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1 Supplementary text for Materials and Methods

1.1 Study areas

We defined 119 study areas representing 92 countries (Fig. S1) and covering all the tropical
moist forest in the world, at the exception of some islands (eg. Sao Tome and Principe or
Wallis-and-Futuna). Each country was identified by one unique three-letter code following the5

ISO 3166-1 standard (eg. MDG for Madagascar or GUF for French Guiana). Most of the
countries corresponded to one unique study area, with three exceptions: Brazil, India, and
Australia. Brazil, because of its large size, was divided into 26 study areas corresponding to the
26 administrative states (the state of Goias including the Federal District). For India, which
is also a large country, the tropical moist forest is located in three distinct regions far from10

each other. We thus considered three independent study areas for India: the Western Ghats,
North-East India (including the West Bengal), and the union territory of the Andaman and
Nicobar Islands. For Australia, we only considered the Queensland state as a study area. Data
sampling and spatial deforestation modelling were performed independently for each study area.
Study area borders were obtained from version 3.6 of the Global Administrative Areas database15

(https://gadm.org). We used level-0 data for study areas corresponding to countries and level-1
data for study areas corresponding to states or regions. We grouped the study areas in three
continents (Fig. S1): America (64 study areas for 39 countries), Africa (32 study areas for 32
countries), and Asia (23 study areas for 21 countries).

1.2 Past forest cover change maps20

For each study area, we derived past forest cover change maps for two time periods: January
1st 2000 – January 1st 2010, and January 1st 2010 – January 1st 2020 from the forest cover
change annual product version v1_2020 by Vancutsem et al. (2021). The annual product by
Vancutsem et al. (2021) classifies Landsat image pixels at 30 m resolution in 6 main categories
(1: undisturbed, 2: degraded, 3: deforested, 4: regrowth, 5: water, and 6: other land cover) for25

each year (on the 31st of December) between 1990 and 2020 (31 years of data for v1_2020),
and allows identifying tropical moist forest pixels at each date (Table S1). This classification
is based on an expert system analyzing time-series data at the pixel level extracted from the
full Landsat satellite image archive on the period 1982–2020. For our forest definition, we only
considered natural old-growth tropical moist forests, disregarding plantations and regrowths.30

We included degraded forests (not yet deforested) in our forest definition. As a consequence,
we considered all pixels falling in categories 1 and 2 in the annual product (Table S1), to be
natural old-growth tropical moist forest pixels (simply abbreviated “forest” in this manuscript).
Because several decades are usually necessary to reach the state of old-growth forest, we assumed
every pixel classified as “forest” at a given date between 2000 and 2020 to be also classified as35

“forest” in the previous years of that period of time. We thus obtained three forest cover maps
for the dates January 1st 2000, January 1st 2010, and January 1st 2020. We combined these
three maps to obtain high-resolution forest cover change maps in the periods 2000–2010–2020 at
30 m resolution in the humid tropics (Fig. S2). We used Google Earth Engine (Gorelick et al.
2017) to process the annual product by Vancutsem et al. (2021) and derive the past forest cover40

change map for each study area. An interactive forest cover change map for the humid tropics is
available at https://forestatrisk.cirad.fr/maps.html.

We did not consider potential forest regrowth in our forest definition for three main reasons. First,
throughout the humid tropics, forest regeneration involves much smaller areas than deforestation
(Hansen et al. 2013, Vancutsem et al. 2021). Second, there is little evidence of natural forest45

regeneration in the long term in the tropics (Grouzis et al. 2001). This can be explained by
several ecological processes following deforestation such as soil erosion (Grinand et al. 2017),
and reduced seed bank due to fire-induced deforestation and soil loss (Grouzis et al. 2001).
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Moreover, in areas where forest regeneration is ecologically possible, young forest regrowths are
more easily re-burnt for agriculture and pasture (Schwartz et al. 2020, Vieilledent et al. 2020).50

Third, young secondary forests generally provide more limited ecosystem services compared
to old-growth natural forests in terms of biodiversity (Gibson et al. 2011) and carbon storage
(Blanc et al. 2009).

1.3 Spatial explanatory variables

To explain the observed deforestation during the period 2010–2020, we considered a set of spatial55

explanatory variables (Fig. S3) describing: topography (altitude and slope), accessibility (dis-
tances to nearest road, town, and river), forest landscape (distance to forest edge), deforestation
history (distance to past deforestation), and land conservation status (presence of a protected
area). This set of variables were selected based on an a priori knowledge of the deforestation
process (Brown and Pearce 1994, Geist and Lambin 2002, Vieilledent et al. 2013). For example,60

the risk of deforestation is supposed to decrease with the distance to road and forest edge (lower
accessibility), to increase at lower elevation and slope (higher probability to find arable lands),
and to decrease in protected areas (higher level of protection).

Elevation (in m) and slope (in degree) at 90 m resolution were obtained from the SRTM Digital
Elevation Database version v4.1 (http://srtm.csi.cgiar.org/). Distances (in m) to nearest road,65

town and river at 150 m resolution were computed from the road, town and river networks which
were obtained from the OpenStreetMap (OSM) project (https://www.openstreetmap.org/). OSM
country data were downloaded from two websites: Geofabric (http://download.geofabrik.de/)
and OpenStreetMap.fr (https://download.openstreetmap.fr/extracts/) depending on the
availability of the data for each country. To obtain the road network in each country (Fig. S4),70

we considered the “motorway”, “trunk”, “primary”, “secondary” and “tertiary” categories for
the “highway” key in OSM. Our dataset included a total of 3,606,841 roads. To obtain the
network of populated places in each country (that we simply call “towns” in the present study),
we considered the “city”, “town” and “village” categories for the “place” key in OSM. To obtain
the river network, we considered the “river” and “canal” categories for the “waterway” key75

in OSM. For a more detailed description of each category, see the OSM wiki page (https:
//wiki.openstreetmap.org/wiki/Tags). OSM data have been downloaded in March 2021 for
all countries. Distance to forest edge was computed at 30 m resolution from the forest cover
map in 2010. Distance to past deforestation in 2010 was computed at 30 m resolution from the
2000–2010 forest cover change map. To minimize border effect for the computation of distance to80

forest edge and distance to past deforestation, a buffer of 10 km around each study area extent
was considered. Data on protected areas (Fig. S5) were obtained from the World Database
on Protected Areas (https://www.protectedplanet.net, UNEP-WCMC and IUCN (2020))
using the pywdpa Python package (https://pypi.org/project/pywdpa/). WDPA data have
been downloaded in March 2021 for all countries. For the analyses, we only retained protected85

areas defined by at least one polygon (we removed all protected areas defined by a point) and
which had the following status: “Designated”, “Inscribed”, “Established”, or “Proposed” before
January 1st 2010 (we removed all “Proposed” protected areas after that date). Data included
protected areas of all IUCN categories (from Ia to VI) and of all types defined at the national
level (e.g. National Parks, Reserves), even if the type and IUCN category were not reported.90

Our dataset included a total of 89,855 protected areas. Polygons representing protected areas
were rasterized at 30 m resolution.

In total, we obtained eight spatial explanatory variables to model the spatial probability of
deforestation. Characteristics of each explanatory variable are summarized in Table S2 and
correlation between variables are available in Fig. S6. Using data at a resolution closest to the95

resolution of the forest cover change map (30 m) to model deforestation ensures the capture
of fine spatial scale deforestation processes. In particular, we demonstrate in this study the
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preponderant effect of the distance to forest edge which acts at a distance much lower than 1 km
on the risk of deforestation.

1.4 Data sampling for spatial modelling of deforestation100

With the spatial model of deforestation, our aim was to estimate the effects of a set of variables
in determining the location of the deforestation (or “allocation” census Pontius and Millones
(2011)) and compute the relative probability of deforestation for each forest pixel. With the
spatial model, our objective was not to estimate the intensity of the deforestation (or “quantity”
census Pontius and Millones (2011)), that could be expressed in %/year or in ha/year for example.105

A balanced sampling between deforested and non-deforested pixels is preferable in this case
(Vieilledent et al. 2013, Dezécache et al. 2017, Valle et al. 2020). Because deforestation events
are rare (≈ 1 %/yr), a non-stratified random sampling would lead to very few observations
of deforestation events, rendering difficult a good estimation of the effects of the explanatory
variables. Stratified balanced sampling provided unbiased estimates of the model’s parameters,110

except for the model’s intercept (estimated average deforestation). Having a biased model
intercept (which has the same value for all forest pixels) is not a problem as we are interested in
estimating a relative probability of deforestation between forest pixels.

As a consequence, we performed a stratified balanced sampling between (i) forest pixels in 2010
which have been deforested on the period 2010–2020 (“deforested” pixels), and (ii) forest pixels115

in 2010 which have not been deforested on that period of time and which represent the remaining
forest in 2020 (“non-deforested” pixels). Forest pixels in each category were sampled randomly
(Fig. S7). To maximize the representativity of the data, the total number of forest pixels sampled
in each study area for the year 2010 was chosen proportionally to the area of forest in 2010
in that study area (2000 points for 1 Mha of forest), with the condition that this number had120

to be between 20,000 (to be representative of the deforestation process) and 100,000 (to limit
computation time). When, for a specific study area, the total number of pixels in one of the two
categories (deforested vs. non-deforested pixels) was ≤ 10,000, all the pixels of that category
were included in the sample. This could happen for study areas with low moist forest cover such
as small islands (eg. Antigua and Barbuda). For each sampled pixel, we retrieved information125

regarding the eight computed explanatory variables at their original spatial resolution. When
the information was not complete for a given pixel (eg. elevation and slope data missing for
a forest pixel located close to the sea border), the observation was removed from the dataset.
Missing information affected a minority of pixels. The global dataset included a total of 3,197,942
observations: 1,601,125 non-deforested pixels and 1,587,817 deforested pixels, corresponding to130

an area of 144,914 ha and 142,908 ha, respectively (Table S3).

1.5 Spatial deforestation model

Using observations of forest cover change in the period 2010–2020, we modelled the spatial
probability of deforestation as a function of the n explanatory variables using a logistic regression.
We considered the random variable yi which takes value 1 if the forest pixel i was deforested in135

the period 2010–2020 and 0 if it was not. We assumed that yi follows a Bernoulli distribution
of parameter θi (Eq. (S1)). In our model, θi represents the spatial relative probability of
deforestation for pixel i. We assumed that θi is linked, through a logit function, to a linear
combination of the explanatory variables Xiβ, where Xi is the vector of explanatory variables
for pixel i, and β is the vector of effects [β1, . . . , βn] associated with the n variables. All the140

continuous explanatory variables were normalized before fitting the model. The model includes
an intercept α. To account for the residual spatial variation in the deforestation process, we
included an additional random effect ρj(i) for each spatial cell j of a 10 × 10 km grid covering
each study area (Fig. S8). This grid resolution was chosen in order to have a reasonable balance
between a good representation of the spatial variability of the deforestation process and a limited145

5



number of parameters to estimate. A sampled forest pixel i was associated with one cell j and
one random effect ρj(i). We assumed that random effects were spatially autocorrelated through
an intrinsic conditional autoregressive (iCAR) model (Besag et al. 1991). This model is denoted
“icar” in subsequent sections and results. In an iCAR model, the random effect ρj associated
with cell j depends on the values of the random effects ρj′ associated with neighbouring cells j′.150

In our case, the neighbouring cells are connected to the target cell j through a common border
or corner (cells defined by the “king move” in chess, see Fig. S8). The variance of the spatial
random effects ρj was denoted Vρ. The number of neighbouring cells for cell j, which might vary,
was denoted nj . Spatial random effects ρj account for unmeasured or unmeasurable variables
(Clark 2005) that explain a part of the residual spatial variation in the deforestation process155

that is not explained by the fixed spatial explanatory variables (Xi).

yi ∼ Bernoulli(θi)
logit(θi) = α + Xiβ + ρj(i)

ρj(i) ∼ N ormal(
∑
j′

ρj′/nj , Vρ/nj)
(S1)

1.6 Variable selection

Variable selection was performed using a backward elimination procedure. All the spatial
explanatory variables in our dataset should decrease the deforestation risk (having a negative
effect on the probability of deforestation). For example, the probability of deforestation should160

decrease with the distance to the forest edge and should also decrease inside a protected area.
Our variable selection procedure was thus not based on statistical significance but on background
knowledge regarding the deforestation process and on the interpretability of the variable effects
(Heinze et al. 2018). For each study area, we started to fit a model with the full set of explanatory
variables (eight variables). At each step of the procedure, we removed the variables having a165

positive effect on the probability of deforestation. This was done in order to avoid unrealistic
predictions of the spatial probability of deforestation at the scale of the study area. For example,
it is not realistic to observe, at the country scale, a decrease of the deforestation with the distance
to forest edge (higher deforestation risk in the core of the forest compared with forest edge).
This might happen in a particular context for a very specific region but is very unlikely at the170

country level. In most of the cases, when we found a positive effect for a given explanatory
variable, it was non-significant (95% credible interval including zero). On the contrary, when we
found a negative but non-significant effect for a given explanatory variable, we kept this variable
in the model for the predictions. This effect, albeit non-significant, was interpretable given our
background knowledge of the deforestation process and was relatively lower than the effects175

associated with the other variables.

1.7 Parameter inference

Parameter inference was done in a hierarchical Bayesian framework. We used the function
model_binomial_iCAR() from the forestatrisk Python package (Vieilledent 2021) for pa-
rameter inference. This function calls an adaptive Metropolis-within-Gibbs algorithm writ-180

ten in C for maximum computation speed. Non-informative priors were used for all pa-
rameters: α ∼ N ormal(mean = 0, var = 106), β ∼ N ormal(mean = 0, var = 106), and
Vρ ∼ 1/Gamma(shape = 0.05, rate = 0.0005). During the variable selection procedure, we run
a Markov Chain Monte Carlo (MCMC) of 2000 iterations, discarding the first 1000 iterations
(burn-in phase). For the final model, we repeated the parameter inference using a longer MCMC185

of 10,000 iterations. We discarded the first 5000 iterations (burn-in phase), and we thinned the
chain each 5 iterations (to reduce autocorrelation between samples). MCMC convergence was
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visually checked looking at MCMC traces and parameter posterior distributions. We obtained
1000 estimates for each parameter. We used these 1000 estimates to compute the mean and 95%
credible interval of each parameter (Tables S4–S7). We also back-transformed the parameters190

using the mean and standard-deviation of each continuous variable for each study area. Doing
so, we can use Eq. (S1) to compute the change in the probability of deforestation associated
with a particular change in the explanatory variables, in their original units. The value of the
intercept α of the model is affected by the back-transformation, but not the effect of protected
areas nor the variance of the spatial random effects, which are left unchanged (Tables S8, S9).195

1.8 Model comparison

1.8.1 Alternative models

We compared the performance of the “icar” model at predicting deforestation with three other
models: a null model (denoted “null”), a simple generalized linear model (“glm”), and a random
forest model (“rf”). The “null” model assumes that all the slope parameters have value zero200

(no effect of explanatory variables), and that all the spatial random effects have also value
zero (no residual regional variability in the deforestation process). For the “null” model, the
probability of deforestation is only determined by a mean intercept common to every forest pixel
(logit(θi) = α). The simple “glm” is a logistic regression which does not include spatial random
effects (no residual regional variability in the deforestation process). For the “glm” model, the205

probability of deforestation is only determined by the mean intercept α and the parameters β
associated with each explanatory variables (logit(θi) = α + Xiβ). Using simple “glm” models
is a commonly proposed approach for spatial modelling of deforestation (Ludeke et al. 1990,
Soares-Filho et al. 2002, Mas et al. 2007, Rosa et al. 2014). The random forest model (Breiman
2001) is a machine learning approach using an ensemble of random classification trees (where210

both observations and features are chosen at random to build the classification trees) to predict
the deforestation probability for a forest pixel. Random forest has been intensively used for
species distribution modelling (Thuiller et al. 2009) and is now also commonly used for spatial
modelling of deforestation (Zanella et al. 2017, Grinand et al. 2020). The “glm” and “rf” models
were fitted using functions LinearRegression and RandomForestClassifier respectively, both215

available in the scikit-learn Python package (Pedregosa et al. 2011). We used the same set
of selected explanatory variables for the “glm” and “rf” models as those used for the final “icar”
model. For the “rf” model, we set the number of random classification trees to 500.

1.8.2 Percentage of deviance explained

We computed the deviance D of the four models (“icar”, “null”, “glm”, and “rf”) with the220

formula D = −2 log L, L being the likelihood of the model, i.e. the probability of observing
the data given the model and estimated parameters. The deviance is a measure of error and a
model with a lower deviance fits better the data. We also considered the deviance of the “full”
model (also called the saturated model) which has as many parameters as there are observations.
When yi = 0, the deforestation probability predicted by the full model is 0. When yi = 1 the225

deforestation probability predicted by the full model is 1. The deviance of the full model is then
equal to 0. Considering that the “null” model explained 0% of the deviance and the “full” model
explains 100% of the deviance, we then computed the percentage of deviance explained by each
of the three other models: “icar”, “glm”, and “rf”.

1.8.3 Cross-validation procedure230

To compare the performance of the “icar”, “glm”, and “rf” models at predicting correctly the
relative probability of deforestation on independent observations, we also performed a five-fold
cross-validation procedure. We used 70% of the observations for the model training and 30% of
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the observations for the model validation. We used the fitted models to predict the deforestation
probability of all the forest pixels of the validation dataset. To transform the deforestation235

probabilities into binary values, we identified the probability threshold respecting the percentage
of deforested pixels in the validation dataset (e.g., the mode of the predicted probabilities for
a percentage of 50% of deforested pixels). Consequently, the predicted number of deforested
pixels was equal to the observed number of deforested pixels in the validation dataset. This
implies that there was no “quantity disagreement” (sensu Pontius and Millones (2011)) for any240

of the three models in the cross-validation procedure. Through this cross-validation, we only
compared the ability of the models to correctly identify the pixels to be deforested, given a
particular mean deforestation rate. This corresponds to estimating the “allocation disagreement”
(sensu Pontius and Millones (2011)) for each of the three models. Using model predictions and
observations in the validation dataset, we computed several accuracy indices: the Area Under245

the ROC Curve (AUC), the Figure of Merit (FOM), the Overall Accuracy (OA), the Specificity
(Spe), the Sensitivity (Sen), and the True Skill Statistics (TSS). A detailed description of these
indices can be found in Pontius et al. (2008) (for the FOM) and Liu et al. (2011) (for all the
other indices). Formulas used to compute these indices are presented in Tables S10, S11.

1.8.4 Model selection250

For all the study areas, we found that the percentage of deviance explained for the “rf” model was
much higher than for the “icar” and “glm” models (Table S12), suggesting that the “rf” model
was fitting much better the data than the two other models. Nevertheless, when looking at the
results of the cross-validation procedure, the “rf” model had a lower accuracy in comparison with
the “icar” model (Table S12). These two results show clearly that the “rf” model was overfitting255

the data and was less performant at predicting the probability of deforestation at new sites
than the “icar” model. This can be explained by the fact that the strong nonlinear relationship
between explanatory variables and the spatial probability of deforestation, which is estimated
by the “rf” model based on the training dataset, does not represent the true relationship at the
landscape scale. This limitation associated with machine-learning techniques such as random260

forest has already been raised in previous scientific articles dealing with large scale mapping
of ecological variables (Ploton et al. 2020). On the contrary, the “icar” model had the highest
accuracy indices of the three models suggesting a better predictive performance than the “glm”
and “rf” models. Also, the “icar” model increased the explained deviance from 39.3 to 53.3%
in average in comparison with the “glm” model. This shows that environmental explanatory265

variables alone explain a relative small part of the spatial deforestation process and that including
spatial random effects to account for unexplained residual spatial variability strongly improves
model fit (+14.0% of deviance explained in average) and model predictive performance (+7.4%
for the TSS for example). Same results were obtained when comparing accuracy indices for
the three statistical models per continent (Table S13). We thus selected the “icar” model for270

predicting the spatial probability of deforestation for all the study areas.

1.9 Computing the spatial probability of deforestation for the year 2020

Before computing the predictions of the deforestation probability, the spatial random effects
at 10 km were interpolated at 1 km using a bicubic interpolation method (Fig. S9). This was
done in order to obtain spatial random effects at a resolution closer to the original forest raster275

resolution of 30 m, and to smooth the deforestation probability predictions spatially.

Distance to forest edge in 2020 was recomputed from the forest cover map in 2020 at 30 m
resolution. Distance to past deforestation in 2020 was recomputed from the 2010–2020 forest
cover change map at 30 m resolution. All other explanatory variables (protected areas, distance
to nearest road, town and river, elevation, and slope) were supposed unchanged between years280

2010 and 2020. Using rasters of explanatory variables at their original resolution, interpolated
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spatial random effects at 1 km resolution, and the fitted “icar” model for each study area, we
computed the spatial probability of deforestation at 30 m resolution for the year 2020 for each
study area.

Deforestation probabilities (float values in the interval [0, 1]) were rescaled and transformed285

to integer values in the interval [[1, 65535]]. This allowed us to record the large rasters of
probabilities as UInt16 type (using zero as no-data value) and save space on disk. We then
obtained a map of the relative probability of deforestation for the year 2020 at 30 m resolution
(Fig. S10). An interactive global map of the spatial probability of deforestation is available at
https://forestatrisk.cirad.fr/maps.html.290

1.10 Forecasting forest cover change for the period 2020–2110

For each study area, we computed the observed mean annual deforested area d (in ha/yr) on
the recent ten-year period 2010–2020 (from January 1st to January 1st) using the forest cover
change annual product by Vancutsem et al. (2021) (Tables S14, S15). The year 2020 was not
considered to compute the recent mean annual deforested area as more disturbance events need295

to be observed on Landsat satellite images to disentangle degradation from deforestation for that
year. As a consequence, most disturbance events are classified as degradation, and deforestation
is underestimated for that specific year.

To forecast the forest cover change at a particular date y in the future, we computed the
estimated total deforestation Dy (in ha) between years 2020 and y assuming a “business-as-usual”300

scenario. The business-as-usual scenario makes the assumption of an absence of change in the
deforestation intensity in the future (no increase in the deforestation intensity that could be
attributable to a future increase in the demand of agricultural commodities for example, nor
decrease in the deforestation intensity that could be attributable to new conservation policies
or increase in agricultural yields for example). The business-as-usual scenario also makes the305

assumption that the spatial deforestation process will remain the same in the future (assuming
a constant effect of the spatial explanatory variables in the future) and that areas with a higher
relative probability of deforestation will remain the same in the future. To compute the total
deforestation Dy (in ha) between years 2020 and y, we projected the mean annual deforestation
d on the time interval y − 2020: Dy = d × (y − 2020).310

For Brazil, which was divided into 26 study areas, the mean annual deforested area d was supposed
constant at the country level, not at the study area level. Indeed, we assumed that deforestation
inside Brazil should spread between states and should not stop at the state administrative
borders. As a consequence, when all the forest of a specific state in Brazil was deforested, the
corresponding residual deforested area for that state was redistributed to the other states of315

Brazil still having forest. This ensured that the annual deforested area was constant for Brazil,
but imply an increase of the annual deforested area with time for some states. We assumed that
this contagious deforestation between study areas was only valuable for connected study areas
inside a specific country (here, Brazil). On the contrary, we assumed that it was much less likely
to observe contagious deforestation between two neighbouring countries. First, because of the320

presence of less permeable international borders, and second, because the socio-economic factors
driving the intensity of deforestation between two neighbouring countries can be significantly
different (see contrasting past deforestation intensity for Haiti–Dominican Republic, Congo–
DRC, French Guiana–Suriname, or Indonesia–Papua New Guinea for example). We assumed no
contagious deforestation for the three study areas in India which are not connected (Fig. S1).325

The map of the relative spatial probability of deforestation in 2020 has a resolution of 30 m
equivalent to an area of rha = 0.09 ha. Using this map, we computed a probability threshold py

in the interval [[1, 65535]] identifying the ny forest pixels in 2020 with the highest probability of
deforestation so that ny × rha = Dy + ϵ. Because deforestation probabilities have finite values in
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the interval [[1, 65535]], some forest pixels might have the same deforestation probability and330

it might not be possible to identify py such that ϵ = 0. We thus selected the threshold py

minimizing ϵ. Because Dy represents the total deforested area for several years and that few
pixels had the same probability of deforestation, we always obtained negligible ϵ compared to Dy

(ϵ << Dy). We considered those ny forest pixels in 2020 as deforested between years 2020 and y,
and we derived the corresponding forest cover change map for the period 2020–y (Fig. S11).335

We projected the future forest cover for several years in the period 2030–2110 using a base
time-interval of 10 years (Tables S16, S17). We also projected the future forest cover for years
2055 and 2085 as these two years are often used as pivot years in studies on future climate
change. They correspond to 30-year climate averages on the periods 2040–2070 and 2070–2100,
and to mid-term and long-term climate projections, respectively, for the 21st century (IPCC340

2014). We then computed the percentage of forest cover loss in 2100 in comparison with the
forest cover in 2000 for each study area and continent (Tables S16, S17). We also computed
the year at which all the forest will have disappeared for each study area (Tables S16). At
the continental level, it makes less sense to compute the year at which all the forest will have
disappeared, as some countries might conserve forest for a very long time, even though they345

account for a very small proportion of the total forest area at the continental scale. Instead, we
computed the estimated year at which 75% of the forest cover in 2000 will have disappeared
(Table S17).

1.11 Carbon emissions associated with deforestation

We estimated the carbon emissions associated with past deforestation (2010–2020) and projected350

deforestation (2030–2110) (Table S18) using three recent global or pantropical maps providing
estimates of aboveground dry biomass (AGB, in Mg/ha) on a date before 2010 (Fig. S12).

The first map by Avitabile et al. (2016) from Wageningen University and Research (WUR) is a
combination of two pantropical aboveground biomass maps by Saatchi et al. (2011) and Baccini
et al. (2012). This map is representative of the aboveground biomass for the years 2000–2010355

and provide AGB estimates at 1 km resolution. This fused map achieved a lower RMSE (87–98
Mg/ha representing a 5–74% decrease) and lower bias (a decrease of 90–153%) than the two
input maps for all continents. This map was not covering some islands in the tropics: Mauritius,
Reunion island, Fiji, New Caledonia, Solomon Islands, and Vanuatu. The second map by Zarin
et al. (2016) from the Woods Hole Research Center (WHRC) provides AGB estimates at a360

higher resolution of 30 m, at pantropical scale, for circa the year 2000. This map expands upon
the methodology presented in Baccini et al. (2012) using data from Landsat 7 ETM+ satellite
imagery at 30 m resolution in place of MODIS data at 500 m resolution. The third map by
Santoro et al. (2021), obtained within the framework of the Climate Change Initiative of the
European Space Agency (ESA CCI), provides AGB estimates at 100 m resolution at the global365

scale for the year 2010. For this third map, and contrary to the two previous maps based on
passive optical sensors, AGB estimates were retrieved from active radar sensors (ALOS-PALSAR
and Envisat-ASAR sensors) for which the signal is not sensitive to weather conditions (eg. clouds
often present over tropical moist forests).

We used the Intergovernmental Panel on Climate Change (IPCC) default carbon fraction of 0.47370

(McGroddy et al. 2004) to convert aboveground dry biomass to carbon stocks. We assumed no
change of the forest carbon stocks in the future while computing carbon emissions associated
with projected deforestation. We estimated average annual carbon emissions for ten-year periods
from 2010 to 2110. Under a “business-as-usual” scenario of deforestation (no change in the
annual deforested area, in ha/yr, in the future), the change in mean annual carbon emissions in375

the future is only attributable to the spatial variation of the forest carbon stocks and to the
location of the future deforestation. The three AGB maps were used separately to derive carbon
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emissions associated with deforestation and see if the changes in mean annual carbon emissions
in the future were robust to change in the input data (Fig. S13).

1.12 Uncertainty analysis380

An uncertainty surrounds the estimate of the mean annual deforested area d (in ha/yr) for
each study area. We took into account this uncertainty in our predictions (Data S1 and S2).
We computed the 95% confidence interval of d for each study area using the deforestation
observations dt for the ten years t from 2010 to 2020 (Table S19). Deforestation observations dt

were obtained from the forest cover change annual product by Vancutsem et al. (2021). We385

estimated d′, the lower limit of the confidence interval (d′ = d̄t − 1.96 × σ(dt)/
√

n), and d′′, the
upper limit of the confidence interval (d′′ = d̄t + 1.96 × σ(dt)/

√
n), with d̄t: the mean annual

deforested area on 2010–2020 (d̄t=d), σ(dt): the standard deviation of the annual deforested
area, and n: the number of observations (n=10, the number of years in our case). We repeated
the simulations of the deforestation in the future using either d′ or d′′ as the annual deforested390

area for each study area. We thus obtained three different predictions of the forest cover change
and associated carbon emissions: an average prediction considering the mean annual deforested
area d, a prediction considering a lower deforestation d′ (Fig. S14), and a prediction considering
a higher deforestation d′′ (Fig. S15).

1.13 Software used: the forestatrisk Python package395

We developed a specific package called forestatrisk (Vieilledent 2021) to model and forecast
the tropical deforestation spatially using the Python programming language (Python Software
Foundation 2020). The package has an associated website at https://ecology.ghislainv.fr/foresta
trisk. The package is installable either from GitHub at https://github.com/ghislainv/forestatrisk
or PyPI (The Python Package Index) at https://pypi.org/project/forestatrisk. It can be400

easily installed using pip (the package installer for Python) in any Python virtual environment
created with either conda (recommended) or virtualenv. The forestatrisk package includes
functions (i) to build a dataset from deforestation observations (function .sample), (ii) to
estimate the parameters of several spatial deforestation models (functions .model*, including
function .model_binomial_iCAR for the “icar” model), (iii) to assess the model performance405

(function .cross_validation), (iv) to derive predictive maps of the probability of deforestation
(functions .predict_raster*), and (v) to forecast future forest cover under a given intensity of
deforestation (function .deforest). Using functions from the forestatrisk Python package
makes computation fast and efficient (with low memory usage) by treating large raster data
by blocks. Numerical computations on blocks of data are performed with the NumPy (https:410

//numpy.org) Python package whose core is mostly made of optimized and compiled C code
which runs fast (Harris et al. 2020).

We also developed another smaller Python package called pywdpa (https://ecology.ghislain
v.fr/pywdpa) that allows downloading the shapefiles of the protected areas for each country
using the API of the World Database on Protected Areas (https://api.protectedplanet.net).415

The package is also available on GitHub at https://github.com/ghislainv/pywdpa or PyPI at
https://pypi.org/project/pywdpa, and can also be easily installed using pip.

Computations for each country were run in parallel on the computing cluster of the Montpellier
Bioinformatics Biodiversity (MBB) platform (https://mbb.univ-montp2.fr) provided by LabEx
CeMEB (http://www.labex-cemeb.org/). Google Earth Engine (Gorelick et al. 2017) was used420

to process the annual product by Vancutsem et al. (2021) and derive the past forest cover change
map for each country. While the raw results of our study (which implied intensive computations
on large raster data) were obtained using the Python programming language, the summarized
results (tables and figures) presented in this article (main text and supplementary materials)
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were obtained using the R software (R Core Team 2020).425
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2 Supplementary figures

Fig. S1 – Study areas in the three continents
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Figure S1: Study areas in the three continents: America, Africa, and Asia. America included 64
study areas (39 countries), Africa included 32 study areas (32 countries), and Asia included 23 study
areas (21 countries). Each country was identified by one unique three-letter code following the ISO 3166-1
standard (eg. MDG for Madagascar or GUF for French Guiana). In America, Brazil was divided in 26
study areas corresponding to the 26 Brazilian states. Each Brazilian state was defined by one unique
two-letter code (eg. AM for Amazonas). For India, three study areas were considered: the Whestern
Ghats (WG), the North-East India (NE), and the Andaman and Nicobar Islands (AN). For Australia, we
only considered the Queensland (QLD) state as a study area. In the three figures, each study area is
identified by one unique code and a set of polygons with the same colour. The horizontal lines on each
figure indicate the position of the Equator (plain line) and the two tropics (Cancer at the North and
Capricorn at the South, dashed lines).
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Fig. S2 – Past forest cover change map

Figure S2: Past forest cover change map. Map of forest cover change for the period 2000–2010–2020
for the Democratic Republic of the Congo in central Africa (bottom-left inset). orange: 2000–2010
deforestation, red: 2010–2020 deforestation, green: forest cover in 2020. Forest cover change map was
derived from the forest cover change annual product by Vancutsem et al. (2021). Original resolution
of the forest cover change map is 30 m. The top-left inset shows a zoom of the map for an area at the
North-East of the country which is close to the city of Beni and the Virunga national park. An interactive
pantropical forest cover change map is available at https://forestatrisk.cirad.fr/maps.html.
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Figs. S3–S6 – Spatial explanatory variables used for modelling deforestation

Figure S3: Spatial explanatory variables. Spatial explanatory variables for the Democratic Republic
of the Congo in central Africa. Elevation (in m) and slope (in degree) at 90 m resolution were obtained
from the SRTM Digital Elevation Database v4.1 (http://srtm.csi.cgiar.org/). Distances (in m) to nearest
road, town, and river at 150 m resolution were computed from the road, town, and river network obtained
from OpenStreetMap (OSM) (https://www.openstreetmap.org/). Roads include “motorway”, “trunk”,
“primary”, “secondary” and “tertiary” roads from OSM. Towns include “city”, “town” and “village”
categories from OSM. Rivers include “river” and “canal” categories from OSM. Protected areas were
obtained from the World Database on Protected Areas (https://www.protectedplanet.net , UNEP-WCMC
and IUCN (2020)). We retained protected areas defined by at least one polygon and which had the
following status: “Designated”, “Inscribed”, “Established”, or “Proposed” before January 1st 2010. Data
included protected areas of all IUCN categories (from Ia to VI) and of all types defined at the national
level (e.g. National Parks, Reserves). Two additional spatial explanatory variables (distance to forest
edge and distance to past deforestation) were obtained from the past forest cover change map (Fig. S2).
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Figure S4: Pantropical road network. The road network was obtained from OpenStreetMap (OSM)
(https://www.openstreetmap.org/). Roads included “motorway”, “trunk”, “primary”, “secondary” and
“tertiary” roads from OSM. Our dataset included a total of 3,606,841 roads.
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Figure S5: Pantropical data-set on protected areas. Terrestrial protected areas in green, marine
protected areas in blue. Protected areas were downloaded from the World Database on Protected
Areas (https://www.protectedplanet.net, UNEP-WCMC and IUCN (2020)) using the pywdpa Python
package. We retained protected areas defined by at least one polygon and which had the following status:
“Designated”, “Inscribed”, “Established”, or “Proposed” before January 1st 2010. Data included protected
areas of all IUCN categories (from Ia to VI) and of all types defined at the national level (e.g. National
Parks, Reserves). Our dataset included a total of 89,855 protected areas.
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Figure S6: Correlation between explanatory variables. To compute the correlations, we used a
representative data-set at the global scale where the number of observations for each study area was
proportional to its forest cover in 2010. We used a total of 798,859 observations. We computed the
Pearson’s correlation matrix for the seven continuous explanatory variables used to model the deforestation:
elevation (“elev”), slope (“slope”), distance to nearest road, town, and river (“droad”, “dtown”, and
“driver”, respectively), distance to forest edge (“dedge”), and distance to past deforestation (“ddefor”).
For the protected areas (“pa”), which is a categorical variable for which a Pearson’s correlation coefficient
cannot be computed, we reported the slope coefficient of simple logistic regressions where the probability
of presence of a protected area was a function of one intercept and one of the continuous variable (which
was normalized).
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Fig. S7 – Data sampling

Figure S7: Data sampling for spatial modelling of deforestation. Map on the left corresponds to the
top left inset in Fig. S2 representing a zoom of the forest cover change map in the period 2000–2010–2020
for an area at the North-East of the Democratic Republic of the Congo. Map on the right presents
an inner zoom showing the delimitation of the 30 m forest pixels with two sample points. We used a
stratified balanced sampling between (i) forest pixels in 2010 which have been deforested in the period
2010–2020 (“deforested” pixels in red), and (ii) forest pixels in 2010 which have not been deforested in
that period of time and which represent the remaining forest in 2020 (“non-deforested” pixels in green).
Forest pixels in each category were sampled randomly.
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Fig. S8 – Grid for spatial random effects

Figure S8: Grid used to compute the spatial random effects. Main figure: 10 × 10 km grid covering
the Democratic Republic of the Congo (DRC). The grid over DRC includes 45,154 10 × 10 km cells (214
cells on the x axis by 211 cells on the y axis). The background map shows the past forest cover change in
the period 2000–2010–2020 (see Fig. S2). Top inset: Zoom for an area at the North-East of the country
(black square) showing specific grid cells. One grid cell can include several sample points (see Fig. S7).
Bottom inset: One random effect ρj is estimated for each grid cell j. Spatial autocorrelation is taken into
account through an intrinsic conditional autoregressive (iCAR) process: the value of the random effect
for one cell depends on the values of the random effects ρj′ for the neighbouring cells j′ (see Eq. (S1)).
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Fig. S9 – Estimated spatial random effects

Figure S9: Estimated spatial random effects. Left: Estimated spatial random effects at 10 km
resolution for the Democratic Republic of the Congo (DRC). Right: Interpolated spatial random effects at
1 km resolution. A bicubic interpolation method was used. Bottom: Zoom for an area at the North-East
of the country (black square) which is close to the city of Beni and the Virunga national park. Due to the
structure of the iCAR model (see Eq. (S1)), spatial random effects are also estimated for cells without
sampled points. This includes cells for which there was no forest cover in the period 2000–2010–2020,
and also cells outside the country’s borders.
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Fig. S10 – Spatial relative probability of deforestation

Figure S10: Predicted spatial relative probability of deforestation. Main figure: Map of the spatial
probability of deforestation computed for each forest pixel in 2020 for the Democratic Republic of the
Congo. On the map, we clearly see the effect of the distance to nearest town and road, and the effect of
the distance to forest edge on the spatial probability of deforestation. Also, we clearly see the importance
of the spatial random effects in structuring the spatial variability of the deforestation probability. For
example, the area at the North of the zoom (black square) shows very high deforestation probabilities (in
black). This area is politically unstable and is home to a large number of militias who survive at the
expense of the forest. Inset: Zoom of the map for an area at the North-East of the country which is close
to the city of Beni and the Virunga national park. An interactive global map of the spatial probability of
deforestation is available at https://forestatrisk.cirad.fr/maps.html.
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Fig. S11 – Projected forest cover change

Figure S11: Projected forest cover change. Main figures: Maps of the projected forest cover change
(left: 2020–2050, right: 2020–2100) for the Democratic Republic of the Congo (DRC) under a business-
as-usual scenario of deforestation. red: projected deforestation, green: remaining forest cover. Besides
the loss of forest cover, maps show a progressive fragmentation of the forest in the future, with an
increasing number of forest patches of smaller size in DRC. Insets: Zoom of the map for an area at the
North-East of the country (black square) which is close to the city of Beni and the Virunga national park.
Interactive pantropical maps of the projected forest cover change for years 2050 and 2100 are available at
https://forestatrisk.cirad.fr/maps.html.
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Fig. S12 – Aboveground biomass maps

Figure S12: Aboveground biomass maps. This figure presents an extract of the three global or
pantropical aboveground biomass (AGB in Mg/ha) maps which have been used for computing carbon
emissions associated with deforestation: WUR map by Avitabile et al. (2016) for the years 2000–2010 (top
left), WHRC map by Zarin et al. (2016) for the year 2000 (top right), and ESA CCI map by Santoro et
al. (2021) for the year 2010 (bottom left). Extracts show biomass estimates for the Democratic Republic
of the Congo (DRC). The three maps have different resolutions (1 km, 30 m, and 100 m, respectively).
Insets represent zooms of the map for an area at the North-East of the country which is close to the city
of Beni and the Virunga national park.
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Fig. S13 – Change in annual carbon emissions

Figure S13: Change in annual carbon emissions associated with projected deforestation. Mean
annual carbon emissions (Pg/yr) are computed for ten-year intervals from 2010–2020 to 2100–2110. The
dots represent the observed mean annual carbon emissions (based on past deforestation maps) for the
period 2010–2020, for the three continents (America, Africa, and Asia), and for the three continents
combined. Lines represent the projected mean annual carbon emissions based on projected forest cover
change maps from 2020–2030 to 2100–2110 per continent, and for all continents together. The confidence
envelopes around the mean are obtained using the lower and upper bounds of the confidence intervals of
the mean annual deforested areas for all study areas. Top: Carbon emissions obtained from the WUR
aboveground biomass map by Avitabile et al. (2016) showing an increase of the annual carbon emissions
from 0.467 Pg/yr in 2010–2020 to 0.628 Pg/yr (+35%) in 2090–2100 associated with the deforestation of
forests with higher carbon stocks in the future. Bottom: Carbon emissions obtained from the WHRC
aboveground biomass map by Zarin et al. (2016) showing constant annual carbon emissions of about
0.600 Pg/yr for the period 2010–2070, followed by a slight decrease of the emissions to 0.583 Pg/yr (-3%)
in 2090–2100 associated with the complete loss of forest in some Asian countries.
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Figs. S14–S15 – Uncertainty map of the future change in forest cover

Figure S14: Projected forest cover change map assuming a low annual deforestation. This
map was derived using d′, the lower bound of the confidence interval for the annual deforested area (in
ha/yr) for each study area. This map must be compared with Fig. 1 in the main text and Fig. S15 below,
which consider average and high annual deforested areas, respectively. The horizontal black line indicates
the position of the Equator. The boundaries of the study areas are represented by dark grey lines. Forest
areas in red are predicted to be deforested during the period 2020–2100, while forest areas in green are
predicted to remain in 2100.
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Figure S15: Projected forest cover change map assuming a high annual deforestation. This
map was derived using d′′, the upper bound of the confidence interval for the annual deforested area
(in ha/yr) for each study area. This map must be compared with Fig. 1 in the main text and Fig. S14
above, which consider average and low annual deforested areas, respectively. The horizontal black line
indicates the position of the Equator. The boundaries of the study areas are represented by dark grey
lines. Forest areas in red are predicted to be deforested in the period 2020–2100, while forest areas in
green are predicted to remain in 2100.
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3 Supplementary tables

Table S1 – Pixel categories of the forest cover annual product

Table S1: Pixel categories of the forest cover annual product by Vancutsem et al. (2021). The
forest cover annual product v1_2020 classifies Landsat image pixels in 6 categories for each year (on the
1st of January) between 1990 and 2021 and allows identifying tropical moist forest pixels at each date.

Class Definition
1 Undisturbed Tropical Moist Forest (TMF)
2 Degraded TMF
3 Deforested land
4 Forest regrowth
5 Permanent or seasonal water
6 Other land cover

Table S2 – Variables

Table S2: Set of explanatory variables used to model the spatial probability of deforestation.
A total of height variables were tested. Variables describe topography, forest accessibility, forest landscape,
deforestation history, and conservation status.

Product Source Version /
Date

Variable
derived

Unit Resolution
(m)

Forest maps
(2000–2010–
2020)

Vancutsem et
al. 2021

v1_2020 distance to
forest edge

m 30

distance to
past

deforestation

m 30

Digital
Elevation
Model

SRTM
CSI-CGIAR

v4.1 elevation m 90

slope degree 90
Highways OSM-

Geofabrik
March 2021 distance to

road
m 150

Places distance to
town

m 150

Waterways distance to
river

m 150

Protected
areas

WDPA March 2021 presence of
protected area

– 30
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Table S3 – Sample size

Table S3: Number of observations used for the spatial model of deforestation for each study
area. The table includes the number of non-deforested (“nfor”) and deforested (“ndef”) pixels per study
area. These numbers include the forest pixels with full information regarding the explanatory variables.
The corresponding number of hectares is also provided (“nfHa” and “ndHa”, respectively).

Country – Study area Code nfor ndef nfHa ndHa
(ha) (ha)

America
Antigua and B. ATG 9,876 5,777 889 520
Bahamas BHS 9,910 9,932 892 894
Barbados BRB 9,964 7,004 897 630
Belize BLZ 9,999 9,999 900 900
Bolivia BOL 30,485 30,485 2,744 2,744
Brazil – Acre AC 13,307 13,307 1,198 1,198
Brazil – Alagoas AL 9,999 10,000 900 900
Brazil – Amapa AP 11,563 11,564 1,041 1,041
Brazil – Amazonas AM 50,000 50,000 4,500 4,500
Brazil – Bahia BA 9,989 9,998 899 900
Brazil – Ceara CE 9,996 9,999 900 900
Brazil – Espirito Santo ES 9,998 10,000 900 900
Brazil – Goias GO 10,000 10,000 900 900
Brazil – Maranhao MA 9,985 9,998 899 900
Brazil – Mato Grosso MT 33,283 33,283 2,995 2,995
Brazil – Mato Grosso do Sul MS 10,000 10,000 900 900
Brazil – Minas Gerais MG 10,000 10,000 900 900
Brazil – Para PA 49,999 50,000 4,500 4,500
Brazil – Paraiba PB 9,975 9,994 898 899
Brazil – Parana PR 9,995 9,999 900 900
Brazil – Pernambouco PE 9,975 9,997 898 900
Brazil – Piaui PI 9,999 10,000 900 900
Brazil – Rio de Janeiro RJ 9,992 9,980 899 898
Brazil – Rio Grande do Norte RN 9,947 9,984 895 899
Brazil – Rio Grande do Sul RS 10,000 9,999 900 900
Brazil – Rondonia RO 13,800 13,800 1,242 1,242
Brazil – Roraima RR 16,228 16,228 1,461 1,461
Brazil – Santa Catarina SC 9,998 10,000 900 900
Brazil – Sao Paulo SP 9,994 10,000 899 900
Brazil – Sergipe SE 9,975 9,991 898 899
Brazil – Tocantins TO 10,000 10,000 900 900
Colombia COL 49,998 49,996 4,500 4,500
Costa Rica CRI 9,992 9,987 899 899
Cuba CUB 9,946 9,934 895 894
Dominica DMA 9,991 9,870 899 888
Dominican Rep. DOM 9,994 9,995 899 900
Ecuador ECU 14,901 14,903 1,341 1,341
El Salvador SLV 9,965 9,984 897 899
French Guiana GUF 10,000 9,996 900 900
Grenada GRD 9,984 9,923 899 893
Guadeloupe GLP 9,972 9,926 897 893
Guatemala GTM 9,999 9,999 900 900
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Table S3: (continued)

Country – Study area Code nfor ndef nfHa ndHa
(ha) (ha)

Guyana GUY 18,489 18,488 1,664 1,664
Haiti HTI 9,959 9,969 896 897
Honduras HND 9,998 10,000 900 900
Jamaica JAM 9,998 9,987 900 899
Martinique MTQ 9,985 9,968 899 897
Mexico MEX 9,991 9,994 899 899
Montserrat MSR 9,989 790 899 71
Nicaragua NIC 9,998 10,000 900 900
Panama PAN 9,994 9,992 899 899
Paraguay PRY 10,000 10,000 900 900
Peru PER 50,000 50,000 4,500 4,500
Puerto Rico PRI 9,995 9,976 900 898
Saint Kitts and N. KNA 9,978 3,800 898 342
Saint Lucia LCA 9,995 9,968 900 897
Saint Martin MAF 3,533 2,683 318 241
Saint Vincent VCT 9,978 9,781 898 880
Sint Maarten SXM 1,292 1,106 116 100
Suriname SUR 13,727 13,726 1,235 1,235
Trinidad and Tobago TTO 9,992 9,976 899 898
Venezuela VEN 42,913 42,910 3,862 3,862
Virgin Isl. UK VGB 9,905 9,776 891 880
Virgin Isl. US VIR 9,914 9,834 892 885

Africa
Angola AGO 9,999 10,000 900 900
Benin BEN 9,978 9,997 898 900
Burundi BDI 10,000 10,000 900 900
Cameroon CMR 23,543 23,541 2,119 2,119
CAR CAF 10,000 10,000 900 900
Comoros COM 9,993 9,962 899 897
Congo COG 23,945 23,943 2,155 2,155
DRC COD 50,000 50,000 4,500 4,500
Eq. Guinea GNQ 9,998 9,985 900 899
Ethiopia ETH 10,000 10,000 900 900
Gabon GAB 24,096 24,077 2,169 2,167
Gambia GMB 9,979 9,996 898 900
Ghana GHA 10,000 10,000 900 900
Guinea GIN 9,976 9,999 898 900
Guinea Bissau GNB 9,874 9,969 889 897
Ivory Coast CIV 10,000 9,999 900 900
Kenya KEN 9,989 9,998 899 900
Liberia LBR 10,000 9,997 900 900
Madagascar MDG 9,991 9,996 899 900
Malawi MWI 10,000 10,000 900 900
Mauritius MUS 9,972 9,952 897 896
Mayotte MYT 9,975 9,973 898 898
Nigeria NGA 9,979 9,997 898 900
Reunion REU 9,996 9,983 900 898
Rwanda RWA 10,000 10,000 900 900
Senegal SEN 9,883 9,972 889 897
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Table S3: (continued)

Country – Study area Code nfor ndef nfHa ndHa
(ha) (ha)

Sierra Leone SLE 9,993 9,999 899 900
South Sudan SSD 5,682 7,705 511 693
Tanzania TZA 9,978 9,973 898 898
Togo TGO 10,000 10,000 900 900
Uganda UGA 10,000 10,000 900 900
Zambia ZMB 10,000 10,000 900 900

Asia
Australia – Queensland QLD 9,978 9,972 898 897
Bangladesh BGD 9,956 9,972 896 897
Bhutan BTN 10,000 10,000 900 900
Brunei BRN 9,990 9,996 899 900
Cambodia KHM 9,995 9,999 900 900
Fiji FJI 9,984 9,954 899 896
India – Andaman and N. AN 9,954 9,900 896 891
India – North-East NE 9,996 9,999 900 900
India – West. Ghats WG 9,996 9,993 900 899
Indonesia IDN 49,976 49,975 4,498 4,498
Laos LAO 10,000 10,000 900 900
Malaysia MYS 22,307 22,310 2,008 2,008
Myanmar MMR 15,371 15,376 1,383 1,384
New Caledonia NCL 9,965 9,903 897 891
Papua New Guinea PNG 39,764 39,670 3,579 3,570
Philippines PHL 13,665 13,662 1,230 1,230
Singapore SGP 9,902 9,947 891 895
Solomon Isl. SLB 9,961 9,773 896 880
Sri Lanka LKA 9,996 9,995 900 900
Thailand THA 9,991 9,995 899 900
Timor-Leste TLS 9,993 9,972 899 897
Vanuatu VUT 9,974 9,890 898 890
Vietnam VNM 9,996 9,996 900 900

All continents
TOTAL 1,610,125 1,587,817 144,914 142,908
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Tables S4–S5 – Parameter estimates and variable importance

Table S4: Parameter estimates for each study area. For each study area, we computed the posterior
mean of each parameter (“int”: intercept, “pa”: protected area effect, “elev”, “slope”, “ddefor”,“dedge”,
“driver”, “droad”, “dtown”: slope parameters associated to elevation, slope, distance to past deforestation,
distance to forest edge, distance to nearest river, distance to nearest road, and distance to nearest town,
respectively, “Vrho”: variance of the spatial random effects). Continuous explanatory variables were
normalized (mean=0 and standard-deviation=1), allowing us to estimate the relative importance of each
variable in determining the spatial probability of deforestation from parameter values. Comparison can
be done within and between study areas.

study area int pa elev slope ddefor dedge driver droad dtown Vrho

America
ATG 0.110 -0.710 -0.393 – -0.719 -1.170 – – – 10.00
BHS -0.307 – -0.113 -0.091 -1.020 -0.525 -0.116 – – 8.20
BRB -0.414 -0.323 -0.442 -0.201 -0.248 -0.958 -0.009 0.000 – 1.99
BLZ -0.905 -0.653 -0.058 -0.194 -1.270 -1.280 – -0.129 -0.383 6.97
BOL -0.697 -0.163 -0.292 -0.223 -1.050 -3.070 – -0.306 -0.102 5.36
AC -6.720 -0.631 – – -11.100 -4.450 – -0.179 -0.162 4.14
AL 0.735 -0.192 -0.333 -0.055 -0.632 -1.690 -0.139 -0.214 -0.140 3.01
AP -6.110 -0.126 -0.748 -0.064 -4.100 -8.460 – -0.218 -0.273 5.22
AM -3.950 -0.806 -0.118 – -2.800 -4.330 -0.157 -0.898 -0.416 13.70
BA 1.370 -0.213 -0.268 -0.201 -1.010 -0.969 – -0.032 – 4.11
CE 1.200 -0.551 -1.150 – -0.214 -0.956 – – – 8.49
ES -0.335 -0.193 -0.813 – -0.852 -1.210 -0.068 0.002 -0.078 3.20
GO 0.043 – -0.047 – -0.790 -0.447 -0.116 – -0.025 3.43
MA -1.440 -0.202 – -0.086 -4.670 -2.730 – – -0.172 3.82
MT -0.506 -0.427 – – -1.530 -0.647 – -0.136 -0.240 10.20
MS -0.361 – -0.039 -0.009 -0.427 -1.210 – – – 4.07
MG 0.058 -0.153 -0.504 – -0.738 -0.515 -0.059 -0.058 -0.038 3.86
PA -1.230 -1.180 – -0.033 -1.400 -2.330 -0.019 -0.874 -0.306 8.08
PB 3.030 -0.693 – -0.043 -0.821 -1.070 -0.244 – -0.094 4.35
PR -0.739 -0.339 – -0.218 -0.959 -1.980 – – -0.037 2.54
PE 7.390 -0.558 -0.730 -0.173 -0.861 -2.100 -0.033 -0.066 -0.082 6.55
PI 0.377 – – – -0.624 -0.626 -0.025 -0.019 -0.088 4.13
RJ -0.671 -0.220 -0.080 -0.009 -1.490 -3.140 -0.142 -0.087 -0.036 2.40
RN -0.087 – – -0.084 -0.938 -0.625 – – – 5.73
RS -0.171 -0.343 -0.107 -0.504 -0.622 -1.660 -0.002 -0.002 – 1.81
RO -0.719 -1.630 – -0.108 -0.598 -1.790 -0.003 -0.403 -0.141 7.27
RR -1.790 -0.841 -0.446 – -2.720 -2.050 -0.012 -0.165 -0.427 8.49
SC -0.675 -0.303 – -0.548 -0.921 -1.560 – – -0.052 2.00
SP -0.686 -0.184 -0.166 -0.260 -1.870 -2.800 -0.011 -0.024 -0.042 3.79
SE 0.669 – – – -0.918 -0.866 -0.132 – – 3.63
TO -0.351 -0.035 – – -0.590 -0.032 -0.081 -0.046 – 4.43
COL -2.410 -0.449 -0.803 -0.330 -4.060 -2.050 – -0.591 -0.349 5.62
CRI -3.510 – -0.065 -0.303 -3.050 -6.700 -0.009 -0.064 -0.136 2.18
CUB -0.371 – -0.242 -0.105 -0.694 -0.707 -0.053 -0.126 -0.053 4.77
DMA -1.470 – -0.216 -0.181 -0.840 -2.700 – – -0.407 3.26
DOM -0.138 -0.331 -0.236 -0.075 -1.080 -1.390 -0.003 -0.130 -0.005 2.85
ECU -4.340 -0.520 -0.097 -0.362 -2.790 -10.600 – -0.433 -0.107 2.53
SLV -0.048 -0.476 -0.327 -0.213 -0.820 -1.590 – -0.073 -0.033 3.38
GUF -1.220 -0.835 -0.584 -0.122 -1.200 -2.690 – -1.050 -0.880 18.80
GRD -0.776 -0.396 -1.120 – -1.840 -2.700 – -0.266 -0.108 14.20
GLP -3.960 – -0.171 -0.190 -2.020 -7.360 -0.036 -0.089 -0.090 2.61
GTM 0.026 -0.229 -0.427 -0.252 -1.030 -0.145 -0.022 -0.180 -0.036 3.15
GUY -1.970 -0.708 -0.452 -0.207 -0.479 -4.860 – -0.890 -0.330 13.70
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Table S4: (continued)

study area int pa elev slope ddefor dedge driver droad dtown Vrho
HTI 0.034 -0.038 – -0.120 -0.587 -0.751 -0.078 -0.256 -0.015 2.87
HND -0.976 -0.364 -0.911 -0.307 -0.939 -0.590 -0.017 – – 4.46
JAM -0.817 -0.003 -0.242 -0.132 -2.160 -2.640 -0.024 -0.136 -0.078 2.66
MTQ -1.410 -0.075 -0.627 -0.053 -0.900 -4.390 – – – 2.66
MEX -0.769 -0.228 -0.317 -0.277 -1.080 -1.150 – -0.056 -0.029 3.59
MSR -8.160 – -0.213 – -1.740 -6.020 – – – 4.81
NIC -1.360 – -0.327 -0.088 -0.612 -1.680 – -0.158 – 3.19
PAN -2.510 -0.455 -0.157 -0.239 -4.100 -2.790 – -0.511 – 2.97
PRY -0.404 – -0.066 -0.109 -0.785 -0.126 -0.007 -0.096 – 3.93
PER -1.730 -0.617 -0.634 -0.354 -3.580 -3.610 -0.022 -0.570 -0.504 6.44
PRI 0.009 – -0.383 -0.062 -0.410 -1.100 – – -0.064 4.32
KNA -1.960 – -1.130 -0.168 -0.297 -0.878 – – – 1.62
LCA -1.350 – -0.265 -0.066 -1.140 -3.140 – -0.035 -0.061 2.97
MAF 0.438 – – – -0.391 -0.895 -0.477 – – 8.11
VCT -0.526 -0.159 -0.691 -0.164 -1.950 -1.840 – -0.303 -0.045 3.30
SXM -0.029 – – -0.491 -0.597 -0.527 -0.068 – -0.298 10.00
SUR -1.170 -0.046 -0.548 -0.144 -0.551 -1.210 – -1.210 -0.392 12.50
TTO -2.550 -0.265 -0.249 -0.153 -2.290 -5.430 -0.038 -0.106 -0.105 2.16
VEN -2.930 -0.120 -0.390 -0.089 -1.390 -6.690 -0.080 -0.585 -0.360 6.59
VGB 1.070 – -0.347 -0.210 -0.939 -0.973 – – – 8.04
VIR 0.030 -0.350 – -0.174 -0.311 -0.782 – – – 7.64

Africa
AGO -0.382 – -0.042 -0.096 -2.720 -2.040 -0.013 -0.194 -0.066 4.00
BEN 2.760 – – -0.148 -0.422 -1.000 – – – 8.05
BDI -0.691 -1.170 -0.527 – -2.130 -3.320 -0.090 – -0.062 6.39
CMR -0.130 -0.891 – -0.156 -1.570 -2.990 -0.034 -0.419 -0.270 5.96
CAF -0.226 -0.094 – -0.022 -4.950 -1.510 -0.109 -0.110 -0.370 4.61
COM -2.730 – -0.163 -0.314 – -10.100 – – – 7.22
COG -2.350 -0.402 -0.012 -0.064 -1.420 -5.410 -0.160 -0.548 -0.314 8.71
COD -3.910 -0.160 – – -6.450 -4.590 – -0.375 -0.295 4.52
GNQ -1.050 -0.136 -0.364 -0.340 -0.031 -2.660 -0.072 -1.300 -0.091 8.70
ETH -0.589 -0.082 -0.066 -0.270 -1.120 -1.960 – -0.082 -0.100 3.55
GAB -2.570 -0.160 -0.515 -0.222 -1.140 -4.200 – -0.541 -0.433 14.60
GMB -0.014 -0.222 – -0.106 -0.543 -0.399 – -0.327 -0.081 5.23
GHA 0.470 -0.378 -0.125 -0.182 -0.551 -1.740 – -0.015 -0.057 2.06
GIN -0.676 -0.224 -0.078 -0.013 -3.220 -2.510 – -0.084 – 1.88
GNB 0.652 -0.688 – – -1.270 -0.866 – -0.125 -0.057 3.13
CIV 0.006 – – -0.133 -1.680 -0.828 – -0.020 -0.041 2.61
KEN -1.540 -0.186 -0.525 -0.066 -0.764 -2.990 -0.062 -0.158 -0.044 6.97
LBR -1.540 -0.491 – -0.129 -1.310 -3.150 – -0.331 -0.302 2.06
MDG -1.170 -0.285 -0.531 -0.169 -2.260 -1.260 – – -0.096 3.43
MWI -0.089 -0.363 -0.122 -0.148 -0.976 -0.202 -0.246 -0.515 0.000 18.70
MUS -1.890 -0.450 -0.153 -0.191 -0.538 -3.630 -0.017 -0.091 -0.031 1.37
MYT -0.230 -1.340 – – -0.751 -1.360 -0.058 – -0.034 2.77
NGA 1.020 – – -0.015 -1.330 -0.776 – -0.220 – 5.63
REU -0.932 -0.385 – -0.206 -0.184 -4.200 – – – 2.76
RWA -2.260 -1.300 -0.337 -0.215 -1.560 -5.180 – -0.138 – 3.98
SEN 1.690 -0.199 -0.012 -0.065 -0.794 -0.401 – – -0.062 6.03
SLE -0.374 -0.247 – – -1.360 -1.190 – -0.038 -0.052 1.31
SSD 0.850 -0.135 -0.182 0.005 -0.266 -0.644 – -0.203 – 4.16
TZA -0.268 -0.239 -0.434 -0.090 -1.040 -3.160 -0.109 -0.184 -0.067 5.93
TGO 1.960 -0.537 -0.190 -0.144 -0.365 -0.525 – -0.271 – 4.68
UGA -1.340 -1.190 – – -2.700 -2.480 -0.070 -0.036 -0.116 4.72
ZMB -0.325 -0.401 – – -1.020 -0.439 – -0.125 -0.078 9.53
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Table S4: (continued)

study area int pa elev slope ddefor dedge driver droad dtown Vrho

Asia
QLD -0.110 -0.349 – -0.122 -1.190 -1.660 – 0.009 – 5.56
BGD 0.043 -0.544 -0.081 -0.092 -0.625 -1.070 -0.060 – – 4.47
BTN -1.310 – -0.072 -0.077 -7.070 -1.480 -0.046 – -0.049 1.19
BRN -0.441 -1.100 -0.984 -0.370 -2.430 – – -0.087 -0.617 15.10
KHM 0.572 -1.460 -1.040 -0.193 -0.998 -0.286 – -0.387 -0.182 9.40
FJI -1.520 -0.306 -0.254 -0.237 -0.416 -4.950 – -0.124 -0.088 5.21
AN -5.620 – -0.223 -0.193 -1.120 -17.300 – -0.242 – 4.55
NE -1.040 -0.585 -0.309 -0.293 -5.390 -1.600 -0.029 -0.094 -0.033 2.39
WG -0.156 -0.369 -0.483 -0.084 -0.692 -2.060 – -0.170 -0.053 1.93
IDN -1.330 -0.736 -0.312 -0.583 -1.660 -1.810 -0.037 -0.433 -0.088 8.13
LAO -0.258 -0.442 -0.405 -0.340 -1.230 -0.941 – -0.162 -0.174 3.08
MYS -0.687 -2.080 -0.385 -0.472 -0.830 -1.890 – -0.241 – 7.84
MMR -0.431 -0.167 -0.483 -0.215 -1.370 -1.420 -0.107 -0.139 -0.018 3.10
NCL -2.000 – -0.368 -0.098 -2.340 -8.160 – 0.020 -0.077 4.11
PNG -1.630 – -0.549 -0.478 -0.072 -3.840 -0.055 -0.358 -0.116 7.46
PHL -1.570 -0.153 -0.226 -0.393 -2.010 -2.420 – -0.093 -0.182 2.97
SGP -0.013 -1.350 -0.119 -0.108 -1.170 -1.330 – -0.616 – 6.01
SLB -0.544 – -0.802 -0.513 – -0.866 -0.221 -0.357 – 5.86
LKA 0.034 -0.516 -0.090 -0.291 -1.030 -1.480 -0.035 -0.068 -0.196 1.71
THA -1.390 -0.159 -0.751 -0.080 -1.930 -3.370 -0.012 – – 2.07
TLS -0.563 -0.120 -0.189 -0.104 -1.330 -1.490 -0.034 -0.080 -0.124 1.60
VUT -3.220 -0.505 -0.575 -0.287 -0.859 -5.210 – – 0.004 18.10
VNM -0.612 -0.536 -0.283 -0.376 -1.650 -1.220 -0.045 -0.173 -0.059 3.12
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Table S5: Parameter estimate weighted means per region. We used the forest cover in 2010
to compute the parameter estimate weighted mean per region. Continuous explanatory variables were
normalized (mean=0 and standard-deviation=1), allowing us to estimate the relative importance of each
variable in determining the spatial probability of deforestation from parameter values. Comparison can
be done within and between regions. At pantropical scale (when considering all continents together),
explanatory variables can be classified in the following decreasing order of importance: distance to forest
edge, distance to past deforestation, presence of a protected area, distance to nearest road, elevation,
distance to nearest town, slope, and distance to nearest river.

Region int pa elev slope ddefor dedge driver droad dtown Vrho
India -1.074 -0.484 -0.354 -0.225 -3.742 -2.739 -0.019 -0.126 -0.037 2.393
Brazil -2.633 -0.837 -0.103 -0.028 -2.508 -3.228 -0.073 -0.661 -0.323 10.093
America -2.342 -0.636 -0.297 -0.134 -2.490 -3.468 -0.048 -0.615 -0.328 8.549
Africa -2.463 -0.259 -0.073 -0.066 -4.002 -3.823 -0.024 -0.365 -0.270 5.819
Asia -1.164 -0.625 -0.385 -0.467 -1.415 -2.149 -0.037 -0.316 -0.084 6.676
All continents -2.099 -0.551 -0.268 -0.195 -2.577 -3.245 -0.040 -0.492 -0.260 7.519
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Table S6 – Effect of protected areas on deforestation

Table S6: Effect of protected areas on deforestation. We show here the estimated effect of the
presence of a protected area on the probability of deforestation for each study area. We computed the
mean (“Mean”), the standard-deviation (“Sd”), and the bayesian 95% credible interval (“CI 95%”) of
the estimated parameter. Column “P” indicates the percentage of decrease in the deforestation risk
inside protected areas. Column “signif” indicates (with a star) that the estimated effect was negative and
significantly different from zero (zero not included in the credible interval). Out of the 119 study areas,
70 showed a significant negative effect (59% of the countries). These 70 study areas accounted for 88% of
the moist tropical forest in 2010 (“fc2010” in Kha).

Country – study area fc2010 Mean Sd CI 95% P signif
(Kha) %

America
Antigua and B. 4 -0.710 0.232 (-1.180, -0.257) 33 ⋆
Bahamas 115 – – – –
Barbados 4 -0.323 0.172 (-0.667, 0.033) 19
Belize 1,328 -0.653 0.116 (-0.876, -0.425) 40 ⋆
Bolivia 30,485 -0.163 0.065 (-0.296, -0.033) 11 ⋆
Brazil – Acre 13,307 -0.631 0.099 (-0.834, -0.432) 47 ⋆
Brazil – Alagoas 98 -0.192 0.103 (-0.401, 0.008) 6
Brazil – Amapa 11,565 -0.126 0.105 (-0.347, 0.073) 12
Brazil – Amazonas 146,852 -0.806 0.060 (-0.925, -0.692) 55 ⋆
Brazil – Bahia 2,097 -0.213 0.075 (-0.360, -0.072) 5 ⋆
Brazil – Ceara 48 -0.551 0.117 (-0.785, -0.334) 15 ⋆
Brazil – Espirito Santo 417 -0.193 0.083 (-0.360, -0.031) 11 ⋆
Brazil – Goias 481 – – – –
Brazil – Maranhao 3,930 -0.202 0.096 (-0.390, -0.024) 15 ⋆
Brazil – Mato Grosso 33,283 -0.427 0.070 (-0.560, -0.295) 25 ⋆
Brazil – Mato Grosso do Sul 736 – – – –
Brazil – Minas Gerais 1,277 -0.153 0.087 (-0.318, 0.033) 7
Brazil – Para 91,982 -1.180 0.059 (-1.280, -1.050) 64 ⋆
Brazil – Paraiba 41 -0.693 0.113 (-0.936, -0.477) 4 ⋆
Brazil – Parana 2,673 -0.339 0.082 (-0.506, -0.186) 21 ⋆
Brazil – Pernambouco 119 -0.558 0.093 (-0.733, -0.378) 0 ⋆
Brazil – Piaui 74 – – – –
Brazil – Rio de Janeiro 736 -0.220 0.068 (-0.369, -0.093) 14 ⋆
Brazil – Rio Grande do Norte 25 – – – –
Brazil – Rio Grande do Sul 2,214 -0.343 0.133 (-0.588, -0.068) 18 ⋆
Brazil – Rondonia 13,800 -1.630 0.076 (-1.780, -1.480) 73 ⋆
Brazil – Roraima 16,228 -0.841 0.115 (-1.090, -0.633) 53 ⋆
Brazil – Santa Catarina 2,485 -0.303 0.104 (-0.505, -0.096) 19 ⋆
Brazil – Sao Paulo 2,781 -0.184 0.071 (-0.312, -0.040) 12 ⋆
Brazil – Sergipe 61 – – – –
Brazil – Tocantins 1,341 -0.035 0.090 (-0.193, 0.152) 2
Colombia 66,802 -0.449 0.048 (-0.542, -0.357) 34 ⋆
Costa Rica 2,277 – – – –
Cuba 1,297 – – – –
Dominica 70 – – – –
Dominican Rep. 993 -0.331 0.072 (-0.482, -0.195) 17 ⋆
Ecuador 14,903 -0.520 0.092 (-0.696, -0.342) 40 ⋆
El Salvador 109 -0.476 0.107 (-0.698, -0.286) 24 ⋆
French Guiana 8,088 -0.835 0.162 (-1.150, -0.524) 50 ⋆
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Table S6: (continued)

Country – study area fc2010 Mean Sd CI 95% P signif
(Kha) %

Grenada 22 -0.396 0.323 (-1.020, 0.245) 25
Guadeloupe 77 – – – –
Guatemala 2,702 -0.229 0.089 (-0.401, -0.051) 11 ⋆
Guyana 18,489 -0.708 0.234 (-1.190, -0.285) 47 ⋆
Haiti 162 -0.038 0.086 (-0.200, 0.138) 2
Honduras 2,993 -0.364 0.078 (-0.527, -0.215) 24 ⋆
Jamaica 421 -0.003 0.098 (-0.189, 0.202) 0
Martinique 70 -0.075 0.155 (-0.386, 0.209) 6
Mexico 7,390 -0.228 0.068 (-0.355, -0.087) 15 ⋆
Montserrat 3 – – – –
Nicaragua 4,262 – – – –
Panama 4,204 -0.455 0.079 (-0.613, -0.308) 35 ⋆
Paraguay 1,440 – – – –
Peru 71,901 -0.617 0.063 (-0.742, -0.503) 42 ⋆
Puerto Rico 358 – – – –
Saint Kitts and N. 9 – – – –
Saint Lucia 47 – – – –
Saint Martin 1 – – – –
Saint Vincent 28 -0.159 0.219 (-0.591, 0.260) 10
Sint Maarten 0 – – – –
Suriname 13,727 -0.046 0.134 (-0.312, 0.219) 3
Trinidad and Tobago 330 -0.265 0.085 (-0.433, -0.097) 22 ⋆
Venezuela 42,913 -0.120 0.059 (-0.234, -3e-04) 11 ⋆
Virgin Isl. UK 3 – – – –
Virgin Isl. US 8 -0.350 0.325 (-0.969, 0.310) 17

Africa
Angola 6,044 – – – –
Benin 47 – – – –
Burundi 64 -1.170 0.128 (-1.420, -0.918) 60 ⋆
Cameroon 23,546 -0.891 0.109 (-1.120, -0.684) 43 ⋆
CAR 9,325 -0.094 0.113 (-0.327, 0.125) 5
Comoros 87 – – – –
Congo 23,945 -0.402 0.088 (-0.568, -0.233) 31 ⋆
DRC 125,605 -0.160 0.070 (-0.289, -0.015) 15 ⋆
Eq. Guinea 2,642 -0.136 0.136 (-0.385, 0.146) 10
Ethiopia 2,824 -0.082 0.081 (-0.241, 0.075) 5
Gabon 24,101 -0.160 0.131 (-0.407, 0.087) 14
Gambia 42 -0.222 0.149 (-0.491, 0.096) 11
Ghana 4,443 -0.378 0.070 (-0.522, -0.252) 15 ⋆
Guinea 1,213 -0.224 0.078 (-0.385, -0.077) 14 ⋆
Guinea Bissau 323 -0.688 0.140 (-0.999, -0.436) 25 ⋆
Ivory Coast 6,299 – – – –
Kenya 891 -0.186 0.069 (-0.322, -0.058) 14 ⋆
Liberia 8,653 -0.491 0.117 (-0.725, -0.259) 34 ⋆
Madagascar 5,541 -0.285 0.067 (-0.414, -0.150) 20 ⋆
Malawi 70 -0.363 0.182 (-0.783, -0.040) 19 ⋆
Mauritius 47 -0.450 0.103 (-0.650, -0.247) 33 ⋆
Mayotte 17 -1.340 0.156 (-1.640, -1.010) 61 ⋆
Nigeria 7,214 – – – –
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Table S6: (continued)

Country – study area fc2010 Mean Sd CI 95% P signif
(Kha) %

Reunion 142 -0.385 0.116 (-0.635, -0.156) 25 ⋆
Rwanda 195 -1.300 0.120 (-1.540, -1.070) 71 ⋆
Senegal 126 -0.199 0.099 (-0.381, 0.003) 3
Sierra Leone 2,260 -0.247 0.096 (-0.435, -0.064) 14 ⋆
South Sudan 201 -0.135 0.099 (-0.324, 0.041) 4
Tanzania 1,191 -0.239 0.068 (-0.372, -0.109) 13 ⋆
Togo 103 -0.537 0.106 (-0.729, -0.313) 8 ⋆
Uganda 1,087 -1.190 0.074 (-1.330, -1.040) 64 ⋆
Zambia 114 -0.401 0.073 (-0.545, -0.264) 22 ⋆

Asia
Australia – Queensland 1,876 -0.349 0.068 (-0.481, -0.213) 18 ⋆
Bangladesh 816 -0.544 0.131 (-0.790, -0.284) 26 ⋆
Bhutan 1,872 – – – –
Brunei 501 -1.100 0.237 (-1.550, -0.617) 55 ⋆
Cambodia 3,864 -1.460 0.138 (-1.720, -1.170) 54 ⋆
Fiji 958 -0.306 0.130 (-0.546, -0.045) 23 ⋆
India – Andaman and N. 591 – – – –
India – North-East 5,941 -0.585 0.276 (-1.110, -0.064) 37 ⋆
India – West. Ghats 2,704 -0.369 0.102 (-0.575, -0.166) 19 ⋆
Indonesia 126,473 -0.736 0.062 (-0.853, -0.609) 46 ⋆
Laos 9,690 -0.442 0.076 (-0.578, -0.273) 24 ⋆
Malaysia 22,315 -2.080 0.092 (-2.270, -1.900) 82 ⋆
Myanmar 15,380 -0.167 0.081 (-0.321, -0.017) 10 ⋆
New Caledonia 879 – – – –
Papua New Guinea 39,791 – – – –
Philippines 13,684 -0.153 0.078 (-0.309, -0.006) 12 ⋆
Singapore 15 -1.350 0.263 (-1.890, -0.815) 59 ⋆
Solomon Isl. 2,757 – – – –
Sri Lanka 1,735 -0.516 0.062 (-0.653, -0.404) 25 ⋆
Thailand 6,341 -0.159 0.054 (-0.258, -0.052) 12 ⋆
Timor-Leste 89 -0.120 0.072 (-0.261, 0.017) 8
Vanuatu 1,158 -0.505 0.176 (-0.848, -0.153) 39 ⋆
Vietnam 8,628 -0.536 0.073 (-0.685, -0.396) 31 ⋆
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Table S7 – Effect of the distance to road on deforestation
Table S7: Effect of the distance to road on deforestation. We show here the estimated effect of the
distance to the nearest road on the probability of deforestation for each study area. We computed the
mean (“Mean”), the standard-deviation (“Sd”), and the bayesian 95% credible interval (“CI 95%”) of the
estimated parameter. Column “signif” indicates (with a star) that the estimated effect was negative and
significantly different from zero (zero not included in the credible interval). Out of the 119 study areas,
61 showed a significant negative effect (51% of the countries). These 61 study areas accounted for 90% of
the moist tropical forest in 2010 (“fc2010” in Kha).

Country – study area fc2010 Mean Sd CI 95% signif
(Kha)

America
Antigua and B. 4 – – –
Bahamas 115 – – –
Barbados 4 0.000 0.022 (-0.042, 0.043)
Belize 1,328 -0.129 0.069 (-0.270, 0.003)
Bolivia 30,485 -0.306 0.052 (-0.409, -0.199) ⋆
Brazil – Acre 13,307 -0.179 0.154 (-0.462, 0.089)
Brazil – Alagoas 98 -0.214 0.028 (-0.270, -0.158) ⋆
Brazil – Amapa 11,565 -0.218 0.200 (-0.597, 0.121)
Brazil – Amazonas 146,852 -0.898 0.100 (-1.080, -0.706) ⋆
Brazil – Bahia 2,097 -0.032 0.025 (-0.080, 0.019)
Brazil – Ceara 48 – – –
Brazil – Espirito Santo 417 0.002 0.025 (-0.049, 0.049)
Brazil – Goias 481 – – –
Brazil – Maranhao 3,930 – – –
Brazil – Mato Grosso 33,283 -0.136 0.052 (-0.242, -0.040) ⋆
Brazil – Mato Grosso do Sul 736 – – –
Brazil – Minas Gerais 1,277 -0.058 0.030 (-0.117, -5e-04) ⋆
Brazil – Para 91,982 -0.874 0.141 (-1.140, -0.622) ⋆
Brazil – Paraiba 41 – – –
Brazil – Parana 2,673 – – –
Brazil – Pernambouco 119 -0.066 0.028 (-0.121, -0.010) ⋆
Brazil – Piaui 74 -0.019 0.037 (-0.091, 0.053)
Brazil – Rio de Janeiro 736 -0.087 0.036 (-0.154, -0.017) ⋆
Brazil – Rio Grande do Norte 25 – – –
Brazil – Rio Grande do Sul 2,214 -0.002 0.023 (-0.049, 0.044)
Brazil – Rondonia 13,800 -0.403 0.090 (-0.576, -0.236) ⋆
Brazil – Roraima 16,228 -0.165 0.196 (-0.535, 0.335)
Brazil – Santa Catarina 2,485 – – –
Brazil – Sao Paulo 2,781 -0.024 0.041 (-0.099, 0.053)
Brazil – Sergipe 61 – – –
Brazil – Tocantins 1,341 -0.046 0.046 (-0.146, 0.042)
Colombia 66,802 -0.591 0.112 (-0.818, -0.403) ⋆
Costa Rica 2,277 -0.064 0.055 (-0.178, 0.032)
Cuba 1,297 -0.126 0.068 (-0.266, -0.004) ⋆
Dominica 70 – – –
Dominican Rep. 993 -0.130 0.043 (-0.210, -0.046) ⋆
Ecuador 14,903 -0.433 0.094 (-0.613, -0.258) ⋆
El Salvador 109 -0.073 0.029 (-0.131, -0.017) ⋆
French Guiana 8,088 -1.050 0.248 (-1.560, -0.594) ⋆
Grenada 22 -0.266 0.122 (-0.522, -0.037) ⋆
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Table S7: (continued)

Country – study area fc2010 Mean Sd CI 95% signif
(Kha)

Guadeloupe 77 -0.089 0.047 (-0.182, 0.003)
Guatemala 2,702 -0.180 0.080 (-0.327, -0.033) ⋆
Guyana 18,489 -0.890 0.198 (-1.180, -0.448) ⋆
Haiti 162 -0.256 0.031 (-0.319, -0.195) ⋆
Honduras 2,993 – – –
Jamaica 421 -0.136 0.033 (-0.199, -0.065) ⋆
Martinique 70 – – –
Mexico 7,390 -0.056 0.039 (-0.135, 0.021)
Montserrat 3 – – –
Nicaragua 4,262 -0.158 0.059 (-0.275, -0.037) ⋆
Panama 4,204 -0.511 0.070 (-0.655, -0.377) ⋆
Paraguay 1,440 -0.096 0.028 (-0.153, -0.042) ⋆
Peru 71,901 -0.570 0.078 (-0.756, -0.417) ⋆
Puerto Rico 358 – – –
Saint Kitts and N. 9 – – –
Saint Lucia 47 -0.035 0.064 (-0.177, 0.086)
Saint Martin 1 – – –
Saint Vincent 28 -0.303 0.098 (-0.507, -0.116) ⋆
Sint Maarten 0 – – –
Suriname 13,727 -1.210 0.295 (-1.700, -0.743) ⋆
Trinidad and Tobago 330 -0.106 0.040 (-0.185, -0.033) ⋆
Venezuela 42,913 -0.585 0.147 (-0.877, -0.338) ⋆
Virgin Isl. UK 3 – – –
Virgin Isl. US 8 – – –

Africa
Angola 6,044 -0.194 0.037 (-0.267, -0.122) ⋆
Benin 47 – – –
Burundi 64 – – –
Cameroon 23,546 -0.419 0.045 (-0.506, -0.328) ⋆
CAR 9,325 -0.110 0.073 (-0.237, 0.029)
Comoros 87 – – –
Congo 23,945 -0.548 0.091 (-0.747, -0.385) ⋆
DRC 125,605 -0.375 0.029 (-0.429, -0.318) ⋆
Eq. Guinea 2,642 -1.300 0.064 (-1.420, -1.170) ⋆
Ethiopia 2,824 -0.082 0.037 (-0.159, -0.007) ⋆
Gabon 24,101 -0.541 0.087 (-0.705, -0.363) ⋆
Gambia 42 -0.327 0.029 (-0.386, -0.271) ⋆
Ghana 4,443 -0.015 0.025 (-0.066, 0.033)
Guinea 1,213 -0.084 0.031 (-0.144, -0.019) ⋆
Guinea Bissau 323 -0.125 0.073 (-0.264, 0.017)
Ivory Coast 6,299 -0.020 0.035 (-0.088, 0.052)
Kenya 891 -0.158 0.050 (-0.259, -0.059) ⋆
Liberia 8,653 -0.331 0.049 (-0.432, -0.239) ⋆
Madagascar 5,541 – – –
Malawi 70 -0.515 0.064 (-0.645, -0.395) ⋆
Mauritius 47 -0.091 0.025 (-0.141, -0.043) ⋆
Mayotte 17 – – –
Nigeria 7,214 -0.220 0.056 (-0.330, -0.109) ⋆
Reunion 142 – – –
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Table S7: (continued)

Country – study area fc2010 Mean Sd CI 95% signif
(Kha)

Rwanda 195 -0.138 0.056 (-0.253, -0.027) ⋆
Senegal 126 – – –
Sierra Leone 2,260 -0.038 0.028 (-0.093, 0.017)
South Sudan 201 -0.203 0.068 (-0.348, -0.072) ⋆
Tanzania 1,191 -0.184 0.053 (-0.286, -0.078) ⋆
Togo 103 -0.271 0.041 (-0.357, -0.194) ⋆
Uganda 1,087 -0.036 0.047 (-0.129, 0.055)
Zambia 114 -0.125 0.059 (-0.238, -0.013) ⋆

Asia
Australia – Queensland 1,876 0.009 0.057 (-0.110, 0.113)
Bangladesh 816 – – –
Bhutan 1,872 – – –
Brunei 501 -0.087 0.228 (-0.581, 0.315)
Cambodia 3,864 -0.387 0.064 (-0.507, -0.266) ⋆
Fiji 958 -0.124 0.084 (-0.278, 0.062)
India – Andaman and N. 591 -0.242 0.066 (-0.362, -0.121) ⋆
India – North-East 5,941 -0.094 0.045 (-0.177, -0.005) ⋆
India – West. Ghats 2,704 -0.170 0.039 (-0.247, -0.093) ⋆
Indonesia 126,473 -0.433 0.041 (-0.506, -0.350) ⋆
Laos 9,690 -0.162 0.035 (-0.227, -0.093) ⋆
Malaysia 22,315 -0.241 0.067 (-0.372, -0.112) ⋆
Myanmar 15,380 -0.139 0.041 (-0.215, -0.056) ⋆
New Caledonia 879 0.020 0.057 (-0.088, 0.129)
Papua New Guinea 39,791 -0.358 0.073 (-0.494, -0.205) ⋆
Philippines 13,684 -0.093 0.031 (-0.152, -0.029) ⋆
Singapore 15 -0.616 0.060 (-0.740, -0.509) ⋆
Solomon Isl. 2,757 -0.357 0.165 (-0.655, -0.056) ⋆
Sri Lanka 1,735 -0.068 0.042 (-0.140, 0.029)
Thailand 6,341 – – –
Timor-Leste 89 -0.080 0.029 (-0.139, -0.027) ⋆
Vanuatu 1,158 – – –
Vietnam 8,628 -0.173 0.032 (-0.233, -0.110) ⋆
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Tables S8–S9 – Back-transformed parameters

Table S8: Back-transformed parameters for each study area. We back-transformed the parameters
using the mean and standard-deviation of each continuous variable for each study area. Doing so, we
can use Eq. (S1) to compute the change in the probability of deforestation associated to a particular
change in the explanatory variables, in their original units. To use this table of parameters, distances and
elevation must be expressed in kilometers (Km), and slope must be expressed in hecto-degrees (102°).
Note that the intercept is affected by the back-transformation but that the effect associated to protected
areas (“pa”) and the variance of the spatial random effects (“Vrho”) are left unchanged.

study area int pa elev slope ddefor dedge driver droad dtown Vrho
(Km) (102°) (Km) (Km) (Km) (Km) (Km)

America
ATG 2.558 -0.710 -4.124 – -3.965 -19.187 – – – 10.00
BHS 1.277 – -18.839 -8.903 -5.458 -6.158 -0.002 – – 8.20
BRB 2.022 -0.323 -5.203 -4.797 -2.039 -15.536 -0.004 -0.001 – 1.99
BLZ 1.347 -0.653 -0.264 -3.437 -1.034 -1.802 – -0.020 -0.049 6.97
BOL 2.453 -0.163 -0.577 -2.913 -0.969 -3.617 – -0.016 -0.005 5.36
AC 2.555 -0.631 – – -2.458 -2.615 – -0.004 -0.006 4.14
AL 4.064 -0.192 -1.938 -0.925 -4.146 -26.068 -0.048 -0.091 -0.039 3.01
AP 2.649 -0.126 -7.514 -1.937 -1.228 -3.191 – -0.005 -0.005 5.22
AM 2.480 -0.806 -1.630 – -0.648 -1.237 -0.019 -0.012 -0.008 13.70
BA 3.305 -0.213 -1.042 -3.206 -4.447 -7.344 – -0.011 – 4.11
CE 3.748 -0.551 -3.005 – -1.177 -16.728 – – – 8.49
ES 2.116 -0.193 -1.960 – -4.125 -10.097 -0.023 0.001 -0.017 3.20
GO 1.352 – -0.188 – -3.139 -10.466 -0.021 – -0.002 3.43
MA 1.661 -0.202 – -2.437 -4.344 -3.215 – – -0.018 3.82
MT 1.228 -0.427 – – -1.285 -0.620 – -0.006 -0.010 10.20
MS 1.035 – -0.237 -0.251 -1.231 -18.842 – – – 4.07
MG 2.783 -0.153 -1.626 – -5.190 -9.035 -0.012 -0.019 -0.007 3.86
PA 1.880 -1.180 – -0.815 -0.785 -1.552 -0.002 -0.013 -0.005 8.08
PB 5.099 -0.693 – -1.037 -3.727 -10.047 -0.069 – -0.036 4.35
PR 1.190 -0.339 – -3.659 -2.700 -8.130 – – -0.006 2.54
PE 11.370 -0.558 -2.894 -3.017 -5.858 -31.356 -0.012 -0.034 -0.037 6.55
PI 1.874 – – – -3.453 -18.889 -0.003 -0.004 -0.009 4.13
RJ 2.906 -0.220 -0.195 -0.097 -6.354 -19.109 -0.052 -0.036 -0.009 2.40
RN 1.391 – – -3.762 -5.202 -8.302 – – – 5.73
RS 2.515 -0.343 -0.414 -6.759 -3.980 -27.546 -0.001 -0.001 – 1.81
RO 1.483 -1.630 – -3.812 -0.491 -1.739 0.000 -0.022 -0.008 7.27
RR 2.037 -0.841 -2.035 – -1.091 -1.017 -0.002 -0.003 -0.009 8.49
SC 1.911 -0.303 – -7.567 -4.489 -12.339 – – -0.009 2.00
SP 2.651 -0.184 -0.482 -3.604 -3.658 -7.871 -0.003 -0.007 -0.007 3.79
SE 2.554 – – – -7.104 -12.363 -0.050 – – 3.63
TO 0.249 -0.035 – – -2.011 -0.191 -0.009 -0.005 – 4.43
COL 2.332 -0.449 -1.091 -3.682 -1.084 -0.676 – -0.009 -0.021 5.62
CRI 2.042 – -0.089 -3.323 -3.299 -9.859 -0.005 -0.010 -0.020 2.18
CUB 1.060 – -0.912 -1.257 -2.231 -4.373 -0.007 -0.016 -0.006 4.77
DMA 2.163 – -0.967 -2.054 -0.934 -5.433 – – -0.245 3.26
DOM 1.951 -0.331 -0.431 -0.856 -4.952 -10.476 -0.001 -0.028 -0.001 2.85
ECU 2.787 -0.520 -0.106 -3.845 -1.178 -5.817 – -0.021 -0.017 2.53
SLV 2.613 -0.476 -0.618 -2.548 -3.853 -18.919 – -0.049 -0.013 3.38
GUF 4.366 -0.835 -7.708 -3.654 -0.386 -1.232 – -0.023 -0.031 18.80
GRD 4.269 -0.396 -7.059 – -4.878 -17.737 – -0.274 -0.116 14.20
GLP 2.039 – -0.712 -2.517 -1.714 -16.808 -0.020 -0.066 -0.037 2.61
GTM 1.664 -0.229 -0.649 -2.668 -2.798 -0.508 -0.003 -0.019 -0.003 3.15
GUY 3.250 -0.708 -1.990 -4.576 -0.166 -2.296 – -0.018 -0.014 13.70
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Table S8: (continued)

study area int pa elev slope ddefor dedge driver droad dtown Vrho
(Km) (102°) (Km) (Km) (Km) (Km) (Km)

HTI 1.969 -0.038 – -1.129 -7.618 -17.132 -0.049 -0.078 -0.007 2.87
HND 1.182 -0.364 -1.759 -3.511 -0.713 -0.529 -0.006 – – 4.46
JAM 2.408 -0.003 -0.905 -1.675 -5.545 -9.247 -0.008 -0.067 -0.035 2.66
MTQ 2.447 -0.075 -3.560 -0.750 -1.548 -19.757 – – – 2.66
MEX 0.970 -0.228 -0.371 -2.717 -2.857 -4.082 – -0.009 -0.004 3.59
MSR 0.714 – -1.346 – -3.629 -37.135 – – – 4.81
NIC 0.106 – -1.402 -1.605 -0.284 -1.436 – -0.010 – 3.19
PAN 2.151 -0.455 -0.389 -3.102 -2.530 -3.001 – -0.030 – 2.97
PRY 0.774 – -0.761 -3.761 -3.790 -1.111 -0.001 -0.019 – 3.93
PER 4.082 -0.617 -0.940 -3.981 -0.967 -1.322 -0.004 -0.014 -0.027 6.44
PRI 1.697 – -1.600 -0.862 -1.663 -7.575 – – -0.024 4.32
KNA 1.275 – -5.366 -1.959 -0.506 -2.931 – – – 1.62
LCA 2.153 – -2.175 -0.882 -1.738 -10.080 – -0.027 -0.052 2.97
MAF 3.246 – – – -4.740 -19.250 -0.351 – – 8.11
VCT 3.544 -0.159 -3.215 -2.167 -2.031 -7.379 – -0.183 -0.028 3.30
SXM 4.323 – – -8.031 -6.663 -14.834 -0.133 – -0.719 10.00
SUR 2.359 -0.046 -5.104 -3.935 -0.288 -0.736 – -0.020 -0.014 12.50
TTO 2.339 -0.265 -2.302 -2.393 -3.074 -8.572 -0.011 -0.055 -0.040 2.16
VEN 2.877 -0.120 -0.854 -1.092 -0.626 -3.801 -0.010 -0.007 -0.014 6.59
VGB 3.955 – -2.957 -2.658 -7.305 -14.010 – – – 8.04
VIR 1.208 -0.350 – -2.352 -1.401 -7.461 – – – 7.64

Africa
AGO 2.012 – -0.107 -1.890 -3.736 -6.599 -0.002 -0.017 -0.004 4.00
BEN 4.410 – – -13.207 -1.212 -25.389 – – – 8.05
BDI 4.709 -1.170 -1.027 – -7.115 -12.746 -0.025 – -0.031 6.39
CMR 3.117 -0.891 – -3.409 -0.629 -1.679 -0.004 -0.048 -0.040 5.96
CAF 3.070 -0.094 – -1.107 -3.620 -1.343 -0.010 -0.007 -0.028 4.61
COM 2.961 – -0.378 -3.925 – -38.750 – – – 7.22
COG 2.460 -0.402 -0.099 -1.779 -0.304 -1.428 -0.014 -0.024 -0.018 8.71
COD 2.330 -0.160 – – -2.221 -1.882 – -0.024 -0.018 4.52
GNQ 2.770 -0.136 -1.224 -6.923 -0.014 -2.320 -0.010 -0.367 -0.010 8.70
ETH 2.076 -0.082 -0.113 -3.524 -2.713 -5.952 – -0.013 -0.011 3.55
GAB 2.664 -0.160 -2.250 -5.677 -0.232 -1.678 – -0.028 -0.032 14.60
GMB 2.030 -0.222 – -12.123 -6.070 -8.739 – -0.137 -0.044 5.23
GHA 2.048 -0.378 -1.241 -5.014 -0.935 -3.447 – -0.006 -0.017 2.06
GIN 1.598 -0.224 -0.311 -0.211 -5.232 -5.554 – -0.018 – 1.88
GNB 2.772 -0.688 – – -7.007 -11.120 – -0.012 -0.008 3.13
CIV 1.029 – – -4.006 -1.090 -0.655 – -0.003 -0.011 2.61
KEN 2.505 -0.186 -0.638 -0.905 -1.970 -10.784 -0.009 -0.026 -0.009 6.97
LBR 1.575 -0.491 – -4.035 -0.915 -3.457 – -0.041 -0.040 2.06
MDG 1.871 -0.285 -1.176 -2.307 -3.994 -2.523 – – -0.016 3.43
MWI 2.617 -0.363 -0.316 -2.293 -5.284 -3.091 -0.052 -0.111 0.000 18.70
MUS 1.605 -0.450 -0.822 -2.421 -2.128 -19.086 -0.011 -0.102 -0.017 1.37
MYT 2.020 -1.340 – – -3.575 -16.398 -0.033 – -0.041 2.77
NGA 2.329 – – -0.348 -1.601 -1.520 – -0.023 – 5.63
REU 2.148 -0.385 – -1.904 -0.160 -17.669 – – – 2.76
RWA 4.109 -1.300 -0.726 -2.592 -3.378 -14.877 – -0.057 – 3.98
SEN 2.994 -0.199 -3.323 -12.669 -2.812 -8.487 – – -0.033 6.03
SLE 1.001 -0.247 – – -4.649 -5.033 – -0.008 -0.013 1.31
SSD 2.339 -0.135 -1.038 0.194 -1.242 -7.670 – -0.013 – 4.16
TZA 3.338 -0.239 -0.576 -1.054 -2.476 -13.949 -0.011 -0.030 -0.010 5.93
TGO 4.044 -0.537 -0.985 -1.958 -4.937 -18.407 – -0.073 – 4.68
UGA 1.799 -1.190 – – -3.703 -4.299 -0.009 -0.010 -0.035 4.72
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Table S8: (continued)

study area int pa elev slope ddefor dedge driver droad dtown Vrho
(Km) (102°) (Km) (Km) (Km) (Km) (Km)

ZMB 0.808 -0.401 – – -1.383 -13.980 – -0.014 -0.005 9.53
Asia

QLD 1.812 -0.349 – -1.516 -2.393 -3.886 – 0.001 – 5.56
BGD 1.460 -0.544 -0.807 -1.947 -2.055 -10.087 -0.024 – – 4.47
BTN 2.309 – -0.063 -0.815 -6.571 -15.148 -0.017 – -0.008 1.19
BRN 2.902 -1.100 -7.792 -7.695 -1.818 – – -0.013 -0.049 15.10
KHM 3.637 -1.460 -4.035 -3.153 -1.803 -0.665 – -0.041 -0.022 9.40
FJI 2.306 -0.306 -1.188 -3.469 -0.300 -5.792 – -0.015 -0.020 5.21
AN 2.657 – -3.730 -4.336 -0.779 -14.369 – -0.022 – 4.55
NE 2.278 -0.585 -0.314 -2.493 -6.283 -8.612 -0.009 -0.011 -0.006 2.39
WG 2.624 -0.369 -1.037 -0.971 -4.358 -19.244 – -0.077 -0.017 1.93
IDN 1.559 -0.736 -0.654 -7.390 -0.895 -1.632 -0.006 -0.020 -0.012 8.13
LAO 2.855 -0.442 -1.083 -3.908 -4.876 -4.924 – -0.022 -0.030 3.08
MYS 1.689 -2.080 -1.154 -6.327 -0.946 -2.997 – -0.018 – 7.84
MMR 2.377 -0.167 -0.754 -2.199 -4.909 -6.342 -0.021 -0.010 -0.002 3.10
NCL 3.148 – -1.447 -1.018 -0.820 -26.598 – 0.003 -0.009 4.11
PNG 1.798 – -0.704 -5.312 -0.022 -2.988 -0.007 -0.008 -0.007 7.46
PHL 1.654 -0.153 -0.565 -4.569 -3.528 -6.252 – -0.018 -0.040 2.97
SGP 3.028 -1.350 -6.453 -5.018 -6.100 -19.104 – -0.616 – 6.01
SLB 1.497 – -3.765 -6.472 – -0.710 -0.009 -0.005 – 5.86
LKA 2.326 -0.516 -0.286 -4.131 -5.927 -11.489 -0.012 -0.022 -0.052 1.71
THA 2.679 -0.159 -2.035 -0.968 -5.197 -13.353 -0.002 – – 2.07
TLS 2.450 -0.120 -0.401 -1.072 -10.936 -17.230 -0.011 -0.028 -0.029 1.60
VUT 1.565 -0.505 -1.736 -3.475 -0.112 -6.924 – – 0.001 18.10
VNM 2.477 -0.536 -0.645 -4.106 -5.390 -5.369 -0.012 -0.052 -0.012 3.12

Table S9: Back-transformed parameters per region and continent. We back-transformed the
parameters using the mean and standard-deviation of each continuous variable for each study area. We
then used the forest cover in 2010 to compute the back-transformed parameter estimate weighted mean
per region. Doing so, we can use Eq. (S1) to compute the change in the probability of deforestation
associated with a particular change in the explanatory variables, in their original units. To use this
table of parameters, distances and elevation must be expressed in kilometers (Km), and slope must be
expressed in hecto-degrees (102°).

Region int pa elev slope ddefor dedge driver droad dtown Vrho
(Km) (102°) (Km) (Km) (Km) (Km) (Km)

India 2.403 -0.484 -0.744 -2.165 -5.368 -12.093 -0.006 -0.031 -0.009 2.393
Brazil 2.126 -0.837 -1.055 -0.633 -1.049 -1.949 -0.009 -0.011 -0.007 10.093
America 2.470 -0.636 -1.173 -1.849 -1.026 -2.097 -0.006 -0.012 -0.012 8.549
Africa 2.385 -0.259 -0.292 -1.602 -1.758 -2.212 -0.002 -0.028 -0.021 5.819
Asia 1.841 -0.625 -0.848 -5.739 -1.769 -3.629 -0.006 -0.018 -0.011 6.676
All continents 2.308 -0.551 -0.905 -2.683 -1.357 -2.472 -0.005 -0.017 -0.014 7.519
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Tables S10–S11 – Mathematical formulas for accuracy indices

Table S10: Confusion matrix used to compute accuracy indices. A confusion matrix can be
computed to compare model predictions with observations.

Observations Total
0 (non-deforested) 1 (deforested)

Predictions 0 n00 n01 n0+
1 n10 n11 n1+

Total n+0 n+1 n

Table S11: Formulas used to compute accuracy indices. Several accuracy indices can be computed
from the confusion matrix to estimate and compare models’ predictive performance. We followed the
definitions of Pontius et al. (2008) for the FOM and Liu et al. (2011) for the other indices. Note that the
AUC relies on the predicted probabilities for observations 0 (non-deforested) and 1 (deforested), not on
the confusion matrix.

Index Formula
Overall Accuracy OA = (n11 + n00)/n
Figure Of Merit FOM = n11/(n11 + n10 + n01)
Sensitivity Sen = n11/(n11 + n01)
Specificity Spe = n00/(n00 + n10)
True Skill Statistics TSS = Sen + Spe − 1
Area Under ROC Curve AUC = 1/(n+1n+0) ∑n+0

i=1
∑n+1

j=1 ϕ(δi, θj)
where ϕ(δi, θj) equals 1 if θj > δi, 1/2 if θj = δi, and 0 otherwise
δi and θj are the predicted probabilities for Yi = 0 and Yj = 1

Tables S12–S13 – Accuracy indices

Table S12: Accuracy indices’ weighted means for the three statistical models. Accuracy indices
were averaged across study areas using forest cover areas in 2010 as weights. D: percentage of deviance
explained, AUC: Area Under ROC Curve, OA: overall accuracy, FOM: Figure Of Merit, TSS: True
Skill Statistics. Averaged accuracy indices were computed for the three statistical models: “glm”, “icar”,
and “rf” model. While the “rf” model has a higher percentage of deviance explained in average (higher
goodness-of-fit), the “icar” model has higher values of accuracy indices from the cross-validation (higher
predictive power).

Model D AUC OA FOM TSS
glm 39.3 88.2 80.8 68.1 61.8
icar 53.3 91.7 84.7 73.6 69.2
rf 87.1 90.8 83.8 72.3 67.5
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Table S13: Accuracy indices’ weighted means for the three statistical models by continent.
Accuracy indices were averaged across study areas for each continent using forest cover areas in 2010
as weights. D: percentage of deviance explained, AUC: Area Under ROC Curve, OA: overall accuracy,
FOM: Figure Of Merit, TSS: True Skill Statistics. Averaged accuracy indices were computed for the three
statistical models: “glm”, “icar”, and “rf” model.

Continent Model D AUC OA FOM TSS
glm 42.6 89.4 82.1 69.9 64.3
icar 57.0 92.8 86.2 75.8 72.1America

rf 88.6 92.5 85.9 75.4 71.4
glm 40.3 88.6 81.5 69.0 63.1
icar 51.7 91.4 84.3 72.8 68.2Africa

rf 86.3 89.7 82.3 70.4 65.0
glm 30.4 84.8 77.0 62.9 54.5
icar 46.0 89.5 81.6 69.0 63.1Asia

rf 84.4 87.5 79.9 66.7 60.3

47



Tables S14–S15 – Past forest cover change

Table S14: Past forest cover change for each study area. Forest cover areas are given in thousand
hectares (Kha) for the years 2000, 2010 and 2020 (“fc2000”, “fc2010”, and “fc2020”, respectively). The
mean annual deforested area d for the ten-year period 2010–2020 is given in hectare per year (ha/yr).
The corresponding mean annual deforestation rate p is also provided in percent per year (%/yr), with
one decimal precision, to be able to compare the intensity of deforestation between study areas.

Country – study area fc2000 fc2010 fc2020 d p
(Kha) (Kha) (Kha) (ha/yr) (%/yr)

America
Antigua and B. 4 4 3 52 1.6
Bahamas 152 115 98 1,657 1.5
Barbados 4 4 3 64 1.7
Belize 1,421 1,328 1,198 12,996 1.0
Bolivia 32,621 30,485 28,739 174,616 0.6
Brazil – Acre 13,912 13,307 12,860 44,684 0.3
Brazil – Alagoas 112 98 89 901 1.0
Brazil – Amapa 11,730 11,565 11,458 10,677 0.1
Brazil – Amazonas 148,095 146,852 145,346 150,663 0.1
Brazil – Bahia 2,521 2,097 1,936 16,103 0.8
Brazil – Ceara 57 48 40 849 1.9
Brazil – Espirito Santo 487 417 387 2,945 0.7
Brazil – Goias 644 481 358 12,241 2.9
Brazil – Maranhao 5,638 3,930 3,259 67,024 1.9
Brazil – Mato Grosso 40,368 33,283 30,333 294,945 0.9
Brazil – Mato Grosso do Sul 871 736 654 8,193 1.2
Brazil – Minas Gerais 1,824 1,277 954 32,323 2.9
Brazil – Para 100,168 91,982 87,764 421,863 0.5
Brazil – Paraiba 46 41 38 308 0.8
Brazil – Parana 3,202 2,673 2,475 19,780 0.8
Brazil – Pernambouco 138 119 109 936 0.8
Brazil – Piaui 104 74 55 1,967 3.0
Brazil – Rio de Janeiro 820 736 694 4,143 0.6
Brazil – Rio Grande do Norte 31 25 22 312 1.3
Brazil – Rio Grande do Sul 2,533 2,214 2,074 14,004 0.7
Brazil – Rondonia 16,500 13,800 12,436 136,426 1.0
Brazil – Roraima 16,715 16,228 15,593 63,551 0.4
Brazil – Santa Catarina 2,934 2,485 2,355 13,020 0.5
Brazil – Sao Paulo 3,029 2,781 2,653 12,862 0.5
Brazil – Sergipe 74 61 54 656 1.1
Brazil – Tocantins 1,731 1,341 954 38,777 3.4
Colombia 70,049 66,802 64,254 254,796 0.4
Costa Rica 2,412 2,277 2,132 14,520 0.7
Cuba 1,521 1,297 1,155 14,086 1.1
Dominica 71 70 67 254 0.4
Dominican Rep. 1,254 993 871 12,164 1.3
Ecuador 15,460 14,903 14,391 51,193 0.3
El Salvador 129 109 97 1,220 1.2
French Guiana 8,118 8,088 8,064 2,390 0.0
Grenada 26 22 19 264 1.3
Guadeloupe 80 77 73 370 0.5
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Table S14: (continued)

Country – study area fc2000 fc2010 fc2020 d p
(Kha) (Kha) (Kha) (ha/yr) (%/yr)

Guatemala 3,449 2,702 2,275 42,648 1.7
Guyana 18,618 18,489 18,366 12,342 0.1
Haiti 247 162 122 4,001 2.8
Honduras 3,384 2,993 2,569 42,409 1.5
Jamaica 472 421 395 2,572 0.6
Martinique 73 70 66 400 0.6
Mexico 9,098 7,390 6,264 112,620 1.6
Montserrat 3 3 3 7 0.2
Nicaragua 4,926 4,262 3,408 85,457 2.2
Panama 4,423 4,204 4,012 19,202 0.5
Paraguay 2,359 1,440 1,090 34,950 2.7
Peru 73,255 71,901 70,775 112,691 0.2
Puerto Rico 423 358 321 3,688 1.1
Saint Kitts and N. 9 9 9 34 0.4
Saint Lucia 47 47 44 261 0.6
Saint Martin 1 1 0 24 5.4
Saint Vincent 29 28 27 106 0.4
Sint Maarten 0 0 0 10 6.0
Suriname 13,814 13,727 13,624 10,316 0.1
Trinidad and Tobago 349 330 307 2,355 0.7
Venezuela 44,743 42,913 41,430 148,279 0.4
Virgin Isl. UK 4 3 2 96 4.0
Virgin Isl. US 9 8 7 137 1.8

Africa
Angola 7,065 6,044 5,341 70,293 1.2
Benin 77 47 32 1,463 3.7
Burundi 104 64 55 856 1.4
Cameroon 23,887 23,546 22,840 70,641 0.3
CAR 9,808 9,325 8,854 47,114 0.5
Comoros 87 87 83 263 0.3
Congo 24,090 23,945 23,428 51,689 0.2
DRC 131,298 125,605 118,283 732,153 0.6
Eq. Guinea 2,647 2,642 2,612 2,941 0.1
Ethiopia 3,799 2,824 2,214 61,036 2.4
Gabon 24,129 24,101 23,985 11,595 0.0
Gambia 49 42 31 566 1.4
Ghana 4,932 4,443 3,345 109,799 2.8
Guinea 1,895 1,213 837 37,643 3.6
Guinea Bissau 398 323 272 5,078 1.7
Ivory Coast 7,734 6,299 3,954 234,522 4.6
Kenya 1,199 891 768 12,324 1.5
Liberia 8,906 8,653 7,908 74,471 0.9
Madagascar 7,024 5,541 4,574 96,645 1.9
Malawi 113 70 39 3,147 5.8
Mauritius 50 47 43 347 0.8
Mayotte 18 17 12 511 3.5
Nigeria 7,770 7,214 6,197 101,634 1.5
Reunion 142 142 134 722 0.5
Rwanda 284 195 160 3,434 1.9
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Table S14: (continued)

Country – study area fc2000 fc2010 fc2020 d p
(Kha) (Kha) (Kha) (ha/yr) (%/yr)

Senegal 136 126 109 1,736 1.5
Sierra Leone 3,440 2,260 1,414 84,563 4.6
South Sudan 265 201 167 3,493 1.9
Tanzania 1,431 1,191 1,084 10,689 0.9
Togo 160 103 66 3,693 4.3
Uganda 1,879 1,087 758 32,878 3.5
Zambia 177 114 81 3,294 3.4

Asia
Australia – Queensland 2,055 1,876 1,764 11,131 0.6
Bangladesh 963 816 771 4,489 0.6
Bhutan 1,990 1,872 1,802 7,022 0.4
Brunei 511 501 494 668 0.1
Cambodia 4,804 3,864 2,753 111,024 3.3
Fiji 1,005 958 924 3,300 0.4
India – Andaman and N. 612 591 572 1,875 0.3
India – North-East 7,023 5,941 5,560 38,134 0.7
India – West. Ghats 3,144 2,704 2,236 46,740 1.9
Indonesia 139,358 126,473 117,072 939,867 0.8
Laos 11,607 9,690 8,308 138,221 1.5
Malaysia 25,676 22,315 20,147 216,762 1.0
Myanmar 18,279 15,380 13,728 165,195 1.1
New Caledonia 905 879 855 2,425 0.3
Papua New Guinea 40,366 39,791 39,304 48,691 0.1
Philippines 14,756 13,684 12,753 93,052 0.7
Singapore 17 15 14 147 1.0
Solomon Isl. 2,762 2,757 2,739 1,751 0.1
Sri Lanka 2,088 1,735 1,594 14,060 0.8
Thailand 7,188 6,341 5,815 52,603 0.9
Timor-Leste 131 89 78 1,173 1.4
Vanuatu 1,158 1,158 1,152 564 0.0
Vietnam 10,692 8,628 7,599 102,909 1.3
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Table S15: Past forest cover change per region and continent. Areas of forest cover are given in
thousand hectares (Kha) for the years 2000, 2010 and 2020 (“fc2000”, “fc2010”, and “fc2020”, respectively).
The mean annual deforested area d for the ten-year period 2010–2020 is given in hectare per year (ha/yr).
The corresponding mean annual deforestation rate p is also provided in percent per year (%/yr), with one
decimal precision, to be able to compare the intensity of deforestation between study areas. Estimates
for America include Brazil, and estimates for Asia include India. Around 6.4 Mha (64,000 km2, about
half the size of Greece or the size of West Virginia) of natural old-growth moist tropical forest have been
disappearing each year in the period 2010–2020.

Region fc2000 fc2010 fc2020 d p
(Kha) (Kha) (Kha) (ha/yr) (%/yr)

India 10,780 9,236 8,368 86,749 1.0
Brazil 374,282 348,650 334,948 1,370,153 0.4
America 687,339 646,685 621,229 2,545,400 0.4
Africa 274,993 258,401 239,681 1,871,233 0.7
Asia 297,090 268,058 248,035 2,001,803 0.8
All continents 1,259,422 1,173,144 1,108,945 6,418,436 0.6
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Tables S16–17 – Forest cover projections

Table S16: Forest cover projections for each study area. Projected areas of forest cover are given in
thousand hectares (Kha) for four years in the future (2040, 2060, 2080, and 2100). Projections were made
using the forest cover in 2020 and the mean annual deforested area in the ten-year period 2010–2020
(“fc2000” and d respectively in Table S14), assuming a “business-as-usual” scenario of deforestation.
Column “loss21” indicates the projected percentage of forest cover loss during the 21st century (2100
vs. 2000). Column “yrdis” indicates the estimated year at which all the forest of the study area will have
disappeared.

Country – study area fc2040 fc2060 fc2080 fc2100 loss21 yrdis
(Kha) (Kha) (Kha) (Kha) (%)

America
Antigua and B. 2 1 0 0 100 2078
Bahamas 65 32 0 0 100 2079
Barbados 2 1 0 0 100 2072
Belize 938 678 418 158 89 2112
Bolivia 25,246 21,754 18,262 14,769 55 2184
Brazil – Acre 11,967 11,016 9,943 8,781 37 2160
Brazil – Alagoas 71 0 0 0 100 2060
Brazil – Amapa 11,245 10,974 10,581 10,099 14 2173
Brazil – Amazonas 142,332 139,262 136,069 132,788 10 2264
Brazil – Bahia 1,614 1,235 733 143 94 2105
Brazil – Ceara 23 0 0 0 100 2051
Brazil – Espirito Santo 328 212 0 0 100 2079
Brazil – Goias 113 0 0 0 100 2049
Brazil – Maranhao 1,919 521 0 0 100 2068
Brazil – Mato Grosso 24,434 18,478 12,400 6,233 85 2120
Brazil – Mato Grosso do Sul 490 269 0 0 100 2077
Brazil – Minas Gerais 308 0 0 0 100 2050
Brazil – Para 79,326 70,832 62,215 53,510 47 2189
Brazil – Paraiba 32 0 0 0 100 2054
Brazil – Parana 2,080 1,627 1,052 388 88 2110
Brazil – Pernambouco 91 15 0 0 100 2063
Brazil – Piaui 15 0 0 0 100 2047
Brazil – Rio de Janeiro 612 472 209 0 100 2093
Brazil – Rio Grande do Norte 15 0 0 0 100 2051
Brazil – Rio Grande do Sul 1,794 1,457 997 449 82 2112
Brazil – Rondonia 9,707 6,922 4,014 1,017 94 2107
Brazil – Roraima 14,322 12,993 11,543 10,004 40 2161
Brazil – Santa Catarina 2,094 1,777 1,337 808 72 2119
Brazil – Sao Paulo 2,395 2,081 1,645 1,119 63 2122
Brazil – Sergipe 41 0 0 0 100 2055
Brazil – Tocantins 178 0 0 0 100 2045
Colombia 59,158 54,062 48,966 43,871 37 2272
Costa Rica 1,841 1,551 1,260 970 60 2166
Cuba 873 592 310 28 98 2101
Dominica 62 57 52 47 33 2285
Dominican Rep. 628 385 141 0 100 2091
Ecuador 13,367 12,343 11,319 10,295 33 2301
El Salvador 72 48 23 0 100 2099
French Guiana 8,017 7,969 7,921 7,873 3 5394
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Table S16: (continued)

Country – study area fc2040 fc2060 fc2080 fc2100 loss21 yrdis
(Kha) (Kha) (Kha) (Kha) (%)

Grenada 14 9 3 0 100 2092
Guadeloupe 66 59 51 44 45 2218
Guatemala 1,422 570 0 0 100 2073
Guyana 18,119 17,872 17,625 17,378 7 3508
Haiti 42 0 0 0 100 2050
Honduras 1,720 872 24 0 100 2080
Jamaica 344 293 241 190 60 2173
Martinique 58 50 42 34 53 2185
Mexico 4,012 1,759 0 0 100 2075
Montserrat 3 3 3 3 20 2490
Nicaragua 1,699 0 0 0 100 2059
Panama 3,628 3,244 2,860 2,476 44 2228
Paraguay 391 0 0 0 100 2051
Peru 68,521 66,267 64,013 61,759 16 2648
Puerto Rico 247 174 100 26 94 2107
Saint Kitts and N. 8 7 7 6 36 2273
Saint Lucia 39 34 28 23 51 2188
Saint Martin 0 0 0 0 100 2033
Saint Vincent 25 23 21 19 34 2278
Sint Maarten 0 0 0 0 100 2031
Suriname 13,418 13,211 13,005 12,799 7 3340
Trinidad and Tobago 259 212 165 118 66 2150
Venezuela 38,464 35,499 32,533 29,568 34 2299
Virgin Isl. UK 0 0 0 0 100 2039
Virgin Isl. US 4 1 0 0 100 2068

Africa
Angola 3,935 2,529 1,124 0 100 2095
Benin 3 0 0 0 100 2041
Burundi 38 21 4 0 100 2084
Cameroon 21,427 20,014 18,601 17,188 28 2343
CAR 7,911 6,969 6,027 5,085 48 2207
Comoros 77 72 67 62 29 2333
Congo 22,394 21,361 20,327 19,293 20 2473
DRC 103,640 88,997 74,354 59,711 55 2181
Eq. Guinea 2,553 2,495 2,436 2,377 10 2908
Ethiopia 993 0 0 0 100 2056
Gabon 23,753 23,522 23,290 23,058 4 4088
Gambia 20 8 0 0 100 2074
Ghana 1,149 0 0 0 100 2050
Guinea 84 0 0 0 100 2042
Guinea Bissau 171 69 0 0 100 2073
Ivory Coast 0 0 0 0 100 2036
Kenya 521 275 28 0 100 2082
Liberia 6,419 4,930 3,440 1,951 78 2126
Madagascar 2,641 708 0 0 100 2067
Malawi 0 0 0 0 100 2032
Mauritius 37 30 23 16 68 2145
Mayotte 2 0 0 0 100 2043
Nigeria 4,165 2,132 99 0 100 2080
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Table S16: (continued)

Country – study area fc2040 fc2060 fc2080 fc2100 loss21 yrdis
(Kha) (Kha) (Kha) (Kha) (%)

Reunion 120 106 91 77 46 2206
Rwanda 91 23 0 0 100 2066
Senegal 74 40 5 0 100 2082
Sierra Leone 0 0 0 0 100 2036
South Sudan 97 27 0 0 100 2067
Tanzania 870 657 443 229 84 2121
Togo 0 0 0 0 100 2037
Uganda 100 0 0 0 100 2043
Zambia 15 0 0 0 100 2044

Asia
Australia – Queensland 1,542 1,319 1,097 874 57 2178
Bangladesh 681 591 502 412 57 2191
Bhutan 1,661 1,521 1,380 1,240 38 2276
Brunei 481 468 454 441 14 2759
Cambodia 533 0 0 0 100 2044
Fiji 858 792 726 660 34 2300
India – Andaman and N. 534 497 459 422 31 2324
India – North-East 4,797 4,034 3,272 2,509 64 2165
India – West. Ghats 1,302 367 0 0 100 2067
Indonesia 98,275 79,478 60,680 41,883 70 2144
Laos 5,543 2,779 14 0 100 2080
Malaysia 15,812 11,477 7,141 2,806 89 2112
Myanmar 10,424 7,120 3,816 512 97 2103
New Caledonia 806 758 709 661 27 2372
Papua New Guinea 38,330 37,356 36,383 35,409 12 2827
Philippines 10,892 9,031 7,170 5,309 64 2157
Singapore 11 8 5 2 88 2113
Solomon Isl. 2,704 2,669 2,634 2,599 6 3584
Sri Lanka 1,313 1,032 751 470 78 2133
Thailand 4,763 3,711 2,659 1,607 78 2130
Timor-Leste 54 31 7 0 100 2086
Vanuatu 1,141 1,130 1,118 1,107 4 4062
Vietnam 5,541 3,483 1,424 0 100 2093
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Table S17: Forest cover projections per region and continent. Projected areas of forest cover are
given in thousand hectares (Kha) for four dates in the future (2040, 2060, 2080, and 2100). Projections
were made using the forest cover in 2020 and the mean annual deforested area in the ten-year period 2010–
2020 (“fc2000” and d respectively in Table S15), assuming a “business-as-usual” scenario of deforestation.
Column “loss21” indicates the projected percentage of forest cover loss during the 21st century (2100
vs. 2000). At the continental level, it makes less sense to compute the year at which all the forest will
have disappeared, as some countries might conserve forest for a very long time, even though they account
for a very small proportion of the total forest area at the continental scale. Instead, we computed the
estimated year at which 75% of the forest cover in 2000 will have disappeared (“yr75dis”).

Region fc2040 fc2060 fc2080 fc2100 loss21 yr75dis
(Kha) (Kha) (Kha) (Kha) (%)

India 6,633 4,898 3,731 2,931 73 2085
Brazil 307,545 280,142 252,739 225,336 40 2204
America 570,321 519,772 472,135 427,790 38 2220
Africa 203,302 174,982 150,357 129,045 53 2163
Asia 207,999 169,650 132,403 98,922 67 2117
All continents 981,622 864,404 754,895 655,757 48 2192
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Table S18 – Cumulative carbon emissions associated with deforestation
Table S18: Cumulative carbon emissions associated with future deforestation. We computed
the cumulative carbon emissions associated with future deforestation from 2020 for each study area (C in
Gg, 109 g). To do so, we used our maps of projected forest cover change together with available global or
pantropical maps of aboveground biomass (either the WUR, WHRC or CCI map). We present here the
results obtained with the ESA CCI aboveground biomass map by Santoro et al. (2021).

Country – study area C2040 C2060 C2080 C2100
(Gg) (Gg) (Gg) (Gg)

America
Antigua and B. 11 30 48 48
Bahamas 493 930 1,327 1,327
Barbados 28 63 92 92
Belize 13,917 28,352 43,462 59,897
Bolivia 348,852 727,365 1,135,780 1,571,465
Brazil – Acre 130,941 287,166 481,319 700,694
Brazil – Alagoas 585 3,498 3,498 3,498
Brazil – Amapa 20,717 50,081 98,636 163,592
Brazil – Amazonas 421,635 828,613 1,250,705 1,687,342
Brazil – Bahia 16,232 40,364 76,668 124,938
Brazil – Ceara 405 996 996 996
Brazil – Espirito Santo 3,761 11,565 28,282 28,282
Brazil – Goias 13,396 19,393 19,393 19,393
Brazil – Maranhao 95,874 219,895 302,967 302,967
Brazil – Mato Grosso 580,235 1,219,046 1,918,403 2,713,595
Brazil – Mato Grosso do Sul 8,599 20,026 35,051 35,051
Brazil – Minas Gerais 58,150 92,244 92,244 92,244
Brazil – Para 1,071,058 2,187,322 3,387,051 4,636,768
Brazil – Paraiba 197 1,272 1,272 1,272
Brazil – Parana 27,483 58,610 100,392 151,484
Brazil – Pernambouco 604 3,334 3,970 3,970
Brazil – Piaui 1,162 1,631 1,631 1,631
Brazil – Rio de Janeiro 6,987 19,748 47,673 73,653
Brazil – Rio Grande do Norte 138 494 494 494
Brazil – Rio Grande do Sul 13,313 29,906 54,549 86,708
Brazil – Rondonia 366,527 749,292 1,182,271 1,648,580
Brazil – Roraima 157,889 323,817 498,378 682,608
Brazil – Santa Catarina 17,094 37,932 67,251 103,633
Brazil – Sao Paulo 20,225 47,756 89,045 142,571
Brazil – Sergipe 377 1,703 1,703 1,703
Brazil – Tocantins 49,936 63,510 63,510 63,510
Colombia 434,390 888,778 1,357,504 1,888,621
Costa Rica 12,782 31,103 52,548 76,496
Cuba 6,249 14,199 23,038 32,821
Dominica 142 313 492 675
Dominican Rep. 13,142 28,693 46,157 56,949
Ecuador 60,190 141,016 235,274 339,528
El Salvador 1,017 1,984 2,885 3,631
French Guiana 6,529 12,515 18,709 24,714
Grenada 193 377 572 706
Guadeloupe 199 375 576 818
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Table S18: (continued)

Country – study area C2040 C2060 C2080 C2100
(Gg) (Gg) (Gg) (Gg)

Guatemala 49,603 100,908 135,598 135,598
Guyana 30,975 59,519 89,605 120,609
Haiti 2,635 4,024 4,024 4,024
Honduras 62,847 122,192 186,338 188,247
Jamaica 2,255 4,490 6,631 8,716
Martinique 159 327 512 716
Mexico 96,494 196,664 283,494 283,494
Montserrat 3 7 11 15
Nicaragua 102,340 231,755 231,755 231,755
Panama 28,372 56,353 84,951 115,047
Paraguay 37,533 58,591 58,591 58,591
Peru 314,567 627,961 946,086 1,272,433
Puerto Rico 3,810 8,119 12,835 17,905
Saint Kitts and N. 14 33 55 78
Saint Lucia 124 260 410 568
Saint Martin 6 6 6 6
Saint Vincent 41 79 120 162
Sint Maarten 3 3 3 3
Suriname 29,981 57,109 84,601 113,033
Trinidad and Tobago 2,696 6,165 10,200 14,505
Venezuela 229,052 513,123 837,485 1,180,325
Virgin Isl. UK 72 72 72 72
Virgin Isl. US 109 225 269 269

Africa
Angola 112,054 235,388 365,560 493,217
Benin 424 517 517 517
Burundi 933 2,216 3,316 3,878
Cameroon 132,303 290,031 458,714 637,848
CAR 99,960 200,920 306,863 420,044
Comoros 168 338 514 693
Congo 105,366 222,716 351,680 488,487
DRC 1,539,813 3,305,004 5,296,020 7,444,442
Eq. Guinea 6,766 13,989 21,596 29,644
Ethiopia 111,380 214,296 214,296 214,296
Gabon 25,833 53,060 81,886 111,061
Gambia 231 435 591 591
Ghana 130,416 252,021 252,021 252,021
Guinea 47,702 56,084 56,084 56,084
Guinea Bissau 3,774 7,390 10,214 10,214
Ivory Coast 319,052 319,052 319,052 319,052
Kenya 11,128 23,251 36,556 38,106
Liberia 99,738 241,138 425,959 641,118
Madagascar 128,144 272,655 330,993 330,993
Malawi 2,253 2,253 2,253 2,253
Mauritius 130 294 500 738
Mayotte 558 656 656 656
Nigeria 118,606 265,210 417,524 427,625
Reunion 386 806 1,256 1,740
Rwanda 3,599 11,537 11,537 11,537
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Table S18: (continued)

Country – study area C2040 C2060 C2080 C2100
(Gg) (Gg) (Gg) (Gg)

Senegal 511 1,034 1,488 1,499
Sierra Leone 79,457 79,457 79,457 79,457
South Sudan 3,999 6,595 6,595 6,595
Tanzania 10,535 22,736 36,436 51,049
Togo 4,584 4,584 4,584 4,584
Uganda 38,594 45,772 45,772 45,772
Zambia 5,202 6,203 6,203 6,203

Asia
Australia – Queensland 12,555 23,142 34,972 49,748
Bangladesh 2,585 4,666 6,622 8,494
Bhutan 6,777 13,306 19,858 26,433
Brunei 787 1,684 2,584 3,527
Cambodia 136,413 170,714 170,714 170,714
Fiji 1,593 3,647 5,822 8,235
India – Andaman and N. 1,051 2,284 3,610 4,982
India – North-East 20,049 45,075 71,686 98,948
India – West. Ghats 15,581 38,396 48,217 48,217
Indonesia 1,215,891 2,796,927 4,738,167 6,910,733
Laos 127,455 252,199 389,729 389,729
Malaysia 283,988 660,935 1,077,382 1,516,728
Myanmar 116,201 236,921 361,399 491,056
New Caledonia 1,308 2,780 4,348 6,005
Papua New Guinea 96,558 185,984 280,257 380,681
Philippines 93,000 196,682 301,730 414,931
Singapore 95 214 346 485
Solomon Isl. 1,687 4,017 6,523 9,071
Sri Lanka 4,795 10,940 17,564 24,842
Thailand 34,602 75,562 119,061 164,791
Timor-Leste 1,974 3,806 5,612 6,123
Vanuatu 425 956 1,475 1,962
Vietnam 81,330 159,950 247,926 328,684
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Table S19 – Confidence interval of the annual deforested area
Table S19: Confidence interval of the annual deforested area. We computed the 95% confidence
interval of the annual deforested area d (in ha/yr) for each study area. We used the deforestation
observations dt for the ten years t from 2010 to 2020. The lower and upper bounds of the confidence
interval were denoted d′ and d′′, respectively. Forest cover areas (in Kha) for the years 2010 and 2020
(“fc2010” and “fc2020”) are also provided for comparison.

Country – study area fc2010 fc2020 d d′ d′′

(Kha) (Kha) (ha/yr) (ha/yr) (ha/yr)

America
Antigua and B. 4 3 52 22 83
Bahamas 115 98 1,657 813 2,502
Barbados 4 3 64 18 110
Belize 1,328 1,198 12,996 7,657 18,334
Bolivia 30,485 28,739 174,616 96,497 252,735
Brazil – Acre 13,307 12,860 44,684 38,303 51,065
Brazil – Alagoas 98 89 901 477 1,325
Brazil – Amapa 11,565 11,458 10,677 7,654 13,699
Brazil – Amazonas 146,852 145,346 150,663 104,470 196,856
Brazil – Bahia 2,097 1,936 16,103 9,030 23,176
Brazil – Ceara 48 40 849 454 1,243
Brazil – Espirito Santo 417 387 2,945 1,202 4,689
Brazil – Goias 481 358 12,241 8,147 16,335
Brazil – Maranhao 3,930 3,259 67,024 37,602 96,446
Brazil – Mato Grosso 33,283 30,333 294,945 236,938 352,951
Brazil – Mato Grosso do Sul 736 654 8,193 6,016 10,370
Brazil – Minas Gerais 1,277 954 32,323 16,580 48,067
Brazil – Para 91,982 87,764 421,863 346,357 497,370
Brazil – Paraiba 41 38 308 122 494
Brazil – Parana 2,673 2,475 19,780 12,721 26,839
Brazil – Pernambouco 119 109 936 432 1,439
Brazil – Piaui 74 55 1,967 846 3,087
Brazil – Rio de Janeiro 736 694 4,143 1,141 7,146
Brazil – Rio Grande do Norte 25 22 312 195 428
Brazil – Rio Grande do Sul 2,214 2,074 14,004 9,402 18,607
Brazil – Rondonia 13,800 12,436 136,426 114,420 158,431
Brazil – Roraima 16,228 15,593 63,551 20,622 106,479
Brazil – Santa Catarina 2,485 2,355 13,020 9,833 16,208
Brazil – Sao Paulo 2,781 2,653 12,862 6,930 18,794
Brazil – Sergipe 61 54 656 226 1,086
Brazil – Tocantins 1,341 954 38,777 22,144 55,410
Colombia 66,802 64,254 254,796 212,523 297,069
Costa Rica 2,277 2,132 14,520 9,291 19,748
Cuba 1,297 1,155 14,086 7,725 20,446
Dominica 70 67 254 126 383
Dominican Rep. 993 871 12,164 6,964 17,364
Ecuador 14,903 14,391 51,193 31,232 71,154
El Salvador 109 97 1,220 796 1,645
French Guiana 8,088 8,064 2,390 1,922 2,857
Grenada 22 19 264 57 470
Guadeloupe 77 73 370 237 502
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Table S19: (continued)

Country – study area fc2010 fc2020 d d′ d′′

(Kha) (Kha) (ha/yr) (ha/yr) (ha/yr)
Guatemala 2,702 2,275 42,648 33,295 52,000
Guyana 18,489 18,366 12,342 8,474 16,210
Haiti 162 122 4,001 2,655 5,346
Honduras 2,993 2,569 42,409 31,042 53,775
Jamaica 421 395 2,572 1,403 3,741
Martinique 70 66 400 229 571
Mexico 7,390 6,264 112,620 85,558 139,682
Montserrat 3 3 7 3 11
Nicaragua 4,262 3,408 85,457 47,013 123,901
Panama 4,204 4,012 19,202 13,907 24,496
Paraguay 1,440 1,090 34,950 19,137 50,764
Peru 71,901 70,775 112,691 95,602 129,780
Puerto Rico 358 321 3,688 1,566 5,809
Saint Kitts and N. 9 9 34 12 56
Saint Lucia 47 44 261 124 398
Saint Martin 1 0 24 4 44
Saint Vincent 28 27 106 54 159
Sint Maarten 0 0 10 2 18
Suriname 13,727 13,624 10,316 8,044 12,589
Trinidad and Tobago 330 307 2,355 382 4,328
Venezuela 42,913 41,430 148,279 99,388 197,169
Virgin Isl. UK 3 2 96 28 164
Virgin Isl. US 8 7 137 32 242

Africa
Angola 6,044 5,341 70,293 43,994 96,591
Benin 47 32 1,463 836 2,090
Burundi 64 55 856 251 1,461
Cameroon 23,546 22,840 70,641 57,279 84,002
CAR 9,325 8,854 47,114 33,224 61,005
Comoros 87 83 263 136 390
Congo 23,945 23,428 51,689 37,980 65,399
DRC 125,605 118,283 732,153 562,240 902,066
Eq. Guinea 2,642 2,612 2,941 2,173 3,710
Ethiopia 2,824 2,214 61,036 32,558 89,514
Gabon 24,101 23,985 11,595 7,866 15,324
Gambia 42 31 566 98 1,035
Ghana 4,443 3,345 109,799 62,116 157,481
Guinea 1,213 837 37,643 28,448 46,838
Guinea Bissau 323 272 5,078 3,768 6,387
Ivory Coast 6,299 3,954 234,522 153,578 315,466
Kenya 891 768 12,324 5,084 19,564
Liberia 8,653 7,908 74,471 55,838 93,105
Madagascar 5,541 4,574 96,645 66,586 126,704
Malawi 70 39 3,147 1,891 4,404
Mauritius 47 43 347 18 675
Mayotte 17 12 511 148 874
Nigeria 7,214 6,197 101,634 66,695 136,573
Reunion 142 134 722 480 964
Rwanda 195 160 3,434 1,296 5,572
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Table S19: (continued)

Country – study area fc2010 fc2020 d d′ d′′

(Kha) (Kha) (ha/yr) (ha/yr) (ha/yr)
Senegal 126 109 1,736 41 3,431
Sierra Leone 2,260 1,414 84,563 59,064 110,062
South Sudan 201 167 3,493 2,248 4,738
Tanzania 1,191 1,084 10,689 6,573 14,804
Togo 103 66 3,693 1,930 5,456
Uganda 1,087 758 32,878 19,529 46,226
Zambia 114 81 3,294 1,931 4,658

Asia
Australia – Queensland 1,876 1,764 11,131 6,349 15,912
Bangladesh 816 771 4,489 2,907 6,071
Bhutan 1,872 1,802 7,022 4,133 9,912
Brunei 501 494 668 499 838
Cambodia 3,864 2,753 111,024 79,030 143,017
Fiji 958 924 3,300 1,767 4,832
India – Andaman and N. 591 572 1,875 388 3,363
India – North-East 5,941 5,560 38,134 24,962 51,305
India – West. Ghats 2,704 2,236 46,740 28,945 64,536
Indonesia 126,473 117,072 939,867 646,351 1,233,384
Laos 9,690 8,308 138,221 108,579 167,863
Malaysia 22,315 20,147 216,762 161,714 271,809
Myanmar 15,380 13,728 165,195 108,006 222,384
New Caledonia 879 855 2,425 1,490 3,359
Papua New Guinea 39,791 39,304 48,691 29,465 67,917
Philippines 13,684 12,753 93,052 49,915 136,189
Singapore 15 14 147 90 204
Solomon Isl. 2,757 2,739 1,751 1,065 2,437
Sri Lanka 1,735 1,594 14,060 8,139 19,981
Thailand 6,341 5,815 52,603 33,106 72,100
Timor-Leste 89 78 1,173 422 1,925
Vanuatu 1,158 1,152 564 256 873
Vietnam 8,628 7,599 102,909 73,716 132,102
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4 Legends for Supplementary Data
Supplementary Data are available at https://forestatrisk.cirad.fr/data-s.html.

Data S1 – Uncertainty around projected forest cover

Data S1: Uncertainty around projected forest cover. Past and projected forest cover
change by study area are given in thousand hectares (Kha). The mean annual deforested area
d for the ten-year period 2010–2020 is given in hectare per year (ha/yr). The corresponding
mean annual deforestation rate p is also provided in percent per year (%/yr), with one decimal
precision, to be able to compare the intensity of deforestation between study areas. Projections
were made using the forest cover in 2020 (“fc2000”) and either (i) the mean annual deforested
area d for the ten-year period 2010–2020, (ii) the lower bound d′ of the confidence interval for
the annual deforested area, or (iii) the upper bound d′′ of the confidence interval for the annual
deforested area. We considered a business-as-usual scenario of deforestation (deforestation
constant through time) for the projections. Column “loss21” indicates the projected percentage
of forest cover loss during the 21st century (2100 vs. 2000). Column “yrdis” indicates the
estimated year at which all the forest of the study area will have disappeared.

Data S2 – Uncertainty around projected carbon emissions

Data S2: Uncertainty around projected carbon emissions. We combined our maps of
projected forest cover change together with the aboveground biomass map by Avitabile et al.
(2016) to compute the cumulative carbon emissions associated with future deforestation from
2020 for each study area (C in Gg=109 g). Maps of projected forest cover change were derived
using either (i) the mean annual deforested area d for the ten-year period 2010–2020, (ii) the
lower bound d′ of the confidence interval for the annual deforested area, or (iii) the upper bound
d′′ of the confidence interval for the annual deforested area. Column “C2020” indicates the
carbon emissions associated with past deforestation during the period 2010–2020 for comparison.
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