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Abstract: 55 

Baboons (genus Papio) are a morphologically and behaviorally diverse clade of catarrhine 56 

monkeys that have experienced hybridization between phenotypically and genetically distinct 57 

phylogenetic species. We used high coverage whole genome sequences from 225 wild baboons 58 

representing 19 geographic localities to investigate population genomics and inter-species gene 59 

flow. Our analyses provide an expanded picture of evolutionary reticulation among species and 60 

reveal novel patterns of population structure within and among species, including differential 61 

admixture among conspecific populations. We describe the first example of a baboon population 62 

with a genetic composition that is derived from three distinct lineages. The results reveal 63 

processes, both ancient and recent, that produced the observed mismatch between phylogenetic 64 

relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified 65 

several candidate genes that may contribute to species-specific phenotypes. 66 

 67 
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One-Sentence Summary:  68 

Genomic data for 225 baboons reveal novel sites of inter-species gene flow and local effects due 69 

to differences in admixture.  70 
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Main Text: 71 

Our understanding of the evolutionary processes involved in the origin of biological 72 

diversity has changed significantly over the past two decades. Genetic analyses have 73 

demonstrated that hybridization and inter-species gene flow between closely related mammalian 74 

species occur more often than previously assumed (1, 2). Traditional studies of natural 75 

hybridization among populations and species have relied on phenotypic variation and a few 76 

informative genetic markers (3, 4). However, access to large-scale genomic datasets now allows 77 

more extensive analyses (5–7) demonstrating that in some cases complex reticulations rather 78 

than dichotomously branching phylogenetic trees more accurately represent evolutionary 79 

histories. 80 

Among primates, including humans, the number of genera found to exhibit complex 81 

histories of interspecific reticulation has recently grown considerably (2, 8–12). Baboons (genus 82 

Papio) have long been recognized as a prime example of inter-species gene flow with several 83 

hybrid zones between the six currently recognized parapatric species (Guinea baboons P. papio; 84 

hamadryas baboons P. hamadryas; olive baboons P. anubis; yellow baboons P. cynocephalus; 85 

Kinda baboons P. kindae; chacma baboons P. ursinus; Fig. 1; for the rationale behind the 86 

classification of these major forms as species rather than subspecies see (13)) (14–17). Previous 87 

analyses have identified substantial discrepancies in species-level phylogenies based on nuclear 88 

DNA, mitochondrial DNA (mtDNA), and phenotypes, indicating para- and polyphyletic 89 

relationships, and suggesting a complex history of differentiation and admixture (18–21). Recent 90 

comparisons of whole-genome sequence (WGS) data across Papio species illustrated the extent 91 

of genetic exchange between phenotypically distinct species (22–25). These studies were, 92 
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however, restricted to one or two populations per species, and therefore unable to analyze wider 93 

geographic patterns of genetic diversity or compare the local effects of interspecific contact. 94 

This study provides the first detailed WGS-based analysis of coancestry and genomic 95 

exchange across all six baboon species, including multiple populations within olive and yellow 96 

baboons. We generated deep (>30x; table S1, (13)) WGS data from 225 wild baboons 97 

representing 19 localities (Fig. 1, table S2), describing variation within and among localities for 98 

autosomes, X- and Y-chromosomes, mtDNA, and other genetic features such as insertions of Alu 99 

repeats and long interspersed elements (LINEs). In addition to population structure using 100 

autosomal single nucleotide variants (SNVs) and repetitive elements, we contrast coancestry 101 

inferred from autosomal and X-chromosomal data to reveal sex-biased effects on genetic 102 

population structure. Our results provide the most extensive analysis of genetic diversity in 103 

baboons to date and reveal processes, both ancient and recent, that produced the observed 104 

mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental 105 

inheritance. The evidence indicates the radiation that produced the six extant species began more 106 

than one million years ago. The lineages that diverged around that time have since experienced 107 

extensive admixture, as reflected in their current genetic composition. We suggest that these 108 

findings inform predictions for similar systems such as hominin and early human evolution, for 109 

which baboons have long been recognized as a model (26–29). 110 

 111 

RESULTS 112 

WGS analysis across multiple populations of baboons provides a fine-grained picture of 113 

present-day population structure and the evolutionary history that generated it. Results of this 114 

analysis also document additional locations of ongoing admixture among genetically distinct 115 
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lineages. Our analyses of SNVs strongly support the existence of differentiated clades including 116 

the six recognized species, despite well-known hybrid zones between parapatric species. The 117 

initial divergence of evolutionary lineages separates the three northern species (hamadryas, olive, 118 

and Guinea baboons) from the three southern species (Kinda, yellow, and chacma baboons). 119 

Analyses of population structure (Fig. 2, A to C, figs. S1 to S4) and phylogenomic maximum-120 

likelihood (ML) trees using autosomal, X- and Y-chromosomal, and mtDNA data (figs. S5 to 121 

S8) are consistent with the initial north-south split, and with greater overall divergence among 122 

southern than northern baboons (see also (23)). Principal component analyses (PCAs) and ML 123 

trees of autosomal and X-chromosomal data separate the western Tanzanian yellow baboons 124 

located at Mahale and Katavi into their own cluster distinct from eastern Tanzanian yellow 125 

baboons from Mikumi, Selous, Ruaha and Udzungwa as well as from Kinda baboons. However, 126 

the Y-chromosomal phylogenies, including one based on Alu insertions (fig. S9), show six main 127 

clusters largely corresponding to the six species and place most western yellow baboons with 128 

Kinda baboons. Other western yellow baboons cluster in that analysis with eastern yellow and 129 

one olive baboon, providing a clear example of admixture processes not revealed by the whole-130 

genome phylogeny. 131 

Across the genome of each individual, we identified the most recent coancestry among all 132 

other sampled individuals (ChromoPainter (30)). The corresponding first two principal 133 

components (Fig. 2C) show extensive variation among yellow baboons and confirm the primary 134 

north-south split. This north-south split is also apparent in the clustering using fineSTRUCTURE 135 

(30) (Fig. 2B). ML trees for autosomes and X- and Y-chromosomes (figs. S5 to S7) all support 136 

the conclusions based on PCA, with two individuals falling outside their expected species clades 137 

(samples PD0266 and PD0662, also anomalous in the PCAs; figs. S1, S2, S10 and S11, (13)). As 138 
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discussed below, the Y-chromosomal phylogeny places Kinda baboons basal to all others (fig. 139 

S7). 140 

Unsupervised cluster algorithms group individuals largely by species (see ADMIXTURE 141 

analysis; Fig. 2D, fig. S12) with K = 7 as the preferred number of clusters. However, in species 142 

for which we sampled more than one population (olive and yellow baboons), we find local 143 

genetic differences and evidence for a complex evolutionary history (detailed discussion below). 144 

These results are also supported by an analysis of LINE-1 (L1) insertions (fig. S13), an 145 

independent class of genetic marker that is less prone to parallel mutations. The pelage 146 

phenotypes on which taxonomy was traditionally based are generally very consistent within 147 

species over wide geographic ranges (31). Yet, we find high genomic variation within and 148 

among conspecific populations. Heterozygosity ranges from 0.0006 to 0.0026 (average 0.0018) 149 

per base pair across the six species, and from 0.0006 to 0.0029 across the 19 localities, with the 150 

lowest values in Guinea baboons (table S3, figs. S14 to S17). The coancestry matrix and its PCA 151 

(Fig. 2, B and C) differentiates the various sampling localities and is therefore consistent with the 152 

ADMIXTURE analysis (Fig. 2D) showing that the sampled populations within both yellow and 153 

olive baboons can be distinguished genetically. The yellow baboons in Mikumi (Fig. 2B, box H) 154 

share pelage and morphological phenotypes with those in Ruaha, although they are genetically 155 

distinct. Western yellow baboons from Mahale and Katavi (Fig. 2B, box F) exhibit phenotypic 156 

traits (somewhat smaller body size than Mikumi baboons, especially cranial metrics; aspects of 157 

coat color with some individuals having pink skin around the eyes, and sporadic occurrence of 158 

white-furred infants) in which they resemble Kinda baboons (32). The coancestry matrix (Fig. 159 

2B) further shows that yellow baboons from Mahale and Katavi (box F) exhibit greater genetic 160 

similarity with Kinda (box E) and chacma baboons (box G) than with their supposed 161 
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conspecifics from eastern Tanzania (box H). Similarly, all olive baboons (with exception of 162 

those from Tarangire) share a very consistent pelage and external phenotype. However, 163 

ADMIXTURE (Fig. 2D) and ChromoPainter (Fig. 2B) analyses identify clear evidence of 164 

genetic differences between the Ethiopian Gog olive baboons and the Tanzanian olive baboons 165 

of Lake Manyara and Ngorongoro. Furthermore, the Serengeti population is more similar 166 

genetically to both the Gombe and Aberdare populations than to the Ngorongoro or Lake 167 

Manyara populations which are geographically much closer. 168 

We used the SNV data to reconstruct the history of population size for each baboon 169 

locality (Fig. 3A, figs. S18 to S21). The estimated effective population sizes (Ne) are all 170 

essentially the same and on the order of 100,000 until about 1.0-1.2 million years ago, which is 171 

consistent with the prior dating of the initial north-south divergence (23). At the separation, the 172 

Ne of northern populations fell below that of the southern populations, supporting the idea that 173 

the genus arose in southern Africa, and a daughter population from this basal stock spread to the 174 

north, then to the west, losing genetic diversity in serial founding events. The suggestion that 175 

Guinea baboons represent the descendants of those groups that were at the leading edge of that 176 

dispersal for the longest distance and time (33) is supported by the lower heterozygosity in that 177 

sample relative to all other baboon species (table S3). Also, whole-genome Alu and L1 insertion-178 

based phylogenies place western yellow baboons with Kinda baboons, while Guinea baboons are 179 

basal among baboons, and hamadryas baboons are the sister taxon to olive and southern baboons 180 

(figs. S22 and S23). These findings may result from Guinea baboons, and to a lesser extent 181 

hamadryas baboons, losing polymorphic derived Alu and L1 insertions through drift as they 182 

dispersed north from the southern geographic origin (34). 183 
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Earlier studies provided clear evidence for hybridization and gene flow across the contact 184 

zones between pairs of parapatric species (15–17, 24, 25, 35). In this study, we present new 185 

evidence for additional ancient and recent arenas for gene flow between species pairs. Species 186 

tree reconstruction (ASTRAL (36)) using window-based ML trees (50kb and 500kb window 187 

size) produced inconsistent branching patterns among datasets and only 58-70% of gene trees fit 188 

the species tree at the quartet level (figs. S24 and S25). Both incomplete lineage sorting (ILS) 189 

and gene flow are likely contributing to this discordance which is expected to be larger for 190 

smaller windows. In addition, a qualitative visualization of these trees (figs. S24 and S25) shows 191 

a network-like pattern, again indicating complexity. There is greater shared genetic drift 192 

(measured by f3 outgroup statistics) among eastern yellow baboon localities (Udzungwa, Selous, 193 

Mikumi, Ruaha), while western yellow baboons tend to cluster with Kinda baboons (fig. S26). In 194 

admixture graphs (Fig. 3B), Kinda baboons are, similarly to the description in (23), represented 195 

as a fusion product of populations from southern and ancestral northern clades, while the western 196 

yellow baboons share ancestry with both Kinda and olive baboons. More complex graphs (tables 197 

S4 and S5, figs. S27 to S29) might be supported, but failed to give replicable results, likely due 198 

to complex reticulation and multiple gene flow events at different times and between different 199 

local populations which now obscure the processes involved. 200 

Taken as a whole, this expanded dataset does not support the previous suggestion that 201 

Kinda baboons result from a recent fusion event (23) as shown in Fig. 3B. In PCA plots using 202 

genome wide SNVs, Kinda baboons do not fall intermediate between northern and southern 203 

clades but in fact are quite distinct (Fig. 2A, figs. S1 and S2). Some ML trees (i.e., Y-204 

chromosome data; fig. S7) place Kinda baboons as sister clade to all other baboons whereas 205 

other trees (autosomes and X-chromosome data, figs. S5 and S6) lump them together with 206 
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yellow and chacma baboons into the southern clade. These results are more consistent with the 207 

idea that Kinda baboons show substantial genetic similarity to both northern and southern clade 208 

baboons because they are basal and phenotypically resemble the ancestral form from which all 209 

extant species are derived. Fossil evidence suggests a southern African origin for baboons (34), 210 

and the mtDNA haplotypes of Kinda and western yellow baboons (Fig. 4, fig. S8 (21)) suggest 211 

their range in tropical southern Africa may include the area of origin of both northern and 212 

southern primary branches. Broader aspects of Y-chromosome data also do not support Kinda 213 

baboons as a fusion product; Kinda baboon Y-haplotypes are found in western yellow baboons 214 

but not in olive baboons, and no olive baboon mtDNA has been observed in any Kinda baboon to 215 

date. Finally, Kinda baboons share more polymorphic Alu insertions with geladas than do other 216 

Papio species, possibly the result of a period of co-existence and hybridization between their 217 

ancestors (37). 218 

We analyzed the genetic relationships among the eight major regional baboon 219 

populations that constitute our samples, i.e., the four single-locality populations of chacma, 220 

Kinda, hamadryas and Guinea baboons as well as two groups each of yellow (western and 221 

eastern) and olive (Gog and southern) baboons. By modeling the recent ancestry along the 222 

chromosomes of individual baboons (Globetrotter (38)) we can represent each group as a 223 

mixture of recent ancestry with the remaining seven groups (Fig. 3C). In most of the groups, we 224 

can identify a contribution from recent admixture events (the oldest identifiable event estimated 225 

at 56 generations; table S6) separate from contributions of older admixture and retention of 226 

ancestral polymorphism (bootstrap p-values < 0.01 unless otherwise noted). In Fig. 3, C and D, 227 

we distinguish the recent admixture from more ancient shared ancestry by showing the recent 228 

admixture estimates as expanded (exploded) wedges. 229 
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We identified a large amount of shared ancestry between southern olive and eastern 230 

yellow baboons not concordant with the overall phylogeny (Fig. 3C). This is also expressed in 231 

the coancestry matrix (Fig. 2B, box X) and is additional evidence of persistent admixture 232 

between both species (15, 17, 22, 25). Furthermore, western yellow baboons from Mahale and 233 

Katavi share substantial ancestry with eastern yellow, Kinda, and southern olive baboons. This 234 

cannot be explained as a retention of ancient shared variation present prior to the origin of the six 235 

major branches, because there is no equivalent sharing with chacma, hamadryas or Guinea 236 

baboons. This is, therefore, the first evidence that a single population (western yellow baboons) 237 

contains measurable admixture contributions from more than two distinct lineages. Comparing 238 

the ancestry of recently admixing populations (expanded wedges in Fig. 3C) to that of each other 239 

group identifies recent admixture from Gog into southern olive baboons, between western and 240 

eastern yellow baboons, from southern olive baboons into eastern yellow baboons (p-value 0.04), 241 

between Kinda and chacma baboons (p-value 0.02), and between Kinda and western yellow 242 

baboons. Repeating the Globetrotter analysis assuming 14 populations representing all major 243 

sampling locations differentiates olive and yellow baboon populations (Fig. 3D) and reveals a 244 

complex system of recent gene flow (all events < 95 generations) between: i) olive baboon 245 

populations, ii) yellow baboon populations, iii) yellow and Tarangire olive baboons, iv) western 246 

yellow and Gombe olive baboons, and v) Tarangire olive baboons and Ruaha yellow baboons. 247 

These results do not imply direct migration of males (e.g., individual males moving from Gog to 248 

Serengeti), but more plausibly the overall consequences of many incremental gene flow events 249 

distributing alleles long distances over multiple generations. 250 

This is not the first study to suggest that the history of genetic differentiation and 251 

reticulation among baboons is complex. Previous studies (10, 18–21, 33, 39, 40) showing 252 
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widespread phenotype-mitochondrial discordance strongly suggest that nuclear swamping (i.e. 253 

the immigration of males into a phenotypically different population, largely or completely 254 

displacing the nuclear DNA composition and phenotype of the invaded population, without 255 

changing its mtDNA composition) has been a major contributing process. The present study 256 

found a similar discordance between the expanded mtDNA phylogeny (Fig. 4, fig. S8) on the one 257 

hand and the new autosomal and Y-chromosomal phylogenies on the other (figs. S5 and S7). 258 

Thus, our WGS findings strongly support previous suggestions based only on mtDNA and 259 

phenotype data that nuclear swamping has been a major factor generating the current pattern of 260 

baboon genetic and phenotypic variation.  261 

The dense sampling of mtDNA provides important information about matrilineal 262 

ancestry. However, as a single locus, mtDNA represents only one of many possible genealogies 263 

generated by ILS and admixture. To test the hypothesis that nuclear swamping produced the 264 

discord observed between mtDNA phylogenies and relationships based on phenotype, we 265 

contrasted ancestry proportions across the X-chromosome and the similar-sized chromosome 8, 266 

each contributing thousands of individual genealogies. Admixture by hemizygous males 267 

introduces disproportionately more autosomal than X-chromosomal sequence, rendering shared 268 

X-chromosome ancestry a better representation of deep species relationships prior to admixture. 269 

We found that the X-chromosome of our chacma baboons derives more ancestry from yellow 270 

baboons than their chromosome 8 does (0.47 vs 0.62, paired t-test value 0.005; Fig. 5A), 271 

suggesting that male-biased admixture from the ancestors of chacma baboons into the southern 272 

range of yellow baboons produced northern chacma baboons, including the grayfooted chacma 273 

baboons (P. ursinus grisiepes) that we analyze here. This observation is consistent with the close 274 

relationship between mtDNA found in southern-most yellow and northern chacma baboons 275 
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(clade B in Fig. 4 (19, 40)). The most compelling evidence of male-biased admixture is the 276 

relationship between western yellow and Kinda baboons. The ancestry profile of western yellow 277 

baboons (Fig. 5B) is very different from eastern yellow baboons (Fig. 5C). Western yellow 278 

baboons share more ancestry with Kinda baboons on the X-chromosome than on chromosome 8 279 

(0.27 vs 0.44, paired t-test p-value 0.025) while Kinda baboons contain twice as much western 280 

yellow baboon ancestry on the X-chromosome as on chromosome 8 (0.23 vs 0.55, paired t-test p-281 

value 1.8e-13; Fig. 5D). Furthermore, eastern yellow baboons share more X-chromosomal 282 

ancestry with western yellow baboons than chromosome 8 ancestry (0.16 vs 0.20, paired t-test p-283 

value 3.1e-9; Fig. 5B). Together these observations indicate that western yellow baboons were 284 

produced mainly from males carrying haplotypes that originated among eastern yellow and 285 

southern olive baboons migrating into the ancestral range of Kinda baboons, replacing Kinda 286 

baboon autosomes more than they replaced Kinda baboon X-chromosomes. As a result, western 287 

yellow baboons carry genetic input from three distinct lineages. 288 

In addition to patterns of shared ancestry among populations and species, we used two 289 

strategies to seek preliminary evidence for species-specific genetic adaptations in baboons. First, 290 

we used PLINK (41) to identify SNVs enriched in one species relative to all others (table S8). 291 

Genes containing possibly functional SNVs enriched in a given taxon were correlated with 292 

species phenotypes using Gene Ontology (GO) (42) terms and literature searches. We also used 293 

OmegaPlus (43) to test those gene regions for evidence of selective sweeps. Across all species, 294 

1,342,371 SNVs met the criteria for being enriched in one particular species, including 4,337 295 

missense and 76 stop gained SNVs (table S8). We next searched this list of candidates for genes 296 

annotated as influencing known traits of that species. Among them, SNV_1 (Table 1, fig. S32), a 297 

missense variant in Serine Protease 8 (PRSS8) has a 0.96 allele frequency (AF) in hamadryas 298 
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baboons and a 0.02 AF in the geographically adjacent Gog olive baboons (absent in other 299 

species). PRSS8 increases epithelial sodium channel activity and mediates sodium reabsorption 300 

through the kidneys (44). PRSS8 is under positive selection in the desert-adapted canyon mouse 301 

(Peromyscus crinitus) (45), and hamadryas baboons inhabit the most arid environment of all 302 

baboons (46). SNV_2 (Table 1, fig. S33) has a 1.0 AF in both hamadryas and Guinea baboons 303 

and is absent from other species. This is a missense variant in Neurexin 1 (NRXN1) which is 304 

associated with the GO term “social behavior”. NRXN1 knockout mice exhibit changes in male 305 

aggression (47). Guinea and hamadryas baboons differ from others in the genus in exhibiting a 306 

multi-level male-philopatric social organization with substantial male-male tolerance (29, 48). 307 

This contrasts with the matrilineal, male-dispersing social organization typical and likely 308 

ancestral for the genus. This observation is compatible with the speculation that until "swamped" 309 

by males from olive and yellow baboon populations, male-philopatric "pre-Guinea" and "pre-310 

hamadryas" baboon populations occupied the northern savanna-woodland belt and much of the 311 

East African savanna-woodland corridor (33). SNV_3 (Table 1, fig. S34) has a 1.0 AF in Kinda 312 

baboons and a 0.05 AF in yellow baboons (western yellow baboons and Ruaha) and one 313 

Serengeti olive baboon. This is a missense variant in the pigmentation-associated Agouti 314 

Signaling Protein (ASIP). In mice, this gene affects melanin synthesis, shifting eumelanin 315 

production (black/brown hair) to phaeomelanin (red/yellow hair) (49). Kinda baboons display 316 

several unique coat color traits, including a substantial proportion of infants with white natal 317 

coats (16). 318 

In our second approach to functional variation, we searched for genomic regions of 319 

elevated differentiation between pairs of closely related species (for details see (13)). We asked 320 

whether regions with the strongest evidence of differentiation (windows in the top 0.1%) were 321 
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enriched for genes with particular GO terms. Genomic regions most distinct between Kinda and 322 

yellow baboons were enriched for genes linked to skeletal development and morphogenesis (p-323 

value adjusted for false discovery rate, p = 1.77×10-4); tables S9 to S11; fig. S35) including limb 324 

development (e.g., embryonic forelimb morphogenesis, adj. p = 0.02). This enrichment was 325 

driven by one region on chromosome 3 containing a HOXA gene cluster (fig. S36) and may 326 

influence the distinctively small size and gracile, long-limbed build of Kinda baboons (16). 327 

Genes linked to male sexual differentiation were also increased in regions highly differentiated 328 

between Kinda and yellow baboons (adj. p = 0.0484), possibly related to the reduced sexual 329 

dimorphism in Kinda baboons (50). 330 

 331 

DISCUSSION 332 

Our expanded whole-genome dataset provides several novel insights into genetic 333 

reticulation and the evolutionary history of multiple local populations of baboons. Previous work 334 

showed that gene flow occurs among phenotypically and genetically distinct baboon species and 335 

pointed to nuclear swamping as a major contributing process. Our study extends and adds higher 336 

resolution to this picture, using genetic data to confirm hybrid zones that were previously 337 

suspected from field observation of phenotypic variation alone. We also identify the first local 338 

population (western Tanzanian yellow baboons) that has clear evidence for genetic contributions 339 

from three genetically distinct lineages. 340 

While our results significantly extend our knowledge of baboon evolutionary history, 341 

some gaps remain. The richness of evolutionary detail to be derived from denser sampling is 342 

indicated by our results from East African populations. More materials are needed to document 343 

other regions with complex biogeographic and evolutionary history, including the olive-Guinea 344 
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baboon interface in West Africa (21), and regions of southern Africa where chacma baboons 345 

have experienced both ancient and recent periods of genetic divergence and reticulation (39, 40). 346 

Other geographic regions, e.g., the northern savanna-woodland belt west of our Gog population 347 

have not been studied and would likely provide further information, especially regarding the 348 

origins and history of olive and Guinea baboons. Nevertheless, our dense sampling in East Africa 349 

clearly identifies new arenas of gene flow and documents the complexity of the evolutionary 350 

history of baboons in this region. 351 

Our results lead to several substantive conclusions. With regard to methods, we find that 352 

while comparison of mtDNA and phenotypic variation are effective in detecting nuclear 353 

swamping, analyses comparing levels of shared ancestry across the X-chromosome to that across 354 

autosomes provides a more quantitative assessment of demographic processes and genetic 355 

history. Second, we conclude that Kinda baboons are not the product of a recent fusion event. 356 

Instead, they are more likely close to the basal ancestor of all extant baboons. Next, we find 357 

additional support for the prior observation that the primary separation of northern and southern 358 

baboon species is the result of dispersal from the south to the north, with Guinea baboons 359 

recognized as the most recent occupants of the leading edge of that dispersal. Despite the sharp 360 

gradient of phenotypes that is characteristic of baboon inter-species contact zones, gene flow 361 

distributes the introgressed alleles far from the regions of obvious hybridization. Last, we report 362 

that extant western yellow baboons carry genetic contributions from three genetically different 363 

baboon lineages. 364 

The patterns of local, regional and species-level genetic structure in baboons are likely a 365 

valuable model for population structure in other primate clades that consist of multiple closely 366 

related species, such as African green monkeys (genus Chlorocebus (51)) and macaques (genus 367 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2023. ; https://doi.org/10.1101/2023.05.02.539112doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.02.539112


18 

Macaca (52)). Clades in other mammalian orders are also revealing complex, often reticulated, 368 

evolutionary histories like those of baboons (e.g., polar bears (53, 54), giraffes (7), and deer 369 

(55)). The results for baboons also provide informative parallels and contrasts to the evolutionary 370 

differentiation and relationships among early human ancestors that arose, differentiated and 371 

admixed over a timespan remarkably similar to that of baboon cladogenesis (56). 372 

 373 

MATERIALS AND METHODS SUMMARY 374 

Extended materials and methods are available in the supplementary materials. 375 

Samples and DNA Sequencing 376 

Blood samples from 225 baboons and two geladas were gathered in accordance with local 377 

regulations. Genomic DNA was extracted from blood and libraries were prepared for sequencing 378 

on the NovaSeq 6000 platform (Illumina).  379 

Variant Calling and Phasing 380 

We used BWA-MEM to map reads to the Panu_3.0 baboon and the Mmul_10 rhesus assemblies. 381 

GATK was used to call variants following best practices. Panu_3.0 SNVs were phased using 382 

WhatsHap and SHAPEIT.  383 

Population Structure and Phylogenetic Analyses 384 

Population structure based on SNVs was examined using PCA, ADMIXTURE, and 385 

fastSTRUCTURE. Phylogenetic trees based on autosomal and sex chromosome SNVs and 386 

Geneious assembled mitochondrial genomes were generated using IQ-TREE and visualized with 387 

FigTree. Polymorphic mobile elements were identified using DELLY and MELT. STRUCTURE 388 

and MELT were used to analyze population structure of L1 and Alu elements. PAUP was used to 389 

generate maximum parsimony trees from Alu and L1 elements. We used MSMC2 to infer 390 
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baboon demographic history and population structure through time. Admixture graphs and F3 391 

outgroup statistics were generated using ADMIXTOOLS 2. 392 

Inference of most recent coancestry along each chromosome 393 

ChromoPainter was used to infer the most recent coancestry along chromosomes and 394 

fineSTRUCTURE was used to identify relationships between individuals based on their most 395 

recent coancestry. We used Globetrotter to compute p-values for a coancestry contribution from 396 

recent admixture.  397 

Functional Variation 398 

Functional variation was examined using PLINK for association analyses, OmegaPlus for 399 

selective sweep identification, and differentiation-based scans for selection using windowed FST 400 

values. 401 
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Tables 859 

Table 1. Species enriched SNV statistics. Cluster and OmegaPlus statistics for the hamadryas 860 

and Guinea baboon shared SNV_2 are shown for hamadryas baboons. CADD and REVEL 861 

scores from human annotations predict functional impact of mutations (see Supplementary 862 

Materials). 863 

SNV 
ID 

SNV PLINK  
p value 

Cluster 
Length 

(bp) 

SNVs 
in 

Cluster 

OmegaPl
us 

(percentil
e) 

CADD 
PHRE

D 

REVE
L 

SNV_1 20:27347531:G:
T 

1.40 x 10-

78 
64,284 24 5.59 

(1.8%) 
0.001 0.351 

SNV_2 13:49896439:G:
C 

9.72 x 10-

101 
126,701 96 11.01 

(0.3%) 
7.266 NA 

SNV_3 10:30107617:T:
C 

2.52 x 10-

69 
39,912 58 4.92 

(0.7%) 
19.140 0.080 

  864 
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Figure Legends 865 

Fig. 1. Distribution of the six baboon species and sampling sites. Species distributions are 866 

modified from (20). The insert map shows sampling sites in Tanzania. Drawings of male 867 

baboons by Stephen Nash, used with permission. Numbers of samples per species are given in 868 

parentheses. 869 

 870 

Fig. 2. Population structure and coancestry of the six baboon species. (A) PCA of autosomal 871 

SNVs. (B) ChromoPainter coancestry matrix with fineSTRUCTURE dendrogram. Each row in 872 

the coancestry matrix represents an individual and illustrates how its most recent common 873 

ancestry is distributed across all other sampled individuals. The ordering of individuals is the 874 

same for rows and columns. The row color labels are the same as in A and correspond to clusters 875 

shown for eight populations labeled with boxes: A: Gog olive (Ethiopia), B: hamadryas, C: 876 

Guinea, D: southern olive (Kenya and Tanzania), E: Kinda, F: western yellow, G: chacma, H: 877 

eastern yellow; X: olive coancestry in western yellows suggesting admixture (see alternate 878 

fineSTRUCTURE figure fig. S4). Colors labels below the dendrogram represent the 14 groups 879 

named in the figure legend. (C) PCA of the coancestry matrix. (D) ADMIXTURE plot with the 880 

preferred grouping of baboons into seven clusters (K = 7; for K = 2-10 see fig. S12). 881 

 882 

Fig. 3. Population history and complex reticulation between baboon populations. (A) 883 

MSMC2 plots using a mutation rate of 0.9x10-8 and a generation time of 11 years (23). (B) 884 

Admixture graph of the populations used in this study, based on 48,730,011 SNPs with data for 885 

all individuals, and a predefined number of two admixture events. Numbers on solid branches 886 

correspond to the estimated drift in f2 units of squared frequency difference; labels on dotted 887 
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edges give admixture proportions. (C) Globetrotter analysis of the eight major regional 888 

populations. The pie chart for each cluster shows ancestry contributions from other clusters. 889 

Expanded wedges represent ancestry that can be attributed to recent admixture (< 56 generations, 890 

bootstrap p-values < 0.05). (D) Same as C but for 14 populations separating each major sampling 891 

location (here, expanded wedges represent ancestry that can be attributed to admixture more 892 

recent than 95 generations, bootstrap p-values < 0.05). 893 

 894 

Fig. 4. Geographic distribution of mtDNA clades and mtDNA phylogeny. (A) Distribution 895 

ranges of baboon species and the four main mtDNA clades (south, south-east, north-east, north-896 

west, dashed lines) including major mitochondrial lineages (A-R). (B) Phylogeny based on 897 

complete mtDNA genomes (see also fig. S8). Clade designation follows (20, 21), asterisks 898 

indicate lineages from which mtDNA genomes have been generated in this study. For identical 899 

haplotypes see table S7. 900 

 901 

Fig. 5. Differential ancestry profiles on the X-chromosome and an autosome. (A) Ancestry 902 

proportions of female chacma baboons. Each marker represents the fraction of total chromosome 903 

ancestry of one individual that is assigned to each of the remaining donor populations. Black dots 904 

and grey crosses represent ancestry proportions of chromosomes 8 and X, respectively. (B) Same 905 

as A but for female western yellow baboons. (C) Same as A but for female eastern yellow 906 

baboons. (D) Same as A but for female Kinda baboons. For additional profiles see figs. S10, S30 907 

and S31. 908 
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