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Cryo-EM (cryogenic electron microscopy) particle identification
from micrographs (i.e., picking) is challenging due to the
low signal-to-noise ratio and lack of ground truth for
particle locations. Moreover, current computational methods
(“pickers”) identify different particle sets, complicating the
selection of the best-suited picker for a protein of interest. Here,
we present REPIC, an ensemble learning methodology that uses
multiple pickers to find consensus particles. REPIC identifies
consensus particles by framing its task as a graph problem and
using integer linear programming to select particles. REPIC
picks high-quality particles when the best picker is not known a
priori and for known difficult-to-pick particles (e.g., TRPV1).
Reconstructions using consensus particles achieve resolutions
comparable to those from particles picked by experts, without
the need for downstream particle filtering. Overall, our results
show REPIC requires minimal (often no) manual picking and
significantly reduces the burden on cryo-EM users for picker
selection and particle picking.
Availability: https://github.com/ccameron/REPIC
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Cryogenic electron microscopy (cryo-EM) (1) is a modern
biophysical technique for protein structure determination.
Protein complexes in solution are frozen and then imaged
with electrons to produce various 2D projections (i.e.,
particles) within a digital electron micrograph. Individual
particles in a micrograph are selected (i.e., picked), and then
computationally registered to produce 3D reconstructions
of the imaged protein complex. Protein crystallization
is not required before cryo-EM imaging, and complexes
can theoretically be as small as 17 kDa (2). However,
micrographs have a low signal-to-noise ratio (SNR) due
to limited electron beam exposure before proteins are
damaged (3). To overcome low SNR, cryo-EM studies
require hundreds to thousands of micrographs (4) from which
as many as millions of particle images are selected. These
datasets range in size from hundreds of gigabytes to several
terabytes (5), with modern microscopes generating 10-20
terabytes a day (6).
Identifying particle images in a micrograph (i.e., particle
picking) is a major bottleneck for cryo-EM image
processing because of low SNR, sample contamination
(e.g., ice crystals), and image artifacts in micrographs.

Manually picking particles is impractical given the large
number of micrographs. Computational methods, called
particle pickers, including reference/template-matching (7–
17) or machine learning algorithms (typically convolutional
artificial neural network [CNN] based) (18–35), have been
developed to automate particle picking. Currently available
pickers typically come pre-trained on a large dataset
(including both real and simulated data, which we refer to
as “out-of-the-box”) or have the option to be initialized and
retrained on a new set of micrographs (ab initio). Due to
a lack of ground truth for cryo-EM particle locations (36),
picker training is traditionally based on manually picked
particles.
Current pickers have substantial error rates, requiring
typically 50% (and often 80%) of their picked particles to
be removed downstream by manual selection of particle
clusters. Furthermore, these clusters are obtained through 2D
or 3D classification and are not reproducible across cryo-EM
pipelines (EMAN2 (10), CryoSPARC (16), RELION (37),
etc.). In addition, each picker picks a different particle set
due to its individual particle-background decision boundary.
Differences in decision boundaries arise from each picker’s
algorithm and training data. Since no single picker works
best for all proteins and datasets, researchers rely on
downstream processing to evaluate the quality of picking.
This approach has real-world, practical limitations: First,
choosing which 2D or 3D classes to keep or exclude is
a subjective decision that requires sophisticated judgment.
Second, a significant amount of manual picking is essential
to train pickers, and this process also involves making
subjective choices. Overcoming these limitations requires
significant experience with cryo-EM image processing,
which may not be available to all users. Therefore, more
reliable automatic picking is of great interest in removing
user bias and accelerating cryo-EM image processing.
One solution to this problem is to employ multiple pickers
and use an algorithm to reconcile the different picker outputs
without 3D reconstruction or manual interaction. One such
approach has previously been reported by Sanchez-Garci
et al. (2018) (24) called DeepConsensus (DC). DC
iteratively combines picker output to produce intersection
and symmetric difference particle sets. A separate CNN
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is then trained to pick particles using both particle sets
as training data. While promising, the iterative creation
of the intersection set results in a greedy algorithm and
prevents global optimization. Further, intersection sets
contain many false positives as particle bounding boxes
densely overlap. Finally, training a separate CNN has the
potential to introduce false positives and false negatives when
the picker fits poorly to training data.
Here, we report an ensemble learning approach to the
above problem, called REliable PIcking by Consensus
(REPIC), that reconciles the output of multiple pickers into
a consensus set of high quality particles. Ensemble learning
is a machine learning technique that combines multiple
algorithms to improve performance (38). As shown in
Results, REPIC consensus particles produce high-quality
reconstructions without 2D or 3D classification. REPIC can
be used iteratively to ab-initio train pickers and produce
high-resolution reconstructions for difficult-to-pick particles,
requiring very few (1-3 particles per micrograph) or often no
manual picking. Finally, REPIC allows for transfer learning
between cryo-EM datasets, meaning that if manual picking
is not possible for a target dataset, pickers can be trained
using a closely related dataset. With REPIC, high-quality
particles can be reliably picked, resulting in high-resolution
reconstructions that are on par or superior to published
results, without the need for additional particle filtering.

Results
REPIC algorithm
REPIC finds consensus particles from k picked particle sets
in three steps (Figure 1A) by:

1. Graph building — representing particle bounding boxes
as vertices in a computational graph. There is an edge
between two vertices if the corresponding bounding boxes
have a significant overlap as measured by the Jaccard
Index. Edges only exist between bounding boxes of
different pickers

2. Clique finding — identifying k-tuples of bounding boxes
that have significant overlap with each other by finding
cliques of size k in the graph

3. Clique optimization — selecting the subset of cliques
with the maximum bounding box overlap and picker
confidence subject to the constraint that each vertex
participates in only one clique. Selected cliques represent
consensus particles. Optimally selecting cliques is a
combinatorial optimization problem; bounding boxes
often overlap in a dense way so that a globally optimal
grouping is not obvious (see Figure 1B left). REPIC uses
integer linear programming (ILP) to obtain a non-greedy
solution for clique selection (see Online Methods for more
information)

REPIC makes minimal assumptions: It assumes that there
are k pickers, and that all pickers provide a bounding box
and score for each picked particle. The score takes values
in [0,1] and reflects a picker’s confidence in the particle.
REPIC results reported below use three (k = 3) CNN-based

pickers: SPHIRE-crYOLO (29), DeepPicker (19), and
Topaz (26). SPHIRE-crYOLO and Topaz are modern (and
widely accepted) pickers, while DeepPicker is an older
picker. However, REPIC is not limited to CNN-based pickers
and can be used with k-many pickers.
REPIC was tested using two modes:

1. one shot — REPIC takes the output of (possibly trained)
pickers and finds high-quality consensus particles without
3D reconstruction using the three steps above. This mode
relies on individual pickers being well trained on large
datasets (Figures 1B and 2)

2. iterative — Taking inspiration from the work of
McSweeney et al. (2020) (39): pickers are ab-initio

trained using either one-shot REPIC output or manually
picked particles. Pickers are run and one-shot REPIC is
used to find consensus particles to retrain pickers. This
pick-REPIC-retrain loop (Figure 3A) is then executed for
a user-defined number of iterations (see Pseudocode 1)

For cases where out-of-the-box pickers may fail, we show
that REPIC’s iterative mode improves picker performance
using one of the following three initializations:

I. out-of-the-box picker output (Figure 3)
II. manually picked particles (Figure 4)

III. ab-initio transfer learning (Figure 5)

REPIC evaluation
In place of ground truth, REPIC was evaluated using four
published particle sets obtained from the EMPIAR resource
(https://www.ebi.ac.uk/empiar/): TRPV1
(EMPIAR-10005), —-galactosidase (—-gal — 10017), T20S
proteasome (10057), and fatty acid synthase (FAS —
10454). These particle sets contain high-quality particles
selected by downstream image processing and represent the
norm or expected particle set. We refer to these sets as the
“normative”. For example, only 111,000 particles of the
original 857,000 particles are found in the FAS normative
set (before random selection of micrographs — see Online
Methods and Supplemental Data File 1). When possible,
the normative particle set consists of the particle set that
produced the final, published reconstruction (see Online
Methods for more information). All datasets, except T20S
proteasome, were acquired with standard defocus-contrast
imaging. T20S proteasome micrographs were captured
in-focus using a phase plate.
Particle sets produced by a picker or REPIC were
characterized by comparing to the normative particle set
using precision and recall. These particle sets were also
separately used to obtain reconstructions with RELION. All
reconstructions were produced using the same procedure
without 2D or 3D classification (see Online Methods for
more information). Supplemental Data Files 2 and 3 list
picker & RELION parameters and the number of picked
particles for each particle set. Reconstructions from picked
particle sets by individual algorithms (SPHIRE-crYOLO,
DeepPicker, Topaz, and REPIC) are compared to the
reconstruction obtained from the normative particle set using
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Fig. 1. Identifying consensus particles with REPIC. A) Schematic representation of consensus particle identification by REPIC. Particle bounding boxes by individual
pickers (SPHIRE-crYOLO (29) [yellow], DeepPicker (19) [green], and Topaz (26) [blue]) are represented as vertices in a computational graph. Edge weights are the overlap
between two bounding boxes calculated by the Jaccard Index (JI). Clique finding is then performed, and an optimal subset of cliques is selected by integer linear programming
(ILP — Supplemental Figure S1). Consensus particles are then derived from optimal cliques (see Online Methods). B) A random sampling of out-of-the-box picker (left),
normative (red — middle), and consensus (purple — right) particles for (top-to-bottom) —-gal (EMPIAR-10017), T20S proteasome (10057), TRPV1 (10005), and FAS
(10454) datasets. Arrows indicate sample contamination and image artifacts present in micrographs, which both normative and consensus particle sets were shown to avoid.
TRPV1 and FAS micrographs have been low-pass filtered to make particles more visible.
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a cross Fourier shell correlation (cross-FSC — see Online
Methods). Since the cross-FSC is derived from non-disjoint
particle image sets, the cross-FSC resolution is reported at
FSC= 0.50. Cross-FSC curves indicate the resolution at
which the similarity between the normative reconstruction
and a consensus or picker reconstruction drops below 50%.

One-shot picking
To show REPIC can find useful consensus particle sets even
when the pickers have performance variation, out-of-the-box
pickers were used and one-shot REPIC was applied to
find consensus particles. In all datasets except the T20S
proteasome, REPIC consensus particles have the highest
precision (Table 1), which supports an ensemble learning
approach to particle picking.
SPHIRE-crYOLO picked high quality particles for all
datasets (based on the resulting reconstructions and
cross-FSC resolutions — Figure 2), while Topaz picked
good quality particles for three of the four datasets (FAS
was the exception). DeepPicker picked moderate quality
particles for —-gal and TRPV1, and poor quality particles for
the proteasome and FAS datasets (RELION failed to finish
within the allowed runtime for the proteasome dataset —
indicated by ‡, see Online Methods for more information).
REPIC consensus particles achieved high-resolution
reconstructions except for FAS where two of the three
pickers failed. Similar behaviour is also observed with
RELION 2D classes (Supplemental Figure S2). These
results show that when one-shot REPIC is used, the
consensus particle set is consistent with the best picker, even
when the best picker is not known a priori.

Iterative ensemble particle picking
To demonstrate how REPIC can be used on a novel
particle, REPIC’s iterative mode (Figure 3A) was initialized
using out-of-the-box picker output and pickers were then
ab-initio trained. REPIC was separately applied to the four
cryo-EM datasets for 16 iterations. The T20S proteasome
dataset was processed for an additional eight iterations
to observe a plateau in its precision curves. Figure 3B
highlights the significant improvement that can be achieved
between the initial and final consensus particle sets for
the T20S proteasome dataset. DeepPicker showed the
largest improvement, where the achieved reconstruction
improves from an erroneous, disconnected map (4.57 Å)
to a high-resolution map (3.37 Å). All four algorithms
achieve reconstructions that are almost an Angstrom higher
in resolution compared to normative particle coordinates
(3.37-.42 vs. 4.22 Å).
Figure 3C (and Supplemental Figure S4) shows the results
of REPIC’s iterative mode initialized with out-of-the-box
picker output for all four tested cryo-EM datasets. REPIC
processing of the T20S proteasome dataset demonstrates how
the iterative mode can improve both precision and recall
over multiple iterations. Convergence rates of the iterative
algorithm vary from particle to particle and the final particle
set may be dissimilar from the normative. For example,

REPIC processing of the —-gal dataset shows how the picker
ensemble may converge during early iterations and have
precision and recall remain stable across later iterations
(Figure 3C). TRPV1 and FAS datasets demonstrate that the
framework may converge to a picked particle set that is
dissimilar (to different degrees) from the normative particle
set while achieving high-resolution reconstructions (see
Supplemental Figure S4 for final iteration reconstructions).
DeepPicker fails to achieve high-resolution reconstructions
for the TRPV1 and FAS datasets, which is most likely due
to the large number of particles picked by this picker even
after false positive filtering. The precision and recall of the
consensus particle set remains consistent across iterations,
even when individual pickers (e.g., Topaz) show instability
(large changes in precision and/or recall). In fact, the
precision of the consensus particle set remains as high or
higher than any individual picker. The cross-FSC curves
and resolutions by consensus maps are either improved
(e.g., from an erroneous reconstruction to improved FAS
reconstruction at 4.47 Å) or remain consistent (—-gal
reconstruction at ~4.3 Å) compared to the out-of-the-box
pickers.

Semi-automatic picking by iterative ensemble

Next, we asked if high-resolution reconstructions could be
obtained using iterative-mode REPIC and a minimal, initial
particle set. For each cryo-EM dataset, 5% of micrographs
were randomly selected as the training subset (Figure 4A).
For each micrograph in the training subset, 1% of normative
particle coordinates were randomly selected to represent
manually picked particles and ab-initio train pickers. In total,
6, 6, 8 and 44 training particles were selected for the —-gal,
T20S proteasome, FAS, and TRPV1 datasets, respectively.
The TRPV1 initial particle set contains a factor of six or more
particles due to the number of training micrographs selected,
which is based on the total number of micrographs (N = 849
— see Supplemental Data File 2 for more information).
Initial training labels and micrographs were then provided to
iterative-mode REPIC and 16 iterations were performed.
Figure 4B shows significant improvement in FAS
reconstructions between the first and last iteration
using REPIC’s iterative mode. In the first iteration, the
consensus particle set is unable to produce a reconstruction
due to the poor performance of SPHIRE-crYOLO and
DeepPicker (based on their respective reconstructions).
After 16 iterations, the iterative framework produces both
consensus and SPHIRE-crYOLO reconstructions at a
resolution approaching the normative. These high-resolution
reconstructions are achievable because the ensemble is
composed of multiple pickers of different architectures and
objective functions. Pickers that require minimal training
data drive the initial iterations of iterative-mode REPIC
(based on the resulting reconstructions). Later iterations
are driven by pickers able to achieve higher-resolution
reconstructions.
Initializing iterative-mode REPIC with a minimal particle
set results in high-resolution reconstructions on par with
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Table 1. Precision (prec), recall (rec), and number (num) of picked particles for one-shot REPIC with out-of-the-box pickers. The number of normative particles is listed in
parentheses under each dataset. Picker particle sets are filtered for false positives (see Supplemental Information).

consensus SPHIRE-crYOLO DeepPicker Topaz
dataset prec rec num prec rec num prec rec num prec rec num
—-gal

(40,863) 0.812 0.883 40,824 0.788 0.968 39,838 0.660 0.498 17,741 0.695 0.972 44,680

T20S proteasome
(35,469) 0.470 0.477 35,392 0.759 0.690 23,975 0.215 0.200 30,310 0.393 0.388 27,047

TRPV1
(80,443) 0.616 0.659 80,655 0.542 0.822 120,888 0.390 0.989 305,425 0.489 0.877 131,402

FAS
(11,390) 0.196 0.192 11,040 0.194 0.868 47,824 0.155 0.642 61,877 0.158 0.881 73,167

† low density reconstruction
‡ RELION 3D auto-refinement exceeded allowed runtime

cross-FSCSPHIRE-crYOLO DeepPickernormative Topazconsensus

TRPV1

3.63 Å N/A ‡3.57 Å 3.47 Å †3.64 Å

3.70 Å N/A ‡3.61 Å N/A ‡6.39 Å †

FAS

3.38 Å 3.34 Å †3.12 Å 4.26 Å †3.77 Å

T20S proteasome

!-gal

4.13 Å 5.47 Å †4.10 Å 4.25 Å4.25 Å

Fig. 2. One-shot REPIC using out-of-the-box pickers. Out-of-the-box SPHIRE-crYOLO (yellow), DeepPicker (green), and Topaz (blue) pickers applied to (top-to-bottom)
—-gal (EMPIAR-10017); in-focus, phase-plate T20S proteasome (10057); TRPV1 (10005); and FAS (10454) datasets. Consensus (purple) particles are identified from
picker output using one-shot REPIC and shown to produce high-resolution densities when most pickers perform well. Cross Fourier shell correlation (cross-FSC) curves
(see Online Methods) comparing picker and consensus maps to the normative (grey) are shown on the right. Normative curve is a half map FSC, while all other curves are
cross-FSCs (see Supplemental Figure S3 for picker and consensus half map FSC curves). SPHIRE-crYOLO produces the highest-resolution, most-complete reconstructions
for each dataset. Consensus particle sets represent the performance of the three-picker ensemble and obtain reconstructions comparable to the normative for all proteins
except for the FAS dataset.

(—-gal and TRPV1 datasets), approaching (FAS), and
better than (T20S proteasome) the normative particle set
(Supplemental Figure S5). —-gal, T20S proteasome, and
TRPV1 precision and recall curves (Figure 4C) show how
the ensemble quickly improves and converges over a small
number of iterations (six or less) from a small subset of
initial training labels. SPHIRE-crYOLO and Topaz show
instability for the FAS dataset across iterations even though
the final reconstructions are comparable to the normative
map (based on RELION-estimated resolution and cross-FSC
analysis — Figure 4C). Final DeepPicker particle sets are
also improved (based on cross-FSC curves and obtained

resolution) over automatic iterative picking even though
low-resolution reconstructions are achieved for the TRPV1
and FAS datasets (Supplemental Figure S5). Similar to
automatic runs of the iterative mode, the precision and recall
of consensus particle sets remain stable across iterations and
lead to high-resolution reconstructions that are comparable to
the normative map.

Ab-initio transfer learning

Finally, we explored the potential for transfer learning
between two individual cryo-EM datasets (A and B) using
REPIC’s iterative mode (Figure 5A). Pickers are ab-initio
trained using training data from dataset A. All micrographs

Cameron et al. | REPIC bioR‰iv | 5
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3.39 Å 3.37 Å 3.42 Å3.42 Å

iteration
24

4.25 Å 4.57 Å † 4.79 Å †3.38 Å

initial

consensus SPHIRE-crYOLO DeepPicker Topaz

4.22 Å

normative

iteration 16

iteration 24T20S proteasome
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iteration 16
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pick particles2identify consensus 
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iteration '
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manually picked
particles
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SPHIRE-crYOLO !

semi-automatic

automatic

!-gal

TRPV1

FAS

T20S proteasome

† low density reconstruction 
‡ RELION 3D auto-refinement exceeded allowed runtime

† low density reconstruction

Fig. 3. Iterative-mode REPIC initialized using out-of-the-box picker output. A) Schematic representation of REPIC’s iterative mode. Training labels (i.e., particles) can be
provided by either pre-trained pickers (automatic) or manual particle picking (semi-automatic). New pickers are ab-initio trained from the training data and then used to pick
particles. Consensus particles are identified using REPIC and used as training labels in the proceeding iteration. The pick-REPIC-train loop is then repeated for a user-defined
number of iterations. A cross-validation strategy (see Online Methods) is used to subset micrographs into training, validation, and testing sets for picker training. B) T20S
proteasome reconstructions obtained from normative (grey), consensus (purple), SPHIRE-crYOLO (yellow), DeepPicker (green), and Topaz (blue) picked particle sets from
the initial (out-of-the-box picker output — top) and final (24 — bottom) iteration. All algorithms converge to a similar particle set (due to consensus particles being used as
training labels) and achieve high-resolution densities in the final iteration. Most final pickers improve upon the initial, out-of-the-box pickers and outperform the normative
particle set. C) Evaluation metrics (precision, recall, and number of particles) for iterative-mode REPIC initialized using out-of-the-box picker output applied to (top-to-bottom)
T20S proteasome (EMPIAR-10057), —-gal (10017), TRPV1 (10005), and FAS (10454) datasets. cross-FSC curves of reconstructions obtained from the final iteration are
shown on the right. The same FSC resolution thresholds are used as described in Figure 2. Most algorithms show improvement over out-of-the-box pickers (Figure 2B)
and produce similar final densities (Supplemental Figure S4 — except for DeepPicker and the FAS dataset).
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cryo-EM dataset: (1) 5% of micrographs are randomly selected as the training subset, (2) 1% of normative particle coordinates are randomly selected and chosen as
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(10005) datasets. Cross-FSC curves and resolutions for densities obtained from the final iteration are shown on the right. The same resolution thresholds are used as
described in Figure 2. Most algorithms produce similar final, high-resolution densities (Supplemental Figure S5).
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and normative particles from dataset A (minus a held-out
subset for validation — see Online Methods) were used to
train pickers. Trained pickers are then applied to a training
subset of micrographs from dataset B to generate the initial
training labels for iterative-mode REPIC. Four sets of the
three studied pickers were trained (A1, A2, A3, and A4),
each set specific to one of the four studied cryo-EM datasets
(T20S proteasome, FAS, TRPV1, and —-gal, respectively).
Picker sets A2, A3, and A4 were then used to pick
T20S proteasome particles (B1 — Figure 5B). Using
pickers trained on the FAS and TRPV1 datasets resulted
in high-resolution reconstructions that improved upon the
achieved resolution of normative reconstruction. However,
using the —-gal dataset to pre-train pickers led to only a
reasonable reconstruction using SPHIRE-crYOLO picked
particles, with all other algorithms obtaining lower-resolution
reconstructions compared to the normative (Supplemental
Figure S6). While promising, caution must be taken
when performing transfer learning using REPIC’s iterative
mode, as shown in Supplemental Figure S7, FAS (B2)
reconstructions were not able to be produced.

Discussion
In one-shot mode, REPIC produces high-quality consensus
particle sets when multiple out-of-the-box pickers are used,
and the identity of the best picker is not known. REPIC
works reliably as long as a majority of the pickers perform
reasonably well. If most pickers fail, then the notion of
consensus particles is not very meaningful. Such is the case
with the FAS dataset in Figure 2.
In the one-shot experiments, it is interesting to observe
that SPHIRE-crYOLO obtained the highest precision and
recall with the T20S proteasome dataset (Table 1). We
believe this result is due to SPHIRE-crYOLO being the
only out-of-the-box picker trained on similar phase-plate data
(EMPIAR-10050) (40).
In all three initializations used with REPIC’s iterative mode
(Figures 3-5), consensus particle sets reliably produced
high-resolution reconstructions, with resolutions comparable
to the normative. These resolutions were achieved without
downstream filtering (such as 2D and 3D classification). 2D
and 3D classes are not reproducible across cryo-EM pipelines
and are sensitive to the classification parameter values,
number of particle images, and number of micrographs
provided. In addition, identifying correct classes relies on
a subjective choice by a cryo-EM expert. REPIC further
automates particle picking by provide quality particle sets
that either negate the need for or better initialize particle
filtering.
When using REPIC’s iterative mode, individual pickers
converge to similar reconstructions. This result is due
to the ab-initio training using consensus particles. A
minimal amount of training data (1% of particles per training
micrograph) is required to initialize REPIC’s iterative mode.
Figure 4B illustrates the benefits of using a picker ensemble:
REPIC, along with pickers, can bootstrap from picking
poor particles in the early iterations to picking high quality

particles in the later iterations (based on the resulting
reconstructions). In Figure 4B, early iterations of REPIC
are driven by Topaz, which requires less training data due
to its positive-unlabeled learning algorithm. Later iterations
are driven by SPHIRE-crYOLO which requires more training
data but achieves higher resolution reconstructions.
The above results support the main claims of this paper: (1)
ensemble learning, as manifested in REPIC, can provide high
quality particles, even when the best picker is not known a
priori; (2) in more difficult cases, minimal manual picking
is sufficient to bootstrap REPIC into a high quality particle
regime; (3) high-resolution reconstructions can be obtained
with REPIC, without downstream processing such as 3D
classification.
Future work will focus on improving the runtimes of both
the one-shot and iterative modes of REPIC. Currently,
an exhaustive search is performed when building the
computational graph. A k-d tree approach could be
used to significantly reduce the amount of bounding box
comparison and improve REPIC runtime. During the
iterative REPIC loop, pickers are run in sequence. Ab-initio

training of pickers contributes to a significant amount
of REPIC’s runtime (Supplemental Figure S8). Parallel
application of pickers or a variant (i.e., only re-training the
worst performing picker) can improve the speed of REPIC
iterations.

Online Methods

Dataset description. Cryo-EM digital micrographs
and normative particle coordinates were obtained
from the Electron Microscopy Public Image Archive
(EMPIAR) resource for entries EMPIAR-10005 (41),
EMPIAR-10017 (37), EMPIAR-10057 (42), and
EMPIAR-10454 (43). Associated, published 3D volumes
for each EMPIAR dataset were retrieved from the Electron
Microscopy Data Bank (EMDB) from entries EMD-5778,
EMD-2824, EMD-3347, and EMD-4577, respectively. Due
to the large number of micrographs in the EMPIAR-10454
dataset (N = 4,593), 10% of micrograph and paired particle
coordinate files (N = 460) were randomly selected and used
in this study (see Supplemental Data File 1 for a list of the
selected files). EMPIAR-10057 multi-frame micrographs
were aligned and summed using MotionCor2 v1.5.0 (44)
in RELION v3.1.3 (45). Contrast transfer function
(CTF) estimation was performed for all datasets (except
for the in-focus, phase-plate data of EMPIAR-10057)
using CTFFIND4 v4.1.14 (46) in RELION. Please see
Supplemental Data File 2 for a summary of RELION
and CTFFIND4 parameters used to process each dataset.
Additional micrograph preprocessing was performed by each
picker (i.e., low-pass filtering by SPHIRE-crYOLO (29),
image standardization by DeepPicker (19), Gaussian mixture
model [GMM] normalization by Topaz (26)) before particle
picking. Picker installation, application, and false positive
filtering are described in Supplemental Information.
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DeepPicker, and Topaz pickers are initialized and trained separately on cryo-EM dataset A. These pre-trained pickers are then applied to cryo-EM dataset B to generate
initial training labels for iterative-mode REPIC. B) Normative (grey) and consensus (purple) reconstructions for T20S proteasome dataset resulting from REPIC’s iterative
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(picked) particles curves are provided along with the cross-FSC (right-most column — using thresholds described in Figure 2). High-resolution reconstructions that improve
upon the normative particle coordinates are achieved using FAS and TRPV1 datasets to pre-train pickers. However, using —-gal to pre-train pickers fails to produce a useful
density (most likely due to the pixel resolution difference of both datasets — see Supplemental Data File 2). Ab-initio transfer learning relies on the similarity of the training
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REPIC. REliable PIcking by Consensus (REPIC — /r e'pik/)
is a non-greedy approach to identifying consensus particles
from k picked particle sets {S1, . . . ,Sk}. The input to
REPIC is the set of picked particle sets S = {S1, . . . ,Sk},
where each particle in a set is expected to have micrograph
coordinates, a particle detection box size, and a quality
score s. REPIC output is a consensus particle set in BOX
file format. REPIC represents all picked particles in a
micrograph as an undirected, k-partite graph G = (V,E).
Each vertex v in V corresponds to a particle detection box
from a picked particle set. Each edge e in E represents a pair
of overlapping particle detection boxes. The edge weight o
between two vertices is the overlap (i.e., the Jaccard Index)
of their corresponding particle detection boxes. Intuitively,
the goal of REPIC is to find the set of non-overlapping k-size
cliques in G that maximize particle overlap and score. For
each clique c = (Vc,Ec), the clique weight wc is the product
of its median edge weight õ = median{oe | e œ Ec} and
median vertex score s̃ = median{sv | v œ Vc}. REPIC aims
to find the disjoint set of cliques C that maximizes

q
cœC wc.

The details of the above steps are as follows:

1. Graph building — An undirected graph G is built
from the output of k picked particle sets (as described
above). In this study, picked particle sets are generated
by three CNN-based pickers: SPHIRE-crYOLO (29),
DeepPicker (19), and Topaz (26). Edges with o < 0.3
are considered to be particle detection boxes that do not
overlap and are excluded from G.

2. Clique finding — All cliques of size k are enumerated
using a modified Bron-Kerbosch algorithm (47), as
implemented by the Python NetworkX package (48).

3. Clique optimization — A clique in the graph G
corresponds to a single consensus particle. However each
vertex in G (a picked particle) may participate in multiple
cliques. To ensure each vertex associates with a single
clique in the final set, cliques x are selected using Integer
Linear Programming (ILP — Supplemental Figure S1) as
follows: Suppose that the result of clique finding is m
cliques containing n vertices. Define an n ◊ m matrix A,
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where the element Aij = 1 is the ith vertex participating
in the jth clique, else Aij = 0. Then, the ILP is defined
as below where xj is a binary variable denoting whether
the jth clique is selected (xj = 1) or not (xj = 0).

maximize
mÿ

j

wj ·xj (1)

subject to
mÿ

j

Aij ·xj Æ 1 for all i œ [1..n], (2)

xj œ {0,1} (3)

Equation 2 ensures vertices are only associated with a
single clique by limiting row sums in A to 1. A globally
optimal solution to the above problem is then found using
ILP branch-and-bound optimization, as implemented by
the Python Gurobi package (49).

Graph building, clique finding, and clique optimization are
performed on a per-micrograph basis. REPIC itself does
not require a GPU (although the pickers do) and runs
efficiently on a single workstation with a processing time
of seconds per micrograph. Graph building (specifically the
exhaustive search for overlapping particle detection boxes) is
the limiting step for REPIC (2-10 seconds per micrograph).
The ILP solver is efficient (<0.2 seconds per micrograph).

One-shot mode

Given an initial set of picked particle sets Sinit, one-shot
REPIC executes the above steps once. In the discussion
below, we denote the one-shot execution of REPIC with Sinit
as REPIC(Sinit),

Iterative mode

In the iterative mode, REPIC is used as described in
Pseudocode 1. Here, I is the number of iterations chosen
by the user. M is available cryo-EM micrographs split into
cross-validation subsets (see Preprocessing below). Ti is the
set of training labels (particle coordinates) used for ab-initio

picker training in iteration i.

Pseudocode 1: REPIC — iterative mode
Data: preprocessed micrographs M, set of picked

particle sets Sinit, number of iterations I
Result: k trained pickers
/* initialize training labels T0 */

1 if |Sinit| > 1 then T0 Ω REPIC(Sinit)
2 else T0 Ω Sinit
/* run self-supervised training */

3 for i Ω 0 to I do
4 ab-initio train k pickers using M and Ti

5 Si Ω pick k particle sets M using newly trained
pickers

6 Ti+1 Ω REPIC(Si)
7 end

Cross-validation (training, validation, and testing) subsets
M for Pseudocode 1 are created by sampling micrographs
based on their mean defocus value. Mean defocus values
are calculated from the output of a CTF estimation job
in RELION v3.1.3 (45) using CTFFIND4 v4.1.14 (46).
Specifically, ‘defocus 1’ and ‘defocus 2’ values are averaged
per micrograph. Micrographs are then grouped into three
bins (low, medium, and high) using their mean defocus
values. Subsets are generated by randomly sampling (without
replacement) three micrographs at a time, one from each bin.
If defocus values are not available (e.g., EMPIAR-10057), all
micrographs are randomly grouped into three equally sized
bins. Training and validation sets are built first to ensure
algorithms are exposed to the entire range of defocus values
during picker training. For each dataset, validation subsets
consist of six micrographs, and the remaining micrographs
were initially split 20-80 between the training and testing
subsets.

Algorithm evaluation. For all datasets, picked and
consensus particle sets are evaluated using published particle
sets found on the EMPIAR resource. These published
sets are used in place of a ground truth as the norm or
expected picked particle set, which we refer to as the
“normative”. Before evaluation, picker output was filtered
for false positives using author-suggested thresholds (see
Supplemental Information).
Precision and recall were calculated using micrograph pixels
P , where pi = 0 and pi = 1 are a pixel found in the
background region of a micrograph or a particle bounding
box, respectively. A true positive (TP) is pi = 1 for both the
normative and compared particle set. A false positive (FP)
is pi = 0 in the normative and pi = 1 in the compared set.
A false negative (FN) is pi = 1 in the normative but pi = 0
in the compared set. TPs, FPs, and FNs are summed over P
before calculating either evaluation. Reported precision and
recall values are computed from all testing micrographs in a
dataset.

precision = TP
TP + FP

(4)

recall = TP
TP + FN

(5)

When available, the final particle set that produced a
published density (e.g., EMPIAR-10454) is used as the
normative particle set. If this final particle set is not available
(e.g., EMPIAR-10057), the normative particle set consists of
all particles found in the EMPIAR entry.
Initial analyses showed that the published final particle set of
EMPIAR-10005 produced lower resolution reconstructions
compared to the initial particle set. Missing summed
frame micrographs in the EMPIAR entry reduced the final
particle set from 35,645 to 32,387 particles. Therefore,
the EMPIAR-10005 normative particle set was taken to be
the published initial particle set reduced by the number of
available micrographs (80,443 particles - see Supplemental
Data File 2).
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3D reconstruction procedure. 3D reconstruction was
performed in RELION v3.1.3 (45). Soft masks were
generated from published maps (see Dataset description
in Online Methods) using a RELION mask generation
job. For each particle set, a RELION 3D auto-refinement
job was provided the corresponding soft mask, published
density (low-pass filtered to 64 Å), and extracted particle
images to produce a reconstruction. No particle filtering
in RELION (either by 2D or 3D methodology) was
performed on any particle set analyzed in this study.
CTF correction was not performed for EMPIAR-10057
because it is an in-focus, phase-plate dataset. Final,
unmasked reconstructions were generated using a RELION
post-processing job. Unmasked normative reconstructions
were then used to generate soft masks that were applied
to their corresponding normative, consensus, and picker
reconstructions (i.e., all reconstructions in the same row
of a figure). RELION 3D auto-refinement jobs that had
significantly longer runtimes (>24 hours) than the runtime
for the normative particle set were aborted (e.g., DeepPicker
EMPIAR-10005 reconstruction displayed in Figure 2 — see
Supplemental Data File 3). For these particle sets (indicated
by ‡ in figures), a single half map from the last-completed
iteration of the RELION 3D auto-refinement job was used.
Default RELION mask generation, 3D auto-refinement, and
post-processing job parameters were used unless otherwise
specified in Supplemental Data File 2.

3D reconstruction analysis. Masked reconstructions were
registered to their corresponding normative reconstruction
using UCSF Chimera (50) (https://www.cgl.ucsf.
edu/chimera/ — ‘Fit in Map’ tool and ‘vop resample’
command) before Fourier shell correlation (FSC) calculation.
Reconstructions resulting from either picker or consensus
particle sets were compared to their corresponding normative
map by calculating an FSC between both the masked and
registered maps (a “cross-FSC”). A cross-FSC threshold
of FSC= 0.5 was used as particle sets contributing to
reconstructions may share particles and are not guaranteed
to be independent. The reported cross-FSC resolution is
the resolution where a map’s similarity to the normative
map decreases below 50%. Half map FSCs are included as
reference and their reported resolutions use the gold-standard
FSC threshold (FSC= 0.143).
UCSF Chimera was used to visualize all maps. Normative
maps were used to set the density threshold for maps resulting
from either consensus or picker picked particle sets. The
density threshold for half maps from aborted RELION 3D
auto-refinement jobs (indicated by ‡ in figures) was set in an
ad hoc manner to better visualize the obtained map.

Data availability
Cryo-EM datasets used in this study are publicly available
at the EMPIAR resource (https://www.ebi.ac.uk/
empiar/): https://www.ebi.ac.uk/empiar/
EMPIAR-10005/, https://www.ebi.ac.uk/
empiar/EMPIAR-10017/, https://www.ebi.

ac.uk/empiar/EMPIAR-10057/, and https:
//www.ebi.ac.uk/empiar/EMPIAR-10454/.

Code availability
The source code for REPIC is available on GitHub at
https://github.com/ccameron/REPIC. REPIC is
licensed under the BSD-3-Clause.
A copy of the REPIC GitHub repository is available in the
Gerstein lab’s GitHub account for posterity: https://
github.com/gersteinlab
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