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1. Extended methods 
 
Mpipi fine-tuning  
We first sought to fine-tune the Mpipi force field to address several minor discrepancies observed 
for IDR single-chain behavior between simulations and experiments. Mpipi is a one-bead-per-
residue coarse-grained force field that was parameterized via a bottom-up, data-driven approach 
using statistics obtained from the PDB coupled with quantum mechanical calculations and all-
atom simulations to derive parameters for a Wang-Frenkel (WF) potential (Equation 1.1-1.2) 1,2.  
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Where R = 3σ and 𝜈 = 1, as defined in the original Mpipi paper. 
 
The WF potential provides a computationally convenient (efficient to compute, intercepts with 0 
at long intermolecular distances) closed-form alternative to the more commonly used Lennard-
Jones potential. Given the data-driven approach used for parameterization, Mpipi benefits from 
explicitly encoded inter-residue interaction values (i.e., εi,j values) for all unique pairs of amino 
acids. This is in contrast to most other one-bead-per-residue force fields, where intrinsic residue-
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specific interaction strengths (i.e., εi or λi) are defined, and inter-residue interaction energies are 
then computed via so-called ‘mixing rules’. While Mpipi offers improved flexibility for capturing 
chemically complex interactions, the model also has many more parameters than most 
conventional force fields (i.e., [n2 + n]/2 interaction parameters for a model with n amino acids). 
As such, despite the excellent accuracy of the original model, we sought to determine if Mpipi 
could be further improved. 
 
We focused on four specific groups of pairwise interactions to fine-tune Mpipi. In doing so, we 
developed an augmented version we refer to as Mpipi-GG. In particular, we strengthened Gly:Gly 
and Gly:Ser interactions, weakened aromatic:charge interactions, increased the excluded volume 
of proline residues, and reparameterized aliphatic residues to have increased hydrophobicity.  
 
The adjustment to proline was motivated by the observation that upon simulation with the original 
Mpipi parameters, many proline-rich IDRs were too compact compared with experiments (Fig. 
S1A, B). Proline predominantly drives IDR expansion via backbone restrictions and favorable 
solvation3–6. We reasoned that tuning the proline σ parameter (i.e., its excluded volume) would 
enhance its expansion-driving effects. To this end, after systematically titrating potential σ values 
and comparing the outcome of altering the parameters with all-atom simulations (Fig. S1C), we 
increased the proline σ by 33% for all pair-wise proline interactions, as shown in Fig. S1B. 
Applying this fix improved accuracy with respect to proline-rich IDRs with minimal loss of accuracy 
for other IDRs (Fig. S1D). 
 
Following our adjustment of proline, we examined several polar-rich homo- or dipolymeric tracts 
for which experimental data have previously been obtained; poly-(GS), poly-(G), poly-(S), and 
poly-(Q). Previous work established that sufficiently long polyglutamine (poly-(Q)) tracts from 
compact globules, consistent with results from Mpipi7. However,  we noticed that both poly-(GS) 
and poly-(G) scaled as a self-avoiding random walk (𝝂 = ~0.60), despite the fact experimental 
work has suggested poly-(GS) behaves akin to a Gaussian chain (𝝂 = ~0.5-0.55) and poly-(G) 
forms compact ensembles (𝝂 = ~0.4) 8–11  (Fig. S2A). To address this discrepancy, we performed 
a titration series for poly-(G) chains. We tuned the G:G interactions by titrating the strength of the 
glycine-glycine attractive parameter in the WF potential (εG,G) for a poly-(G)80 chain (Fig. S2B). 
Fitting these data to a coil-to-globule transition, we extracted the interaction strength (2.19x the 
original εG,G) that gave an apparent scaling exponent of  0.39, in line with previous experiments 
(Fig. S2C)11,12. Having established the correction factor for εG,G, we applied this same factor to 
the εG,S, such that poly-(GS) shows a slightly more compact scaling (𝝂 = ~0.58) but is substantially 
more compact in terms of absolute dimensions, in better agreement with experiment (Fig. 2D). 
While this is not in perfect agreement with experimental work, it is an improvement on prior 
behavior.  Without a reliable benchmark for poly-(S) we did not tune the εS,S and instead focused 
on the εG,G and εG,S values. In summary, these changes provide a modest improvement in the 
expected polymer scaling behavior for glycine-rich sequences compared to the original Mpipi 
parameters. 
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Mpipi tended to over-compact sequences with greater aromatic and charge fractions (Fig S3A). 
We next plotted the pairwise WF-potentials, which suggested that the arginine, aspartic acid, and 
glutamic acid to aromatic interaction strengths were overestimated, likely driving this compaction 
(Fig S3B). Therefore, we tuned the εRED,FYW values by systematically titrating to better fit the radii 
of gyration for these sequences (Fig 2A, left). The final εRED,FYW value was 60% lower for the 
Mpipi-GG parameters. We confirmed our modifications better matched experimental radii of 
gyration by comparing the root mean squared error (RMSE) between simulated and experimental 
Rg values at different fractions of aromatic residues for the Mpipi-GG and original parameters 
shown in Fig. 3A (Fig S3C). 
  
The final set of parameter modifications focuses on aliphatic residues. Aliphatic residues in the 
original Mpipi force field have very weak interaction strengths. To incorporate hydrophobicity, we 
made use of the Kyte-Doolittle hydropathy (KDhyro) scale to reparameterize pairwise aliphatic 
interactions, such that εij values are proportional to the sum of KDhyro i+j for a pairwise aliphatic 
interaction of i:j. (Fig. S4A, B). Specifically, we modulated the aliphatic εAMLVI,AMLVI values to 
strengthen aliphatic:aliphatic interactions (Fig. S4B).  
 
In summary, small changes were made to parameters associated with twelve of the twenty natural 
amino acids: proline, glycine, arginine, aspartic acid, glutamic acid, phenylalanine, tyrosine, 
tryptophan, alanine, valine, isoleucine, leucine, and methionine.  
 
IDR sequence library design 
To construct bona fide disordered protein sequences, we leveraged the software package 
GOOSE, which enabled us to construct libraries of rationally designed disordered proteins with 
specific yet broad sequence chemistries. Therefore, we first designed disordered sequences with 
varying Fractions of Charged Residues (FCR), Net Charge per Residue (NCPR), and Kyte-
Doolittle hydropathy scale values. In addition, we also generated disordered sequences with 
randomly assigned but specific amino acid fractions (where remaining amino acids were 
unrestrained) to sample across the sequence space that is accessible to disordered regions. 
Finally, we also ensured that we had broad coverage of charge distribution in our generated 
sequences by titrating across kappa, a charge asymmetry parameter where higher values mean 
greater charge asymmetry.  
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All-atom Excluded Volume (EV) simulations 
Coarse-grained excluded volume (EV) simulations were performed in Mpipi-GG by adjusting the 
epsilon and sigma parameters such that the interaction potential overlaps for the repulsive 
component of the function but flattens to zero for distances greater than σ (Fig. S10). All-atom 
EV simulations for polyproline (Fig. S1) were performed using the CAMPARI simulation engine 
(V2) https://campari.sourceforge.net/) and the ABSINTH implicit solvent model13. EV simulations 
were performed as done previously3,14. Briefly, EV simulations involve scaling the attractive 
Lennard-Jones component, the solvation component, and the electrostatic component of the 
ABSINTH Hamiltonian to zero, such that the only determinant of the underlying ensemble reflects 
the excluded volume dictated by the repulsive component of the Lennard-Jones potential.  
 
Scaled network training  
For both the radius of gyration and the end-to-end distance networks, we trained BRNN-LSTM 
networks with and without sequence length normalization. For the normalized variations, we 
performed normalization by taking the respective metric and dividing it by the square root of the 
sequence length. The radius of gyration (or analogously the end-to-end distance) for a polymer 
can be defined as 𝑅 = 𝐴. × 𝑁' where R is either the radius of gyration or end-to-end distance, N 
is the length of the sequence, and 𝝂 is the scaling exponent. A Gaussian chain is a chain that 
scales with 𝝂 as 0.5. Therefore, to obtain the length-independent (i.e., sequence chemistry) 
contribution to the chain dimensions, one can normalize R by the root of the sequence length to 
derive the following relationship !

/(0)
= 𝐴. × 𝑁(',..2). This scaling normalizes the measure in 

polymer space and standardizes the ensemble dimension such that length is a less dominant 
factor of the learned network.  
 
ALBATROSS distribution 
In addition to providing a locally installable implementation of ALBATROSS via SPARROW, we 
also created a point-and-click style interface for ALBATROSS hosted on Google Colab to 
eliminate the software barrier of entry for users. By leveraging the cloud computing resources 
provided in Google Colab, we enable the accurate prediction of IDR conformational properties 
from sequence from anywhere in the world with an internet connection - even a smart device. 
Moreover, our Google Colab implementation enables users to specify either a single sequence 
or upload a fasta file of disordered protein sequences for ALBATROSS predictions. This means 
users can leverage the unique throughput of ALBATROSS predictions without even needing to 
write code to construct complex bioinformatic pipelines. Additionally, all predictions are filterable 
by numerical ranges for that property. For example, if one were trying to design a disordered 
sequence to serve as a synthetic IDR linker between protein domains, one could upload a FASTA 
file of proposed disordered proteins with different lengths and compositions, predict the global 
dimensions of each, and then filter for a specific set of dimensions. This innovation greatly 
expands the potential for well-designed and controlled synthetic biology experiments and 
applications, and we are actively implementing such a design protocol into GOOSE.  
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In addition to the distribution through Google Colab, the ALBATROSS networks are also 
integrated within the SPARROW sequence analysis package under the “predictors” object 
operator. In this context, proteome-scale predictions can be achieved in a few lines of code on 
commodity hardware, e.g.: 
 

 
 
If GPUs are available, users can optionally perform batch predictions on GPUs, obtaining 1000s 
of sequence predictions per second. ALBATROSS predictions in SPARROW are, by default, 
memoized such that computations are not repeated after each call to the predictor operator. An 
optional override is provided to recompute predictions if desired. The lightweight and object-
oriented nature of SPARROW makes it possible to build complex bioinformatic pipelines 
integrating both bioinformatic sequence properties as well as the emergent biophysical properties 
of a sequence.  
 
Gene ontology enrichment 
Gene ontology (GO) enrichment was performed using PANTHER15. We calculated enrichment 
using all IDR-containing proteins as our background (using PANTHER Overrepresentation Test - 
Released 20221013). For all reported GO terms, we focused on terms where (1) there were over 
100 proteins with the term of interest, (2) fold-enrichment was 2x or higher.  
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2. Supplementary Figures 
 

 
Figure S1. Tuning of proline sigma (σ) parameter in the Mpipi force field  
A) Amino acid sequence of proline-rich IDRs previously studied by small angle X-ray scattering 
(SAXS)3,5,16,17. B) Comparison of experimental (dashed line) with predicted Rg obtained from Mpipi 
original (‘X’ tick, far left) demonstrates that proline-rich IDRs are overly compact in Mpipi. This 
compaction can be alleviated by increasing the σ parameter from the WF potential (see equation 
1), in effect, making proline residues larger. Green points represent the result of a systematic 
titration of the σ value. C) The optimal change to the proline σ parameters was selected by 
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comparing excluded volume (EV) coarse-grained simulations from Mpipi with all-atom EV 
simulations and identifying the σ value that results in consistent Rg vs. N scaling. Shown here is 
a comparison of a +33% increase (used in Mpipi-GG) for Mpipi-GG EV simulations vs. all-atom 
EV simulations. D) Final comparison of polyproline dimensions for Mpipi-GG vs. original Mpipi. 
Mpipi-GG is more expanded than the original Mpipi, as also shown by the better agreement with 
experiment at a 33% increase, as shown in panel B. E) Wang-Frenkel (WF) potential for Pro:Pro 
interaction in the original Mpipi parameters (dashed purple line) vs. Mpipi-GG (solid purple line). 
Dashed and solid gray lines represent proline and each of the other twenty amino acids for Mpipi 
and Mpipi-GG, respectively.  
 

 
S2. Gly/Ser Mpipi-GG reparameterization A) Simulated scaling behavior for simple polymeric 
sequences performed using the original Mpipi model. Poly-(Q) compaction is consistent with 
experimental work7. However, poly-(G) scales as a self-avoiding random chain, despite prior work 
implicating a scaling exponent closer to 0.4011. Further, poly-(GS) scales as a self-avoiding 
random walk (𝝂 = 0.6) against prior work from simulations and experiments which suggest poly-
(GS) sequences behave closer to a Gaussian chain (𝝂 = 0.5 - 0.55) 7–10. These data suggest that 
G:G interactions are too weak. B) To reparameterize G:G strength we systematically titrated the 
glycine ε parameter, leading to a coil-to-globule titration from which we selected the ε value that 
best matches the expected scaling of 0.4. C) Comparison of Mpipi vs. Mpipi-GG, revealing the 
more compact scaling and smaller scaling exponent (0.39 vs. 0.61), in better agreement with 
experiment. D) Despite strengthening G:G interactions, poly-(GS) dipeptide repeat polymers are 
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still relatively expanded (compare black and green data). To address this, we asked how changing 
the S:S: interaction (red) vs. G:G and G:S (blue) altered chain dimensions. Given the prevalence 
of serine residues in disordered regions, we released the Mpipi S:S interaction strength was likely 
already reasonable, such that we selected the same scaling for G:G and G:S to enhance cohesive 
interactions between glycine and serine. 
 
 
 
  



9 

 
S3. Reparameterization of pairwise aromatic interactions for the Mpipi-GG force field. A) 
Residual plot for the deviations between experiment and Mpipi (left) and Mpipi-GG (right) as a 
function of the fraction of charged residues. When comparing all sequences in our curated dataset 
with >10% aromatic residues, the original Mpipi has an RMSE of 3.8 Å, whereas Mpipi-GG has 
an RMSE of 1.7 Å. We note specific improvement in sequences that are jointly aromatic and 
charge rich - i.e., >10% of charged residues by fraction. B) Pairwise Wang-Frenkel interaction 
potentials for arginine, lysine, aspartic acid, and glutamic acid relative to aromatic residues (solid 
lines) and benchmark residues (dotted lines). Updated Mpipi-GG potentials are drawn in black. 
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C) Panel A uses an aromatic threshold value of 0.10; however, this choice is somewhat arbitrary. 
Therefore, we chose to demonstrate generality by looking at many different potential thresholds. 
This plot looks at the root mean squared error as a function of aromatic thresholding. For each 
threshold value (x-axis), we took all sequences in the curated dataset with aromatic amino acid 
fractions equal to or exceeding the respective threshold value and computed the RMSE between 
the experiment and simulated results for each respective force field. As aromatics fractions are 
increased, Mpipi-GG consistently has modest improvements in recapitulating experimental SAXS 
radii of gyration. RMSEs near zero in Mpipi-GG are reflective of the fact that there are few 
sequences with greater than 15% aromatics in the curated library. Nevertheless, Mpipi-GG is 
highly accurate for these aromatic and charge-rich sequences. D) Comparison of simulated Rg 
vs. SAXS-derived Rg for hnRNPA1-LCD variants18,19. These sequences systematically vary 
charge and aromatic content, providing a convenient reference set for comparing Mpipi-GG vs. 
Mpipi in the context of aromatic/charge interactions.  
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S4. Reparameterization of pairwise aromatic interactions for the Mpipi-GG force field. A) 
Kyte-Doolittle hydropathy scale for each of the twenty amino acids. Aliphatic residues are 
highlighted in bold and red along the bottom. B) Pairwise sum of Kyte Doolittle hydrophobicity 
(KDhyro) values relative to Mpipi εAMLVI,AMLVI values. Reparameterized εAMLVI,AMLVI values in Mpipi-
GG, εi,j are equal to 0.0008*KDhyro(i+j) +0.018, where the slope of this line is inversely 
proportional to that of the εAMLVI,AMLVI values in the original Mpipi force field, but scaled so the 
more hydrophobic pairs are stronger, as opposed to weaker. 
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S5. Comparing the Analytical Flory Random Coil (AFRC) chain dimensions and the 
ALBATROSS predicted chain dimensions for the synthetic and biological sequence 
libraries. A-B) Correlations between modeled radii of gyration for both biological sequences 
(right) and the synthetic sequences (left). C-D) Correlations between modeled end-to-end 
distances for both biological sequences (right) and the synthetic sequences (left). 
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S6. Evaluating the performance of the ALBATROSS networks on held-out test sets for 
synthetic and biological sequences. A) Performance of the ALBATROSS scaling exponent 
network on a held-out test set of synthetic sequences unseen during training. B) Performance of 
the ALBATROSS scaling exponent network on a held-out test set of biological sequences unseen 
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during training. C) Performance of the ALBATROSS polymer prefactor network on a held-out test 
set of synthetic sequences unseen during training. D) Performance of the ALBATROSS prefactor 
network on a held-out test set of biological sequences unseen during training. E) Performance of 
the ALBATROSS scaled end-to-end distance network on a held-out test set of synthetic 
sequences unseen during training. F) Performance of the ALBATROSS scaled end-to-end 
distance network on a held-out test set of biological sequences unseen during training. G) 
Performance of the ALBATROSS scaled radius of gyration network on a held-out test set of 
synthetic sequences unseen during training. H) Performance of the ALBATROSS scaled radius 
of gyration network on a held-out test set of biological sequences unseen during training.  
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S7. Evaluating the performance of the ALBATROSS network at recapitulating experimental 
SAXS measurements. A) The ALBATROSS Rg network, consistent with the Mpipi-GG 
simulations, accurately reproduces experimental SAXS data (R2 = 0.92) B) For the same set of 
sequences, ALBATROSS essentially maps 1-1 with Mpipi-GG radii of gyration, as shown also in 
Fig. S6 and Fig. 4.  
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S8. Network performance on standard commodity hardware. We measured predictive power 
on standard CPUs for the various networks as a function of sequence length. For 100-residue 
IDRs, performance sits around 30-40 sequences per second. We emphasize that on a Google 
Colab notebook using GPUs, the entire human proteome takes ~8 seconds, but we focus here 
on CPU performance given the broad availability of CPUs.  
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S9 Sequence property comparison for the biological and synthetic sequence libraries. A) 
Distribution of sequence charge decoration (SCD) values for the biological sequences (red) and 
synthetic sequences (blue). Note the SCD is plotted on a logarithmic scale as the synthetic 
sequence library covers a much broader distribution than the biological sequences. B) Distribution 
of sequence hydropathy decoration values for the biological sequences (red) and synthetic 
sequences (blue).  
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S10. Parameterizing an excluded volume model for the Mpipi-GG force field. A) Scaling 
behavior for poly-GS as represented in terms of Mpipi-GG (blue) Mpipi-GG as an excluded 
volume (EV) simulation, and the Analytical Flory Random Coil (AFRC) model. EV simulations are 
more extended than full Mipi-GG simulations. B) Wang-Frankel interaction potentials for a 
representative pair of beads (G:S). The full Wang-Frankel potentials for the interaction of glycine 
and serine in the Mpipi-GG forcefield - note the dip near rij of ~5.5, reflecting the attractive part of 
the potential. After tuning the 𝛔 and 𝞵 parameters, we obtained a pairwise interaction potential 
with near zero attractive interactions (red) that match the same dimensions as the full Mpipi-GG 
forcefield. 
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3. Supplementary Tables 
 

 
Table S1. Gene ontology analysis for proteins with compact IDRs. Only those ontology 
annotations that contained 100 or more entries in the basis set and showed 2-fold or higher 
enrichment are shown. With the exception of a few terms with questionable FDR rates, every 
annotated term pertains to RNA in some way, across the three classes of gene ontology. 
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Table S3. Gene ontology analysis for proteins with expanded IDRs. Only those ontology 
annotations that contained 100 or more entries in the basis set and showed a 2-fold or higher 
enrichment are shown. A variety of IDR-associated annotations are shown, which include RNA-
associated functions, but also include chromatin binding, cytoskeletal regulation, and cellular 
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organization, in good agreement with analogous analysis from Tesei & Trolle, despite the two 
analyses being done in different ways 20. 
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