventral delta (1.4 Hz) and dorsal beta 15 

(20-30 Hz) intrinsic neural dynamics and is hence constitutive of the emergence of audio-motor 

coupling. While beta dynamics (∼12–30 Hz) are typically associated with movement planning and 

execution, the specific role of delta (1.4 Hz) activity in the auditory dorsal pathway corresponds 

to the optimal rate for auditory temporal predictions and defines the auditory temporal attention 

capacity (27). This support a model that considers neuronal oscillations as intrinsic dynamical 20 

mechanisms capable of embodying neural computation (45, 46). In conclusion, we show how 

interacting neural dynamics along the dorsal auditory pathway effect the spontaneous 

emergence of the pleasurable wanting to move during music listening. 

 

 25 
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Fig. 1.  

Figure 1. Stimulus set. Twelve 8-seconds melodies with a 2 Hz beat were created. For each melody, three variants 

were designed to vary the level of rhythmic predictability (degree of syncopation) while minimizing other acoustic 

variations. (a) Example of a melody with a low (black), medium (grey) or high (light grey) degree of syncopation. (b) 5 

Averaged modulation spectrum of the acoustic temporal envelope of the melodies, for each of the three conditions. 

(c) Degree of syncopation of the melodies, grouped by condition. Each dot represents one melody. (d) Amplitude of 

the acoustic envelope at 2Hz (in dB; ‘2 Hz acoustic’), as a function of the degree of syncopation, across melodies. 

Data were approximated with a linear function. Pearson’s r-squared is reported. Shades of grey indicate the 

conditions. (e) Behavioral tapping experiment: distribution of the instantaneous frequency of finger tapping per 10 

condition, cumulated across melodies and participants, recorded while participants were reproducing the rhythm of 

their dance step while listening to the melodies. (f) MEG experiment: Statistical map of neural coding of the acoustic 

temporal modulation spectrum, from the power spectrum of the whole-brain MEG signals recorded while 

participants were listening to melodies (q < 0.05, FDR-corrected). 

 15 
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Fig. 2.  

Figure 2. Behavioral experiments and neurodynamic model. (a) Main experimental design: in two experiments 

(online and MEG), participants listened to melodies. After each melody, they were asked to rate it in terms of groove, 

defined as the extent to which they wanted to move to the music. (b-c) Behavioral rating of participants (groove) 5 

acquired (b) online (from 1 to 7) or (c) during the MEG experiment (from 1 to 5), as a function of the degree of 

syncopation, across melodies. Data were approximated with a quadratic function. Adjusted r-squared is reported. 

Shades of grey indicate the conditions. Error bars indicate SEM. (d) Neurodynamic model: Each layer represents a 

network of coupled oscillators at different frequencies. The rhythm of melodies was input in the first layer. Arrows 

represent the coupling across layers (black is excitatory, red is inhibitory). (e) Amplitude of the output of layer 1 at 10 

2 Hz, as a function of the degree of syncopation, across melodies. Data were approximated with a linear function. 

Pearson’s r-squared is reported. Shades of grey indicate the conditions. (f) Amplitude of the output of layer 3 at 2 

Hz, as a function of groove ratings (from the online experiment), across melodies. Same conventions as in (e).  
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Fig. 3. 

Figure 3. MEG experiment: Spatial and spectral coding of degree of syncopation and groove ratings. (a) Dominant 

frequency across the brain volume during music listening of the melodies (1-45 Hz; after removal of the 1/f decay of 

the neural power spectrum). (b) Data were approximated at the group-level with a polynomial function, 5 

independently for each dimension (X, Y, Z) of the MNI space. (c) Control analysis: Same as in (b) but from a resting-

state MEG dataset. (d) Comparison of the quality of fits (r2), estimated at the individual level, between (left) the 

music and rest MEG datasets and (right) the three melodic conditions. Error bars indicate SEM. (e-f) Spatial map of 

neural coding of (e) the degree of syncopation (blue) and (f) groove ratings (red), from the power spectrum (1-100 

Hz) of neural data recorded while participants were listening to melodies. Results reported at q < 0.005, FDR-10 

corrected. (g) Spatial map of the difference in coding precision between degree of syncopation and groove ratings 

(p < 0.005, uncorrected). (h) Spectrum of neural coding of degree of syncopation (blue) and groove ratings (blue), 

from whole-brain MEG signals. Red and blue lines indicate frequencies with significant coding values (q < 0.005, FDR-

corrected). The black line indicates frequencies with significant differences in coding precision between degree of 

syncopation and groove ratings (q < 0.05, FDR-corrected). Error bars indicate SEM. 15 
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Fig.4. 

Figure 4. Groove-related neural dynamics in the dorsal auditory pathway. (a) Spatial map of neural coding of groove 

ratings from delta (1.3-1.5 Hz) neural activity. (b) Spatial map of neural coding of groove ratings from beta (20-30 

Hz) neural activity. (c) Spatial map of significant local phase-amplitude coupling (PAC) between delta (1.3-1.5 Hz) 5 

phase and any amplitude frequency (3-45 Hz). (d) Amplitude of delta (1.3-1.5 Hz; grey) and beta (20-30 Hz; black) 

neural activity as a function of groove ratings, in the significant PAC cluster (from (c)). Error bars indicate SEM. (e) 

Details of PAC estimates in the significant PAC cluster (from (c); plain lines) or averaged across whole brain (dashed 

lines), between 1.3-1.5 Hz (orange) or 2 Hz (beat frequency; black) phase and any amplitude frequency (3-45 Hz). 

The orange horizontal line indicates a significant increase of PAC in the inset cluster compared to whole brain. (a-e) 10 

All results significant at q < 0.005, FDR-corrected. 
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Materials and Methods 

Participants and stimuli. 

Participants. 66, 30 and 15 participants (age range: 19-71 years; 77 % females) were recruited 

for the online, Magnetoencephalography (MEG) and control tapping experiments. All 

experiments followed the local ethics guidelines from Aix-Marseille University. Informed consent 5 

was obtained from all participants before the experiments. All had normal audition and vision 

and reported no history of neurological or psychiatric disorders. We did not select participants 

based on musical training and a short survey made at the end of the experiment informed us that 

none of them were professional musicians. Participants were financially compensated for their 

time during the MEG experiment. 10 

Acoustic stimuli. A professional musician composed in MIDI format 36 melodies lasting 8 seconds 

each (stimuli are available on github.com/DCP-INS/Groove). All had the same strictly periodic 

drum beat at 2 Hz combined with a specific bass melody. To vary the level of rhythmic 

predictability while minimizing other acoustic variations, three variants were derived from each 

of 12 original melodies, using an ascending degree of syncopation ((the amount of syncopation 15 

is inversely proportional to the rhythmic predictability). The bass melodies were maximally 

matched between the three variants of the same original melody, with the number of notes per 

measure, their pitch and their order being identical or closely matched. Other musical 

characteristics (volume, timbre, etc.) were kept constant. This procedure resulted in the creation 

of three conditions, reflecting low (black), medium (grey) or high (light grey) degree of 20 

syncopation (Fig. 1). Syncopation was defined as the appearance of a beat on a metrically weak 

accent preceding a rest on a metrically strong accent and quantified after Longuet-Higgins and 

Lee (47). Finally, the songs were recorded in stereo with a sampling rate of 48 kHz and a bit-depth 

of 24-bit. 

 25 

Experimental designs and data acquisition. 

Experimental design of the online experiment. Participants were invited to visit a web page to 

take part in the survey, hosted by PsyToolkit. After completing the questionnaire, participants 

were invited to start the experiment. They were first prompted to use headphones or earphones 
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and given the opportunity to pre-evaluate the output volume in order to adjust them 

comfortably. Then, the experiment consisted of a listening task in which each of the 36 melodies 

was presented binaurally once to participants, in a randomized manner. After stimulus offset, 

participants reported on a keyboard the associated level of groove, defined as the extent to 

which they wanted to move to this music (9–15). They had 60 seconds to answer. A Likert scale 5 

between 1 and 7 was used. Instructions were visually displayed on a mid-grey background on a 

screen computer. During each trial participants had to fixate a cross, located at the center of the 

screen. The online experiment lasted approximately 10-15 minutes. 

Experimental design of the control tapping experiment. The experiment was performed in the 

laboratory, using the Psychophysics-3 Toolbox and additional custom scripts written for MATLAB 10 

(The MathWorks). Trials consisted of a tapping task in which participants were asked to 

reproduce, with their indexes on the computer keyboard, the rhythm of the dance step they 

would naturally produce when listening to the melodies. Each of the 36 melodies was presented 

binaurally once to participants, in a randomized manner, at a comfortable hearing level via 

headphones. Instructions were visually displayed on a mid-grey background on the screen laptop 15 

situated at a viewing distance of around 50 cm. On each trial, participants had to fixate a cross, 

located at the center of the screen.  

Experimental design of the MEG experiment. The experiment consisted of a listening task in 

which melodies were presented binaurally to participants, in a randomized manner. Participants 

were requested to stay completely still while they were listening to the melodies. Each original 20 

melody was duplicated, while maintaining the beat structure, which resulted in 16-second long 

melodies. This allowed us to optimize the signal-to-noise ratio of the MEG response. Moreover, 

the experiment was composed of 4 blocs. In each bloc, each of the 36 duplicated melodies was 

presented binaurally once to participants, in a randomized manner (144 trials in total). After 

stimulus offset, participants had 4 seconds to report on a keyboard the associated level of groove 25 

on a scale between 1 and 5. The experiment lasted approximately 48 minutes. 

Experimental design of the resting state experiment. Participants performed two 4-minute eyes-

open resting-state sessions, at the beginning and at the end of the MEG experiment.  
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MEG data acquisition. MEG data were acquired at the Epileptology and Cerebral Rhythmology 

Unit from the La Timone hospital, APHM, Marseille (France), using a 4D Neuroimaging™ 3600 

whole head system (4-D Neuroimaging, San Diego, CA, USA) composed of 248 magnetometers, 

at a sampling frequency of 2034.51 Hz EOG and ECG channels, one audio and five response 

buttons (LUMItouch optical response keypad) were recorded simultaneously and synchronized 5 

with the MEG signal. Presentation software was used for stimulus delivery and experimental 

control during MEG acquisition. Auditory stimuli were presented binaurally at a comfortable 

hearing level through insert earphones (E-A-RTONE 3A, Aero Company). Instructions were 

visually displayed on a mid-grey background on a screen computer situated at a viewing distance 

of around 50 cm. On each trial participants had to fixate a cross, located at the center of the 10 

screen, to get a visual constant stimulation. Location of the participant's head with respect to the 

MEG sensors was recorded both at the beginning and end of each session to potentially exclude 

sessions and/or participants with large head movements. However, none of the participants 

moved >3 mm during all sessions. 

MRI data acquisition. For volume MEG source analysis (i.e., the projection of the MEG sensor 15 

data onto the full brain volume), a T1-weighted MRI acquisition of the brain was obtained from 

each participant (1-mm isotropic voxel resolution). 

 

Data analyses. 

Timing of motor acts in the control tapping experiment. To investigate the dynamics of 20 

occurrence of the motor events produced by participants during the listening of the melodies, 

we estimated the instantaneous frequency of their finger taps by computing the inverse of the 

inter-tap interval (in Hz; i.e. 1/(tn-tn-1)). 

Spectral decomposition of the acoustic stimuli. To estimate the temporal envelope of each 

melody, the sound signal was decomposed into 32 narrow frequency bands using a cochlear 25 

model, and the absolute value of the Hilbert transform was computed for each of these 

narrowband signals. The broadband temporal envelope resulted from the summation of these 

absolute values and was used as the acoustic signal for all subsequent analyses. Using a fast 
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Fourier transform, we then decomposed the acoustic signal of each melody from 1 to 9 Hz, to 

obtain the acoustic temporal modulation spectrum (i.e., the spectrum of the temporal envelope). 

MEG data preprocessing. Preprocessing was performed with Brainstorm (48), following good-

practice guidelines (49). Briefly, we removed electrical artefacts using notch filters (at 50 Hz and 

its first three harmonics), slow drifts using high pass filtering (at 0.3 Hz), and eye blink and 5 

heartbeat artefacts using source signal projections. Data were split into 20-second trials, from -2 

to +18 seconds relative to stimulus onset. MRI volume data were segmented with Freesurfer and 

transformed in MNI space. A template source grid covering the entire brain volume was created 

on the default anatomy (10 mm resolution) and projected to individual anatomies to be used for 

the individual source-reconstruction procedure. We computed individual MEG forward head 10 

models using the overlapping-sphere method (volume), and source imaging using dSPM (v. 2016, 

median eigenvalue) onto preprocessed data, all by using default Brainstorm parameters. We 

obtained 1673 source volumes (i.e., vertices), each composed of three orientations (x,y,z). The 

procedure also included an empirical estimate of the variance of the noise at each MEG sensor, 

obtained from a 2-min empty-room recording done at the beginning of each scanning session. 15 

One participant was excluded from subsequent analyses (hence n = 29) as we failed to detect 

proper auditory responses. 

Spectral decomposition of the MEG data. For both channel-level and source-level MEG data, 

trial-by-trial time-frequency decomposition was conducted in a range of 100 frequencies, 

logarithmically spaced from 1 to 100 Hz. Morlet wavelet transform was applied to the data using 20 

the Brainstorm (Matlab) function bst_timefreq with parameter Method = ‘morlet’, central 

frequency Morlet_Fc = 1 and time resolution Morlet_FwhmTc = 3. 

Normalized power spectrum. For each vertex, trial and participant, we estimated the power 

spectrum by time-averaging the spectrally decomposed signals in the [0.5-16] seconds range. 1/f 

aperiodic component was removed by z-scoring the data across voxels for each frequency. We 25 

hence obtained, for each frequency, the distribution of power across voxels, centered around 

zero. 

Modelling of spectral gradient. We fitted the source-reconstructed spatial distribution of the 

MEG power spectrum, both at the group- and at the individual-levels, for both the MEG 
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experiment and resting-state datasets. We approximated the data with a five-order polynomial 

function, fitting the dominant frequency of each vertex to each spatial dimension (x,y,z) and 

projecting the results in the 3D space.  

Multivariate pattern analysis on channel-level MEG data. Multivariate pattern analyses were 

conducted by capitalizing on the spatial patterns of the MEG power signal, i.e., spectrally 5 

decomposed and time-averaged (0.5-16 seconds, to exclude the stimulus-onset period), for each 

participant, each neural frequency and each regressor (degree of syncopation, groove ratings, 

acoustic temporal modulation spectrum). We used a cross-validated multivariate linear encoding 

model to estimate the spatial MEG patterns �̂� of a specific data associated with each stimulus 

characteristic X. For each cross-validation fold (n = 10, interleaved, see (50)), we defined the 10 

spatial MEG patterns �̂� on the training set by regressing—in a ridge sense (ridge α parameter set 

at 2) —each z-scored MEG feature 𝑍𝑡rain (248 channels in total) against the stimulus 

characteristic  𝑋𝑡𝑟𝑎𝑖𝑛 across stimulus exemplars (n = 130 for each cross-validation fold), by solving  

�̂� = (𝑍𝑡𝑟𝑎𝑖𝑛
𝑇 ∗ 𝑍𝑡𝑟𝑎𝑖𝑛 + α ∗ 𝐼𝑝)

−1
∗ 𝑍𝑡𝑟𝑎𝑖𝑛

𝑇 ∗ 𝑋𝑡𝑟𝑎𝑖𝑛, where 𝐼𝑝 is the p*p identity matrix with p 

corresponding to the number of MEG channels (248 in total). We then projected the MEG data 15 

on the test set 𝑍𝑡𝑒𝑠𝑡, on the dimension defined by the coding weights �̂� to obtain neural 

predictions of the stimulus characteristic 𝑋𝑡𝑒𝑠𝑡 for each epoch of the test set (n = 14 for each 

cross-validation fold). After applying this procedure for each cross-validation fold, we computed 

the linear Pearson’s correlation coefficient between neural predictions �̂� and ground-truth 

values X of the stimulus characteristic. The coding precision metric reported in the main text 20 

corresponds to the Fisher transform of the correlation coefficient, which is approximately 

normally distributed, such that we could compute standard parametric statistics at the group 

level. 

Searchlight analysis on source-level MEG data. We conducted searchlight-based multivariate 

pattern analyses on the entire power signal of the reconstructed volume sources (vertices), for 25 

each participant and each regressor (degree of syncopation and groove ratings). The searchlight 

procedure was applied to each vertex position by using as features the entire power spectrum of 

the current vertex and its fifty closest neighbors (in terms of Euclidean distance). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.29.538799doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.29.538799


 

21 

 

Multivariate pattern analysis on regions-of-interest. We defined five regions-of-interest of 20 

vertices each based on the contrast between the decoding of groove ratings and degree of 

syncopation at the source level (Fig. 3g and S2). The 20 vertices surrounding (in terms of 

Euclidean distance) the maximally significant vertex where selected. We then conducted 

multivariate pattern analyses on the power signal, for each participant, each frequency, each 5 

regressor, and each region-of-interest.  

Phase-Amplitude Coupling. We estimated phase-amplitude coupling over time (0.5-16 seconds) 

and melodies for each source-reconstructed vertex, between the phase at 1.4 or 2 Hz, and the 

amplitude between 3 and 45 Hz (51). 

Statistical Procedures. All analyses were performed at the single-subject level and followed by 10 

standard parametric tests at the group level (e.g., two-tail paired t tests, two-tail t tests against 

zero, repeated-measure ANOVAs). The type 1 error rate arising from multiple comparisons was 

controlled for using False Discovery Rate (FDR) correction over the dimensions of interest (i.e., 

time, vertices, frequencies), using the Benjamini–Hochberg step-up procedure. 

Neural network model. We implemented a canonical model for Gradient Frequency Neural 15 

Networks based on the GrFNN Toolbox (for more information please see on 

musicdynamicslab.uconn.edu/home/multimedia/grfnn-toolbox/ and (16, 17, 32, 33, 45, 46)). 

The aim of this modelling approach was twofold. We first investigated whether neural resonance 

can explain the experience of groove during music listening, and specifically whether a 

neurodynamic model can capture the nonlinear relationship between degree of syncopation and 20 

groove ratings (Fig. 2b-c). Our secondary goal was to understand which neurodynamic 

mechanisms may underlie the experience of groove.  

Our model is composed of three 1-dimensional networks of nonlinear oscillators, tuned 

to different natural frequencies. Such networks are conceptually like banks of band-pass filters, 

except that they consist of nonlinear oscillators rather than linear resonators. Network elements 25 

are canonical Hopf oscillators, a fully expanded canonical model for excitation-inhibition 

oscillations near a Andronov-Hopf bifurcation (17, 45, 52). As a generic model of excitation-

inhibition oscillations, the canonical model represents the firing rates of interacting excitatory 

and inhibitory neural subpopulations as sinusoidal oscillations in the complex plane. The 
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oscillators of each network are tuned to a range of distinct frequencies spanning the delta - theta 

frequency range, and stimulated with time-varying acoustic signals given by: 

 żi  =  zi (𝑎𝑖 + 𝑏𝑖|𝑧𝑖|
2 +

𝑑𝑖|𝑧𝑖|
4

1 − |𝑧𝑖|2
) + 𝑥𝑖  

where 𝑧𝑖 is the complex-valued state of the ith oscillator in the network (subscript i = 1, . . ., 

N), ai = αi + iωi, bi = β1i + iδ1i, di = β2i + iδ2i(αi, ωi, β1i, δ1i, β2i, δ2i ∈5 

 R; i denotes the imagery unit), and 𝑥𝑖  is the sum of input terms. The parameters α𝑖, β1i and β2i 

determine the intrinsic dynamics of the i-th oscillator, where α𝑖  is the bifurcation parameter; ω𝑖  

is its natural frequency; δ1i and δ2i  determine the dependence of intrinsic frequency on 

amplitude. The input to the i-th oscillator 𝑥𝑖  can include both an external signal 𝑠𝑖(𝑡) 

corresponding to the onsets of rhythmic auditory stimuli and coupling from other oscillators,  10 

𝑥𝑖 = 𝑠𝑖(𝑡) + ∑ 𝑐𝑖𝑗𝑧𝑗
𝑘𝑧�̅�

𝑚−1

𝑁

𝑗≠𝑖

 

where 𝑐𝑖𝑗 is the coupling coefficient (17), and k:m is the mode-locking ratio (i.e., 1:1, 2:1, 3:1, 

etc.). 

For the first (auditory) layer we set the parameters as α = 0.0001, β1 = 0, β2 = −3. Thus, 

each oscillator in this network produces a low amplitude intrinsic oscillation at its own intrinsic 15 

frequency that can be entrained by an external rhythmic stimulus (32, 53, 54). The second (motor 

planning) layer parameters were chosen as α = −0.8, β1 = 4, β2 = −3. In this parameter 

regime, each oscillator was bistable (or double limit cycle) regime, exhibiting a both stable limit 

cycle at zero, and a stable limit cycle at a higher amplitude. Oscillators in this network begin at 

rest, and when it receives a signal that is strong enough and long enough, it can jump to a stable 20 

limit cycle. The third (groove) layer has the same parameters as layer two. The remaining 

parameters were all set to zero: δ1 = 0, δ2 = 0. All the layers were based on 321 oscillators of 

internal frequency ω𝑖  which span a range between 0.375 and 12 Hz (inclusive of the delta - theta 

frequency range) according to a log scale. 

In this network, connections are learned according to the Hebbian rule (46, 55): 25 
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𝜏𝑖𝑗 ċij = 𝑐𝑖𝑗(𝜆 + 𝜇1|𝑐𝑖𝑗|
2

+
𝜇2|𝑐𝑖𝑗|

4

1 − |𝑐𝑖𝑗|
2) + 𝜅𝑧𝑖

𝑚𝑧�̅�
𝑘 

To make the dynamical interactions as transparent as possible, we designed a 

feedforward model with a minimal connection topology. Layer 1 is connected only to the auditory 

input, represented by the onset of the notes in the stimuli. We assumed learned multifrequency 

connections (black arrows in Fig. 2d) between layers 1 and 2. Initial connection strengths were 5 

chosen such that each frequency is connected to its  
1

4
, 

1

3
,  

1

2
, 1, 2, 3 and 4th harmonics. We then 

fixed the learning parameters as λ = −1,   μ1 = 4,  μ2 = −2.2, κ = 0.2 (46). We then assumed 

fixed 1:1 excitatory connections from layer 2 to 3 with a coupling strength fixed as w = 0.8, and 

fixed 1:1 inhibitory connections from layer 1 to 3 (red arrow in Fig. 2d) with a coupling strength 

fixed as w = -0.7. Thus, oscillators in layer 3 received in-phase stimulation from the motor 10 

planning network, and anti-phase stimulation from the auditory network. This means that the 

input to layer 3 was the difference between the time-dependent oscillations of layer 2 

(pulse/meter) and layer 1 (auditory rhythm).  

We ran the model as follow: The MIDI1 representation of each melody was used to 

provide a clear estimate of the note onsets. Note onsets were encoded as a sequence of 15 

continuous time onset pulses and transformed into a complex-valued signal using a Hilbert 

transform2. The model entrained to the onsets for the entire duration of the melodies (16 sec). 

As with the data from the human experiment, we removed the initial (evoked) response of the 

model (here, the first 2 sec). We then computed the mean field of each network individually (the 

mean of all oscillators in the network; see (16)). Finally, we computed fft of the mean field (for 20 

seconds 2-16 of the stimulus) and extracted the amplitude of the response at 2 Hz for each layer 

of the model, for each melody. We repeated this procedure 29 times (similar to the number of 

participants in our MEG experiment) to obtain a robust estimate of the model’s response3. 

Overall, this procedure produced an estimate of the amplitude of the time-averaged 2 Hz 

oscillations in each of the three network layers, in response to each of the 36 melodies. 25 

 
1 Musical Instrument Digital Interface 
2 We could equally well have used a real-valued signal. However, the complex input is more natural for this model.  
3 The network dynamics were deterministic, but initial conditions were chosen at random, so the network output for 

each run of the same stimulus differed somewhat. 
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Supplementary Text 

Supplementary Results 

Modelling the relation between groove ratings and degree of syncopation. We fitted at the 

individual level the relation between groove ratings and degree of syncopation. We fitted both a 

linear and quadratic model, and compared their goodness-of-fit, by using the adjusted r-squared 5 

values. For the online experiment (n = 66), we obtained an average adjusted r-squared of 0.14 

and 0.37 across melodies, for the linear and quadratic functions. The quadratic model 

significantly outperformed the linear one (t(65) = 13.1; p < 0.001). For the MEG experiment (n = 

29), we obtained an average adjusted r-squared of 0.21 and 0.49 across melodies, for the linear 

and quadratic functions. The quadratic model significantly outperformed the linear one (t(28) = 10 

11.8; p < 0.001). At the group level, the inverse U-shape profile is very well approximated with a 

quadratic function for both the online (adjusted r2(33) = 0.73) and MEG (adjusted r2(33) = 0.67) 

experiments. 

Correlation of the degree of syncopation and groove ratings with the neural network 

model outputs. We first correlated the degree of syncopation with the time-averaged 2 Hz 15 

amplitude of the dynamics of each layer of the neurodynamic model. Layer 1 strongly linearly 

correlates with the degree of syncopation (r2(34) = 0.85; p < 0.001), which is not the case for layer 

2 (r2(34) = 0.12; p = 0.04) or layer 3 (r2(34) = 0.14; p = 0.02). Second, we correlated groove ratings, 

averaged across participants, obtained either from the online (n = 66) or the MEG (n = 29) 

experiment. Groove ratings mostly linearly correlated with activity from layer 3 (online: r2(34) = 20 

0.66; p < 0.001; MEG: r2(34) = 0.57; p < 0.001), but to a far less extent with activity from layer 1 

(online: r2(34) = 0.34; p < 0.001; MEG: r2(34) = 0.38; p < 0.001) or layer 2 (online: r2(34) = 0.19; p 

= 0.008; MEG: r2(34) = 0.13; p = 0.03). Our results show that a high groove experience reflects 

strong resonance in layer 2 (pulse/meter) at frequencies that are weak and/or anti-phase in the 

stimulus (and in layer 1), while difficulty or inability to perceive a pulse (the absence of 25 

expectancy in layer 2) is characteristic of high syncopated melodies (Fig. S1b).  

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.29.538799doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.29.538799


 

25 

 

Fig. S1. 

 

Figure S1. Neurodynamic model. (a) Inter-melody correlation between the time-averaged 2 Hz 

amplitude of each layer of the neurodynamical model (1 to 3; lines, y-axes), as a function of 4 

paradigmatic variables (2 Hz acoustic, degree of syncopation, MEG groove ratings, or online 5 

groove ratings; columns, x-axes). Data were approximated with a linear function. Pearson’s r-

squared is reported. Strongest correlations are highlighted with red rectangles. (b) Amplitude of 

the time-averaged 2 Hz oscillations in the three network layers, in response to each of the 36 

melodies, for each condition (low, medium, high). Shades of grey indicate the conditions. 

Individual points indicate melodies (n = 36). 10 
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Fig. S2. 

 

 

Figure S2. Dominant frequency across the brain volume in the three melodic conditions (low, 

medium, high). Frequency range 1-45 Hz (after removal of the 1/f decay of the neural power 5 

spectrum). (a) For each condition, data were approximated at the group-level with a polynomial 

function, independently for each dimension (X, Y, Z) of the MNI space. (b) Comparison of the 

quality of fits (r2), estimated at the individual level, of the 36 melodies grouped per condition (low, 

medium, high) and plotted for each dimension (Y, X, Z) of the MNI space. 

  10 

a

b
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Fig. S3. 

 

 

Figure S3. MEG experiment: Spectral coding of degree of syncopation and groove ratings in 

the regions-of-interest. Spectrum of neural coding of the degree of syncopation (blue) and groove 5 

ratings (blue), for each of the regions-of-interest (Fig. 3g). Red and blue horizontal lines indicate 

frequencies with significant coding values (q < 0.005, FDR-corrected). The black line indicates 

frequencies with significant differences in coding precision between degree of syncopation and 

groove ratings (q < 0.05, FDR-corrected). Error bars indicate SEM. Inset brains indicate the spatial 

localization of each region-of-interest. 10 
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