
Exploration biases how forelimb reaches to a 
spatial target are learned 

The brain can learn to generate actions, such as reaching to a target, using different movement strategies. 
Understanding how different variables bias which strategies are learned to produce such a reach is important for 
our understanding of the neural bases of movement. Here we introduce a novel spatial forelimb target task in which 
perched head-fixed mice learn to reach to a circular target area from a set start position using a joystick. These 
reaches can be achieved by learning to move into a specific direction or to a specific endpoint location. We find that 
mice gradually learn to successfully reach the covert target. With time, they refine their initially exploratory complex 
joystick trajectories into controlled targeted reaches. The execution of these controlled reaches depends on the 
sensorimotor cortex. Using a probe test with shifting start positions, we show that individual mice learned to use 
strategies biased to either direction or endpoint-based movements. The degree of endpoint learning bias was 
correlated with the spatial directional variability with which the workspace was explored early in training. 
Furthermore, we demonstrate that reinforcement learning model agents exhibit a similar correlation between 
directional variability during training and learned strategy. These results provide evidence that individual exploratory 
behavior during training biases the control strategies that mice use to perform forelimb covert target reaches.

(22, 24-27). Accordingly, when humans or non-human pri-
mates learn to reach to rewarded target locations, the path-
length or X-Y variance of reach trajectories are refined (28, 
29). Thus, when different movement strategies can lead to 
the same outcome, which type of movements are explored 
during training could determine what can be assigned with 
credit and thus influence or bias which strategy is learned. 
How individual animals explore may depend on their pre-
vious experience (30-32), motivation, fatigue, or innate dif-
ferences. Hence, confronted with the same task, individuals 
may learn to used different movement strategies based on 
what movements they explore during training.

Whereas past work has quantified refinement of relevant 
movement aspects during learning, this does not resolve 
which strategy was learned, as assigning credit to either 
strategy would likely reduce the variability of the movement 
in similar ways. The content of what was learned needs to be 
specifically probed. One way is to devise a test as has been 
widely used in the field of learning theory. Probe tests have 
allowed researchers to distinguish simple stimulus-response 
learning (33) from more cognitive place learning (34-36) by 
opening new paths or placing an animal at a new entry of a 
maze. And in instrumental learning, reward devaluation has 
been used to dissociate habitual (stimulus-response) learn-
ing from goal-directed learning (37). A series of studies in 
humans have devised similar tests to dissociate whether 
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INTRODUCTION
In arm movements like reaching to a glass of water, shifting 
gears while driving a car, or playing drums, the goal is to 
precisely reach a particular target in space. In such spatial 
reaching movements, different movement strategies may be 
used to get to the target location. One strategy is to move 
in a certain direction for a set distance, as in a feedforward 
movement (1). Another strategy is to move toward the target 
location based on the current location or sensory state of the 
limb (2, 3), as in a feedback movement (4, 5). The prima-
ry motor cortex is known to be crucial for targeted reaching 
movements across species (6-12) and it has been found to 
generate activity tightly related to reaching direction (13-18), 
as well as to integrate sensory feedback into new motor com-
mands (19, 20). Despite the importance and universality of 
reaching actions, in which different strategies can achieve 
the same outcome (21), it is poorly understood what influ-
ences which strategy is learned and how they are controlled 
by the brain.

It has been proposed, that how a learner explores the task 
space during training determines what is learned about an 
action (21). It is thought that skilled actions are learned by 
assigning credit to the movement preceding the successful 
outcome (22, 23). Specifically, repeated credit assignment 
with practice allows the brain to gradually converge on what 
movement aspects were causal to success and reduce the 
variability of these aspects in a process called refinement 
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learned reach adaptations were represented in an intrinsic 
(joint space) or extrinsic (Cartesian space) reference frame 
by challenging participants with novel start positions or pos-
ture changes (38-42). Early studies in non-human primates 
showed that reaching a visible target from trained locations 
did not require proprioception, but from new locations it did 
(43, 44), suggesting that even reaches to visible targets can 
be performed using different control strategies. 

In real-life scenarios, the spatial target of a movement is of-
ten not visible. In the example of the skilled drummer, the tar-
get of the arm reach doesn’t have to be visible and is merely 
a memorized location in space. It remains poorly understood 
how such reaches to hidden spatial targets are learned, and 
whether exploration influences what is learned. To causal-
ly test the role of specific circuits and neuronal cell types in 
these mechanisms, the mouse model provides untapped po-
tential. 

Here, we developed a novel forelimb Spatial Target Task 
(STT), where mice can freely explore the workspace and 
learn to move a joystick into covert targets, and where we 
can measure the refinement of forelimb trajectories, and dis-
sociate whether a direction or endpoint strategy was learned. 
Mice are rewarded for entering a hidden circular target area 
in the workspace by moving a joystick from a set start posi-
tion, similar to previous experiments in humans (28, 45). We 
refrained from using behavioral shaping or movement restric-
tion, and positioned mice in a perched posture that enhanced 
exploration of the workspace. Mice discovered different tar-
gets in separate blocks and learned to successfully reach 
the targets. With training, we found significant refinement in 
both the initial direction of their movements and the targeting 
of the trajectory towards the target area. We also show that 
the spatial directional variability in joystick trajectories and 
the direction control is dependent on the sensorimotor cortex 
contralateral to the moving limb. By changing the start point 
in a small number of catch trials, we dissociated that some 
animals displayed direction learning and others endpoint 
learning, and show that the spatial exploration during learn-
ing biases which strategy animals learned to reach targets in 
space. Finally, we trained reinforcement-learning agents to 
perform the task and found that—as for the mice—explora-
tion during training biased the agents toward either direction- 
or endpoint-based behavior.

RESULTS
Perched mice explore the workspace and learn to move 
a joystick into covert spatial target areas
We implemented the Spatial Target Task (STT) with a se-
lective compliance articulated robot arm (SCARA) joystick 
as it provides a homogeneous horizontal workspace (46-48) 
and used a vertical manipulandum (49) that the mouse can 
hold and move around with one hand (Fig. 1a/b). Training 
started with a short pre-training period during which touching 
of the joystick was rewarded in the first phase, and forward 
movements of 4 mm in a 60 degree segment were rewarded 

in the second phase. At the end of pre-training, we defined 
target locations for each animal based on the mean direction 
of rewarded forward movements (Fig. 1d). The same target 
was rewarded for several days until high performance was 
reached (target training) (Fig. 1e). Mice self-initiated move-
ments from a set start position and explored the workspace 
with complex trajectories (attempts) that were rewarded when 
they entered the hidden target area (hit) or ended either af-
ter a maximum time per attempt elapsed (7.5 sec) or if the 
animal let go of the joystick (200 msec, miss) (Fig. 1c). This 
structure allowed for self-paced and unrestricted exploration 
of the workspace when the joystick motors were disengaged, 
and no cues signaled where the target was.

Exploration of the workspace is crucial to discover the target 
area and learn from reinforcement. In contrast to previous 
studies (11, 49-53) the reward contingency and target size 
were unchanged throughout the block such that only explo-
ration would lead to target discovery, and no shaping was 
used. We also did not restrict the movement with the joy-
stick, otherwise commonly done in mice (53-55), thus ani-
mals could move at any speed or stop mid-trajectory as often 
as they wanted. To further encourage animals to explore the 
workspace with their forelimbs, we tested whether head-fix-
ing mice in a perched posture, as during food handling (56), 
would increase the forelimb range of motion compared to the 
commonly used quadrupedal positioning in a horizontal tube 
(11, 49, 57-60). We developed a custom cup-shaped holder 
(cup) that allowed animals to sit on their hindlimbs. Directly 
comparing animals trained on a target in either the cup (n = 
5) or a standard tube (n = 5) (Fig. 1a), we found that the hit 
ratio reached was significantly higher in animals trained in 
the cup (Fig. 1f, unpaired t-test: t(8) = 2.42, p < 0.05, Sup-
pl. Fig.1 c/d). This difference was not due to a difference in 
target locations between groups (Suppl. Fig. 1a/b, cup x/y: 
0.32/7.48 +/-  0.43/0.04 mm, tube x/y: 1.78/7.16 +/- 1.55/0.60 
mm, unpaired t-test, x: t(8) = 2.03, p > 0.05, y: t(8) = 1.19, 
p > 0.05). Animals of both groups showed low hit ratios at 
the beginning of target training (Suppl. Fig. 1a/b), and did 
not display a higher probability of entering the target after 
pre-training (Fig. 1g, unpaired t-test: t(8) = 0.98, p > 0.05)).
In order to test whether animals in the cup were better able 
to explore the workspace with the joystick increasing their 
probability of discovering the target, we analyzed the area of 
the workspace visited by all trajectories of a given session. 
Heatmaps show an increased area visited on the first day 
of the target training for an example animal trained in the 
cup and an example animal trained in the tube on the same 
joystick rig (Fig. 1h). To quantify this exploration, we counted 
the total number of unique spatial bins visited by animals on 
the last day of pre-training and the first day of target training 
(Fig. 1i, Two-way ANOVA rep. meas., group: F(1,8) = 8.99, 
p < 0.05, day: F(1,8) = 32.57, p < 0.01, day x group effect: 
F(1,8) = 5.67, p < 0.05). There was no initial difference in 
exploration of the workspace between groups (Bonferroni 
corrected multiple comparison, pre-training day: t(16) = 0.94, 
p > 0.05), but cup animals significantly increased exploration 

2

**PREPRINT ONLY**

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.08.539291doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539291


**PREPRINT ONLY**

3

Figure 1 | Perched mice explore the workspace and learn to 
move a joystick into covert spatial target areas. a. Schematic 
drawing of head-fixed mice using their right forelimb to move a 
SCARA (Selective Compliance Articulated Robot Arms) joystick 
while holding on to an arm rest with their left forelimb. Left: mouse 
sitting in the ‘cup’ assuming a perched posture. Right: mouse in 
an acrylic ‘tube’ assuming a quadrupedal posture. b. Schematic 
drawing of the SCARA joystick design showing a top view of both 
SCARA arms and motors/encoders to control and record the po-
sition of the joystick at the link joint. c. Schematic illustrating self-
paced attempts and resulting joystick trajectories. Every movement 
out of the start position (green dot) is an attempt. Hit trajectory: 
attempt enters the target area, a reward is dispensed (blue circle), 
and after a 750 msec delay, the motors move the joystick back to 
the start. Miss trajectory: target is not entered within 7.5 sec or the 
joystick is let go for >200 msec, motors move the joystick back to 
the start. d. Target definition. Example trajectories from the last 
pre-training session. Target locations defined 40° to the left and 
right of the mean hit direction (Suppl. Fig. 1a/b/h). e. Experimental 
design of Spatial Target Task (STT). Pre-training phase 1: touching 
of the joystick rewarded (4 days), phase 2: forward pushes reward-
ed. Target definition on the last day of pre-training. Target training: 
targets are rewarded in consecutive blocks of 8 days minimum 
per target. f. Ratio of hits achieved of all attempts made on the 
last session of block 1 of animals in the cup or tube. g. Probabil-
ity of entering target 1 with all attempts made on the last day of 
pre-training. h. Example heat maps of visits to 1 mm2 bins in the 
workspace for an animal in the cup and the tube on the first day 
of the target block 1. The green circle indicates the start position. 
i. Total area visited by all attempts on the last day of pre-training 
and the first day target raining for animals in the cup and the tube. 
j. Ratio of target hits achieved on 5 equidistant days within each 
block from first to last day (selected days). k. Ratio of entering the 
previously rewarded target on selected days of blocks 2 - 4. f/g/i. n 
= 5 animals per group. j/k. n = 8 animals. All data shows mean +/- 
stdev and single animals. * p < 0.05, ** p < 0.01, ns: p > 0.05.
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to find the target on the first day of target training (cup group 
day comparison: t(8) = 5.72, p < 0.01), exploring a larger 
area of the workspace than animals in the tube (target day: 
t(16) = 3.83, p < 0.01). These findings suggest that mice in a 
perched posture were able to display a wider range of fore-
limb movements with the SCARA joystick (Suppl. Fig. 1e/f) 
and modulated their exploration to discover a hidden target 
area.

We therefore decided to use the cup for all other experiments 
and next tested whether animals could discover and learn 
different target locations, allowing for repeated measurement 
of learning and refining of skilled movements in the same 

animal. We pre-trained a cohort of 8 mice and defined two 
individual target locations for each animal (Fig. 1d, Suppl. 
Fig. 1h), which we rewarded in alternating blocks such that 
each target was repeated twice (Fig. 1e). Each block lasted 
until the performance criterion was reached and all animals 
progressed through each block within a maximum of 30 days 
(Suppl. Fig. 1i/k). During the first block, target 1 (lateral to the 
animal’s body axis) was rewarded in all animals. To combine 
data of animals with different block lengths we evaluated the 
performance on 5 equidistant days (from first to last) with-
in each block. We discovered a steady increase in perfor-
mance, with mice reaching high hit ratios (0.75 +/- 0.07) at 
the end of each block, and a strong decrease after each tar-
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get switch (0.19 +/- 0.17) (Fig. 1j, Mixed-effects model, day 
in block: F(2.1,14.8) = 54.90, p < 0.01, block: F(2.0,13.8) = 
3.08, p > 0.05). On the first day after a target switch, animals 
showed perseverative behavior continuing to enter the target 
of the previous block which decreased significantly as they 
explored the workspace and discovered the new target (Fig. 
1k, Mixed-effects model, day in block: F(2.0,14.2) = 69.64, p 
< 0.01, block: F(1.5,10.2) = 1.81, p > 0.05).

These findings indicate that animals repeatedly learned to 
move the joystick into different target areas. However, the 
hit ratio only gives information about how frequently the tar-

get was entered, or how many times the correct action was 
achieved, but not how the exploration of the workspace or 
joystick trajectories evolved through learning (Fig. 2a).

Mice explore the workspace with high spatial directional 
variability and tortuous trajectories
We measured workspace exploration by counting the total 
number of spatial bins that were visited by all trajectories on 
5 selected days across all blocks. We found that early in each 
block a large area of the workspace was explored, which re-
duced as more hits were performed (Fig. 2b, one-way ANO-
VA, F(2.6,18.2) = 13.62, p < 0.01). However, this would also 
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be the case if animals merely stopped producing far reaching 
miss trajectories, while the hit trajectories stayed the same 
and were more frequently performed. To test this, we first 
measured the space explored by the hit trajectories alone 
and subsampled them to the same number of trajectories per 
session. We found that hit trajectories occupied a larger area 
of the workspace at the beginning of the block than at the 
end, even when we only considered the path from the start 
to entry of the target, when the reward was delivered (Fig. 
2c, one-way ANOVA, F(2.5,17.5) = 5.95, p < 0.01). This data 
suggests that exploratory trajectories that were rewarded at 
the target entry (hits) were refined with training.

We next focused the analysis on these hit trajectories and 
investigated how they changed with learning. We used two 
measures of spatial exploration and refinement. First, the 
spatial directional variability, or how variable the average 
movement direction was at each position of the workspace. 
Second, the space explored within a trajectory, or how tor-
tuous a trajectory was. In order to analyze the spatial direc-
tional variability, we generated vector fields of the binned 
workspace from hit trajectories of each session and quan-
tified the angular standard deviation of the mean vector of 
all trajectories passing through a given spatial bin (Fig. 2d). 
This vector field analysis showed that the spatial directional 
variability across the workspace was high early in each block 
and then significantly decreased with learning (Fig. 2d-f, one-
way ANOVA, F(2.4,16.6) = 7.91, p < 0.01). Furthermore, this 
decrease in spatial directional variability was specific to the 
rewarded segment of the hit trajectories, as the spatial direc-
tional variability of all full length attempts did not decrease 
with learning (Suppl. Fig. 3g, one-way ANOVA, F(2.7,18.6) = 
0.97, p > 0.05).

In order to measure how exploratory a single trajectory was, 
we used a metric of tortuosity, defined by the integrated path 
length of the trajectory divided by the Euclidean distance be-
tween its start and endpoint at the target (Fig. 2g). Hit trajec-
tories were significantly more tortuous in the beginning of the 

block than at the end (Fig. 2h, one-way ANOVA, F(2.7,18.6) 
= 15.06, p < 0.01), with trajectories becoming straighter with 
learning. Accordingly, the time required from leaving the 
start to entering the target decreased significantly across the 
blocks (Fig. 2i, 0.73 +/- 0.36 sec to 0.27 +/- 0.09 sec, one-
way ANOVA, F(2.0, 13.8) = 5.36, p < 0.05). Furthermore, we 
found that early in the block when trajectories were more tor-
tuous, they had more acceleration/deceleration transitions 
and this jerkiness also decreased with learning (Fig. 2j/k, 
one-way ANOVA, F(2.7,19.0) = 6.64, p < 0.01).

In order to investigate how the hit trajectories were refined 
across a whole block, we next asked how similar the shape 
and position between trajectories were within and between 
sessions of a block. We calculated the discrete Fréchet dis-
tance (61) (FD) between pairwise trajectories, which only 
compares points in the forward direction of travel but disre-
gards differences in speed (Fig. 2l). Early in the block, the 
hit trajectories within a session were not similar to each oth-
er but became more similar with learning (Fig. 2m/n, one-
way ANOVA, F(2.7,19.0) = 13.82, p < 0.01). Furthermore, 
hit trajectories on the first day of the block were dissimilar 
to hit trajectories on other days in the block, most strongly 
to hits in the middle of the block (Fig. 2m, one-way ANOVA, 
F(3.0,21.2) = 5.28, p < 0.01), further showing that the overall 
shape of the trajectories changed with learning across days.
Overall, we found that animals initially explored the work-
space with trajectories that moved in variable directions at 
different points across the workspace, were tortuous and 
jerky, and dissimilar to each other. These aspects of the 
movements were then refined, reducing variability and pro-
ducing straighter trajectories as animals were rewarded for 
entering the target and increased their hit ratio (Suppl. Mov-
ie 1). Surprisingly, however, the decrease in tortuosity and 
jerkiness was not accompanied by an increase in movement 
speed, but rather the peak speed achieved per hit actually 
decreased with learning as well (Fig. 2o, one-way ANOVA, 
F(2.1,14.8) = 5.73, p < 0.05). Furthermore, this decrease in 
peak speed was also accompanied by a decrease in its vari-
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(opposite page)
Figure 2 | Mice explore the workspace with high spatial directional variability and tortuous trajectories. a. Example trajectories 
of first and last days of a target 1 and a target 2 block. Top: Trajectories of all attempts made in that session. Bottom: 50 subsampled 
hit trajectories from the same session. b-p. Analysis using all full length trajectories (green) or only hit trajectories from start to entering 
the target (blue) on 5 selected days and averaged across all blocks (n = 8 animals). One-way ANOVA with repeated measures, aster-
isks show Dunnett’s multiple comparisons between the first day and all other days of p < 0.05. Mean +/- stdev and single animals. b. 
Total area explored by all trajectories. c. Total area explored by 50 subsampled hit trajectories before entering the target. d. Example 
vector fields showing mean direction of all trajectories in a given spatial bin of the workspace (black arrows) and heat map of direction-
al variability in that same position (spatial variability) on the first and last day of a target 2 block. e. Same data as in (d), histogram of 
the directional variability weighted by number of visits to each bin (angular stdev, dashed line = mean across all bins). f. Mean angular 
stdev across all bins for all animals. g. Schematic of path length and Euclidean distance from start to target entry used to calculate 
tortuosity (path length/distance). h. Tortuosity of hits for all animals. i. Median duration from leaving the start to entering the target of all 
hits. j. Schematic of speed of the movement along the trajectory indicating fast and slow sequences and the peak speed. k. Number 
of acceleration/deceleration transitions per trajectory for all animals. l. Schematic of pair-wise Fréchet distance (FD) calculation quanti-
fying the similarity of trajectories. Similar trajectories have a small FD. m. Average similarity between hit trajectories within and across 
sessions measured by pair-wise FD. Hit trajectories within the later sessions are more similar to each other than hit trajectories within 
the first session (diagonal, black asterisks), and hit trajectories in early and middle sessions are dissimilar to those on the first session 
(top row, white asterisks). n. Same as diagonal data in (m) showing all animals. o. Mean peak speed of hits for all animals. p. Variability 
of the peak speed.
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Figure 3 | The precision of initial movement direc-
tion and targeting accuracy increase with learning. 
All analysis using hit trajectories on 5 selected days and 
averaged across all blocks (n = 8 animals). One-way 
ANOVA with repeated measures, asterisks show Dun-
nett’s multiple comparisons between the first day and 
all other days *: p < 0.05, **: p < 0.01. Mean +/- stdev 
and single animals. a. Left: schematic of initial trajectory 
direction calculation. Right: example polar histogram 
of initial hit direction on the first and last day of a block 
(probability). b. Mean initial direction difference to the 
direction straight into the target (0°). c. Variability of 
the initial direction. d. Left: schematic of direction of 
target entry calculation. Right: example polar histogram 
of the direction of target entry on the first and last day 
of a block (probability). e. Mean target entry direction 
difference to the direction straight into the target (0°). 
f. Variability of the target entry direction. g. Time spent 
in and closely around the target area after target entry 
until the delayed (750 msec, dashed line) returning 
of the joystick to the start. h. Schematic showing the 
overshooting of the target measured from the target 
entry point. i. The distance by which the target was 
overshot after entering. j. The target overshoot distance 
variability. 
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target circle. First, we measured the angle at which the tar-
get was entered taken from the point of passing through a 
concentric circle around the target with a 1 mm larger radius 
to the point of entering the target border and compared this 
direction to the straight direction from the start to the target 
center (Fig. 3d, α: absolute difference between mean direc-
tion into target and target direction). We found an overall ap-
proach to the target direction with learning (Fig. 3e, one-way 
ANOVA, F(2.8,19.4) = 7.36, p < 0.01, last day α: 10.2 +/- 4.4 
deg). Interestingly however, animals did not decrease the 
variability of target entry directions, even at high performance 
(Fig. 3f, one-way ANOVA, F(1.9,13.0) = 1.23, p > 0.05), sug-
gesting a homing in on the target in the final segment of the 
reach and a correction of the movement if the target was 
missed with the initial movement direction. Furthermore, we 
found that animals dwelled significantly longer in and around 
the target area after target entry with learning (Fig. 3g, one-
way ANOVA, F(3.2,22.1) = 5.04, p < 0.01) and the trajectory 
path that overshot the target entry point (Fig. 3h/i, one-way 
ANOVA, F(1.8,12.8) = 9.96, p < 0.01) as well as the over-
shoot variability (Fig. 3j, one-way ANOVA, F(1.8,12.7) = 5.48, 
p < 0.05) decreased with learning.

These findings provide evidence that animals refined a fore-
limb reach in a precise direction towards the target, but also 
shows features of endpoint-based control strategies with 

ability (Fig. 2p, one-way ANOVA, F(2.2,15.3) = 15.05, p < 
0.01), suggesting an increase in control over the peak speed 
that would allow precise endpoint targeting.

The precision of initial movement direction and targeting 
accuracy increase with learning
Animals may learn different strategies to move the joystick 
into the target area, namely moving in a certain direction for 
a certain distance, or moving towards a specific endpoint lo-
cation from any position. We therefore measured refinement 
in these movement aspects independently.

First, in order to measure refinement of movement direc-
tion, we analyzed the direction of the initial segment of the 
hit trajectories and compared them to the optimal direction 
that led straight into the target (Fig. 3a, α: absolute differ-
ence between mean initial direction and target direction). We 
found that, as animals learned, their initial movement direc-
tion significantly approached the optimal target direction (Fig. 
3b, one-way ANOVA, F(1.5,10.7) = 6.61, p = 0.02, last day 
α: 14.3 +/- 3.9 deg). Importantly, they also significantly de-
creased the variability of their initial direction (Fig. 3c, one-
way ANOVA, F(2.2,15.7) = 8.96, p < 0.01).

Next, in order to investigate the targeting behavior, we ana-
lyzed the final segment of the hit trajectory that led into the 
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more attempts post-stroke (Suppl. Fig. 3d, one-way ANOVA, 
F(2.1,8.4) = 3.56, p > 0.05). However, as lesioned animals 
did not finish the session by reaching the maximum number 
of rewards, their sessions lasted longer and time between 
attempts (ITI) showed a tendency to be longer as well (Sup-
pl. Fig. 3e, one-way ANOVA, F(1.5, 5,9) = 4.91, p > 0.05). 
Interestingly, the trajectories that animals produced after the 
cortex lesion were not slower, and they still reached a large-
ly similar peak speed relative to before the stroke (Fig. 4f, 
one-way ANOVA, F(1.9,7.5) = 2.25, p > 0.05). Furthermore, 
the peak-speed variability was not affected (Fig. 4g, one-way 
ANOVA, F(2.2,8.7) = 0.51, p > 0.05).

Given the few hits achieved by post-stroke animals, we per-
formed further trajectory analyses on all attempts made be-
fore and after the lesion to compare how animals moved the 
joystick. We first asked what effect the cortex lesion had on 
the movement direction and found that the mean initial trajec-
tory direction was significantly farther away from the optimal 
target direction after the lesion (Fig. 4e/h, one-way ANOVA, 
F(2.4,9.7) = 17.71, p < 0.01) leading to a strongly impaired 
accuracy of trajectories. However, variability of the initial di-
rection was not affected (Fig. 4i, one-way ANOVA, F(1.8,7.3) 
= 2.19, p > 0.05). To further investigate how consistent move-
ments were before and after the lesion, we quantified the 
similarity between trajectories, again using the FD metric. To 
focus the analysis on the aimed movement into the target 
area, we only included the segment of the hits to the point 
of target entry and excluded any movements made during 
reward consumption.

We found that trajectories were very similar to each other be-
fore the lesion, but became dissimilar to each other early after 
the lesion (Fig. 4j, Suppl. Fig. 3f, one-way ANOVA, F(2.3,9.1) 
= 4.76, p < 0.05). Most strikingly though, the similarity anal-
ysis showed that trajectories produced after the lesion were 
very dissimilar to those before the lesion (Fig. 4j/k, one-way 
ANOVA, F(2.1,8.5) = 18.78, p < 0.01). Animals with a cortex 
lesion further seemed to perform center-out movements that 
extended to the end of the range of motion (Fig. 4e), with-
out much spatial directional variability between trajectories. 
When we measured the spatial directional variability using 
vector field analysis during the STT of intact animals, we 
found that it was continuously high among full length trajec-
tories of all attempts across days in a block (Suppl. Fig. 3g). 
After the stroke there was a strong and lasting impairment of 
this spatial directional variability (Fig. 4l-n, one-way ANOVA, 
F(2.1,8.3) = 13.75, p < 0.01). 

Together, these results show that exploratory spatial variabili-
ty and movement accuracy towards the target are dependent 
on sensorimotor cortex.

A probe test reveals that individual animals learned to 
reach the target using different strategies 
Expert mice had learned to launch their forelimb reaches 

variable entry directions into the target. We next tested if 
these aspects of forelimb reaches were dependent on sen-
sorimotor cortex in the mouse.

A sensorimotor cortex stroke impairs movement direc-
tion and directional variability
Learning and performance of forelimb reaching movements 
has been shown to be dependent on sensorimotor cortex (7, 
10, 62), but studies of rodents interacting with one-dimen-
sional levers have found no impairment of learned skills upon 
motor cortex lesion (63). In order to test whether different as-
pects of spatial forelimb reaches are controlled by the mouse 
sensorimotor cortex, we performed confined cortex stroke 
lesions in expert animals. In animals trained to criterion in 
the STT (3-day average hit ratio > 0.65, n = 5), we performed 
a photothrombotic stroke (64) that caused a lesion of the 
sensorimotor cortex after animals had reached high perfor-
mance in a target 1 block. We induced the lesion through a 
cranial window that we implanted over the left caudal fore-
limb primary motor cortex at the beginning of the experiment. 
We registered each brain volume and aligned it to the Allen 
Brain Atlas Reference Brain using BrainJ (65) to confirm the 
targeting of the lesions to the sensorimotor cortex for each 
animal (Suppl. Fig. 3c). The unilateral lesions encompassed 
a total volume of 9.9 +/- 3.4 mm3 (Fig. 4a). The largest pro-
portion of the lesioned volume was located in the primary (37 
+/- 5%) and the secondary motor cortices (27 +/- 5%) (Fig. 
4b). The lateral 17% and 10% of the volume also affected the 
primary somatosensory cortices of the forelimb and hindlimb, 
respectively (Fig. 4b). These strokes unilaterally lesioned 59 
+/- 7% of the total primary motor cortex, 40 +/- 19% of sec-
ondary motor cortex as well as large parts of primary somato-
sensory cortices of the forelimb (82 +/- 11%) and hindlimb 
(77 +/- 7%) (Fig. 4c). Less than 12% of other somatosensory 
cortices and < 1% of striatum was affected by the lesions 
(Fig. 4b, Suppl. Fig. 3a/b).

Animals were given a day to recover from the non-invasive 
photothrombotic stroke lesion and placed in the STT on days 
2 through 6 post-stroke with the same target being reward-
ed as before the lesion. We found that the hit ratio after the 
stroke was strongly impaired with animals achieving almost 
no target hits (Fig. 4d, one-way ANOVA, F(1.6,6.4) = 614.7, p 
< 0.01). This was not due to a lack of task engagement as an-
imals readily moved the joystick out of the start position to ini-
tiate attempts (Fig. 4e). To investigate how mice manipulated 
the joystick after the stroke lesion, we used markerless pose 
estimation on videos to track the joystick base and wrist of 
the mouse (Suppl. Fig. 3h/I, Suppl. Movie 2). We found that, 
as mice moved the joystick, their wrists were insignificant-
ly closer to the joystick (Suppl. Fig. 3j/k, one-way ANOVA, 
F(1.9,7.5) = 3.38, p > 0.05) but the wrist placement in relation 
to the joystick was more variable (Suppl. Fig. 3j/l, one-way 
ANOVA, F(2.7,10.7) = 14.59, p < 0.01). Despite this deficit, 
the total number of attempts performed was not significantly 
different before and after the lesion with a small tendency for 
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Figure 4 | A sensorimotor cortex stroke impairs movement direction and directional variability. All analysis used trajectories from 
all attempts. One-way ANOVA with repeated measures, asterisks show Dunnett’s multiple comparisons between the pre-stroke day and 
all post-stroke days, *: p < 0.05, **: p < 0.01. Mean +/- stdev and single animals (n = 5). a. Left: total stroke lesion volume. Right: exam-
ple histological coronal section showing lesioned brain region in auto-fluorescence. b. Relative volume of total stroke lesion that is part 
of different Allen Brain Atlas Reference Brain areas (sensorimotor cortex and striatum). c. Allen Brain Atlas Reference Brain areas that 
were affected by the stroke lesion showing the relative volume lesioned. d. Hit ratio before and acutely after the cortex stroke lesion. e. 
Trajectories from an example session before and 2 days after the stroke lesion (post stroke) of the same animal. f. Mean peak speed. 
g. Variability of the peak speed. h. Mean initial direction difference to target direction (0°) before and after the stroke lesion. i. Variability 
of the initial direction. j. Average similarity between trajectories within and across sessions measured by pair-wise Fréchet distance. 
Trajectories pre-stroke were more similar to each other than to trajectories post-stroke (top row, white asterisks), and trajectories post-
stroke were more dissimilar to each than trajectories pre-stroke (diagonal, black asterisk). k. Same as top row data in (j) showing single 
animals. l. Example vector fields showing mean direction of all trajectories in a given position in the workspace (black arrows) and heat 
map of the directional variability in that same position (spatial variability) of the session before the stroke and 2 and 6 days post stroke 
(dps). m. Same data as in (l), showing the spatial variability as histogram of angular stdev weighted by number of visits to a given bin 
(dashed line = mean angular stdev). n. Mean spatial variability across all bins before and after the stroke lesion. b/c. Abbreviations. M1: 
primary motor cortex, M2: secondary motor cortex, S1-fl: primary sensory cortex – forelimb, S1-hl: primary sensory cortex – hindlimb, 
S1-others: primary sensory cortex – other areas. 
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the endpoint animal adjusted the trajectory direction early 
on in the attempt whereas the direction animal largely main-
tained the learned original direction (Fig. 5h/j). This overall 
difference becomes even more evident when looking at the 
mean initial-direction vectors of the same animals (Fig. 5i/k). 
We confirmed that there was no significant learning during 
the catch trials by comparing the hit ratio in later catch trials 
to the hit ratio in early catch trials of the session and found no 
change in hit ratio across the session in the endpoint (Suppl. 
Fig. 4a, mixed-effects model, catch trial: F(18,54) = 1.18, p > 
0.05) or direction learner mice (Suppl. Fig. 4b, mixed-effects 
model, catch trial: F(17,51) = 0.83, p > 0.05).

Next we investigated how animals of the two learner types 
behaved during the catch trials in the probe test. Instead of 
separating their attempts by left or right start, we separated 
them into large and small weight starts, according to how 
much the animal had to adjust their original direction to hit the 
target from the new start, as before. We first tested whether 
animals were more successful in reaching the target from the 
new start positions than chance. For the start with a larger 
weight, we found no significant difference between learner 
types but a significant overall effect of chance showing that 
animals performed better than chance from the new starts 
(Suppl. Fig. 4c, two-way ANOVA rep. meas., chance: F(1,6) 
= 12.06, p < 0.05, learner: F(1,6) = 0.18, p > 0.05). For the 
smaller weight start we found the same chance effect but 
also a significant difference between learner types (Suppl. 
Fig. 4d, two-way ANOVA rep. meas., chance: F(1,6) = 10.11, 
p < 0.05, learner: F(1,6) = 8.52, p < 0.05). We also analyzed if 
animals adjusted their trajectories from the new starts enough 
such that they would yield a lower hit ratio if they were per-
formed from the original start position. This analysis revealed 
that attempts performed from the new start positions were 
sufficiently different that they would have yielded significantly 
lower hit ratios from the original start (particularly in endpoint 
learners), with a significant interaction between start position 
and learner bias (Suppl. Fig. 4e, two-way ANOVA rep. meas., 
start position: F(2,12) = 22.49, p < 0.01, learner: F(1,6) = 
12.68, p < 0.05, start x learner: F(2,12) = 6.95, p = 0.01). For 
the easier start, only endpoint learners adjusted the trajecto-
ries enough to lead to a significantly lower chance hit ratio.
	 We then focused our analysis on how animals were ad-
justing their movements from the new start positions. We 
measured the spatial directional variability by applying the 
vector field analysis to attempts from different start positions. 
Here we again found a significant interaction between start 
position and learner bias with endpoint learners showing a 
higher spatial directional variability from the difficult start than 
from the easier start, whereas direction learners displayed 
the same variability from both starts (Fig. 5l, two-way ANOVA 
rep. meas., start position: F(1,6) = 9.71, p < 0.05, learner: 
F(1,6) = 0.19, p > 0.05, start x learner: F(1,6) = 14.32, p < 
0.01). 

These results suggest that endpoint learners were adopting 
a strategy of increased spatial variability from the more diffi-

more precisely in the direction of the target, but they still en-
tered the target from variable directions at high performance. 
Thus from analyzing the refinement of the trajectories it re-
mains unclear whether a direction or an endpoint strategy 
was learned. We next directly asked whether animals had 
learned a strategy of moving in a specific direction, or rath-
er of guiding the movement to a specific endpoint location 
in space. We tested this with a probe experiment that chal-
lenged expert animals with new start positions. 

After animals had reached the performance criterion on a 
target 1 block, we tested them in a session during which the 
joystick returned to novel start positions in a small number of 
catch trials. We defined two new start positions 40 degrees 
to the left or right rotated around the target with the same 
distance between start and target as the original start posi-
tion (Fig. 5a). During each catch trial, the animal performed 
attempts from the new start for a maximum of 5 minutes or 
until the target was hit (to limit learning from reinforcement 
from the new start positions during the probe test). 

In order to dissociate whether an individual animal had 
learned a direction strategy or an endpoint strategy, we 
measured the average initial trajectory direction across all 
attempts made from each of the new start positions and 
compared it to the average direction from the original start 
position (original direction) (Fig. 5b). We classified animals 
that moved in a direction similar to the original direction from 
new start positions as direction learners and animals that 
moved in the direction of the target from new start positions  
as endpoint learners. We chose the initial vector direction as 
the basis for classification because it probes the immediate 
response to the new start location. The number of catch trials 
across all animals was 14.5 +/- 3.2 for the left start and 13.5 
+/-2.7 for the right start (Fig. 5c, paired t-test: t(7) = 0.48, p 
= 0.647). In all catch trials animals performed an average of 
32.5 +/- 16.5 attempts from the left start and 52.8 +/- 82.4 
attempts from the right start (Fig. 5d, paired t-test: t(7) = 0.62, 
p > 0.05). However, the median number of attempts from the 
right start was only 16.

The analysis of the initial direction vector also took into con-
sideration how far the original direction was from the target 
direction of the new start position, i.e., how much the animal 
had to adjust their mean direction to hit the target from the 
new start, by weighting a larger adjustment more (weights, 
Fig. 5e). For all but 2 mice, the left start position was the 
more difficult start and thus had the larger weight. For both 
new start positions we then determined whether the initial di-
rection of all attempts was closer to the original direction or to 
the target direction (Fig. 5f) and used the weighted average 
of that difference across both starts to classify the animal into 
endpoint or direction learner type (angle ρ, Fig. 5g). From the 
8 animals that underwent the probe test, we found ρ > 0 for 
4, which we classified as direction learners, and ρ < 0 for the 
other 4, which we classified as endpoint learners (Fig. 5g). 
Example trajectories from each learner type illustrate how 
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Figure 5 | A probe test reveals that individual animals learned to reach the target using different strategies. All analysis used 
trajectories from all attempts made from the original or new start positions. Two-way ANOVA with repeated measures or t-tests 
were used. Asterisks show Dunnett’s or Bonferroni’s multiple comparisons, * p < 0.05, ** p < 0.01. Mean +/- stdev and single animals 
(n = 8 or n = 4). a. Schematic of start change probe test showing the new stat positions to the left and right of the original start position. 
b. Schematic of the initial vector analysis used to calculate the weighted angles (β) and final angle (ρ) to classify animals into ‘direction’ 
or ‘endpoint’ learner (see Materials and Methods for details). c. Total number of catch trials where the joystick moved to the left or right 
start for each animal. d. Total number of attempts performed from the new start positions during all catch trials per animal. e. Weighting 
factors for left and right starts determined from the difference angle (γ) between the original and target directions (α). f. Weighted angels 
(β) for both start positions. g. ρ angles for all animals. Animals with positive ρ, indicating mean initial directions closer to the original 
direction are shown green (direction learner). Animals with negative ρ, indicating mean initial directions closer to target direction are 
shown in maroon (endpoint learner). h. Example animal with negative ρ (endpoint learner) showing all trajectories from the new start 
positions and 40 subsampled trajectories from the original start position. Hit trajectories are only shown from the start to the target entry 
point. i. Average initial direction vectors for the same animal as in (h) showing vectors pointing to the target from new start positions. j. 
Same as (h) but for a direction learner animal. k. Same as in (i) but for the same direction learner animal showing initial vectors pointing 
in a similar direction from new start positions and original start. l. Spatial directional variability of attempts during catch trials from large 
and small weight start positions of endpoint and direction learners. m. Spatial directional variability of endpoint and direction learners 
during the target training (average of blocks 1 and 3, where target 1 was rewarded). n. Hit ratio of endpoint and direction learners 
during the same target training blocks. o. Workspace exploration measured in total number of bins visited of endpoint and direction 
learners during the same target training blocks. p. Same as (m) but showing variability of the early sessions in the blocks (selected day 
2) and correlation to ρ angle used for classification. q. Variability of target entry angle of the early session in the block (selected day 2) 
and correlation to ρ angle used for classification. r. Same as (o) but showing area visited of the late session in the block (selected day 
4) and correlation to ρ angle used for classification. 
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cult start position but not the easier one. This suggests that 
they had learned to move to the target position in space rath-
er than a specific direction and could adjust their movement 
depending on the difficulty.

The strategy learned is correlated with early spatial ex-
ploration 
The endpoint and direction learning bias of different animals 
that we uncovered by the probe test could be the result of re-
inforcement of different movements during the target training. 
We next investigated whether animals that showed different 
strategies during the probe test had explored the workspace 
differently during training, biasing what they learned. We 
found that spatial directional variability across all attempts of 
blocks 1 and 3 (target 1 rewarded) was significantly higher in 
endpoint learners compared to direction learners (Fig. 5m, 
two-way ANOVA rep. meas., day in block: F(4,24) = 3.00, p 
< 0.05, learner: F(1,6) = 11.06, p < 0.05). This difference did 
not reflect a difference in performance as all animals reached 
high hit ratios with learning (Fig. 5n, two-way ANOVA rep. 
meas., day in block: F(4,24) = 45.27, p < 0.01, learner: F(1,6) 
= 0.11, p > 0.05). Furthermore, endpoint learners did not gen-
erally explore a larger proportion of the workspace, which 
would give them more experience with different positions in 
the space, as measured in the number of spatial bins visited 
(Fig. 5o, two-way ANOVA rep. meas., day in block: F(4,24) 
= 8.38, p < 0.01, learner: F(1,6) = 0.84, p > 0.05), but rather 
it was the way they explored the space that was more vari-
able. The absolute difference of spatial directional variability 
between groups was largest early in the block (day 2 of the 
5 selected days) and we used this day to test whether the 
degree to which each animal was classified a direction or 
endpoint learner (value of ρ) correlated with the spatial vari-
ability displayed during learning. The spatial variability cor-
related significantly with the learner bias as measured by the 
signed value of ρ (Fig. 5p, Spearman correlation, r = -0.88, p 
< 0.01). Additionally we found that animals that entered the 
target from more variable directions early in the block also 
showed a stronger bias of endpoint learning (Fig. 5q, Spear-
man correlation r = -0.86, p < 0.05). When we performed the 
same correlation analysis on the overall workspace explo-
ration metric where the largest difference between groups 
during learning was on a late day in the block (day 4), we 
found no significant correlation between workspace visited 
and endpoint learning bias (Fig. 5r, Spearman correlation, r 
= -0.24, p > 0.05).

Together these findings suggest that animals that explored 
the workspace with more spatial directional variability be-
tween trials and entered the target from more variable direc-
tions were more likely to show an endpoint bias in the probe 
test. This could indicate that the reinforcement of variable 
trajectories may have led to the learning of an endpoint state 
because the common feature between rewarded trajectories 
was not a specific movement direction but an endpoint loca-
tion. Conversely, for direction learners, trajectories were less 
variable, which could have allowed the reinforcement of a 

specific direction.

Reinforcement-learning models confirm that exploration 
biases the type of learning
In order to probe whether this bias in what is learned could be 
the result of reinforcement of different exploratory behavior, 
we trained reinforcement learning model agents to solve a 
similar spatial target task, then confronted them with a start 
change probe test after learning.

In this model, a point-mass agent was trained to move 
through a continuous space from a start location to a hid-
den target location to obtain a reward (Fig. 6a). The agent 
was trained such that, given its state at each timestep, an 
action was chosen in order to maximize the sum of future 
rewards. The state consisted of a 5-dimensional vector, with 
two entries giving the agent’s Cartesian position, two entries 
giving the agent’s velocity, and one entry providing an “Go” 
signal, which is nonzero at the first timestep of each trial and 
zero otherwise. This Go signal was intended to model an 
internal signal within the brain to initiate movement, rather 
than an external sensory cue. Over the course of many tri-
als, the agents learned to refine their trajectories, increasing 
their reward and decreasing the number of timesteps needed 
to reach the target (Fig. 6b). The trajectories of the agents, 
like those of the mice, were highly variable in early trials but 
much more refined in later trials (Fig. 6c).
In analyzing the experimental data, we found that, when the 
start position was changed, some mice exhibited direction 
learner bias, and others exhibited endpoint learner bias. Fur-
ther, we had found that this difference between mice was 
correlated with the spatial directional variability of their tra-
jectories during training. In order to test whether these same 
features and relationships would be exhibited by the model, 
we probed the trained agents by moving the start position 
at the end of training (Fig. 6d/e). We found that, as with the 
mice, the trained agents exhibited different performance 
types in response to the new start positions, with some ex-
hibiting endpoint (Fig. 6d) and others direction learner (Fig. 
6e) behavior.

Next, we asked which variables within the model most 
strongly affect the performance type of the trained agents. To 
investigate this, we randomly sampled the following hyperpa-
rameters for each agent: learning rate, amplitude of the Go 
signal, amplitude of the exploratory action noise, and correla-
tion time of the exploratory action noise. This led to a mix of 
direction learner (ρ > 0) and endpoint learner (ρ < 0) agents 
(Fig. 6f). In order to examine which of these hyperparame-
ters affect the performance type, we performed multivariate 
regression to predict ρ using the values of the four hyperpa-
rameters (Fig. 6g). The model captured a substantial fraction 
of the total variance in ρ, although less than half of the total 
variance was accounted for by these hyperparameters. 

To quantify the unique contribution of each hyperparame-
ter, we next performed the fit again using restricted models 
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in which one of the four regressors was left out. We found 
that the learning rate, Go signal amplitude, and exploratory 
noise amplitude all accounted for roughly equal and mutually 
independent contributions, whereas the timescale of noise 
correlations accounted for essentially none of the variance 
in ρ (Fig. 6g). Interpreting our experiments in light of these 
results, we conclude that the first three of these quantities, if 
they differ across mice, may account for at least some of the 
differences in the observed learner types. However, most of 
the variance in ρ remained unaccounted for in these fits.

In our simulations, even agents with identical hyperparame-
ters differed from one another in two respects: the randomly 
initialized weights (initial condition) and the random actions 
chosen at each timestep. We thus asked whether these two 
factors alone could be sufficient to account for the differenc-
es in performance type observed in our experiments. To test 
this, we trained agents with identical hyperparameters to per-
form the task and found that the observed range of ρ across 
agents was similar to that across agents with heterogeneous 
hyperparameters (Fig. 6h vs. Fig. 6f) and also to the distribu-
tion we found in mice (Fig. 5g). We next asked whether the 
performance type in these agents was related to the spatial 
directional variability of trajectories during training, as we had 
observed in the mice. We found that, as in the mice, higher 
levels of directional variability during training were associated 
with endpoint learner behavior, and lower levels of variability 
were associated with direction learner behavior (Fig. 6h, n = 
20, Spearman correlation, r = -0.75, p < 0.01). Together, the 
results of our models provide further evidence that high lev-
els of directional variability in the trajectories during training 
biases agents towards endpoint learning strategies.

DISCUSSION
Here we introduced a novel spatial forelimb target task in 
which head-fixed mice learned to reach a circular target area 
from a set start position with a joystick in a 2D workspace. As 
we did not provide any ongoing feedback of the joystick po-
sition nor instructive visual cues of the target location, what 
was rewarded was the reaching of a covert location in space. 
This task can be solved by learning to move into a specific 
direction or to a specific endpoint location within the forelimb 
reference frame. We found that mice learned to accurately 
reach the target. As training progressed, they refined joystick 
trajectories by decreasing the spatial directional variability, 
tortuosity, speed, initial direction and approaching and over-
shooting the target. In order to test whether individual mice 
had learned a direction or an endpoint strategy, we imple-
mented a probe test to dissociate what animals had learned. 
The probe test revealed that individual mice had a bias to-
wards a direction or endpoint strategy that correlated with 
the spatial directional variability and target entry variability 
of their movements during training. Our results provide evi-
dence that spatial exploration during learning influences the 
strategy used by individual animals to learn the task. In a re-
inforcement learning model, we found that agents trained to 
solve the STT showed endpoint and direction learning biases 
similar to mice. These biases were only partially explained by 
hyperparameters of the model and persisted when we fixed 
the hyperparameters. When we varied only the initial con-
dition and exploratory action noise of different agents, the 
spatial directional variability during training was strongly cor-
related with the bias to show endpoint or direction learning, 
as in our mice. 

Figure 6 | Reinforcement-learning models 
confirm that early exploration biases the type of 
learning. a. Single-layer network trained with poli-
cy-gradient learning to produce forces that move a 
point-mass agent to a goal location. b. Reward per 
trial (top) and  number of steps required to reach 
the target (bottom) for an example agent through-
out training. c. Trajectories for the same example 
agent, early (top) and late (bottom) in training. d. 
Trajectories and mean initial direction of an exam-
ple agent that produced endpoint learner behavior. 
e. Same as (d) but for an agent that produced 
direction learner behavior. f. Distribution of ρ in an 
ensemble of agents trained with randomly chosen 
hyperparameters. g. The fraction of variance in ρ 
explained by a multivariate ridge regression model 
including all of the randomly chosen hyperparam-
eters as regressors (full model), as well as the 
reduction in variance explained when leaving each 
of the hyperparameters out of the model (points 
correspond to different cross-validation splits of the 
data). h. The weighted spatial directional variability 
over training of n = 20 agents trained with identical 
hyperparameters but distinct initializations and 
correlation to their ρ angles.
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These observations are consistent with studies suggesting 
that exploration during training is related to performance (21, 
28, 66).  Furthermore, our findings expand results from a 
human study where participants learned to move a virtual 
object to a target on a tablet and were then challenged with 
transfer tests during which there were small obstacles in the 
learned path (67). The study found that exploration during 
practice correlated with performance on the transfer tests 
and allowed participants to generalize to a new task-space. 
As in our mice, the correlation was not with the overall area 
visited but the trial-to-trial pattern of search (67). Here we 
showed that such exploratory patterns are correlated to the 
learning of distinct movement strategies in forelimb reaches.

Reinforcement of spatially variable trajectories, that also en-
tered the target from different directions, would have biased 
the endpoint learner mice to assign credit to the target loca-
tion in space and adopt a movement strategy that is more 
sensory feedback-based (reducing error to a desired end-
point) (43, 68).  In direction learners, less variable trajecto-
ries, that entered the target from the same direction, would 
have been reinforced and led to learning of feedforward 
movement, potentially relying less on moment-to moment 
feedback (1, 5). As endpoint biased mice learned the task, 
sensory error-based learning (69-72) may thus have contrib-
uted to the refinement (73, 74) in addition to learning from 
reinforcement.

In our probe test, we classified animals into endpoint and di-
rection learners based on their average initial directions from 
new start positions. However, we do not see these learners 
as binary, but rather as a gradient based on which strate-
gy was reinforced more in individual animals. We thus re-
strict our conclusions to the average response, or bias, of 
an individual, but note that an animal may show direction or 
endpoint behavior in single attempts or even possibly switch 
strategies during an attempt in some cases (Fig. 5h/j). In hu-
mans, it has been shown that reaches to visible targets use 
direction-based control to move close to the target fast and 
then slow down to home in on it with endpoint-based control 
(68, 75).

We did consider that the variability of the joystick trajecto-
ries during training may have other causes than  exploration 
(66, 76, 77). Variability can be due to noise in the senso-
rimotor system (78) that the motor system tries to reduce in 
the task-relevant domains (25, 79), and it could even impair 
learning (80). The remaining variability in joystick trajectories 
at high performance could be due to such noise. However, 
when animals had to discover a new target location at the be-
ginning of the block, we saw an increase in variability of sev-
eral movement aspects. Furthermore, during the probe test, 
in endpoint learner mice, the spatial directional variability was 
increased specifically in the more difficult new start location 
which required a larger adjustment of the direction. These 
findings suggest that variability was voluntarily increased for 
the purpose of exploration in all animals and to move into the 

target from new start positions in endpoint learners (81, 82). 
Additionally, this indicates that endpoint learner animals may 
have improved error sensitivity as it has been reported that 
the movements made as corrections to sensory feedback er-
rors can be a strong teaching signal that allows learning (83).

We also considered that the bias of showing direction and not 
endpoint responses during the probe test could have been 
confounded by sensitivity to the new position. It has been re-
ported that mice reliably discriminate passive forelimb devia-
tions of 2 mm (84), and our new start positions were ~5.5 mm 
away from the original start. We are confident that animals 
learn this task using their proprioception for sensory feed-
back because animals performed the task in the dark and 
performance was unchanged when we removed their whis-
kers. Furthermore, there were no olfactory cues that could 
instruct where the target or start position was, as opposed 
to reaching tasks towards food pellets or water droplets (10, 
85). In order to explore whether endpoint learner mice bet-
ter integrated sensory feedback at new start positions, we 
measured whether they spent more time inside the ITI than 
direction learners, which would allow them to sense the new 
position for longer, but found no such relationship (data not 
shown). Yet, we did see attempts during which the movement 
direction was adjusted towards the target later in the attempt 
in direction learners, which could indicate that they used sen-
sory feedback, but only once they were moving.

Our results showed that spatial target reaches are depen-
dent on the sensorimotor cortex in mice. The motor cortex in 
rodents has been well established as a crucial structure for 
learning of forelimb movements in rodents (86-88). Particu-
larly reach and grasp movements have been known to be de-
pendent on sensorimotor cortex (7, 10, 12, 89). But the role 
of motor cortex in the performance of forelimb movements 
after their acquisition has been debated after a study in rats 
reported no effect of cortex lesions on a forelimb skill that re-
quired high temporal precision but less spatial precision than 
our task (63). Furthermore, deficits in reaching and grasping 
after sensorimotor cortex lesions have been considered to 
be mostly due to the reported loss of digit control. Accord-
ingly, we found an increase in variability of the prehension of 
the joystick handle post stroke. Yet, animals were still able to 
make joystick movements and had specific deficits in their 
spatial directional variability and initial direction of reaches, 
whereas movement speed was not affected. These findings 
suggest a role for motor cortex in spatial target reaches (6, 
9) but not in temporal control of movements (63, 90), as has 
been reported in primates (91). Interestingly, joystick move-
ment directions after the stroke resembled the initial medi-
al movements during pre-training, indicating a regression 
towards simpler movements without cortex. A similar phe-
nomenon has been previously described after lesions to the 
thalamo-striatal projections in a task that required temporal 
precision (90).

In summary, our findings showed that in a spatial forelimb 
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task in which a target location is reinforced, the spatial di-
rectional exploration of the task-space during learning affect 
what is assigned with credit and what is learned about the 
movement. This behavior platform in mice may be used to 
dissect the neural circuit mechanisms underlying exploration 
and the learning of directions or endpoints that lead to re-
ward.

METHODS
Animals and experiments
All experiments and procedures were performed as approved 
by the Institutional Animal Care and Use Committee of Co-
lumbia University. Data of 21 male C57BL/6J wild type mice 
is shown. All animals were 3 - 4.5 months old at the begin-
ning of behavior training and maximum 8 months old at the 
conclusion of the experiment. All animals were single-housed 
after headbar implantation surgery and during the whole peri-
od of the behavior training.

10 animals were used to compare performance in the cup 
or tube (n = 5 per group). 8 animals were used in the main 
target training experiment with 6 animals being trained in 4 
blocks, and 2 animals in 3 blocks. Cortex stroke lesions were 
performed in 5 of those animals. Data from an additional 3 
animals is shown where we compare the performance before 
and after whisker trimming. These animals and the 8 animals 
used in the main target training experiment were also injected 
with retrograde adeno-associated virus (AAV) and implanted 
with cranial windows over the left forelimb motor cortex for 
use in a 2-photon imaging study. However, the main 8 ani-
mals were not used for 2-photon imaging because of insuf-
ficient viral expression or bone regrowth under the window 
and were instead used for behavior experiments according to 
3R Animal Use Alternatives guidelines (USDA) to reduce the 
number of animals used in research. No difference in task 
performance was found between animals that were injected 
in different areas (Suppl. Fig. 1l/m).

General surgical procedures and headbar implantation
Surgeries were performed under aseptic conditions. All tools 
were autoclaved and sterile surgical gloves were used during 
all procedures. Animals were anesthetized with Isoflurane 
(2% in oxygen). Buprenorphine SR was administered (1 
mg/kg) before the surgery subcutaneously. The scalp was 
shaved using clippers and animals placed in a stereotax-
ic frame with cheek bars. Eye cream was applied and the 
skin cleaned with ethanol and Iodine ointment (Βetadine®) 
swabs. The scalp was removed using spring scissors and 
the skull cleaned and dried by applying 3% hydrogen perox-
ide and scraped with a scalpel blade. Dental cement (C&B 
Metabond Quick Adhesive) was applied to the exposed skull 
to build a cement cap and the metal headbar was implant-
ed securely into the dental cement. Once the cement was 
dry the mouse was removed from the stereotaxic frame and 
placed into a clean cage on a heat mat and monitored until 
fully ambulating.

A custom headbar design was used with small U-shaped 
ends on either side of the straight cemented bar that al-
lowed easy sliding in and securing of the mouse’s head in 
the head-fixation holders by tightening a screw through the 
U-shaped ends. The headbar implantation was combined 
with the cranial window surgery for animals that had windows 
implanted.

AAV injections
Animals were injected with AAVretro(SL1)_Syn_GCamp6f 
(1.3e13 GC/ml, Janelia) or AAVretro_Syn_GCamp7f (1.0e13 
GC/ml, lot #21720; 1.2e12GC/ml, lot #v52598, Addgene 
104488-AAVrg) in the right dorsolateral striatum (DLS) (0.75 
mm anterior, 2.55 mm lateral, 3.2 mm ventral of Bregma, 100 
nl), or the right cervical spinal cord (segments C4-C7/8, 0.5 
mm medial of central blood vessel, -0.9 to -0.5 ventral of sur-
face, 60-75 nl per segment). Animal codes and injections are 
reported in Supplementary Table 1. All injections were made 
in a stereotaxic surgery through blunt glass pipettes mount-
ed to a Nanoject (Nanoject III, Drummond). Injections in the 
DLS were made through a small craniotomy at the time of 
the cranial window implantation and the craniotomy sealed 
using superglue (Loctite Superglue Gel) and accelerant (Zip 
Kicker). Injections in the cervical spinal cord were performed 
in a separate surgery one week before the cranial window 
implantation. The animal was placed in a stereotaxic frame. 
A 1.5 cm skin incision was made from the back of the skull to 
the shoulder blades using a spring scissors. The acromiotra-
pezius muscle was cut sagittally along the midline for a few 
millimeters and the muscle retracted. The spinalis muscles 
were blunt dissected to gain access to the cervical vertebrae 
and the T2 thoracic process which was clamped to stabilize 
the spinal cord. The ligaments between the laminae were 
removed using forceps and the spinal segments injected 
through the intra-laminar space. The acromiotrapezius mus-
cle was sutured using absorbable sutures (5/0) and the skin 
sutured with silk (5/0) sutures. 

Cranial window implantation
A 3 mm diameter biopsy puncher was used to mark a circle 
centered on 1.5 mm lateral/ 0.6 mm anterior of Bregma over 
the left hemisphere. The circle was carefully drilled and the 
bone removed using forceps. The craniotomy was cleaned 
with sterile saline and a glass window (2 circular coverslips 
5 mm and 3 mm radius glued together using optical glue 
(Norland Optical Adhesive 63, Lot 201) was placed over the 
craniotomy and glued to the skull using superglue and accel-
erator. Dexamethasone (1 mg/kg) was administered after the 
surgery to prevent brain swelling.

Sensorimotor cortex photothrombotic lesion
Rose bengal (Sigma Aldrich (330000)) was freshly diluted in 
sterile saline (10 mg/ml) and kept on ice and in the dark. 
Animals were anesthetized with Isoflurane and placed in a 
stereotaxic frame using cheek bars. The cranial window was 
cleaned with water and ethanol using q-tips and an opaque 
foil template with a circular hole of 3 mm diameter was placed 
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over the cranial window. A cool light source (Schott KL 1600 
LED) was attached to the arm of the stereotaxic frame and 
lowered on top of the cranial window. An intraperitoneal injec-
tion of 35 mg/kg Rose Bengal was performed and 6 min later 
the light source was turned on for 2-3 min at 3 Watt at 400 
nm. After the light exposure the animal was removed from 
the stereotaxic frame and placed in a fresh cage. Rose ben-
gal bioavailability was confirmed by inspecting the animals 
feces for a red tint on the next day.

Stroke histology and reconstruction
Animals were anesthetized deeply with Isoflurane and tran-
scardially perfused with 0.1M PBS and 4% Paraformalde-
hyde (PFA). Brains were extracted and post-fixed for 24 hrs in 
4% PFA and then cut in coronal sections of 75 μm thickness 
on a vibratome. Sections were counterstained on slide using 
NeuroTrace 640 (ThermoFisher Scientific (N21483)) accord-
ing to the manufacturer’s protocol, and then coverslipped in 
Mowiol. Brain sections were imaged on a Nikon AZ100 Mul-
tizoom slide scanner (Zuckerman Institute’s Cellular Imag-
ing Platform) at 1 μm/pixel resolution using a 4x objective. 
Images from the slide scanner were aligned and registered 
to the Allen Brain Atlas Reference Brain using BrainJ (65). 
The aligned volumetric data was imported to Imaris 9 (Oxford 
Instruments) and the green autofluorescence that was ac-
quired at 488/515 nm excitation/emission was used to man-
ually delineate the lesioned area and render the total lesion 
volume. Custom Matlab (R2020a, Mathworks, Inc.) code was 
used to calculate the ratio of lesioned tissue for all affected 
areas of the Allen Brain Atlas Reference Brain.

Video analysis of hand/joystick interactions after stroke
Videos of animals before and after the cortex stroke lesion 
were used to train a pose estimation model (92) to track 2 key 
points: the base of the joystick, and the wrist of the mouse’s 
right hand. The joystick key point was chosen at the bottom 
left corner of the joystick spacer which had good contrast for 
high-fidelity tracking. We labeled 1132 frames (1077 frames 
from prior cohorts and 55 frames from experiments reported 
here) across 51 sessions (44 sessions from 10 animals in 
prior cohorts and 7 sessions from 5 animals that received 
strokes in experiments reported here) using a custom labeler 
tool through amazon web service via Neuroscience Cloud 
Analysis As a Service (NeuroCAAS (93)) and trained a su-
pervised model on Grid.ai. 

Key point coordinates were analyzed by first removing all 
low-fidelity points with a likelihood of less than 0.99. Peri-
ods of active joystick movements in the x-dimension of the 
video frame were analyzed and the distance in x between 
the wrist and the joystick key points calculated for each ani-
mal and session. The pixel dimension was converted to mm 
for each video using a known distance in the frame close to 
the mouse’s hand (the front dimension of the cup). The cal-
ibrated average distance between the wrist and the joystick 
and its standard deviation was calculated for all animals and 
sessions. Since the wrist coordinate was subtracted from the 

joystick coordinate, positive distance values indicate that the 
wrist was located in front of the joystick (closer to the mouse’s 
body), and negative values indicate the wrist was located be-
hind the joystick (further away from the mouse’s body).

Joystick hardware and Spatial Target Task controls
The SCARA (Selective Compliance Articulated Robot Arm) 
joystick setup was built from commercial Thorlabs parts and 
custom-made acrylic or 3D printed pieces. Animals were 
head-fixed in either an acrylic tube (40 mm diameter, with a 45 
degree angled opening at the front) or in a custom-designed 
3D printed cup (copyright IR CU21353), and their headbar 
was positioned 23 mm above the tip of the joystick, offset 
slightly to the left and back for comfortable interaction of the 
right limb with the joystick. A metal screw was placed horizon-
tally to the left of the joystick to be used as arm rest for the left 
limb. A lick spout (16 Gauge blunt needle) was placed in front 
of the mouth of the animal, connected through tubing to a so-
lenoid (The Lee Company, LFVA1220310H) to dispense the 
reward. The solenoid also made an audible click sound upon 
opening acting as a reward signal. Animals were filmed from 
the right side at 30 Hz under infra-red light (USB Camera, 2.0 
Megapixel, with a Xenocam 3.6mm, 1/2.7’’ lens). The SCARA 
joystick arms were 3D printed (Formlabs Form 2 resin) and 
manually assembled with shielded stainless steel ball bear-
ings (McMaster-Carr, 7804K119) and shafts. The arms were 
linked at the front through a threaded shaft to which a metal 
M2 screw was mounted using a female spacer. The head of 
the screw served as the manipulandum for the mouse to hold 
and move the joystick with its hand. The 3D printed SCARA 
arms were attached to custom designed metal hinges that 
were mounted onto the shaft of the DC-motors which had 
integrated encoders (DC-MAX26S GB KL 24V, ENX16 EASY 
1024IMP, MAXON Motors, Inc.). The motors were mounted 
on an acrylic platform which was positioned on a Thorlabs 
breadboard using Thorlabs parts. Dimensions of the SCARA 
arms were as follows: back arm length = 50 mm, front arm 
length = 35 mm, distance between motor shafts = 60 mm. A 
capacitive touch sensor was connected to the bottom of the 
joystick shaft and to the cannula of the lick spout to allow 
detection of joystick touch and licking.

The Spatial Target Task (STT) was controlled through a mi-
crocontroller board (Teensy 3.6, Arduino) and breakout board 
platform developed in-house by the Instrumentation Core at 
the Zuckerman Institute (TeenScience, github.com/Colum-
bia-University-ZMBBI-AIC/Teenscience). All task designs 
were written using the Arduino IDE. The main task loop (2 
kHz) recorded the encoder positions, calculated the Carte-
sian coordinates of the joystick through forward kinematics, 
and triggered task states depending on the joystick posi-
tion and touch sensor inputs. Touch sensors were read at 
40 Hz. The joystick was actively moved to the start position 
and maintained at the start position by a proportional inte-
gral derivative (PID) algorithm running via interrupt functions 
and also operating at 2 kHz. Angular positions, for the PID 
controller and calculation of joystick position, were measured 
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from the encoders with a resolution of 0.09 degrees. This 
gave a resolution of 0.06 ± 0.02 mm for joystick position 
across the workspace (Suppl. Fig. 2a).  To move the joystick 
to the start position using the motors, the angular position 
of both encoders was compared with the start position (in 
angle space). Differential values were calculated to produce 
a driving pulse width modulation signal which was sent to 
the motors via the H-Bridge power amplifiers included on the 
TeenScience board. This control signal was calculated and 
recorded in torque space. To implement an inter-trial-interval 
(ITI, see below), a maximum force threshold was set in torque 
space resulting in joystick endpoint force thresholds between 
7 and 11g (Suppl. Fig. 2b/i/j). The mice were required to re-
main below the force threshold for 100 msec before starting 
a new attempt. The motors were disengaged and no forces 
were generated during the active exploration of the work-
space by the mice. The joystick position and all task events 
were recorded via serial output commands through Bonsai 
(OpenEphys). With all of the closed-loop control being per-
formed on the Teensy microcontroller, 4 setups were run on a 
single standard computer (ASUS, Intel i7 CPU, 16 GB RAM).

Spatial Target Task design
Starting on the day before behavior training began, animals 
were food restricted overnight and then given an individu-
alized amount of chow food after each training session to 
maintain their body weight at 80% of pre-training baseline. 
Each session lasted until a maximum number of rewards 
were achieved. But a maximum  time of 150 min was allowed 
and sessions were ended earlier if the animal stopped mak-
ing attempts or didn’t consume the reward for an extended 
period of time, which happened mostly during pre-training. 
The average duration of a pre-training session was 21 min, 
and a target training session 33 min. The reward delivered 
from the lick spout was a 10 ul drop of 7.5% sucrose in water.

Pre-training: Pre-training consisted of 4 days of Phase 1, and 
5 or more days of Phase 2 (Fig. 1e). For both pre-training 
and the target training, animals could perform movements 
with the joystick in a self-paced uncued manner. The joystick 
was initialized at the beginning of the session at a fixed start 
position (0/65 mm from the motor axis, 1 mm radius). Once 
head-fixed, the animal could move the joystick out of the start 
position and explore the workspace without any force gen-
erated by the motors for 7.5 sec per attempt. In Phase 1 of 
pre-training, a reward was given independent of the joystick 
position upon initial touching of the joystick (with a delay of 
500 msec on days 1 and 2 and 1000 msec on days 3 and 
4) and at random intervals between 5 to 15 sec for contin-
uous touching of the joystick. The session ended after 100 
rewards were delivered. 

For both Phase 2 and the target training, animals had to 
move the joystick out of the start position and explore the 
workspace to receive a reward. If the exploration of the 2D 
space did not lead to a reward within 7.5 sec or if the mouse 
let go of the joystick for > 200 msec, the attempt ended and 

the motors engaged and moved the joystick back to start 
(Fig. 1c, miss). If the criteria for a reward was met, a reward 
was delivered and after a 750 msec delay the motors en-
gaged and moved the joystick back to the start (Fig. 1c, hit). 
In Phase 2 a reward was given for moving the joystick in a 
forward direction initially within a 100 degree then a 60 de-
gree segment for at least 4 mm. The reward was delayed 
randomly between 15 to 50 msec upon reaching the required 
radius. The session initially ended after 50 rewards and as 
performance improved after 100 rewards. The animal pro-
gressed to target training if it reached a rewarded attempt 
ratio of > 0.5 at the 60 deg segment. Using the rewarded tra-
jectories on the last day of Phase 2, 2 target locations were 
defined for each animal as follows (Fig. 1d). The mean initial 
direction of all rewarded trajectories was calculated and a 
target center defined 40 degrees to the left and right of the 
mean direction at 8 mm distance from the start position. The 
target radius was set at 2.75 mm. Supplementary Fig. 1a/b/h 
shows the target positions for all animals. The initial hit prob-
ability was not different between the two targets (Suppl. Fig. 
1j, paired t-test: t(7) = 1.76, p > 0.05).

Target training: During any given block in the target train-
ing, one of the 2 defined targets was rewarded. If a joystick 
movement entered the target circle a reward was instanta-
neously delivered. We did not delay the reward as we found 
it impaired learning in our mice in pilot experiments. In a sim-
ilar task in humans, delaying the reward even by a few 100 
msec also severely impaired learning (94). Once the joystick 
was returned to the start at the end of a rewarded (hit) or 
unrewarded (miss) attempt, an inter-trial-intervaI (ITI) started 
during which the joystick was continuously held at the start 
position by the motors until the animal exerted less than 7-11 
g (average 8.2 g) force against the joystick in any direction 
for a minimum of 100 msec (hold period) (Suppl. Fig. 2b/e/i/j). 
Animals were not required to touch the joystick during the 
hold period, but analysis of the touch sensor showed that 
they mostly did (Suppl. Fig. 2d/g/h). At the end of the hold 
period the motors disengaged and the animal was allowed to 
initiate a new attempt by moving the joystick out of the start 
position (post-hold period) (Suppl. Fig. 2c/d/f). No cue was 
given that the hold period had ended.

The first 2 sessions in each block were completed after 50 
target hits were achieved, the next 2 after 100 hits, and the 
rest after 150 hits. Each movement of the joystick out of the 
start position was counted as an attempt and task perfor-
mance was calculated as the number of attempts entering 
the target circle (hits) divided by all attempts (hit ratio). When 
an animal reached a 3-day average hit ratio of  > 0.65, and 
had received at least 900 rewards over a minimum of 8 ses-
sions, the target was changed in the next session and a new 
block began (performance criterion).

For the comparison between animals positioned in the cup or 
the tube, we also defined a termination criteria. If an animal 
was trained for 10 days on a target without ever exceeding 
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a 3-day average of 0.1 hit ratio, or if an animal did not reach 
the performance criteria within 21 days, the block was ended. 
Three animals from the tube group reached the termination 
criteria and were consecutively switched to be trained in the 
cup as well for a within animal comparison (Suppl. Fig. 1e/f).

Start change probe test: The probe test was performed after 
performance criteria was reached on target 1 either in block 
3 or in an additional shorter block 5. For each animal, two 
new start positions were defined by rotating the original start 
position (0/0 mm) 40 degrees to the left (left start) and right 
(right start) around the target center, such that the distance 
between start and target was maintained but the direction to 
the target was changed. In the probe test session, the orig-
inal start position was used for the first 10 hits to allow the 
animal to settle into the session. Then the joystick returned to 
either the left or right new start position to begin the first catch 
trial. During the catch trial, the animal could make multiple 
attempts to hit the target but to prevent learning from rein-
forcement, the catch trial ended after the target was hit from 
the new start position and the joystick returned to the original 
start position for 5-10 hits before the next catch trial. The or-
der of left and right start positions chosen for the catch trials 
was randomized. If no hit was achieved in a catch trial within 
5 min, the catch trial was ended and the joystick returned 
to the original start position. The probe test was completed 
when the animal achieved 200 rewards.

Additional behavior tests
Three additional animals that were trained in the STT under a 
2-photon microscope were also used to test the requirement 
of whiskers for task performance. Animals were trained on 
a baseline day at expert level on target 1, after the training 
session animals were briefly anesthetized using Isoflurane 
and all their whiskers on both sides were cut to a length of 
about 2-3 mm using scissors. Animals were placed in their 
home cage to recover from the anesthesia and tested in the 
task again the next day.

Analysis
All data was analyzed using custom Matlab code (matlab 
engine for python R2019b, Mathworks, Inc.) run from a Py-
thon analysis pipeline (Python 3.7.8) through a DataJoint da-
tabase (datajoint 0.13.0) (95). For the main target training 
experiment, data of 5 selected days per block is shown. For 
each block that includes the first and the last day, and 3 equi-
distant days in between to span the whole block. Data was 
analyzed for all blocks and a mixed-effects repeated mea-
sures model was used to determine if there was a significant 
effect of the day in the block (p < 0.05), but not of the block 
itself (Suppl. Table 2). Only if there was no significant effect 
of the block itself (p > 0.05), the data was then combined 
by averaging the selected days across all blocks for each 
animal. Blocks with target 1 took more days to reach the cri-
terion than blocks of target 2 (Suppl. Fig. 1k, Mixed-effects 
model, target: F(1,7) = 8.62, p < 0.05; Bonferroni’s multiple 
comparison: block 1 vs 2: t(7) = 2.96, p < 0.05, block 3 vs 

4: t(5) = 3.35, p < 0.05), even when we disregarded the re-
quired minimal number of rewards or days (data not shown, 
Mixed-effects model, target: F(1,7) = 10.06, p < 0.05; Bonfer-
roni’s multiple comparison: block 1 vs 2: t(7) = 2.97, p < 0.05, 
block 3 vs 4: t(5) = 3.82, p < 0.05). However we found no 
significant savings effect of target repetition in either cases 
(Mixed-effects model, block: F(1,7) = 4.29/4.32, p > 0.05).

One-way ANOVA with repeated measures and Dunnett’s cor-
rection for multiple comparison, as well as paired and un-
paired t-tests were used for statistical analysis. A p-value of 
less than 0.05 was considered statistically significant, and 
p-values are reported as > 0.05 (not significant, n.s.), < 0.05, 
and < 0.01.

ITI force analysis: End-point forces of the joystick were cal-
culated from the value of two analog signals recorded from 
the TeenScience board. These analog voltages were linearly 
related to the absolute torque generated at each motor. Cal-
ibration of the analog Volts to motor torques was performed 
using a single axis version of the joystick (with a single 35 
mm link). The TeenScience board was programmed to simu-
late a simple un-damped spring, and the analog Volts associ-
ated with various weights were recorded (2, 5, 10, 13 g). The 
conversion factor from Volts to motor torque was obtained 
from a linear regression. Joystick forces for each data sam-
ple were then calculated from the calibrated motor torques 
using the forward dynamics of the SCARA.

The ITI was divided into 3 periods: pre-hold, hold, and post-
hold. During the pre-hold and hold periods, the joystick was 
maintained inside the start circle by the motors. The pre-hold 
period continued until the force was below the 7-11 g thresh-
old. Only pre-hold periods of 10 msec duration or more were 
analyzed and the average force was calculated across this 
window (Suppl. Fig. 2b/i). If the force on the joystick was be-
low the threshold when the post-hold period began, the hold 
period was entered immediately. The hold period was defined 
as a 100 msec window during which the force on the joystick 
remained below the threshold. The average force during the 
hold period was also calculated and was below 1 g on aver-
age (Suppl. Fig. 2b/j). The post-hold period followed the 100 
msec hold period, during which the motors were disengaged. 
The post-hold period ended when the animal initiated a new 
attempt, moving the joystick outside the start position. The 
probability of touch during the ITI was calculated by deter-
mining for each time sample whether the touch sensor was 
active or not and averaging across the entire ITI (3 hold peri-
ods; Suppl. Fig. 2d/g/h).

Preprocessing of trajectories: Trajectories sampled at 500 
μsec intervals were downsampled to 6 msec intervals for 
ease of handling the data.

Trajectories used for quantification: For each attempt a joy-
stick trajectory was recorded. To quantify aspects of refine-
ment of the rewarded attempt, only trajectories that entered 
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the target area (hits) were analyzed. Furthermore, of those 
hit trajectories, only the path from start to the point of target 
entry was used in the analysis, as movements performed 
during reward consummation and voluntary returning to 
the start position were not considered part of the reinforced 
movement. For all metrics of variability, 50 trajectories were 
subsampled for all sessions unless there were less than 
50 trajectories available. Analyses on pre- and post-cortex 
stroke lesion sessions were performed on full length trajec-
tories of all attempts, to assess the overall movement differ-
ences, and because the small number of hits post-stroke did 
not allow analysis of hits only. For trajectory similarity analy-
sis pre- and post-stroke, hit trajectories from start to the point 
of target entry were used.

Calculation of trajectory metrics
Area visited: For the quantification of the area explored, the 
workspace (40 x 40 mm centered around the start) was divid-
ed into 1 x 1 mm bins and for each trajectory the bins visited 
were calculated using the Matlab ‘histcount2’ function. Bin 
counts for all trajectories were summed up and binarized to 
discount dwell time per bin and multiple visits to each bin. 
The total number of visited bins is reported as the area visit-
ed. In the experiment comparing animals trained in the cup or 
tube, the analysis was limited to the workspace in the forward 
direction of the start position 40 x 23 mm as the workspace 
behind the start position was smaller for animals trained in 
the tube.

Tortuosity: For each trajectory the total path length was cal-
culated and divided by Euclidean distance between the first 
and the last point of the path (Fig. 2e). For each session the 
average tortuosity was calculated.

Vector field analysis: The workspace was divided into 1 x 1 
mm bins. For each trajectory the vector going from one bin to 
the next along the trajectory path was recorded and assigned 
to the corresponding bin. If the same trajectory passed 
through a bin more than once, a separate vector was record-
ed for each pass through. If the trajectory stopped inside the 
bin and then continued, the combined vector was recorded. 
For each bin, the vectors for all trajectories of a session were 
concatenated and bins with less than 3 vectors were exclud-
ed. For the remaining bins, the vector angles were calculated 
using the ‘atan2’ Matlab function. The mean vector angle and 
angular standard deviation (bounded between the interval [0, 
√ 2] ) was calculated using the CircStat circular statistics tool-
box (96) functions ‘circ_mean’ and ‘circ_std’. Mean angles 
and angular standard deviations were used to plot vector 
field and heat map figures. The bin-wise angular standard 
deviation was then weighted by the number of visits to that 
bin and the mean of these weighted values was calculated 
as an overall metric for spatial directional variability within a 
session.

Trajectory similarity: The Fréchet distance (FD) was calculat-
ed as a scalar measure of similarity between trajectories that 

considers only forward movement along the trajectory but 
does not require uniform speeds (Fig. 2l). For each animal, 
the trajectories for all selected sessions were concatenated 
and the discrete FD between all pairwise trajectories was cal-
culated using the ‘DiscreteFrechetDist’ Matlab function (61). 
The FD is 0 for two trajectories that follow the same exact 
path even if their speed profile is different. For each animal 
and session the mean within session FD was calculated and 
compared across blocks. The FD of trajectories from differ-
ent sessions within each block was also calculated and aver-
aged across animals to show as heatmaps.

Speed metrics: For all speed metrics, the speed of the 
downsampled (6 msec interval) trajectory was smoothed 
using a 30 msec moving average (‘smooth’ function in Mat-
lab). For analyzed hits, only the trajectory from the start until 
entering the target was considered. The maximum value of 
the smoothed speed was calculated for each trajectory and 
averaged across all trajectories of a session (peak speed) 
and the standard deviation calculated as well (peak speed 
stdev). The jerkiness of trajectories was calculated by count-
ing the transitions between acceleration and deceleration 
(sign changes of d(speed)/d(t)) for each trajectory. For each 
animal and session the median number of speed transitions 
was calculated.

Duration: The time from leaving start to entering the target 
was taken for each hit trajectory and the median duration 
calculated per session.

Time spent at target: Time spent in and 1 mm around the 
target after the target was entered was calculated for each 
hit and the median per session calculated.

Target overshoot: The target overshoot was calculated as the 
pathlength between the point of the trajectory entering the 
target and the end of the trajectory, when motors engaged 
(750 msec after entry). For each session the standard de-
viation of the target overshoot was calculated as a metric of 
targeting variability.

Initial vector direction: The initial trajectory vector was de-
fined from the point at which the trajectory left the start circle 
(1 mm radius) to the point of it crossing a circle of 3.75 mm 
radius from the start position center (Fig. 3a). The compo-
nents of all vectors were averaged to calculate the mean 
vector per session. For each vector and the mean vector the 
angle was calculated using the ‘atan2’ Matlab function, sub-
tracted from the angle leading straight to the target center, 
and the absolute value reported (initial direction). The angu-
lar standard deviation across all vectors was calculated using 
the ‘circ_std’ function (see ‘Vector field analysis’). 

Vector of target entry: The direction at which the target was 
entered was calculated by taking the vector from the point 
of the trajectory crossing a circle 1 mm bigger than the tar-
get itself to it crossing the target border (Fig. 3d). The angle 
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of this vector was subtracted from the angle leading straight 
from the start position to the target center and the absolute 
reported. The angular standard deviation was calculated as 
for the initial vector direction.

Classification of direction and endpoint strategy
To assess the degree to which animals moved towards the 
target or in their learned original direction from the new start 
positions, attempts from the different start positions were an-
alyzed separately to calculate initial vector directions. First, 
the initial direction of all attempts from the original start po-
sition was calculated as described earlier using a radius of 
3.2 mm around the start center (original direction, α ori). For 
the left and right new start positions the angle of the vec-
tor pointing to the center of the target was also determined 
(target direction, α tar left and α tar right). Depending on the 
nature of the animal’s original direction, the range between 
the original and target directions was smaller or larger for 
the left or the right start position (Fig. 5b), so their absolute 
difference (γ = abs(α tar - α ori)) was calculated to determine 
a weighting factor w (see below). For all attempts an animal 
made from the new start position during all catch trials, the 
mean initial vector direction was determined. This direction 
was then subtracted from α ori and from α tar resulting in 2 
absolute angle differences for each start position (δ ori and 
δ tar). These angles measure if the animal’s attempts from 
the new start position were performed more in the original di-
rection (direction learner) or in the target direction (endpoint 
learner). The angles δ ori and δ tar were then multiplied by 
the weighting factor (w) such that the attempts from the start 
where original was further away from target were weighted 
stronger. w-left = 1 / ((γ left + γ right) / γ left). For each start, 
the weighted δs were then subtracted from each other (w*δ 
tar - w*δ ori) resulting in a final signed angle β for each start. 
To classify each animal into overall ‘direction’ or ‘endpoint’ 
learner, the signed βs from both left and right start positions 
were averaged resulting in a final angle ρ used in the cor-
relation analyses. If ρ > 0, the attempts from the new start 
locations were overall closer to the original direction than the 
straight target direction, which was considered a ‘direction’ 
performance. If ρ < 0, the attempts from the new start loca-
tions were overall closer to the straight target direction than 
the original direction, which was considered an ‘endpoint’ 
performance. 

Reinforcement learning model
The model consisted of an agent trained with reinforcement 
learning to map a 5-dimensional state representation onto 
actions that maximize reward. To create a more useful state 
representation for the agent, the first 4 components of the 
state vector (the agent’s position and velocity) were ran-
domly projected via untrained weights onto a set of 99 radial 
basis functions, and the last component of the state vector, 
which had amplitude AGo in the first timestep and was zero in 
subsequent timesteps, was concatenated onto this state rep-
resentation. The radial basis functions had Gaussian kernels 
of width (in the spatial dimensions) 1/4 times the width of the 

arena and (in the velocity dimensions) 1/16 times the width 
of this arena (where the timestep size relating position to ve-
locity was Δt = 1). The 2-dimensional action then consisted 
of a linear readout from this basis via trained weights, added 
together with exploratory noise . The noise was correlated 
from one timestep to the next and was given by the equation 

where Aξ is the noise amplitude,  is the noise correlation 
time, and ηi(t) ~ N(0,1). 

The action consisted of a force applied to the agent, which 
influenced the agent’s velocity according to Newtonian dy-
namics. Specifically, the agent’s position at each timestep 
was updated as , and the agent’s velocity 
was updated as . The arena boundaries 
were impenetrable, such that the agent could move along 
the boundary but not beyond it. The reward was -1/T for each 
timestep that the target area was not reached, and 1 if the 
target area was reached. Each trial was completed when 
the target area was reached or, if the target area was not 
reached, after T = 100 timesteps. To prevent the trivial solu-
tion in which the agent produces a very large action to reach 
the target in a single timestep, the agent received a negative 
reward contribution .

The agent’s weights were trained using actor-critic learning 
with learning rate α to maximize the expected sum of future 
rewards, with temporal discount factor γ = 0.99. The critic 
learned the value associated with each state via a separate 
linear readout from the radial basis function representation. 
To facilitate credit assignment over multiple timesteps, eligi-
bility traces were used in both the actor and critic, with time 
constants τe = 10.

In cases where the hyperparameters were chosen randomly, 
they were sampled uniformly from the range log10αϵ(-4,-2), 
AGo ϵ(0,10), log10Aξ ϵ(-1,0.5), ϵ(1,10). In cases where the 
hyperparameters were fixed, they were set to α = 0.001, AGo  
= 10, Aξ = 2, and  = 3. Only agents that met a performance 
criterion of reaching the target in 90% of the last 25% of trials 
were used for subsequent analysis.

In the multivariate regression model, the four hyperparame-
ters listed immediately above were used as regressors in a 
leave-one-out ridge regression model using RidgeCV from 
the Python scikit-learn library. The model was fit on data from 
80% of the trained agents and tested on the remaining 20%, 
and the results shown in Fig. 6 illustrate the test performance 
across the k = 5 possible data splits.
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Supplementary Figure 1 | a-d. Colors indicate animals trained in the same joystick setup. a. Location of targets for animals trained in 
the cup. b. Location of targets for animals trained in the tube. c. Hit ratio of animals trained in the cup for all sessions of block 1 until 
performance or termination criterion was reached. d. Same as (c) for animals trained in the tube. e. Example heat maps showing the 
number of times a 1 mm2 bin in the workspace was visited during the last session in the tube and the first session in the cup of the 
same animal (green circle =  start position). f. Total area visited by all trajectories on the last day in the tube and the first day in the 
cup for 3 animals. g. Hit ratio of animals that learned to hit target 1 with intact whiskers and on the day after whiskers were cut (paired 
t-test: t(2) = 1.63, p = 0.245, n = 3). h. Location of targets for all animals of the main cohort, target 1 = solid circles, target 2 = dashed 
circles. i. Hit ratio for all sessions until performance criteria for blocks 1-3 (n = 8) and block 4 (n = 6). j. Probability of entering defined 
targets with attempts made on the last day of pre-training. k. Number of days in each block to reach the performance criterion showing 
an overall target effect. l. Hit ratio across all blocks of animals grouped by injection into the spinal cord or dorsolateral striatum (DLS) 
shows no difference in performance (Mixed-effects model, day: F(3.8,20.9) = 12.34, p < 0.0001, group: F(1,6) = 0.72, p = 0.429, spinal 
cord injection: n = 5, DLS injection: n = 3). m. Number of days in each block to reach the performance criterion shows no overall effect 
of injection location (Mixed-effects model, block:  F(3,16) = 7.68, p = 0.002, group: F(1,6) = 2.71, p = 0.151, spinal cord injection: n = 5, 
DLS injection: n = 3).
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Supplementary Figure 2 | e-j. Analysis using all inter-trial-intervals (ITI) on 5 selected days and averaged across all blocks (n = 8 
animals). One-way ANOVA with repeated measures, asterisks show Dunnett’s multiple comparisons between the first day and all other 
days, **: p < 0.0. Mean +/- stdev and single animals. a. Workspace and spatial resolution of SCARA joystick and mean target locations. 
b. Force profile across all sessions of an example animal during the pre-hold and hold periods of the ITI. Horizontal dashed line shows 
the threshold of 7g. The force had to be below this threshold for 100 msec to exit the hold period. c. Same example data as in (b) show-
ing the joystick position during the pre-hold, hold and post-hold periods. The post-hold period is resampled for all trials between the end 
of the hold period and the time point of leaving the start position (end of the ITI). The horizontal dashed line shows the radius of the 
start position. Crossing the radius initiates an attempt. d. Same example data as (b/c) showing the probability of joystick touch during 
the pre-hold, hold, and post-hold periods. e. Ratio of ITIs that included a pre-hold period during which the animal exerted force above 
the threshold for at least 10 msec (one-way ANOVA, F(2.6,18.0) = 0.73, p = 0.525). f. Ratio of ITIs that included a post-hold period 
during which the animal was not yet leaving the start position after having exited the hold period (one-way ANOVA, F(2.7,18.8) = 13.18, 
p = 0.0001). g. Probability of joystick touch during the pre-hold period (one-way ANOVA, F(2.8,19.5) = 0.82, p = 0.490). h. Probability 
of joystick touch during the hold period (one-way ANOVA, F(1.4,10.1) = 1.89, p = 0.202). i. Force exerted by the animal against the 
joystick during the pre-hold period (one-way ANOVA, F(1.9,13.3) = 1.42, p = 0.275). j. Force exerted by the animal against the joystick 
during the hold period (one-way ANOVA, F(2.1,14.4) = 0.56, p = 0.590).
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Supplementary Figure 3 | One-way ANOVA with repeated measures, asterisks show Dunnett’s multiple comparisons between the 
pre-stroke day and all post-stroke days of p < 0.05. Mean +/- stdev and single animals (n = 5). a. Relative volume of total stroke lesion 
that affected different additional Allen Brain Atlas Reference Brain areas. b. Additional Allen Brain Atlas Reference Brain areas that were 
affected by the stroke lesion showing the relative volume lesioned. c. Pie charts for individual animals showing relative volume of differ-
ent Allen Brain Atlas Reference Brain of the total stroke lesion. Only areas comprising > 1% of the total stroke lesion volume are shown. 
d. Total number of attempts made per session before and after the stroke lesion. e. Mean time between attempts before and after the 
stroke lesion. f. Average similarity between trajectories pre-stroke and post-stroke measured by pair-wise Fréchet distance shows 
trajectories pre-stroke are more similar to each other than trajectories post-stroke. g. Mean spatial variability of full length trajectories of 
all attempts across all blocks. h. Example video frame showing wrist and joystick key points tracked using lightning pose in a pre-stroke 
session, (cyan = wrist, magenta = joystick). i. Same as (h) but 2 days post stroke. j. Example data from a single animal pre-stroke and 
3 and 6 days post stroke showing histograms of the distance between the wrist and the joystick key points in the x-dimension of the 
video during active joystick movements. Red line = mean, blue lines = +/- stdev. k. Mean x-dimension distance between the wrist and 
joystick for all animals and sessions. Positive values = the wrist is left of the joystick in the x-dimension of the video frame. Negative val-
ues = the wrist is right of the joystick in the x-dimension of the video frame. l. Standard deviation of x-dimension distance between the 
wrist and joystick for all animals and sessions. a-c. Abbreviations. M1: primary motor cortex, M2: secondary motor cortex, S1-fl: primary 
sensory cortex – forelimb, S1-hl: primary sensory cortex – hindlimb, S1-others: primary sensory cortex – other areas, ACC: anterior cin-
gulate cortex, retrospl.: retrosplenial, prelim.: prelimbic, agran. ins.: agranular insular, corpus call.: corpus callosum, WM: white matter.
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Supplementary Figure 4 | a. Hit ratio for each catch trial event for all endpoint learner animals showing the side with the larger weight 
in color and the side with the smaller weight in grey. b. Same as (a) but for direction learner type animals. c. Chance and true hit ratio 
from the start position with a larger weight. Chance hit ratio was calculated by translating all attempts made from the original start to the 
new start. True hit ratio is the actual mean hit ratio achieved by the animals from the new start position across all catch trials. d. Same 
as (c) but for start with smaller weight. e. Probability of target hit for attempts made from new starts translated to original start positions 
compared to the true hit ratio in from the original start position. Start positions split by size of weight (w).  
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