Transcriptomic Evaluation of Stress Vulnerability Network using Single Cell RNA-Seq in mouse Prefrontal Cortex

Benjamin Hing1*, Sara Mitchell1*, Maureen Eberle1, Yassine Filali1,2, Molly Matkovich1, Mukundan Kasturirangan1, Ian Hultman3, Whitney Wyche1, Alli Jimenez1, Radha Velamuri1, Micah Johnson1,2, Sanvesh Srivastava3, Rainbo Hultman1,4

1 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
2 Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
3 Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA, USA
4 Department of Psychiatry, University of Iowa, Iowa City, IA, USA

* Co-equal authors listed alphabetically. † Correspond with Dr Hultman (Dept. of Molecular Physiology & Biophysics, Iowa Neuroscience Institute, 51 Newton Rd., 6-510 Bowen Science Building, Iowa City, IA, 52242, USA; 319-335-2855 (o), 919-451-6906 (c); rainbo-hultman@uiowa.edu.)
Abstract

Increased vulnerability to stress is a major risk factor for the manifestation of several mood disorders, including major depressive disorder (MDD). Despite MDD’s status as a significant donor to global disability, the complex integration of genetic and environmental factors that contribute to the behavioral display of such disorders has made a thorough understanding of related etiology elusive. Recent developments suggest that a brain-wide network approach is needed, taking into account the complex interplay of cell types spanning multiple brain regions. Single cell RNA-sequencing technologies can provide transcriptomic profiling at the single-cell level across heterogenous samples. Furthermore, we have previously used local field potential oscillations and machine learning to identify an electrical brain network that is indicative of a predisposed vulnerability state. Thus, this study combined single cell RNA-sequencing (scRNA-Seq) with electrical brain network measures of the stress-vulnerable state, providing a unique opportunity to access the relationship between stress network activity and transcriptomic changes within individual cell types. We found especially high numbers of differentially expressed genes between animals with high and low stress vulnerability brain network activity in astrocytes and glutamatergic neurons but we estimated that vulnerability network activity depends most on GABAergic neurons. Furthermore, we found that genes significantly upregulated in animals with higher vulnerability brain network activity across multiple cell types included upregulation of microglia activity, mitochondrial and metabolic pathways, and those with lower vulnerability network activity included pathways involved in synapse regulation.

Intro

Stress has been demonstrated to be a major environmental contributor to myriad disorders, particularly mood disorders such as major depressive disorder (MDD) [1]. Most such disorders are polygenic, with greater numbers of SNPs increasing an individual’s risk to psychiatric disease. Genes conferring risk work together in complex ways across different cell types, sometimes in near dose-dependent ways, suggesting that a more complete understanding of gene expression events will be necessary for understanding the etiology of such disorders [2-5]. This appears especially true for MDD, a psychiatric disorder for which heritability is most diverse and susceptible to environmental contributors such as stress [6, 7].

Toward this end, substantial progress has been made in understanding the gene regulatory events distinguishing stress-susceptible and resilient brain states in rodent models of depressive brain states [8, 9]. In particular, transcriptional regulation of the prefrontal cortex (PFC), has been shown to play an important role in mediating stress susceptibility and in disorders that can often be exacerbated by stress such as MDD [9-12]. At least five different cell types have been implicated in the etiology of stress susceptibility and related disorders such as MDD in the PFC including excitatory [13-16] and inhibitory [2, 17] neurons, astrocytes [18], oligodendrocytes [19], and microglia [20].

While it has long been recognized that stress has the potential to trigger or exacerbate negative affect states, the gene expression events defining the predisposing vulnerability state has not been rigorously characterized in the same way that post-stress susceptibility and resilience have. Previously, we used multi-site in vivo neurophysiology and machine learning methods to identify and validate a local field potential (LFP)-based brain network, Electome Factor 1, that could reliably identify a stress vulnerability state without the full manifestation of a stress-induced depressive state [21]. Here, we record Electome Factor 1 brain network activity and assess gene expression in specific cell types within the PFC of the
same animals, a key driving region of this vulnerability network, to provide a better understanding of the stress-vulnerable state as well as the gene expression architecture of this electrical brain network.

Material and Methods

Animals and Experimental Design:
All animals were housed in accordance with the University of Iowa Institutional Animal Care and Use Committee (IACUC) standards. All mice were housed in bedded cages and exposed to a 12-hour light/dark cycle with ad libitum access to food and water. This study utilized C57BL/6J mice delivered from the Jackson Laboratory in Bar Harbor, Maine at 5-7 weeks of age. Prior to surgery, experimental mice were group-housed by sex. Following surgical implantation of recording electrodes, experimental mice were singly-housed and placed on corncob bedding. Each implanted animal was exposed to a forced interaction test (FIT), a test designed to elicit a negative affect response, one time only: two days prior to sample collection for single-cell RNA sequencing (scRNA-seq) (Fig 1). Forty-eight hours after recording each FIT, the prefrontal cortex (PFC) was micro-dissected and processed for scRNA-seq.

Surgical Implantation of Electrodes:
For surgical implantation of recording electrodes, mice were anesthetized with 1-5% isoflurane, and their skulls were secured in a stereotaxic device. Metal ground screws were placed above the anterior cranium and the cerebellum before implanting target bundles. Electrode bundles designed to target the following regions: nucleus accumbens (NAc), amygdala (AMY, basolateral, BLA and central, CeA), ventral hippocampus (VHipp), and ventral tegmental area (VTA), were positioned according to stereotaxic coordinates measured from Bregma as previously described [22, 23]. These coordinates were chosen to maintain consistency with prior molecular and neurophysiology studies of vulnerability following chronic stress [9, 21]. The PFC (including prelimbic, Prl and infralimbic, IL components) was intentionally left out of the electrode design so as not to disturb the tissue that would later be collected for scRNA-sequencing. This was possible because $EF1$ scores can still be calculated with minimal regions missing from the recording data [21]. Experimental animals were implanted between 6-10 weeks of age and were allowed to recover for a minimum period of 2-weeks prior to testing (Supplementary Figure 1). Accuracy of electrode placement during implantation was evaluated at the conclusion of the experiments through individual subject histological assessment. This was done to confirm the exact recording sites used to capture neurophysiological data.

Acquisition of Neurophysiological data:
Neurophysiological data was captured as previously described [21] for each subject during the completion of a forced interaction test (detailed below). The CerePlex Direct acquisition system was used to capture neuronal activity data sampled at 30kHz (Blackrock Microsystems, UT, USA). Acquired local field potentials (LFPs) were stored at 1000 Hz following a bandpass filter set at 0.5-250Hz. A ground wire connecting both ground screws served as an overall reference for neurophysiological recordings within each experimental animal.

Forced Interaction Test:
The forced interaction test (FIT) was performed as previously described [24] with recordings obtained from 5 brain regions over the duration of the FIT in addition to the capture of corresponding video for animal behavior (Fig 1A) [21]. Mice were first connected to a mu headstage and kevlar-coated cable (Blackrock Microsystems, UT, USA) before being placed in a fresh homecage with corncob bedding. Following a 30-minute habituation period, a 10-minute baseline homecage recording portion of the FIT was performed. An 18” high, clear, acrylic cage extender was placed just inside the walls of the homecage to prevent the implanted animal from climbing out. Succeeding the homecage recording, the
experimental animals were placed in a 3.25” diameter x 7” high covered Plexiglass carousel (Noldus) while neurophysiological data was collected for a period of 5 minutes. A CD1 mouse previously screened for aggressive tendencies was then placed inside the cage extender, but outside the carousel within the homecage, and the recording continued for an additional 5 minutes. The carousel was designed to protect experimental animals from outside harm, while maintaining sensory interactions with the outside environment through the presence of open-air slots. Experimental mice were only subjected to the FIT once, a minimum of 2 weeks following surgical implantation of electrodes to allow for sufficient recovery, and always 2 days prior to tissue collection for scRNA-seq sample prep. FIT recordings and subsequent sample collections were performed when animals were between 9 and 14 weeks of age (Supplemental Figure 1). The local field potentials (LFPs) obtained from the FIT recordings were evaluated for each mouse to determine their Electome Factor 1 (EF1) scores, a previously identified marker of the stress vulnerable state (see below).

Buffer Preparation, Tissue Collection, and Generation of Single-Cell Suspensions:
Artificial cerebrospinal fluid (NMDG-aCSF) buffer was freshly prepared on the day of harvesting cells and contained the following powdered reagents, in order: 96 mM NMDG (Sigma-Aldrich; St. Louis, MO; CAS No. 6284-40-8), 2.5 mM KCl (Research Products International; Mt. Prospect, IL; CAS No. 7447-40-7), 1.35 mM NaH2PO4 (Sigma-Aldrich; St. Louis, MO; CAS No. 7558-80-7), 30 mM NaHCO3 (Research Products International; Mt. Prospect, IL; CAS No. 144-55-8), 20 mM HEPES (Research Products International; Mt. Prospect, IL; CAS No. 7365-45-9), 25 mM glucose (Research Products International; Mt. Prospect, IL; CAS No. 50-99-7), 5 mM Na+ascorbate (Sigma-Aldrich; St. Louis, MO; CAS No. 134-03-2), 2mM thiourea (Sigma-Aldrich; St. Louis, MO; CAS No. 62-56-6), 3 mM Na+pyruvate (Sigma-Aldrich; St. Louis, MO; CAS No. 616-91-1). Powdered reagents were measured using weigh boats and poured into a 500mL graduated cylinder one at a time; excess material was washed into the graduated cylinder using ddH2O. Following the addition of all powdered reagents, the solution was then adjusted to 80% final volume with ddH2O. Under the fume hood, the liquid reagents were then added directly to the solution using a P1000 pipette, in the following order: 37% HCl (Sigma-Aldrich; St. Louis, MO; CAS No. 7647-01-0), 0.5 mM CaCl2 (Alfa Aesar; Ward Hill, MA; CAS No. 10043-52-4), 10 mM MgSO4 (GBiosciences; St. Louis, MO; Cat. # 786-530). The final volume of the solution was then adjusted to 500mL using the ddH2O spray bottle. After adding a stir bar into the solution and covering it with parafilm, the graduated cylinder was placed atop a stir plate, and all reagents were allowed to dissolve into the solution at 300-350 rpm for 10 minutes. The incorporated NMDG-aCSF solution was then filtered through a 100µm Nylon cell strainer (Falcon; Corning, NY; Ref: 352360) into an Erlenmeyer flask, covered with parafilm, labeled, and either stored at 4°C overnight or prepared for use as follows.

NMDG-aCSF, prepared within 24-hours of planned collections, was bubbled in carbogen (95% O2/5% CO2) for at least 75 minutes on ice prior to contacting any tissue samples. During this time, Earle's Balanced Salt Solution (EBSS) solution and albumin inhibitor solution were also bubbled on ice, which was maintained throughout the duration of the experiment, taking care to prevent the formation of bubbles in the albumin inhibitor. After the NMDG-aCSF had been bubbling for 75-100 minutes, the pH was measured to be 7.35-7.45 and the osmolarity was measured to be 300-310 mOsm. If pH or osmolarity measurements fell outside of their respective range, then the buffer was not used for sample processing.

Animals were anesthetized using Euthasol (Virbac AH, Inc.; Fort Worth, TX) and perfused with ice cold NMDG-aCSF. Their brains were rapidly removed, adhered to a rotating specimen disk using Loctite® 404™ Quick Set™ Instant Adhesive (Henkel; Rocky Hill, CT; P/N 135465), placed in a cold bath of
bubbling NMDG-aCSF buffer on a Leica VT1200 vibratome (Leica Biosystems; Ref: 14048142065) and sliced coronally in 200µm slices. Exactly six slices were used for each brain’s PFC dissection. Ice was used to keep the samples cold whenever possible in all proceeding steps.

The slices were transferred to recovery holding strainers secured in 6-well plates and bubbled in NMDG-aCSF. Slices were allowed to recover for 10-15 minutes. Papain solution was prepared by adding oxygenated cutting solution to the papain and incubating this without agitation at 37°C for 10 minutes. Five minutes into the papain incubation, oxygenated EBSS was added to the DNASE, mixed by inversion, and placed on ice. After 10 min of papain incubation, the papain was combined with the prepared DNASE, mixed by inversion, and left at room temperature. While the papain was being prepared, the slices were micro-dissected (see Supplementary Figure 3) using a scalpel and dissection scope (Jewelmont) with a halogen cool light source (AmScope; SKU: HL250-AY; Irvine, CA) and transferred to a microcentrifuge tube. The NMDG-aCSF was then carefully removed from the tube containing the micro-dissected tissue, being replaced by the addition of the papain solution. The tissue was incubated in the papain solution for 30-40 minutes at 37°C at 60 RPM using an Innova 4000 Incubator Shaker (New Brunswick Scientific; Enfield, CT; P/N: NB-4000). The papain solution was removed from the tissue and diluted albumin inhibitor (stop solution) was added. Triturations were carried out using two sequential bore diameters (~300µm and ~150µm) of fire-polished glass capillaries (World Precision Instruments; Sarasota, FL, Item No. TW100-3). A total of six triturations were used for female mice and twelve triturations for male mice, with the first half completed using the 300µm bore capillary and the latter half with the 150µm bore capillary. After the mechanical dissociation was complete, the resulting suspension was cloudy and homogenous. The suspension was filtered through a 40µm mesh filter (Falcon, Corning NY; Ref: 352340), and then transferred to a 15mL conical tube and centrifuged at room temp., 0.1 RCF for six minutes. Following centrifugation, the supernatant was quickly but carefully removed. Using a P1000 wide-bore tip, the pellet was resuspended in 1mL of stop solution (aspirated and suspended about five times) and then filtered through another 40µm mesh Falcon cell strainer. In another conical tube, 5mL of stop solution was added, and the cell suspension was carefully layered on top using a P1000 wide-bore tip. This suspension was again centrifuged at room temp, 0.1 RCF for six minutes. Following the second centrifugation, a P1000 wide-bore tip was used to remove the supernatant until about 50µL of the solution was left. Then, using a P200 tip, 20-30µL of the solution was removed until about 20µL of cell suspension remained. The pellet was then resuspended in 30µL HBSS to generate the final single-cell suspension.

Cell Counting

Equal volumes of single-cell suspension and 0.4% trypan blue stain (Life Technologies corporation; Grand Island, NY; Ref: 15250-061) were mixed and 10µm of the resulting solution was loaded onto a hemacytometer (Hausser Scientific; Horsham, PA; Cat No. 02-671-10). A Leica DMi1 inverted microscope (Leica Biosystems; Ref: 11526227) was used to view the counting chamber using an S40-slider (Leica Biosystems; Ref: 1152613). Both live and dead cell counts were obtained from each of the four corners of the chamber’s etched grid to determine total cell density as well as the percentage and total of live cells present in the single-cell suspension.

Projecting Neurophysiological Data into ‘Electome Factor Space’

LFP data acquired from the FIT recordings were used in conjunction with the learned feature representation from a previously developed machine learning model using “discriminative cross-spectral factor analysis” (dCSFA) to calculate vulnerability scores (Electome Factor 1) [21]. The LFP oscillations obtained from our experimental mice were projected into the space of the Electome Factors that were previously learned as previously described [21].
Single cell library preparation and sequencing
Single cell libraries were generated using the Chromium Next GEM Single Cell 3’ Kit v3.1 as per manufacturer’s instructions and sequenced using the Illumina NovaSeq6000 using 100 bp paired-end reads at the University of Iowa Institute of Human Genetics Genomics Division. Raw base call files were demultiplexed and FASTQ files were generated using the Cell Ranger program (10X Genomics).

Quality control, clustering and celltype identification
FASTQ files (N=168) were evaluated using FastQC (v0.11.7) and MultiQC (v1.5) to determine excellent sequencing quality (Phred score > Q30). The cellranger count function from Cellranger-6.0.0 was used to align the FASTQ files to the mouse reference genome (mm10; pre-built reference mm10-2020-A obtained from the 10X genomics website) and for feature quantification. The average number of reads per cell was ~ 97,000 reads (Supplementary Table 2). Cellranger aggr was performed with the argument ‘--normalize mapped ’ to aggregate the data. Data was subsequently loaded into RStudio (4.1.1) and processed using Seurat (4.1.1) for normalization, data reduction, clustering, and visualization. Briefly, high quality cells defined by percentage mitochondria < 10% [25] and total feature counts > 1000 were retained for downstream analysis. The SCTransform function was used to normalize the data and control for confounding sources of variation such as read depth and mitochondria percentage. Based on knee plots, 15 principal components were used to create a shared nearest neighbor graph. Cells were clustered into groups by optimizing a modularity function (Louvain algorithm, resolution 0.8, 10 random starts and 10 iterations). Data was visualized using t-distributed stochastic neighbor embedding (tSNE) plots. Doublets were identified using scDbfFinder (1.8.0) [26] and removed from the analysis. The number of doublets was ~ 2% which is consistent with the expected number of doublets for 10X single cell RNA-Seq as per manufacturer’s guidelines. Cluster identity was determined by cell type specific marker gene expression including glutamatergic neurons (Slc17a7 and Slc17a6), GABAergic neurons (Gad1 and Gad2), astrocytes (Aldoc and Apq4), mature oligodendrocytes (Mbp and Cldn11), oligodendrocyte precursors (Pdgfra), endothelia (Pecam1 and Sdc2a1), microglia (Tmem119), pericytes (Vtn), endothelia (Pecam1 and Sdc2a1) and vascular smooth muscle (Tagln). To further validate the identity of the cells in each cluster, the cell2cluster function from the scmap package (version 1.16.0) was used together with a prefrontal cortex (PL-ILA-ORB) reference dataset extracted from the 10X single cell RNAseq dataset from the Allen Brain Atlas [27]. Cells that were not consistent with the identity of their cluster were removed from the analysis. Similarly, a cluster that ambiguously co-expressed markers for endothelial and pericytes was also removed from the analysis.

Hierarchical clustering
Electome Factor 1 (EF1) score was used to calculate the Euclidean distance followed by hierarchical clustering using the complete-linkage method.

Differential gene expression
The differential gene expression analysis of the scRNA-seq results were limited to those animals having either high or low EF1 scores, excluding those with intermediate scores (Figure 1D). Only cell types with at least 10 cells per individual mouse was used for differential gene expression (DEG) analysis using corrected counts obtained from SCTransform as a recent study showed that this reduces false positive rates [28]. All mitochondria transcribed genes were removed prior to DEG analysis. Analysis was performed using ZINB-WaVE-DESeq2 workflow [29]. Size factors were computed using computeSumFactors [30]. Significance testing was performed using the likelihood ratio test to evaluate the effects of EF1 while controlling for sex as a covariate in the full model (~ EF1_level + Sex) and compared against the reduced model (~ Sex). Additional arguments included in the Deseq function were
useT=TRUE, minmu=1e-6, minRep=Inf and sfType="poscounts" as per recommendation in the DESeq2 and ZINB-WaVE vignettes and other studies [29, 31-33]. In order to assess the validity of the SINB-WaVE differential gene expression, the package DESingle [34] was also used for DEG analysis as it is comparatively as good or better in performance compared to other algorithms [35] and we have successfully used this method for DEG analysis in a previous study [36]. Genes with FDR < 0.05 were differentially expressed.

Gene Ontology analysis

Gene ontology analysis was performed using clusterProfiler (version 4.2.2) [37] to identify biological processes that were over-represented for genes that were differentially expressed. We also used SynGO [38] to identify over-representation of genes for biological processes and cellular components related to the synapse.

Gene Set Enrichment Analysis

Normalized gene expression counts from DESeq2 was used for gene set enrichment analysis (GSEA). Analysis was performed using GSEA (version 4.2.1) with the gene ontology biological processes dataset (C5) containing 7751 gene sets from the Molecular Signatures Database or using mitochondria reference dataset from the MitoCarta 3.0 [39]. Mouse gene symbols were remapped to their human orthologs using GSEA program and we also used the following settings: phenotype for permutation type, enrichment statistic was classic and metric for ranking genes was Singal2Noise.

Results

The overall goal of these experiments was to identify gene expression underlying a previously defined stress-vulnerability brain state, a brain state recognized to predispose animals to manifesting a depressive phenotype following stress [21]. A neurophysiological metric of the stress vulnerability state was used, Electome Factor 1, characterized by local field potential (LFP) features spanning seven brain regions: prelimbic (PrL) and infralimbic (IL) cortices, nucleus accumbens (NAc), basolateral (BLA) and central (CeA) amygdala, ventral hippocampus (Vhipp), and ventral tegmental area (VTA). A complete set of these features is outlined in Figure 1B and Supplementary Figure 2. Having previously established that the strength of this network signature can be measured over time using a subset of just five brain regions, in the current study we implanted 6 male and 6 female C57BL/6 animals in NAc, BLA, CeA, VTA, and vhipp [21]. We carried out a forced interaction test (FIT) and calculated Electome Factor 1 using a previously developed method of projecting new data onto our previously developed stress Electome Factor features (Figure 1A, B) [21]. We then dissected prefrontal cortex (PFC), which included PrL and IL for single cell RNA-Seq.

In order to identify differential gene expression differentially regulated between animals with high and low stress-vulnerability electrical brain network activity (Electome Factor 1), we clustered Electome Factor 1 scores using a hierarchical clustering method (Figure 1D). We identified three animals with the lowest Electome Factor 1 scores (i.e. corresponding with more stress-resistance) and four animals with the highest Electome Factor 1 scores (i.e. corresponding to the more stress-vulnerable, Figure 1E). Electome Factor 1 scores over time on the forced interaction test (FIT) are shown in Figure 1C.

Identification of cell types in the PFC

Single cell analysis identified clusters corresponding to nine major cell types in the PFC (Figure 2A-B, Supplementary Figure 5). Their distribution was not influenced by factors such as sex, EF1 score and
experimental dates (Figure S6). The proportion of these cell types were similar between males and females (Figure 2C) and is in line with other studies [40, 41]. While the proportion of these cell types did not differ between high and low EF1 groups, GABAergic neurons had a significantly higher proportion (FDR < 0.05) in EF1 high group compared to EF1 low group (Figure 2D).

Single Cell Gene Expression Analysis

To evaluate how genes are differentially regulated in the PFC of high and low EF1 groups, differential gene expression was performed on cell types which have a minimum of 10 cells for all samples (Supplemental Table 3). Analysis was performed using the zero-inflated negative binomial model (ZINB)-WaVE+ DEseq2 workflow. ZINB-WaVE is a flexible scRNA-Seq signal detection method that has been shown to provide accurate and stable representations of data at low dimensions, while eliminating the need for preliminary normalization [33]. To limit the influence of technical variation in the analysis, mitochondrial derived genes were removed from the data and we used counts corrected for mitochondria percentage obtained from SCTranform for the analysis.

Glutamatergic neurons had the greatest number of significant differentially expressed genes, with 838 genes significantly more highly expressed in the PFC of mice with high EF1 scores, (Table 1, Figure 3A, Supplemental Table S7). Gene ontology (GO) analysis of these genes showed significant over-representation in biological processes including mRNA processing, respiratory processes and mitochondria related processes (Figure 3B and Supplemental Table 5). In contrast, 548 were significantly more highly expressed in mice with low EF1 scores. Analyses by GO showed significant over-representation in biological processes involved with synapse organization and regulation (Figure 3C and Supplemental Table 5). To further support this result, we performed gene set enrichment analysis (GSEA), which is a threshold-free approach to identifying changes in biological processes between groups [42]. Consistent with the GO analysis, mice with high EF1 scores were significantly enriched for biological processes involved in respiratory and mitochondria related processes (Supplementary Figure S10). Mice with low EF1 score did not have significant enrichment for biological processes after correction for multiple testing. The top enrichment terms that trended towards significance included neuronal and synapse related function such as synaptic transmission of glutamatergic (FDR = 0.065), synapse assembly (FDR = 0.066) and glutamatergic receptor signaling pathway (FDR = 0.075).

The cell type with the second-highest number of DEGs was astrocytes. There were 341 genes significantly highly expressed in mice with high EF1 (Table 1, Figure 4A). GO analysis showed significant over-representation of these genes in biological processes including ribosomal and mitochondria related processes (Figure 4B and Supplemental Table 5). Conversely, there were 221 genes significantly highly expressed in mice with low EF1 scores. Analysis by GO showed over-representation of these genes in neuronal related processes including various synaptic processes, regulation of synapse, neurotransmitter secretion and transport (Figure 4C, Supplemental Table 5). In line with the GO analysis, GSEA also showed significant enrichment of respiratory, and mitochondria related processes in the high EF1 group (Supplementary Table 5). GSEA also supported the findings of the GO analysis in the low EF1 group, as there was significant enrichment of neuronal related processes including synapse organization, assembly and synapse signaling (Supplemental Table 5).

Differential gene expression analysis of GABAergic neurons identified 242 genes that were significantly more highly expressed in the high EF1 mice (Table 1, Figure 3D). As with analyses of glutamatergic neurons and astrocytes, analysis of genes significantly more highly expressed with EF1 in GABAergic neurons by GO revealed significantly over-representation of these genes in biological processes involved in cellular respiration, oxidation, metabolism and mitochondria related processes (Figure 3E,
Supplemental Table 5). By comparison, there were 140 genes significantly highly expressed in the low EF_1 group. Biological processes evaluated by GO analysis showed significant over-representation of these genes in neuronal related processes including axonogenesis, synapse organization and assembly, ion transport and cognition (Figure 3F, Supplemental Table 5). This result was also verified by GSEA which showed significant enrichment of terms for the high EF_1 group which includes cellular respiration and mitochondria related processes (Supplemental Table 5). Similarly, the low EF_1 group showed significant enrichment for neuronal related processes such as regulation of synapse function, synapse assembly and synapse organization (Supplemental Table 5).

Differential gene expression was performed on microglia, which showed 46 genes significantly more highly expressed in the high EF_1 group (Table 1, Figure 4D). While GO showed over-representation of these genes in processes involved in the endoplasmic reticulum stress response and synapse pruning, it also highlighted processes involved in proinflammation such as cellular response to IL7, lymphocyte mediated immunity and regulation of actin filament organization (Figure 4E, Supplemental Table 5). In contrast, there were 77 genes with significantly higher expression in the low EF_1 group. Analysis by GO showed a significant over-representation of these genes in processes involved in the regulation of synapse activity including synapse vesical cycle, synapse vesical cycle, synaptic vesical endocytosis and regulation of neurotransmitter levels (Figure 4F, Supplemental Table 5). In addition to GO analysis, GSEA also observed significant enrichment of cellular respiration and mitochondria related function in the high EF_1 group (Supplemental Table S5 and Supplementary Figure S10). By comparison, the low EF_1 group had significant enrichment of processes involved in neuronal processes such as the generation of neurons, developmental growth, and neurogenesis (Supplemental Table 5 and Supplementary Figure S10).

Finally, we also evaluated differential gene expression of mature oligodendrocytes. We observed 23 genes that were significantly highly expressed in the high EF_1 group (Table 1, Figure 4G). Analysis by GO showed over-representation in processes involved in protein folding (Figure 4H). By comparison, there were 37 genes significantly highly expressed in the low EF_1 group (Figure 4I) which were over-represented in processes involved in neuronal transmission processes including neurotransmitter secretion, signal release from synapse and regulation of neurotransmitter levels. GSEA analysis showed significant enrichment in processes involved in cellular respiration, metabolic processes and mitochondrial function for the high EF_1 group (Figure and Supplemental Table 5). In contrast, there was an enrichment of neuronal processes including cell signaling, neuron generation and development (Figure and Supplemental Table 5).

Given that mitochondria related function was enriched in the high EF_1 group across all cell types, we sought to further scrutinize this result by performing GSEA using a curated mitochondria dataset from MitoCarta which is a database that catalogs mitochondria related proteins and pathways [39]. We reasoned that if our findings of mitochondrial significance were truly specific to the high EF_1 state, we would only see mitochondrial enrichment in pathways for the high EF_1 group and not for the low EF_1 group. GSEA showed enrichment of mitochondria related pathways in all five cell types mentioned above in the high EF_1 group. There was however no enrichment in the low EF_1 group. (Supplemental Table 6).

Validation of differential gene expression analysis
To verify that our approach of using ZINB-WaVE + DEseq2 analysis to identify differentially expressed genes is sound, we performed differential gene expression analysis using an independent program DESingle, an R package that utilizes a zero-inflated negative binomial model to distinguish between actual zero expression and technical dropout zeros for the detection of various DEGs in scRNA-Seq data.
with improved accuracy [34]. Not only did the DEGS detected by DESingle align with ZINB-WaVE + DEseq2 in terms of the ranked quantity of DEGs detected by cell-type (Table S10, Figure S9), but the DEGs identified from the ZINB-WaVE + DEseq2 also largely overlapped with those detected by DESingle analysis (Figure 5). Using DEGs detected by DESingle, GO analysis of genes more highly expressed in the high EF1 group showed similar over-representation of biological processes as reflected in our initial analysis including metabolism and mitochondria related processes (Supplementary Figure S10, Supplemental Table 13) for glutamatergic neurons, GABAergic neurons, and astrocytes. By comparison, GO analysis of genes more highly expressed in the low EF1 group showed over-representation in processes involved in synaptic functions including synapse organization, assembly, axonogenesis, and synaptic vesicle cycle for all the cell types (Supplementary Figure S10, Supplemental Table 13).

When GO analysis was performed using genes that overlapped between both analysis methods, we observed a similar result whereby genes more highly expressed in the high EF1 group were over-represented in processes such as cellular respiration and mitochondria processes for glutamatergic neurons, GABAergic neurons and astrocytes (Supplementary table 14). There was also an over-representation of these genes in ribosomal processes in astrocytes. For microglia, there was over-representation of genes involved in proinflammation and immunoactivation processes including positive regulation of tumor necrosis factor, antigen processing and presentation of peptide antigen, positive regulation of interleukin 6 and positive regulation of phagocytosis (Supplementary table 14). In contrast, genes more highly expressed in the low EF1 group were over-represented for processes involved in regulation of neuronal or synaptic activity in all major cell types (Supplementary table 14).

Given our analysis had shown enrichment for processes involved in synapse regulation in the low EF1 group across all cell types, we sought to validate this further by performing an over-representation analysis using SynGO - a database containing expert curation of genes/proteins pertaining to the ontologies for the synapse [38]. Consistent with our GO and GSEA analysis, we observed significant over-representation of genes highly expressed in the low EF1 group for biological processes and cellular components related to synapse function for all cell types. In contrast, this over-representation was observed to a lesser degree of not observed for genes more highly expressed in the high EF1 group for the different cell types.

Comparison of differentially expressed genes with those from chronic stress paradigm
Since vulnerability increases the risk for susceptibility to chronic stress, we sought to compare our data to post-stress bulk RNA-Seq data from the PFC. Our rationale was that identifying genes that are more highly expressed in a pre-stress vulnerability brain state may help to identify which genes are already differentially regulated prior to stress and thus more likely to be causal than compensatory to the effects of stress. Specifically, we compared how genes more highly expressed in high EF1 mice would compare with DEGs obtained from the PFC of mice that are susceptible to chronic social defeat stress (CSDS) vs. those that are resilient [9]. To do this, we used previously published data from Bagot at al., which evaluated post-stress transcriptional differences in gene expression between susceptible and resilient animals at three time points: 48 hours after chronic stress, 28 days after chronic stress, and 28 days plus one hour after an additional bout of stress. We observed few DEGs that overlap with our dataset for susceptible mice that were assessed 48 hours after CSDS. However, at 28 days after CSDS, we observed 11 genes for glutamatergic neurons, 6 for GABAergic neurons, 31 for astrocytes and 2 genes for mature oligodendrocytes that overlapped with our dataset (Supplemental Table 7, column K). Analysis by GO for the overlapping genes in glutamatergic neurons and astrocytes showed over-representation of these genes in ribosomal processes (Supplemental Table 7). In contrast, there was
little to no overlapping genes with mice primed with previous CSDS exposure and that underwent an additional session of CSDS.

Discussion

Here we have implemented a novel approach combining multi-site in vivo neurophysiology with single cell transcriptomics to provide what to our knowledge is the first single cell resolution molecular characterization of a stress vulnerability brain state. We focused our study on the PFC both because of our previous findings of the importance of the PFC to the electrical network (EF1) defining the latent vulnerability state and because of the important role that the PFC plays in regulating stress responses, which suggested to us that understanding its gene regulation in an early stress-vulnerable state may be particularly illuminating [21, 43]. Notably, the differential gene expression identified here does not represent a response to a stressor or molecular manipulation but rather endogenously pre-existing differences between brains with more or less stress vulnerability electrical brain network activity. Nonetheless, we identified robust gene expression differences in these endogenous high and low EF1 activity states across all five of the major cell types we examined.

Beyond the effects observed across all cell types, several observations pointed toward a particular contribution of GABAergic cells to the stress vulnerability brain state defined by EF1. For one, GABAergic cells were the only population of cells with significantly different percentage representation between high and low EF1 groups (Figure 2D). When considering the overall contribution of different cell types to EF1 scores, we used a Gaussian Process model with principal component values for each cell type. While we observed a similar strength of the correlation between EF1 activity and the first two principal components of gene expression of most cell types, GABAergic cells demonstrated a notably stronger relationship than the rest (Supplemental Methods and Results, Supplemental Table 16 and Supplementary Figure S16). This finding suggests that GABAergic neurons of the PFC may be the cell type with the most robust contribution to a given animal’s EF1 score, and thus, predictive of their pre-stress vulnerability. Given the important role that inhibitory interneurons have been demonstrated to have both in regulation of LFPs, and in stress response and susceptibility, these results were not surprising.

Many rodent studies have shown that early life experiences and adverse exposures can impact GABAergic processes in the PFC, including maturation [44], inhibitory circuit development with the BLA and associated perineuronal net formation [45], and the programming of GABA transmission [46]. Along these lines, it has been found that chronic stress affects both the structure and function of prefrontal GABAergic networks [47, 48], with certain GABAergic sub-types showing enhanced vulnerability to stress [49]. Interestingly, and in further support of this point, we found trending differences in observed percentage of two GABAergic neuron sub-types: Pvalb and Vip, according to high and low EF1 score (Figure S8). Furthermore, there is myriad additional evidence supporting GABAergic neuronal features playing an important role in mediating stress resilience and susceptibility such as expression level of specific GABA receptors [50], signaling peptides [51], and subtypes [17], as well as interactions with the stress response pathway [52] [53] and the gut-vagus-brain pathway [54]. Although the aim of this study was to evaluate PFC cell-type specific gene expression in relation to a brain-wide network signature of pre-stress latent vulnerability, the broad association of GABAergic neurons in the PFC with stress and behavior provides considerable support for GABAergic neurons being a key contributor to EF1 activity.

Generally, however, the overall data suggests that it is the coordination of gene expression coming from multiple cell type network components and not one in particular that are responsible for generation of
the $EF1$ network. Given the important role of multi-brain region networks in both transcriptional and neural activity regulation of stress states [9, 21], future studies will be aimed at further mapping across multiple brain region states.

In line with this idea of coordinated multicellular network contributions to the vulnerability brain state, our analysis further showed distinct differences in function of different cell types between mice of opposing levels of stress-vulnerability. The PFC of mice which were more likely vulnerable to stress, as reflected by their high $EF1$ score, were enriched in processes such as cellular respiration, ribosomal function, mitochondria activity, and microglia activation. In contrast, mice which demonstrate less stress vulnerability brain activity (i.e. lower $EF1$ scores) have cell transcriptional states involved in synaptic processes for neuronal activity across all cell types.

While the number of studies that have broached studying this latent vulnerability state is small, there are several studies of note in the context of which we interpret our findings. These studies include identification of a stress vulnerability state via behavioral, neural circuit, and peripheral identifiers [55-58]. Encouragingly, our findings are largely consistent with the findings in these studies. For example, a previous study showed that IL-6 levels from peripheral blood or by ex vivo stimulation of leukocytes could predict susceptibility or resilience to a subsequent stressor. By replacing the peripheral immune system in stress-naïve mice with those from stressed animals, this could increase their susceptibility to repeated social defeat stress [55]. While this study addresses induction of vulnerability peripherally and our study measures gene expression in the PFC, our data are consistent with this picture of increased immune response in the latent stress vulnerable state. We observed gene expression consistent with increased activity of microglia, the cells of the brain resident immune system. We observed gene expression altered toward proinflammation and immune activation in mice with high $EF1$ activity. Many studies have shown that negative stressors can induce microglia activation (PMID: 31847911) which can rewire and impair neurocircuits [59, 60] and is linked with various psychiatric disorders [61, 62]. To our knowledge, this is the first study to report microglia activation in the brain (and specifically PFC) of stress-naïve vulnerable mice. However, regulation of microglia in PFC following chronic social defeat stress has been linked to stress susceptibility [63]. Also, many studies of prenatal stress or early life adversity, which are often precursors to a vulnerable state, are consistent with our findings suggesting an important role for activated microglia in conferring vulnerability to stress [64-67].

In addition to microglia activation, our data also highlighted altered cellular respiration and mitochondria activity across all cell types in mice with high $EF1$ activity. While we had removed all mitochondrial derived genes from our analysis, there are genes involve in mitochondria function that are derived from the nucleus [68]. Mitochondria provide the energy that fuels enzymatic reactions for neuronal processes, which can affect stress response and behavior [69]. For example, a study where C57BL/6J mice were substituted with mitochondria containing a mutation that leads to the increased production of reactive oxygen species resulted in altered stress response, anxiety-like behavior and altered corticosterone regulation [70]. Other studies have also linked mitochondria dysfunction to depression and other mood and psychiatric disorders where stress frequently plays an important role [71-74]. Gene expression studies of major depressive disorder have link mitochondrial gene expression in the PFC with depression [75]. In fact, a mitochondrial metabolite has been identified that significantly alters neuroplasticity in the PFC and hippocampus, with promising data suggesting its as a therapeutic target for depressive disorders [76-78]. Follow up studies have found that factoring in mitochondrial and
metabolic measures alongside early life stress experience can enhance prediction of antidepressant response [79].

Importantly, recent studies have linked mitochondria function to stress susceptibility [80-82]. For example, mice exposed to chronic mild stress showed that susceptible and resilient mice had different expression of proteins involved in the mitochondria respiratory chain and mitophagy markers in the ventral hippocampus [82]. Similarly, a genome-wide study of gene expression in the PFC and NAc revealed that mice exposed to multimodal chronic stress had altered expression of mitochondria genes in the PFC of susceptible mice and the mitochondria gene expression profile correlated with behavior in these mice [83]. Given that these studies highlight the role of mitochondria in regulating behavior, our finding that respiratory and mitochondria processes are being upregulated in mice with high EF1 activity suggests that altered mitochondria could contribute to vulnerability to stress prior to stress exposure.

Given that our differential gene expression profile is connected to stress vulnerability, we wanted to evaluate how this would correspond with gene expression profiles of mice that were susceptible to stress after stress exposure. Although we saw a few overlapping genes between our data set and those of Bagot et al [9], one possible explanation for this could be due to comparison our single-cell resolution findings to data collected from bulk RNAseq dataset. In line with this, we saw overlaps in DEGs from the two cell types (glutamatergic neurons and astrocytes) with the most numbers of cells. It is also possible that the differences and similarities from the two gene sets are biologically significant, comparing the latent vulnerability state in animals that have not experienced chronic stress to those who have. No doubt there are many compensatory changes that happen in response to stress that manifest as a depressive state. It is possible that the overlapping genes between our two datasets point to genes that are pre-existing causal genes in the development of a depressive phenotype (Supplemental Table S7, column K). Interestingly, we observed little to no overlap when comparing with mice that had a recent stress exposure. However, we did observe more overlapping genes at a time further from the stress exposure (28 days post chronic social defeat). From these overlapping genes, we observed enrichment for ribosomal processes, which is consistent with a previous study that observed dysfunction in ribosomal gene expression in mice exposed to chronic social defeat stress in other brain regions [84]. Overall, these finding largely suggest that genes involved in stress vulnerability could be distinct from those altered by stress in susceptible animals.

In summary, this is the first study that has attempted to identify cells, transcriptional architecture, and biological processes involved in latent stress vulnerability in the PFC, an important regulatory hub in the brain involved in the development of stress-susceptible phenotypes. To do this, we used a novel approach of leveraging electrical brain-wide network activity (i.e. elevated EF1 activity) from multi-site in vivo recordings combined with single cell RNA-Seq to start to unravel the complex interplay of different cell types in mediating this brain state. While our study suggests that all major cell types are involved in the process, it highlights the importance of GABAergic neurons in this process and also sheds light on how microglia and mitochondrial activity could be involved in the development and maintenance of this brain state.

Acknowledgements

This work was supported by a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (Rainbo Hultman). Additionally, this project received funding by 1DP2MH126377-01 (Rainbo Hultman), the Roy J. Carver Charitable Trust (Rainbo Hultman), and NINDS T32NS007124 (Yassine Filali and Micah Johnson). We would like to thank Jens Hjerling-Leffler and Hayley French for shared technical expertise. We thank Julia Miller for early technical support, and Neil Gallagher, Ted Abel, and Thomas
Nickl-Jockschat for helpful conversations. We thank the Iowa Institute of Human Genetics Genomics Division for training and use of equipment.

Figure Legends

Figure 1. Sorting animals by vulnerability brain states A) Experimental overview: from left to right implantation of multi-site in vivo electrodes, electrical recordings during forced interaction test (FIT) to measure Electome Factor 1 stress vulnerability network, single cell RNA-Seq, bioinformatic data analysis. B) LFP features of Electome Factor 1 C) Electome Factor 1 activity over time on FIT average of high (blue) and low (pink) clustering animals in bold with SEM in light blue and pink, respectively. D) Electome Factor 1 score clusters: low (pink), medium (green), and high (blue).

Figure 2. Single cell RNA-Seq cell type distributions A) t-distributed stochastic neighbor embedding (t-sne) plot of cells isolated from prefrontal cortex (PFC) from electrode-implanted animals. B) violin plot of cell-type specific markers C) cell type distribution by sex D) percentage cell types by high and low Electome Factor 1 network activity scores.

Figure 3. Differential Gene Expression and Gene Ontology Analyses in neurons Differential gene expression analysis conducted using ZINB-WaVE with sex as a covariate: A) volcano plot of differential gene expression between high and low Electome Factor 1 (stress vulnerability) scores in glutamatergic neurons B) gene ontology (GO) analysis for genes upregulated with high/lower Electome Factor 1 scores in glutamatergic neurons C) gene ontology (GO) analysis for genes downregulated with high/lower Electome Factor 1 scores in glutamatergic neurons D) volcano plot of differential gene expression between high and low Electome Factor 1 (stress vulnerability) scores in GABAergic neurons E) gene ontology (GO) analysis for genes upregulated with high/lower Electome Factor 1 scores in GABAergic neurons F) gene ontology (GO) analysis for genes downregulated with high/lower Electome Factor 1 scores in GABAergic neurons.

Figure 4. Differential Gene Expression and Gene Ontology Analyses in glial cells Differential gene expression analysis conducted using Zinbwave with sex as a covariate: A) volcano plot of differential gene expression between high and low Electome Factor 1 (stress vulnerability) scores in astrocytes B) astrocyte GO paths upregulated with higher EF1 scores C) astrocyte GO paths upregulated with lower EF1 scores D) volcano plot of differential gene expression between high and low Electome Factor 1 (stress vulnerability) scores in microglia E) microglia GO paths upregulated with higher EF1 scores F) microglia GO paths upregulated with lower EF1 scores G) volcano plot of differential gene expression between high and low Electome Factor 1 (stress vulnerability) scores in mature oligodendrocytes H) mature oligodendrocyte GO paths upregulated with higher EF1 scores I) mature oligodendrocyte GO paths upregulated with lower EF1 scores.

Figure 5. Validation of ZINB-Wave Findings using DESingle For each cell type, from left to right is shown Venn Diagrams of overlapping genes between ZINB-Wave and DESingle, upregulated with EF1 (left), downregulated with EF1 (right), GSEA pathway analysis for enriched in genes with high EF1 (left), enrichment in genes for low EF1 (right). Data are show for A) glutamatergic neurons B) astrocytes C) GABAergic neurons D) microglia and E) mature oligodendrocytes.

Tables

Table 1. Differentially expressed genes identified by ZINB-Wave
<table>
<thead>
<tr>
<th>Cell Type</th>
<th>up with high EF1</th>
<th>up with low EF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocytes</td>
<td>341</td>
<td>221</td>
</tr>
<tr>
<td>GABAergic Neurons</td>
<td>242</td>
<td>140</td>
</tr>
<tr>
<td>Glutamatergic Neurons</td>
<td>838</td>
<td>548</td>
</tr>
<tr>
<td>Mature Oligodendrocytes</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>Microglia</td>
<td>46</td>
<td>77</td>
</tr>
</tbody>
</table>
References

