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Abstract 24 

Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental 25 

effects on animal health as well as on milk productivity and quality. Despite the multi-factorial 26 

nature of this intramammary infection, the presence of pathogenic bacteria is regarded one of the 27 

main drivers of subclinical mastitis, leading to a disruption of the homeostasis of the bovine milk 28 

microbial community. However, the bovine milk microbiota alterations associated with subclinical 29 

mastitis still represents a largely unexplored research area. In this context, the species-level milk 30 

microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-31 

affected cows from two different stables, was deeply profiled through an ITS, rather than a 32 

traditional, and less informative, 16S rRNA gene microbial profiling-based sequencing. 33 

Surprisingly, the obtained data of the present pilot study, not only revealed that subclinical mastitis 34 

is characterized by a reduced number of species in the bovine milk microbiota, but also that this 35 

disease does not induce standard alterations of the milk microbial community across stables. In 36 

addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical 37 

mastitis is accompanied by a significant increment in the number of milk microbial cells. 38 

Furthermore, the combination of the metagenomic approach and total bacterial cell enumeration 39 

allowed to identify different potential microbial marker strictly correlated with subclinical mastitis 40 

across stables.  41 
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Introduction 42 

Bovine mastitis is a worldwide recognized disease affecting dairy cows with devastating impacts 43 

on productivity, milk quality, and animal well-being (1-3). Clinically defined as an inflammation 44 

of the mammary gland, bovine mastitis is caused by multi-etiological agents, including several 45 

microbial and environmental predisposing factors (3-5). Based on the severity of the symptoms, 46 

this disease is classified into clinical or subclinical mastitis (SM), both accompanied by high milk 47 

somatic cell count (4, 5). However, if the former is distinguished by evident physiological 48 

alterations, including swelling and inflammation of the mammary gland as well as changes in milk 49 

color, consistency, and yield, the latter is characterized by a shortage of visible clinical symptoms, 50 

yet a damage in lactation performance, immune function, and alteration of the normal metabolic 51 

activities (3, 5-7). Consequently, due to the long latency period and the lack of obvious clinical 52 

signs that prevent prompt interventions to limit its spread, SM incidence is significantly higher 53 

than that of clinical mastitis, accounting for approximately 90% of bovine mastitis cases (7). 54 

Furthermore, despite its multi-factorial nature, SM generally occurs as a result of intramammary 55 

infection induced by specific pathogenic bacteria that not only trigger inflammation, leading to 56 

detrimental effects for both mammary tissue and bovine physiology, but also disrupt the 57 

homeostasis of the bovine milk microbial community with a consequent overgrowth of these 58 

pathogenic microorganisms and potential risk of their transmission to healthy cows (5, 8-10). 59 

However, despite the relevant role played by bacteria in SM etiology, the milk microbial 60 

composition associated to this clinical status is still far from being completely dissected. Indeed, 61 

most of publicly available metagenomic studies only employed 16S rRNA gene microbial 62 

profiling-based sequencing, thus preventing an accurate and complete characterization of the 63 

bovine milk microbiota associated to SM down to the species level (3, 6, 7, 11, 12). At the same 64 
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time, studies limited to culture-dependent investigations, despite being able to identify the 65 

presence of underrepresented pathogenic microorganisms in subclinical bovine milk whose 66 

detection can escape metagenomics due to the intrinsic limit of this molecular approach (13), do 67 

not allow to obtain an accurate overview of how the milk microbiota can change during SM (14-68 

16). 69 

In this context, to evaluate possible species-level alterations of bovine milk microbial composition 70 

due to SM, a total of 72 milk samples, subdivided into 38 and 34 milk samples from healthy and 71 

SM-affected cows, respectively, were collected from two different stables. Subsequently, samples 72 

were simultaneously subjected to an Internally Transcribed Spacer (ITS) microbial profiling 73 

sequencing and to a flow cytometry-based total bacterial cell enumeration. The analysis of the 74 

microbial profiles revealed that environmental factors play a crucial role in modulating the 75 

taxonomic composition of milk microbiota and, therefore, to avoid biases related to environmental 76 

factors, samples were analyzed separately based on their stable of origin. In this context, the 77 

comparison of milk microbial community between healthy and diseased cows from the two stables 78 

highlighted that SM does not induce unique alterations in the bovine milk microbiota, but rather, 79 

the microbial modulation seems to be stable-dependent. In support of this finding, diverse bacterial 80 

species have been identified to be associated to SM, and therefore as microbial marker closely 81 

associated with subclinical mastitis, including Corynebacterium bovis, Corynebacterium xerosis, 82 

and Streptococcus uberis, between the two considered stables. Furthermore, total bacterial cell 83 

enumeration highlighted that SM is strictly associated with a significant increment of the total 84 

microbial cells present in the milk samples.  85 
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Experimental Procedures 86 

Ethical statement. All the dairy cows involved in this study were reared in commercial private 87 

farms and were not subjected to any invasive procedures. Milk samples used for the analyses were 88 

collected during the daily milking procedure in according to the International Committee for 89 

Animal Recording procedures (ICAR https://www.icar.org/index.php/icar-recording-guidelines/). 90 

Sample collection and clinical health status screening. Raw milk samples were collected from 91 

a total of 72 dairy cows, divided into 38 healthy cows and 34 cows affected by SM, from two 92 

different farms located in the North of Italy (Table S1). Per each cow, two milk samples were 93 

sterilely collected by hand from all milking quarters during the morning milking. One of the two 94 

milk samples of each milking quarter was collected in bronopol tubes for Somatic Cell Count 95 

(SCC) analysis. Before collection, the teat-ends were cleaned and properly disinfected with 70% 96 

ethanol, while the first milk jets were discarded. Furthermore, only milk samples from dairy herds 97 

that had not undergone any antibiotic treatment during the two months prior sample collection 98 

were included in this study. Once collected, milk samples were refrigerated and immediately 99 

shipped to the laboratory where 50 ml were preserved at -20°C for DNA extraction and flow 100 

cytometry-based cell enumeration, while the other 50 ml in bronopol tubes were stored at 4°C for 101 

SCC analysis. The latter was performed by using the XX. the cut-off value set for the determination 102 

of SM was SCC > 200,000 cells/ml, as previously described (16, 17). 103 

DNA extraction and microbial ITS profiling. Raw milk samples were subjected to DNA 104 

extraction using the DNeasy PowerFood Microbial Kit (Qiagen, Germany), following the 105 

manufacturer’s instructions. Subsequently, the Internal Transcribed Spacer (ITS) sequences were 106 

amplified from extracted DNA using the primer pair UNI_ITS_fw (5′-107 

KRGGRYKAAGTCGTAACAAG-3′) and UNI_ITS_rv (5′-TTTTCRYCTTTCCCTCACGG-3′), 108 
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targeting the entire spacer region between the 16S rRNA and 23 rRNA genes within the rRNA 109 

locus, as previously described (18). Illumina adapter overhang nucleotide sequences were added 110 

to the ITS amplicons, which were further processed using the 16S Metagenomic Sequencing 111 

Library Preparation Protocol (Part No. 15044223 Rev. B – Illumina). Amplifications were carried 112 

out using a Verity Thermocycler (Applied Biosystem, USA). The integrity of the PCR amplicons 113 

was analyzed by gel electrophoresis. DNA products obtained following PCR-mediated 114 

amplification of the ITS region sequences were purified by a magnetic purification step employing 115 

the Agencourt AMPure XP DNA purification beads (Beckman Coulter Genomics GmbH, Brea, 116 

USA), to remove primer dimers. DNA concentration of the amplified sequence library was 117 

determined by a fluorometric Qubit quantification system (Life Technologies, USA). Amplicons 118 

were diluted to a final concentration of 4 nM, and 5 µl of each diluted DNA amplicon sample were 119 

mixed to prepare the pooled final library. Sequencing was performed using an Illumina MiSeq 120 

sequencer with MiSeq reagent kit v3 chemicals, using 300 cycles. 121 

ITS microbial profiling analysis. After sequencing, the obtained .fastq files were processed using 122 

the METAnnotatorX2 pipeline (19). Specifically, paired-end reads were merged, and quality 123 

control retained only sequences with a minimum length of 100 bp and a mean sequence quality 124 

score of >20. Sequences with mismatched forward and/or reverse primers were omitted. 125 

Furthermore, sequences were filtered to remove Bos taurus DNA. 126 

Evaluation of bacterial cell density by flow cytometry. For total bacterial cell count, each milk 127 

sample was 10,000 diluted in physiological solution (Phosphate Buffered Saline, PBS, pH 6.5). 128 

Subsequently, 1 ml of the obtained bacterial cell suspension was stained with 1 µl of SYBR Green 129 

I (Invitrogen, Waltham, USA) (1:100 diluted in dimethyl sulfoxide), vortex-mixed, and incubated 130 

in the dark for at least 15 min before measurement. All count experiments were performed using 131 
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an Attune NxT flow cytometry (ThermoFisher Scientific, Waltham, USA) equipped with a blue 132 

laser set at 50 mV and tuned at an excitation wavelength of 488 nm. Multiparametric analyses 133 

were performed on both scattering signals, i.e., side scatter and forward scatter, while SYBR Green 134 

I fluorescence was detected on the BL1 530/30 nm optical detector. Cell debris was excluded from 135 

acquisition analysis by setting a BL1 threshold. In addition, to exclude remaining background 136 

events and obtain an accurate microbial cell count, the gated fluorescence events were evaluated 137 

on the forward-sideways density plot, as previously described (20). All data were statistically 138 

analyzed with the Attune NxT flow cytometry software.  139 

Statistical analyses. Eigenvalue scores were retrieved from a Bray-Curtis dissimilarity matrix 140 

based on the taxonomical profiles of samples. Two-dimensional PCoA representation of 141 

eigenvalue scores were carried out using OriginLabPro 2021b. Ellipses in the PCoA were drawn 142 

based on standard deviation of each group. The confidence limit for ellipses was set to 0.95. 143 

PERMANOVA statistical analyses were performed using Rstudio software. Furthermore, SPSS 144 

software was used to compute the independent Student’s T-test statistical analyses. 145 

Data availability statement. ITS microbial profiling data were deposited in the NCBI-related 146 

SRA database with the accession number PRJNA942519.  147 
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Results and Discussion 148 

Characterization of the microbial community of milk samples from healthy and subclinical 149 

mastitis-affected cows. To highlight possible species-level taxonomical differences in the bovine 150 

milk microbial community between healthy cows and cows affected by SM, a total of 72 milk 151 

samples were collected, divided into 38 milk samples from healthy cattle and 34 milk samples 152 

from cows with subclinical mastitis (Table S1). Subsequently, the microbial DNA extracted from 153 

each milk sample was subjected to an ITS microbial profiling, as previously described (18). 154 

Illumina sequencing generated a total of 4,342,880 reads with an average of 60,317 reads per 155 

sample, reduced to a total of 2,085,812 reads with an average of 28,969 reads per sample after 156 

filtering for quality and Bos taurus DNA (Table S2).  157 

The species richness analysis revealed that the number of bacterial species present in healthy cow 158 

milk is significantly higher than that of the milk collected from cows with SM, with an average 159 

number of species of 54 and 35, respectively (Student’s T-test p-value < 0.01) (Figure S1). Thus, 160 

suggesting that subclinical mastitis is characterized by a significant reduction of milk microbial 161 

biodiversity, a condition that is frequently encountered in microbial communities associated with 162 

various diseases (32864871, 35038617). However, a Bray-Curtis dissimilarity-based beta-163 

diversity analysis, represented through a Principal Coordinate Analysis (PCoA), revealed that 164 

environmental factors (R2 = 0.181 and PERMANOVA p-value = 0.001), i.e., the different stable 165 

from which samples were collected, seemed to have a higher impact on the modulation of milk 166 

microbial biodiversity than cow clinical status (R2 = 0.038 and PERMANOVA p-value = 0.003), 167 

with a clear separation of samples according to their stable of origin (Figure S1). Thus, indicating 168 

that different diets, environments, and litters could play a crucial role in the modulation of the 169 

bovine milk microbiota regardless of the cow clinical status. Furthermore, the PCoA showed that 170 
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two samples from stable 1 displayed a microbial taxonomic profile that strongly differed from that 171 

of the other samples from the same stable (Figure S1). Therefore, they were considered as outliers 172 

and eliminated from subsequent analysis. 173 

Stable-related differences in the taxonomic composition of milk samples between healthy and 174 

subclinical mastitis-affected cows. Based on the above findings according to which the exposure 175 

to different diet, litters, and breeding management, strongly influenced the milk microbial 176 

communities, to avoid biases related to environmental factors, the collected samples were 177 

separately analyzed according to their stable of origin to evaluate possible differences in the 178 

taxonomic composition of milk samples from healthy and SM-affected cows. A separation that 179 

was possible because, despite the small number of sampled stables, the number of milk samples is 180 

balanced between healthy and subclinical mastitis-affected cows within each stable (Table S1). In 181 

this context, the species richness analysis highlighted that only for one of the two stables, i.e., 182 

stable 2, the number of bacterial species was significantly higher in the milk samples from healthy 183 

cows when compared to that from cows with SM (Student’s t-test p-value < 0.001), counting an 184 

average number of microbial species of 55 and 29, respectively (Figure 1 and Table S3). However, 185 

even if not statistically significant (Student’s T-test p-value = 0.482), a slight increase in the 186 

average number of microbial species was observed in healthy cow milk samples from stable 1 187 

respect to the SM-affected cows, passing from an average of 54 to 50 bacterial species, respectively 188 

(Figure 1 and Table S3). Thus, strengthening the abovementioned notion that, even if not always 189 

statistically significant, SM is characterized by a general reduction of milk microbial biodiversity. 190 

In addition, in-depth insights into the microbial biodiversity of milk samples divided per stable 191 

and represented through a PCoA highlighted that the SM played a significant role (R2 = 0.0894 192 

and PERMANOVA p-value < 0.001) in the modulation of the taxonomic composition of milk 193 
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samples from stable 2 with a clear separation of samples according to their clinical status, while 194 

the microbial communities of milk samples from stable 1 did not differ in biodiversity between 195 

healthy and SM cows (R2 = 0.024 and PERMANOVA p-value = 0.798) (Figure 1). Thus, 196 

suggesting that subclinical mastitis does not always induce a drastic modulation in the taxonomic 197 

composition of the milk microbial communities. Conversely, this finding indicates that, depending 198 

on the environmental factors, SM is characterized by a different alteration of the bovine milk-199 

related microbial community biodiversity and species richness. 200 

Subclinical mastitis effects on species-level core milk microbial communities. Reconstruction 201 

of the “core” milk microbiota, i.e., the bacterial taxa that are shared across samples of a defined 202 

cohort, allows the identification of the most prevalent bacterial species that inhabits the bovine 203 

milk (21, 22). In this context, to evaluate the impact that subclinical mastitis may have on the most 204 

prevalent milk bacterial species, the “core” microbial community characterizing milk samples 205 

from healthy cows was compared to that of milk from SM-affected bovines. Specifically, only 206 

those bacterial taxa with a prevalence > 80% were considered as part of the “core” milk 207 

community, as previously described (23). Based on this cut-off, 23 bacterial species resulted to be 208 

shared between the “core” microbiota of healthy and SM cows from stable 1, with Aerococcus 209 

urinaeequi, Jeotgalibaca porci, Paraclostridium bifermentans, Romboutsia ilealis, Turicibacter 210 

sanguinis, Weissella jogaejeotgali as well as two not yet identified species belonging to the genera 211 

Romboutsia and Turicibacter as the most abundant “core” taxa (average relative abundance >3%) 212 

(Table S4). Thus, suggesting that these microbial species are typical colonizers of the bovine milk 213 

regardless of the clinical status for stable 1. Conversely, three bacterial species, including 214 

Bifidobacterium pseudolognum, and two not yet characterized species belonging to the genera 215 

Olsenella, and Staphylococcus were exclusively part of the “core” microbiota of milk from healthy 216 
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cows, while six microbial taxa only belonged to the “core” microbial community of subclinical 217 

mastitis milk samples, encompassing Lactobacillus acidipiscis, Staphylococcus hominis, and four 218 

unknown species of the genus Anaerococcus, Jeotgalicoccus, Mogibacterium, and 219 

Tetragenococcus (Table S4). Interestingly, B. pseudolongum has been identified as one of the main 220 

bifidobacterial players of the mammalian milk in healthy subjects (24-26), thus indicating that this 221 

bacterial species may be considered as marker of a healthy status that may undergo a reduction in 222 

prevalence in case of subclinical mastitis.  223 

Differently from stable 1, in stable 2 only two bacterial species were shared between the “core” 224 

milk microbiota of healthy and SM-affected cows, i.e., two yet unclassified species belonging to 225 

the genera Corynebacterium and Staphylococcus (Table S4). Interestingly, the latter corresponded 226 

to the only two taxa present with a prevalence > 80% in the SM milk samples. In contrast, the 227 

“core” microbial community of milk collected from healthy cows consisted of 11 additional 228 

bacterial taxa including Staphylococcus chromogenes, Clostridioides difficile, and R. ilealis 229 

together with 8 not yet identified species belonging to genera Clostridioides, Enterococcus, 230 

Kurthia, Lysinibacillus, Macrococcus, Paeniclostridium, Romboutsia, Staphylococcus, and 231 

Turicibacter (Table S4). Thus, suggesting that, for stable 2, the inflammation of the mammary 232 

gland induced a more pronounced modulation of the “core” milk microbial community, when 233 

compared to that observed for stable 1, recording a drastic reduction in the number of bacterial 234 

species shared among the milk samples collected from cows with SM.  235 

Overall, these results highlighted that SM does not induce standard modulation of the “core” milk 236 

bacterial composition, but rather, these microbial changes seem to depend on environmental 237 

factors. An observation that underlines the importance of characterizing the milk microbiota of 238 

healthy cows within each stable to create a “reference standard” to be compared with the microbial 239 
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community of milk samples from subclinical mastitis-affected cows from the same stable to 240 

identify those microbial species potentially involved in the onset of SM for each stable. At the 241 

same time, the presence of yet unclassified species in the “core” microbiota of milk from both 242 

healthy and diseased cows highlighted the urgent need to apply culture-dependent approaches 243 

aimed at isolating and characterizing this milk microbial dark matter. 244 

Prediction of putative milk microbial markers correlated with subclinical mastitis. To 245 

identify possible microbial biomarkers strictly associated with SM, milk samples collected from 246 

healthy cows were compared with those from SM-affected cows. Interestingly, for stable 1, only 247 

one bacterial species, i.e., a not yet characterized species of the genus Lactococcus, was 248 

significantly more abundant in healthy cows when compared to the diseased ones (Student’s T-249 

test p-value = 0.042), thus indicating that this taxon may be considered as a positive microbial 250 

biomarker associated with a healthy condition. However, the latter microbial species showed a 251 

reduced relative abundance (0.05%) as well as a low prevalence (26.67%) (Figure 2 and Table S4), 252 

thus suggesting that SM does not induce striking changes in the milk microbiota of stable 1, 253 

preventing the identification of SM-related microbial biomarkers. However, in depth insight into 254 

taxonomic profiles of milk samples from stable 1 highlighted that Streptococcus dysgalactiae, one 255 

of the most prevalent pathogens causing bovine mastitis worldwide, was detected only in milk 256 

samples from SM-affected cows, and when present, this species displayed a high average relative 257 

abundance (3.96%) (10, 27-29) (Table S4 and Table S5). At the same time, Corynebacterium 258 

bovis, another bacterial species listed among the pathogenic microorganisms closely associated 259 

with SM, possessed a higher average relative abundance and prevalence in milk samples from 260 

cows with SM with respect to the ones collected from healthy cows (Table S4) (30-32). In this 261 
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context, even if not statistically significant, these results strengthen the notion that both S. 262 

dysgalactiae and C. bovis may be considered as microbial biomarkers of SM. 263 

Differently from stable 1, the comparison of taxonomic profiles between healthy and diseased 264 

cows from stable 2 highlighted that the average relative abundance of 33 bacterial species 265 

significantly differed based on the clinical status (Figure 2 and Table S5). Among the latter, B. 266 

pseudolongum was only found in milk samples from healthy cows (Student’s T-test p-value = 267 

0.025) (Figure 2 and Table S5). In this context, as above reported, since B. pseudolongum has been 268 

identified as a commensal microorganisms of bovine milk and members of the genus 269 

Bifidobacterium are known to play multiple beneficial effects upon their host promoting anti-270 

inflammatory response, providing protection against pathogen colonization, and favoring the 271 

proliferation of beneficial butyrogenic microbial players that can use the acetate produced by the 272 

bifidobacterial fermentation of complex glycans, this species can be considered as microbial 273 

biomarker of a healthy status (7, 30, 33-35). Furthermore, Dietzia aerolata, as well as three yet 274 

unclassified species of the genera Dietzia, Facklamia, and Janibacter were not only more prevalent 275 

but also significantly more abundant in milk samples from healthy cows when compared to that of 276 

subjects with SM (Figure 3, Table S4 and Table S5). Notably, these genera were considered as 277 

commensal microorganisms of the milk microbiota (36-38) suggesting their possible involvement 278 

as positive microbial markers of a healthy conditions. However, the fact that these microbial 279 

species corresponded to taxa not yet isolated strengthen the notion that a culture-based research 280 

effort is required for the isolation and characterization of potential microbial markers of a healthy 281 

or SM status. Conversely, Streptococcus uberis was identified as the only bacterial species, among 282 

those taxa that significantly differed between the two cow groups, with a significantly higher 283 

relative abundance in the milk samples of cows with SM when compared to the those from healthy 284 
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cows (Student’s T-test p-value = 0.013) (Figure 3, Table S4 and Table S5). S. uberis has been 285 

widely described as a common pathogen strictly related with both clinical and subclinical mastitis 286 

thanks to its ability to persist under environmental stress or exposure to antibiotic treatment 287 

inducing biofilm formation when in contact with α- and β-casein milk component (39-42). Thus, 288 

indicating S. uberis as the potential responsible microorganism of the bovine intramammary 289 

infection in stable 2 and electing this taxon as biomarker of subclinical mastitis.  290 

Overall, these results not only reinforce the above-mentioned evidence that SM induces different 291 

variations in the microbial composition of bovine milk depending on the environment, but also 292 

underline that the microbial etiological agents of SM differ across stables. Thus, suggesting that 293 

the characterization and identification of the microbial agents causing SM is essential to activate 294 

targeted strategies to limit the diffusion of the intramammary gland infection. 295 

Bacterial cell count-dependent taxonomical differences in the milk microbiota of healthy and 296 

subclinical mastitis-affected cows. To evaluate whether SM may have an impact on the overall 297 

number of the bacterial cells present in bovine milk, each collected milk sample was subjected to 298 

a flow cytometry-based total bacterial cell enumeration. Interestingly, for both stables, the average 299 

of the microbial cell number present in the milk samples collected from cows with SM was 300 

significantly higher when compared to that observed for samples from healthy cows (Student’s T-301 

test p-value of 0.002 and 0.001 for stable 1 and 2, respectively) (Figure 3 and Table S6). Indeed, 302 

the average of the flow cytometry readouts related to milk samples from cows with SM exceeded 303 

by at least 3 times the observed average number of bacterial cells in milk samples from healthy 304 

cows for both stables, with an average of 1.84E+06 and 1.26E+06 cells/ml for milk from healthy 305 

cows and 6.33E+06 and 8.34E+06 cells/ml for milk from SM-affected cows for stable 1 and 2, 306 

respectively (Figure 3 and Table S6). An observation that leads to suggest that this inflammatory 307 
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disease affecting the bovine mammary glands is not only characterized by an alteration of the milk 308 

microbial community, but also by a significant increase in the number of microbial cells present 309 

in the milk. Furthermore, differently from milk taxonomic composition that undergoes different 310 

alterations among stables, an increase in the number of bacterial cells in SM cow-derived milk 311 

samples seemed to be a common feature of the two different stables regardless of environmental 312 

factors.  313 

Based on these observations, to obtain a comprehensive biological interpretation of the analyzed 314 

milk microbial community complexity and to identify further differences in the taxonomic 315 

composition of milk samples between healthy and SM-affected cows based on the number of 316 

bacterial cells, the assessed cell counts were subsequently employed to normalize ITS microbial 317 

profiling sequencing data transforming relative metagenomic data into absolute abundances, as 318 

previously described (20). Insights into the latter revealed that the number of cells of 12 bacterial 319 

species significantly differed between milk samples from healthy and SM-affected cows in stable 320 

1 (Figure 3). Interestingly, C. bovis, whose relative abundance was not significant between the two 321 

groups as above reported, displayed a significantly higher absolute abundance in milk samples 322 

from cows with mammary gland inflammation (average absolute abundance of 4.99E+04 cells/ml) 323 

when compared to the healthy ones (average absolute abundance of 3.14E+03 cells/ml) (Student’s 324 

T-test p-value = 0.038) (Figure 3 and Table S6). Furthermore, Corynebacterium xerosis, another 325 

bacterial species frequently associated with bovine subclinical mastitis (43-45), showed a 326 

significant average absolute abundance increment of almost 10 times, moving from 2.94E+03 to 327 

2.91E+04 cells/ml in milk samples from cows with intramammary infection when compared to the 328 

healthy ones (Student’s T-test p-value = 0.033) (Figure 3 and Table S6). In this context, the 329 

evaluation of the absolute abundances allowed to identify two species of the genus 330 
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Corynebacterium, i.e., C. bovis and C. xerosis, as the potential etiological agents of SM for stable 331 

1. Moreover, since the two bacterial species are not exclusively present in the microbial 332 

community of milk from cows with inflammation of the mammary gland, it is possible to assume 333 

that a certain cell number of these two species is necessary to induce the inflammatory condition 334 

typical of SM. 335 

Conversely, the assessment of the absolute abundance-based taxonomic profiles for stable 2 336 

revealed that only a single species significantly differed between milk samples of healthy and 337 

diseased cows, i.e., S. uberis (Student’s T-test p-value = 0.033) (Figure 3 and Table S6). 338 

Specifically, this microbial species displayed an increment of the cell number of almost 5-fold in 339 

the milk samples from cows with SM when compared to that of the healthy cows (Figure 3 and 340 

Table S6). Thus, confirming the role of this species in the onset of subclinical mastitis in stable 2. 341 

Overall, these results highlighted how the comparison of absolute abundances, obtained through 342 

the combination of a sequencing approach with a flow cytometry-based total cell count, may 343 

provide more accurate information about the alteration that the milk microbial composition may 344 

undergo in case of SM.  345 
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Conclusions 346 

Bovine intramammary inflammation represents a worldwide burden causing serious repercussions 347 

not only on the health of dairy herds, but also on milk productivity and quality (15, 46). To limit 348 

the spread of this disease, and especially of its silent form, i.e., subclinical mastitis, whose 349 

containment is difficult due to the lack of evident symptoms and its high incidence rate, the 350 

identification of SM microbial causative agents is of crucial significance (12, 47-49). However, 351 

the impact of bovine milk microbial composition that may have on SM has not yet been fully 352 

investigated. In this context, the application of an ITS microbial profiling to milk samples collected 353 

from healthy and SM-affected cows from two different stables highlighted that environmental 354 

factors play a predominant role in the modulation of the milk microbial community regardless of 355 

the clinical status, thus suggesting the need to separately analyze samples according to their stable 356 

of origin to avoid environmental factor-related biases. The subsequent comparison of milk samples 357 

divided per stable showed that, in general, SM is associated to a reduced number of species in the 358 

milk microbial community. On the contrary, the analyses of the impact that SM may have on the 359 

“core” milk microbiota between healthy and diseased bovines showed that this silent 360 

intramammary inflammation induces stable-related alteration of the “core” milk bacterial 361 

composition. Thus, emphasizing that, despite being characterized by a lack of obvious symptoms, 362 

subclinical mastitis is accompanied by an alteration of the bovine milk microbiota. Furthermore, 363 

the enumeration of the bacterial cells presents in each collected milk sample through flow 364 

cytometry evidenced that, in general, SM is associated with a significant increase of milk bacterial 365 

cells. Furthermore, the normalization of the metagenomic taxonomic profiles with the obtained 366 

total cell counts allowed to obtain absolute abundance-based compositional profiles that not only 367 

identified Corynebacterium bovis together with Corynebacterium xerosis and Streptococcus 368 
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uberis as potential microbial markers of SM for stable 1 and 2, respectively, but also lead to suggest 369 

that the intramammary inflammation typical of SM may not only be associated with the presence 370 

of a certain bacterial taxon, but also with the total number of cells of that species in the bovine 371 

milk. Thus, suggesting the importance of the combination of a sequencing approach with a 372 

bacterial cell enumeration to obtain a more accurate overview of the milk microbial composition 373 

associated with subclinical mastitis.  374 
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Figure legend 382 

Figure 1: Species-level milk microbial biodiversity between healthy and SM-affected cows. Panel 383 

a shows the box and whisker plot of the calculated species-richness based on the number of 384 

microbial species observed between the two clinical status groups divided per stable. For each box 385 

and whisker plot, the x-axis reports the two considered clinical status-based groups, while the y-386 

axis depicts the number of bacterial species. Boxes are determined by the 25th and 75th percentiles. 387 

The whiskers are determined by the maximum and minimum values that correspond to the box 388 

extreme values. Lines inside the boxers represent the average of the species number, while crosses 389 

correspond to the median. Panel b displays the two bidimensional Bray-Curtis dissimilarity index-390 

based PCoA of each milk sample divided per stable.  391 

 392 

Figure 2: Species-level differences in the taxonomic composition of milk samples from healthy 393 

and SM-affected cows. Panels a and b report the average relative abundances of those bacterial 394 

species that significantly differ in the milk samples from healthy and diseases cows for stable 1 395 

and 2, respectively. 396 

 397 

Figure 3: Evaluation of milk total bacterial counts between healthy and SM-affected cows. Panel 398 

a reports the bar plot showing the taxonomic profiles of each milk sample normalized for the flow 399 

cytometry-based bacterial cell enumeration. Panel b and c display the microbial species whose 400 

absolute abundance differed between healthy and SM-affected cows in stable 1 and 2, respectively. 401 

  402 
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Supplementary figure legend 403 

Figure S1: Differences in milk microbial biodiversity between healthy and SM-affected dairy 404 

cows. Panel a shows the box and whisker plot of the calculated species-richness based on the 405 

number of microbial species observed between the two clinical status groups. For each box and 406 

whisker plot, the x-axis reports the two considered clinical status-based groups, while the y-axis 407 

depicts the number of bacterial species. Boxes are determined by the 25th and 75th percentiles. The 408 

whiskers are determined by the maximum and minimum values that correspond to the box extreme 409 

values. Lines inside the boxers represent the average of the species number, while crosses 410 

correspond to the median. Panel b displays the two bidimensional Bray-Curtis dissimilarity index-411 

based PCoA of each collected milk sample. The ellipses of the PCoA were drawn based on the 412 

standard deviation of each considered group.  413 
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