
Page 1 

 

TreeGOER: a database with globally observed environmental ranges for 48,129 tree species 1 

Roeland Kindt 2 

R.Kindt@cifor-icraf.org  3 

https://orcid.org/0000-0002-7672-0712  4 

 5 

Trees and forest genetic resources and biodiversity, World Agroforestry, CIFOR-ICRAF 6 

Correspondence: World Agroforestry (ICRAF), PO Box 30677, Nairobi 00100, Kenya 7 

 8 

Abstract 9 

The BIOCLIM algorithm provides a straightforward method to estimate the effects of climate change on the 10 

distribution of species. Estimating the core ranges of species from 5% and 95% quantiles of bioclimatic 11 

variables, the algorithm remains widely used even when more sophisticated methods of species 12 

distribution modelling have become popular. Where sufficient representative observations are available, I 13 

expect that BIOCLIM correctly identifies locations that would not be suitable in a future climate. To 14 

accommodate climate change investigations based on BIOCLIM for 48,129 tree species (a substantial subset 15 

of known tree species), I developed the TreeGOER (Tree Globally Observed Environmental Ranges) 16 

database, providing information on environmental ranges for 38 bioclimatic, 8 soil and 3 topographic 17 

variables. The database can be accessed from: https://doi.org/10.5281/zenodo.7922928. Statistics that 18 

include 5% and 95% quantiles were estimated for a cleaned and taxonomically standardized occurrence 19 

data set with different methods of outlier detection, with estimates for roughly 45% of species being based 20 

on 20 or more observation records. Inferred core bioclimatic ranges of species along global temperature 21 

and moisture index gradients and across continents follow the known global distribution of tree diversity 22 

such as its highest levels in moist tropical forests and the ‘odd man out’ pattern of lower levels in Africa. To 23 

demonstrate how global analyses for large numbers of tree species can easily be done in R with 24 

TreeGOER, here I present two case studies. The first case study investigated latitudinal trends of tree 25 

vulnerability and compared these with previous results obtained for urban trees. The second case study 26 

focused on tropical areas, compared trends in different longitudinal zones and investigated patterns for the 27 

moisture index. TreeGOER is expected to benefit researchers conducting biogeographical and climate 28 

change research for a wide range of tree species at a variety of spatial and temporal scales. 29 
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1 Introduction 31 

 32 

Trees are of immense importance to ecological systems, the global economy and to human livelihoods and 33 

wellbeing (Di Sacco et al., 2021; Rivers et al., 2022). At least a quarter of known tree species have been 34 

documented to be useful (Kindt et al., 2023), whereby they provide the matrix of many terrestrial 35 

ecosystems, define agroforestry systems and play key roles in climate regulation through carbon and water 36 

cycling (Keppel et al., 2021; van Noordwijk et al., 2021). Given their importance and the ensuing climate 37 

change crisis (Ripple et al., 2017; Lyon et al., 2021), it has become essential to anticipate the effects of 38 

climate change on their future suitability. Estimating the future suitability of tree species is not only 39 

relevant to devise adaptation strategies for trees in forests and agroforestry systems (Meybeck et al., 40 

2021), but also provides insights in mitigation pathways by linking assemblages of future-suitable species 41 

with their carbon sequestration potentials (Jucker et al., 2022; Rius et al., 2023; Duguma et al., 2023). It is 42 

equally important that massive ecological restoration initiatives such as the UN Decade on Ecosystem 43 

Restoration or the Bonn Challenge (Chapman et al., 2020; Höhl et al., 2020; van Noordwijk et al., 2020) 44 

factor in climate change effects – this has been explicitly included in the International Principles and 45 

Standards for the Practice of Ecological Restoration via Principle 3 that “Ecological Restoration Practice Is 46 

Informed by Native Reference Ecosystems, while Considering Environmental Change” (Gann et al., 2019). 47 

To estimate the suitability of tree species in future climates, species distribution models (SDMs) need to be 48 

calibrated, and to calibrate these models, observations are required that represent the range of 49 

environmental conditions under which a species can occur. Booth (2018) has argued that for most tree 50 

species, the only option to learn about climate change impacts are correlative SDMs such as models 51 

described by Guisan et al. (2017). For each tree species, presence observations are therefore required 52 

which ideally should characterize the full range of environmental conditions where a species can occur.  53 

GlobalTreeSearch (GTS) was the first global database aimed at listing all known tree species and is updated 54 

regularly (Beech et al., 2017; https://tools.bgci.org/global_tree_search.php). GTS uses the tree definition of 55 

IUCN’s Global Tree Specialist Group of “a woody plant with usually a single stem growing to a height of at 56 

least two metres, or if multi-stemmed, then at least one vertical stem five centimetres in diameter at breast 57 

height”. GTS excludes hybrid species, cycads, tree ferns and tree-like Poaceae, Bromeliaceae and Musaceae 58 

species. Updated regularly, the most recent downloadable version listed 57,958 species (version 1.6 of April 59 

2022). Searching for available occurrence records for all known tree species, Serra-Diaz et al. (2017) found 60 

49,206 tree species with available records from which they retained 15,140 species with at least 20 records 61 

after data cleaning. Keppel et al. (2021; see their Appendix S3) compiled a global standardized list of 58,044 62 

tree species informed partially by GTS version 1.4. Their analysis of georeferenced records available in GBIF, 63 

the largest database of occurrence data available among those they analyzed, showed that 48,970 species 64 

(84.4%) had at least one record. 65 

Achieving acceptable SDM calibrations requires a minimum number of observation records, with this 66 

number of records widely debated. Results obtained from Wisz et al. (2008) suggest that a minimum of 30 67 

records are required in combination with superior modelling algorithms to achieve acceptable SDM 68 

calibration results. Van Proosdij et al. (2016) in an African study documented lower limits that ranged from 69 

14 for narrow-ranged to 25 for widespread species. Varela et al. (2014) suggest that for optimal 70 

performance of non-filtered data, 50 observations may be required but that environmental filtering results 71 

in smaller required sample sizes (but obviously filtering requires a larger initial sample size). A substantially 72 

higher number of records is suggested by Feeley and Silman (2011) as a consequence of the spatio-73 

temporal aggregation of collections, with their observation that time-sequenced collections of 75-100 74 

occurrences was on average equivalent to 25 randomly subsampled occurrences. Santini et al. (2021) when 75 

assessing the reliability of SDM in climate change research made the argument to use large sample sizes 76 
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(tentatively 200 – 500 points) because of uncertainties for most species about ecologically-meaningful 77 

predictor variables, biases in sampling and questions whether a species was in equilibrium with its 78 

environment. 79 

Although studies such as Elith et al. (2006) and Wisz et al. (2008) found that more sophisticated SDM 80 

algorithms such as MAXENT or boosted regression trees outperformed BIOCLIM, this pioneering method 81 

remains widely used, especially through the concept of bioclimatic variables that it developed (Booth, 82 

2018). BIOCLIM also remains to be used within the context of ensemble modelling frameworks (Marmion et 83 

al., 2008; Kindt, 2018; Brummit et al., 2020). One of its utilities comes from mapping areas where different 84 

algorithms reach consensus that a species would be suitable, thus showing areas with which the easily-85 

understood BIOCLIM agrees. A recent example of using a BIOCLIM algorithm to infer the effects of climate 86 

change is the global study of urban tree vulnerability by Esperon-Rodriguez et al (2022); this study will be 87 

discussed in further detail among the case studies. The Climate Assessment Tool of Botanic Gardens 88 

Conservation International that was launched near the end of 2022 (https://www.bgci.org/resources/bgci-89 

hosted-data-tools/climate-assessment-tool/) also uses a version of the BIOCLIM algorithm, but modified 90 

the system to identify locations near the edge of the known distribution through 1% - 10% and 90% - 99% 91 

percentile ranges, whereas the default BIOCLIM algorithm uses 5%- 95% quantile ranges to identify the 92 

core bioclimatic domain, and minimum – 5% and 95% - maximum ranges to define marginal bioclimatic 93 

domains (e.g., Lindenmayer et al., 1996). 94 

Hijmans and Graham (2006) did not recommend using BIOCLIM for climate change investigations and 95 

instead endorsed more complex algorithms such as generalized additive models (GAM) and maximum 96 

entropy models (MAXENT). However, their arguments (as in their discussion of their Figure 3) combined 97 

issues of sample sizes and representative sampling besides methodological differences between 98 

algorithms. They stated that “Bioclim can be used as a conservative approach, for example, in the context of 99 

reserve planning. It will likely underestimate future ranges, but there is a high probability that areas 100 

identified as suitable for a species will be correctly identified”. My opinion is that BIOCLIM may instead 101 

overestimate future ranges compared to other algorithms (such as GAM and MAXENT). I illustrate my 102 

argument via Figure 1 where the environmental niche of a species has an ellipsoid shape as used in 103 

previous theoretical discussions as by Hijmans and Graham (2006), Etherington (2019) or Erickson and 104 

Smith (2023). The same arguments can be made, however, for niches with convex or concave hull shapes, 105 

as used for example in climate change studies by Pironon et al. (2019) or van Zonneveld et al. (2023). With 106 

a large enough sample size where more complex model calibrations can approximate the true ellipsoid 107 

niches well, the BIOCLIM algorithm tends to overestimate suitable conditions in the zones labelled as ‘B1’ in 108 

Figure 1. If one further accepts the additional condition for more complex approaches, that for each 109 

individual explanatory variable the conditions at the tails of the distribution should not be predicted to be 110 

suitable (put alternatively, accepting the ecological justification of the BIOCLIM algorithm and deciding not 111 

to include marginal bioclimatic conditions), then zones labelled as ‘B2’ in Figure 1 would be modelled as not 112 

being suitable regardless of the SDM. The overprediction of suitable conditions in the ‘B1’ zones by 113 

BIOCLIM becomes more prominent in situations where environmental variables are more strongly 114 

correlated (Figure 1a), whereas where variables are correlated less most of the suitable area predicted by 115 

BIOCLIM corresponds to the ‘A’ zone (Figure 1b).  116 

A general practice when calibrating species distribution models is to select explanatory variables that are 117 

correlated less with methods such as the Variance Inflation Factor analysis (Ranjitkar et al., 2014; de Sousa 118 

et al., 2019; Fremout et al., 2020). The justification for these selections come from modelling complications 119 

such as overfitting and required sample sizes that multiply with the number of variables used (Erickson and 120 

Smith 2023). A shortcoming of selecting a subset of less-correlated variables, however, is that correlations 121 

may be different in future climates and that therefore different subsets of variables could generate 122 

different future projections (Braunish et al., 2013). My observations from Figure 1 seem to point in a similar 123 
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direction that using a larger set of more-correlated variables provides an advantage by allowing more 124 

complex algorithms to correctly identify the ‘B1’ zones that BIOCLIM fails to identify as unsuitable. 125 

For smaller or biased samples, I partially agree with Hijmans and Graham (2006) that BIOCLIM may 126 

underestimate future ranges (agreeing only partially as at the same time, BIOCLIM could continue to 127 

overestimate ranges in the ‘B1’ zones). But in these situations, one may also require that more 128 

sophisticated algorithms do not extrapolate beyond observed ranges depicted by the grey rectangle in 129 

Figure 1 (and see also discussions on SDM transferability as by Charney et al. (2021) for American tree 130 

species). Consequently, also the more sophisticated models would then be expected to underestimate the 131 

future range. (That more sophisticated models may extrapolate is a phenomenon that we experienced 132 

when developing a Climate Change Atlas for Africa (https://atlas.worldagroforestry.org/), where 133 

extrapolation from ensemble suitability models tended to result in large area differences if allowed. 134 

Realizing this, we included different versions of maps where extrapolations were allowed and where they 135 

were not, so that users would be aware of such differences.) 136 

In conclusion, where sample sizes and their representation approximate the true 90% ranges of a particular 137 

species, I would expect that the BIOCLIM algorithm can be used as a quick but incomplete filter to identify 138 

species that are not suitable (occurring outside the ellipsoid and 90% interval) at a location under baseline 139 

or future conditions. The filter is incomplete by correctly identifying unsuitable species but failing to 140 

identify a larger set of unsuitable species, with more failures to be expected in situations where 141 

correlations between explanatory variables are high. 142 

In the next sections, I will describe the TreeGOER database that allows implementation of the BIOCLIM 143 

method for nearly 50,000 tree species. I will also illustrate how the database can be used in two global 144 

investigations of the effects of climate change. 145 
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 147 

FIGURE 1 148 

Comparison of environmental niches estimated by BIOCLIM and by an ellipsoid-fitting model where the 149 

species’ fundamental niche is elliptically-shaped following a multivariate normal distribution (a) with 150 

relatively high correlation between explanatory variables and (b) with relatively low correlation. The 151 

distribution of observation points for each subfigure was generated using function MASS::mvrnorm 152 

similar to R scripts used by Etherington (2019) but with different covariance matrices and 200 observations 153 

in each simulation. Dashed lines correspond to 5% and 95% quantile limits and delineate the core 154 

bioclimatic niche that BIOCLIM identifies. The ellipsoid niche was estimated via 155 

ggplot2::stat_ellipse with level set at 0.90. ‘A’ indicates a zone where BIOCLIM and the 156 

ellipsoid-fitting model agree that the species is suitable, ‘B1’ a zone where only BIOCLIM predicts that the 157 

species is suitable, and ‘B2’ a zone where only the ellipsoid-fitting model predicts the species is suitable.    158 

  159 
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2 COMPILING THE DATABASE 160 

 161 

Presence observations 162 

Presence observations were processed from a recently (within the current decennium, March 2021) 163 

compiled data set of 44,267,164 occurrences from the Global Biodiversity Information Facility (GBIF; 164 

https://www.gbif.org/) that were collated by Keppel et al. (2021); their appendices S2 and S3) after they 165 

had compiled a list of 58,044 tree species that was informed by GlobalTreeSearch version 1.4. These 166 

occurrences are available from a GBIF occurrence download (GBIF.org 2021; 167 

https://doi.org/10.15468/dl.77gcvq). I selected this data set as GBIF was identified by Keppel et al. (2021) 168 

as holding the largest available occurrence data set for tree species. 169 

The data set was subjected to the following series of data quality checks, where records that did not satisfy 170 

listed criteria were removed. First, I retained records where information on geographic coordinates 171 

(‘decimalLongitude’ and ‘decimalLatitude’) were available. Second, records were removed where 172 

information was not available on the ‘basisOfRecord’ and where its value was ‘FOSSIL_SPECIMEN’. Third, 173 

records were removed where information on the collection year was not available. Fourth, observations 174 

with a collection year prior to 1946 were removed, following the suggestion of the documentation of the 175 

CoordinateCleaner package (version 2.0-20; Zizka et al., 2019) that GBIF records from and before the 176 

second world war period are often very imprecise. Fifth, records were only retained if the geographical 177 

coordinates corresponded to a terrestrial 30 arc-seconds (≈ 1 km at the equator) raster cell of the 178 

WorldClim 2.1 database (Fick and Hijmans, 2017). Sixth, records were removed if they were flagged by the 179 

CoordinateCleaner::clean_coordinates function for the ‘capitals’, ‘centroids’, ‘equal’, ’gbif’, 180 

‘institutions’, ‘zeros’ and ‘duplicates’ tests, thereby flagging records such as those corresponding to country 181 

capitals or duplicated coordinate records for the same species. 182 

A final series of data quality checks verified that the country location documented by GBIF in the 183 

‘countryCode’ field corresponded to the country location of Natural Earth (NE) ‘Admin 0 – Countries’ vector 184 

layers (first I created an ‘iso3c’ country code variable from the GBIF ‘iso2c’ country code via the 185 

countrycode package version 1.4.0). I retained all records where the countries matched for the 1:110 186 

million NE layer (https://www.naturalearthdata.com/downloads/110m-cultural-vectors/; version 5.1.1 187 

downloaded in September 2022). From the records where countries did not match, I retained all records 188 

where the countries matched for the NE 1:10m layer (https://www.naturalearthdata.com/downloads/10m-189 

cultural-vectors/; version 5.1.1 downloaded in November 2022). By using the small scale layer first, I 190 

allowed for some buffers around country boundaries, but such buffers can be considered acceptable given 191 

the spatial precision of country GIS layers and locality data (Tack et al., 2022). The NE 1:10 million layer did 192 

not show the distribution of certain GBIF country codes as for example ‘GF’ (French Guyana, with 193 

corresponding occurrences mainly mapped by NE in the multipolygon with the country code of ‘FRA’, 194 

indicating France) or ‘BQ’ (Bonaire, Sint Eustatius and Saba, corresponding in NE to The Netherlands). 195 

Recognizing these situations, I also retained occurrence records for the following matches between the 196 

GBIF and NE country codes: AX-ALD, BQ-NLD, CX-IOA, EH-SAH, GF-FRA, GP-FRA, MQ-FRA, PS-PSX, RE-FRA, 197 

SJ-NOR, SS-SDS and YT-FRA. What was also the case was that some countries and territories mapped by NE 198 

had no corresponding country code in the GBIF data set, for example for the separately mapped Somaliland 199 

and military bases in Cyprus. I therefore also retained occurrence records for country code matches of: CU-200 

USG, CY-CNM, CY-CYN, CY-WSB and SO-SOL. After realizing that no records had been retained for Namibia, I 201 

discovered that the GBIF country code for Namibia of ‘NA’ had been interpreted as missing data when 202 

reading in the GBIF data set in R. To allow for records from Namibia, I assumed that all records with 203 

‘missing’ GBIF country codes and with occurrences between longitudes 10 and 30 degrees East and 204 

latitudes between 15 and 30 South corresponded to observations from Namibia. For these records, the 205 

entire process of quality checking was repeated starting from the second step documented above.   206 
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 207 

Taxonomy 208 

After data quality checks, I created a master list of the 48,518 unique species names from the retained 209 

occurrence records. This result indicated a relatively mild effect of data cleaning by retaining 99.1% of the 210 

48,970 species with at least one observation reported by Keppel et al. (2021) for the same GBIF data set 211 

(https://doi.org/10.15468/dl.77gcvq). Via the WorldFlora package (version 1.10; Kindt 2020), the 212 

master list was standardized to World Flora Online (WFO; Borsch et al., 2020; taxonomic backbone version 213 

2021.12 downloaded from http://www.worldfloraonline.org/downloadData) and, for those species that 214 

could not be matched to WFO, to the World Checklist of Vascular Plants (WCVP; Govaerts et al., 2021; 215 

taxonomic backbone version 8 downloaded from http://sftp.kew.org/pub/data-repositories/WCVP/). Since 216 

these were the same protocols that had been used to create the 2022 version of the Agroforestry Species 217 

Switchboard (Kindt et al., 2022), I first directly matched 47,728 species with species that were encountered 218 

when preparing the Switchboard, followed by using the same matching procedures for the remaining 790 219 

species. The TreeGOER_Taxonomy file documents for each of the 48,518 species to which WFO or 220 

WCVP taxon they were standardized, further including other details such as the identifier of the taxonomic 221 

backbone database and whether the match was made as a direct match or a manual match suggested by 222 

fuzzy matching. As some of the submitted names were identified as synonyms, the number of unique 223 

standardized names was 48,129, directly corresponding to the species with documented environmental 224 

ranges in the TreeGOER database. 225 

 226 

Environmental variables 227 

Table S1 in the Supporting Information lists the 51 environmental variables that are covered by TreeGOER 228 

together with links to references where more details can be obtained about each variable. The bioclimatic, 229 

soil and topographic variables can be characterized as abiotic variables and as a consequence, TreeGOER is 230 

useful particularly to estimate the ‘abiotically potential range’ of a species (Booth, 2016 and references 231 

therein). 232 

A set of 19 bioclimatic layers was obtained at 30 arc-seconds resolution from WorldClim 2.1 (Fick and 233 

Hijmans, 2017). Also downloaded from WorldClim 2.1 was the elevation data used when creating the 234 

database. I included this elevation data to allow comparisons with elevation ranges documented in other 235 

databases or floras, but I strongly advise against using elevation as a predictor variable for suitability in 236 

future conditions given its strong correlation with temperature (typically predicted to increase in future 237 

climates whereas elevation remains constant; elevation may also be correlated with other factors that 238 

affect tree physiology such as frequencies of fog; see also the discussion of ‘indirect variables’ by Guisan 239 

and Zimmermann (2000)) – unfortunately this is a mistake that remains to be made in various climate 240 

change studies. 241 

With the envirem package (version 2.3; Title and Bemmels, 2017), I created an additional set of 18 242 

bioclimatic variables at the same resolution as the WorldClim 2.1 layers (this was also the resolution of the 243 

other environmental layers described below). This was done after downloading all historical monthly 244 

temperature and rainfall layers from WorldClim 2.1 and creating monthly extraterrestrial solar radiation 245 

files for 1985 (at the centre of the 1970 to 2000 period covered by WorldClim 2.1) via 246 

envirem::ETsolradRasters. The two topographic variables created by the same authors and made 247 

available via their ENVIREM website (https://envirem.github.io/) were also included among the 248 

environmental layers. 249 

With function BiodiversityR::ensemble.PET.season (version 2.14-3; Kindt and Coe, 2006; 250 

Kindt, 2018) the maximum climatological water deficit (MCWD) was calculated, corresponding to the dry 251 
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season with the largest difference between precipitation and potential evapotranspiration (PET). As inputs 252 

in the analysis, monthly PET layers were first created via envirem::monthlyPET. The calculations 253 

involved a similar procedure as used by Chave et al. (2014) who modelled and used this bioclimatic variable 254 

to model aboveground biomass of tropical trees, but the BiodiversityR procedure allows to 255 

distinguish more than one dry season at a location. Zuidema et al. (2022) provided recent evidence for the 256 

importance of MCWD in tree growth with data from a pantropical tree-ring network.  257 

Physical and chemical soil properties were obtained via SoilGrids 2.0 (Poggio et al., 2021) by processing 258 

1000 m aggregated data (https://files.isric.org/soilgrids/latest/data_aggregated/1000m/; accessed in 259 

November 2022). I obtained eight soil layers that correspond to all chemical and physical soil properties, 260 

except for ‘Coarse Fragments (CFVP)’ which I did not include because the Model Efficient Coefficients for 261 

this variable were significantly lower (and seeing also the significantly lower R2 values reported by Hengl et 262 

al., 2017). Using a similar procedure as described by Hannah et al (2020), for each soil variable the average 263 

was calculated of strata within the top 1 m (0 - 5 cm, 5 – 15 cm, 15 – 30 cm, 30 – 60 cm and 60 – 100 cm). 264 

The average layers were reprojected to the resolution of the bioclimatic layers with terra::project 265 

(version 1.6-47; Hijmans 2022), using a bioclimatic layer as template.  266 

Also included among the environmental variables were decimal longitude and latitude, directly obtained 267 

from the occurrence data set. 268 

 269 

Outlier detection methods 270 

I used two methods for outlier detection based on Tukey’s (1977) fences method and available via 271 

BiodiversityR::ensemble.outliers (version 2.15-1). In one application of the methodology 272 

termed ‘method 1’ here, the default parameters of the function were used for n_min (the minimum 273 

number of environmental variables required to flag an outlier record) of 5 and fence.k (the fence 274 

multiplier of the interquartile range) of 2.5. Van Zonneveld et al. (2018) provides the justification for 275 

method 1, which was recently also used by van Zonneveld et al. (2023). As a more strict outlier detection 276 

method, I also used a ‘method 2’ where n_min was set as 2 and fence.k as 1.5, the latter as in the 277 

original Tukey method. I used both these methods to flag outliers for the 19 bioclimatic variables obtained 278 

directly via WorldClim 2.1, not including other bioclimatic layers as these were partially calculated from 279 

WorldClim 2.1 data. 280 

 281 

Calculation of global environmental ranges and niche breadths 282 

Global environmental ranges were determined for each species separately. Allowing for different 283 

synonyms, all observations for the same standardized species name were pooled together and afterwards 284 

duplicated observations from the same 30 arc-seconds grid cell were removed. This procedure reflects a 285 

low spatial thinning process whereby some of the spatial sampling biases of species occurrence records can 286 

be removed (Aiello-Lammens et al., 2015). Except for longitude and latitude that were obtained directly, 287 

values for the other variables were obtained by extracting the 30 arc-seconds raster layers at the locations 288 

of the cleaned occurrence data set via terra::extract.  289 

After removing outliers flagged by method 1, I calculated the minimum, maximum, median, mean, first 290 

quartile and third quartile values via base::summary. Quantile estimates at probabilities of 0.05 (Q05) 291 

and 0.95 (Q95) were calculated via Qtools::midquantile (version 1.5.6; Geraci, 2016). Q05 and Q95 292 

limits are used to define the core distribution of a species in the BIOCLIM method (Lindenmayer et al., 293 

1996; Booth, 2014). Where the number of observations was between 3 and 5000, I calculated the P value 294 

of a Shapiro-Wilk test of normality via stats::shapiro.test. 295 
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Relative niche breadth (scaled afterwards as percentage) was calculated for each variable and each species 296 

by dividing the species-specific 90% quantile range by the global range; the latter was calculated as the 297 

difference between the maximum of all the Q95 values and the minimum of all the Q05 values.  298 

If outlier method 1 identified some outliers, then I also calculated the Q05 and Q95 values for the full data 299 

set where outliers were not removed. If outlier method 2 identified outliers, I calculated the Q05 and Q95 300 

values for the data without the respective outliers. 301 

 302 

Statistical software 303 

When developing TreeGOER and this article, all data processing was done in R (version 4.2.1; R Core 304 

Team, 2022). Figures included here were obtained via the ggplot2 (version 3.3.6; Wickham, 2009) and 305 

sf (version 1.0-8; Pebesma, 2018) packages. Country outlines in the figures correspond to the Natural 306 

Earth 1:110m vector layer used to develop the database. 307 

  308 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 15, 2023. ; https://doi.org/10.1101/2023.05.15.540790doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.15.540790


Page 10 

 

3 DATABASE OVERVIEW AND ACCESS 309 

 310 

The TreeGOER database documents the bioclimatic ranges for 48,129 species (Table 1). Soil ranges are 311 

documented for a smaller number of species (46,608 – 47,635; Table S1 in the Supporting Information), 312 

which I attribute to the mask used in SoilGrids that removes built-up, water and glacier areas (Buchhorn et 313 

al., 2020). Roughly 45% of species retained 20 observation records or more, 38% retained a minimum of 30 314 

records (this is one of the thresholds identified as a minimum data requirement for species distribution 315 

modelling, see introduction), whereas roughly a quarter of the retained species had fewer than 10 records 316 

(Table 1). Outlier detection method 2 resulted in lower species counts, with roughly a third of species 317 

having 30 records or more and over 3,700 species having no records. Not removing outliers had a relatively 318 

mild effect on retained species numbers, with cumulative percentages being maximum one percent higher 319 

for bin sizes for 10 observations or more. Given this relatively mild effect, I recommend utilizing 320 

TreeGOER statistics derived from data sets where outliers were removed. In the remainder of this article, 321 

I will therefore use statistics obtained via Method 1. In the below, I will refer to a ‘range’ as defined by the 322 

environmental range from Q05 to Q95. 323 

Tables S1 and S2 in the Supporting Information provide information on the distribution of niche breadths 324 

for the different variables. For most of the variables, most species and often more than half of them had 325 

niche breadths within the 10-25% interval. Notable exceptions for the full data set (Table S1) were bio04, 326 

continentality, monthCountByTemp10 (Tmo10), Longitude and Latitude that had most species in the 0-327 

0.5% interval. For species with at least 30 observations (Table S2), only Tmo10 had most species in the 0-328 

0.5% interval, with the second-lowest highest count for latitude in the 2.5-5% bin. 329 

 330 

TABLE 1. Number of tree species in TreeGOER for two different methods of outlier detection (Method 1 331 

and Method 2) and without excluding outliers, calculated for bioclimatic variable bio01. Bin sizes were 332 

defined by the number of observations per tree species (N). Values between brackets show cumulative 333 

percentages.  334 

Observations Method 1 Method 2 (All) 

N ≥ 5000 256 [0.5] 234 [0.5] 258 [0.5] 

1000 ≥ N > 5000 989 [2.6] 872 [2.3] 997 [2.6] 

500 ≥ N > 1000 1,045 [4.8] 950 [4.3] 1,061 [4.8] 

200 ≥ N > 500 2,748 [10.5] 2,444 [9.3] 2,785 [10.6] 

100 ≥ N > 200 3,613 [18.0] 3,294 [16.2] 3,648 [18.2] 

50 ≥ N > 100 5,084 [28.5] 4,657 [25.9] 5,192 [29.0] 

30 ≥ N > 50 4,704 [38.3] 4,332 [34.9] 4,804 [38.9] 

20 ≥ N > 30 4,009 [46.6] 3,811 [42.8] 4,108 [47.5] 

10 ≥ N > 20 7,065 [61.3] 6,715 [56.7] 7,131 [62.3] 

5 ≥ N > 10 6,253 [74.3] 6,337 [69.9] 6,525 [75.9] 

N = 4 2,504 [79.5] 1,509 [73.0] 1,976 [80.0] 

N = 3 2,585 [84.9] 3,577 [80.5] 2,371 [84.9] 

N = 2 3,150 [91.4] 2,825 [86.3] 3,149 [91.4] 

N = 1 4,124 [100.0] 2,849 [92.3] 4,124 [100.0] 

N = 0 0 [100.0] 3,723 [100.0] 0 [100.0] 

 335 
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TABLE 2. Number of tree species in TreeGOER for different global zones defined by the number of months 337 

with average temperature > 10 °C (Tmo10), the Climatic Moisture Index (CMI), Latitude (LAT) and Longitude 338 

(LON) and where suitability was predicted from 90% ranges of the variable defining the zone. The CMI 339 

classification matches dryland zones defined by the aridity index, including dry subhumid (DS), semi-arid 340 

(SA), arid (A) and hyperarid (HA) zones. Species were counted separately if their 90% range was contained 341 

entirely in the zone (‘endemic’), if they reached their upper distribution limits (Q95) in the zone, if they 342 

reached their lower distribution limits (Q05) in the zone or if the limits of the zone was contained entirely 343 

with the species 90% range (‘within range’). Values between brackets correspond to species with 30 344 

observations or more. Figure S3 in the Supporting Information provides a zoomable map that shows the 345 

global distribution of the different zones. 346 

Zone Endemic Upper limit Within range Lower limit 

Number of months with average temperature > 10 °C 

Tmo10 = 12 38,131 [11,929] 0 [0] 7,143 [4,957] 0 [0] 

8 ≤ Tmo10 < 12 382 [48] 1,455 [986] 2,690 [1,626] 4,453 [3,331] 

4 ≤ Tmo10 < 8  354 [140] 462 [349] 1,542 [828] 2,494 [1,779] 

1 ≤ Tmo10 < 4 13 [0] 19 [13] 1,031 [455] 830 [673] 

Tmo10 < 1 0 [0] 0 [0] 668 [261] 349 [203] 

Climatic moisture index 

CMI ≥ 0.5 2,367 [64] 15,413 [7,431] 0 [0] 0 [0] 

0 ≤ CMI < 0.5 8,899 [829] 12,458 [6,485] 5,713 [3,910] 10,574 [3,982] 

-0.35 ≤ CMI < 0 1,605 [51] 3,299 [1,707] 7,190 [4,807] 10,694 [5,481] 

-0.5 ≤ CMI < -0.35 (DS) 201 [1] 830 [444] 5,646 [3,876] 4,578 [2,497] 

-0.8 ≤ CMI < -0.5 (SA) 625 [193] 715 [538] 581 [416] 5,697 [3,766] 

-0.95 ≤ CMI < -0.8 (A) 198 [47] 78 [32] 133 [81] 1,074 [803] 

CMI < -0.95 (HA) 0 [0] 4 [0] 4 [1] 175 [85] 

Latitude 

LAT > 23.5 2,880 [1,531] 2,760 [1,619] 0 [0] 0 [0] 

-23.5 ≤ LAT ≤ 23.5 36,943 [11,520] 3,168 [2,233] 323 [269] 2,436 [1,350] 

LAT < -23.5 2,377 [1,536] 0 [0] 0 [0] 3,491 [2,502] 

Longitude 

LON < -30 21,581 [9,168] 0 [0] 0 [0] 1,246 [748] 

-30 ≤ LON ≤ 65 8,543 [3,128] 303 [202] 943 [546] 403 [251] 

LON > 65 16,356 [5,144] 1,345 [797] 0 [0] 0 [0] 

 347 

I subdivided the globe in five zones based on the number of months with average temperature above 10 °C 348 

(Tmo10) inspired by the Tmo10 thresholds used in the Köppen-Trewartha climate classification system 349 

(Belda et al., 2014) to differentiate between tropical, subtropical, temperate, boreal and polar climates 350 

whereas I ignored dry climate criteria from that system. Analysing 90% ranges, the vast majority of species 351 

(45,274 representing 94.1% of species in TreeGOER) occurred in the ‘tropical’ zone were Tmo10 was 352 

exactly 12. More than 38,000 species (80.8%) were only observed within this zone (Table 2). 353 

A second subdivision of the globe that I implemented was via the Climatic Moisture Index (CMI), where I 354 

expanded the dryland classification system based on the aridity index developed by the United Nations 355 

Environment Programme (1997) with three humid zones (Table 2). A large number of species (> 17,000) 356 

occurred in any of the three humid zones. Nearly 9,000 species exclusively occurred in the zone defined by 357 

0 ≤ CMI < 0.5 where precipitation was equal to double the PET. Fewer species (< 8,000) occurred in the 358 

semi-arid zone, mostly species that reached their lowest limits there.  359 

The subdivision based on latitude used the approximate positions of the tropics of Cancer and Capricorn. As 360 

for the results with Tmo10, a great majority of species occurred in tropical areas with most of them (nearly 361 
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37,000 species) only occurring in that zone (Table 2). Roughly equal amounts of species occurred outside 362 

the tropics. 363 

I developed the zones for longitude especially to differentiate between the three main blocks of continental 364 

Africa, the Neo-tropics and South-East Asia of tropical moist forests, the most species-rich terrestrial biome 365 

of the planet (Couvreur 2015 ; Hagen et al., 2021; Gatti et al., 2022). With the great majority (96.6%) of 366 

species occurring exclusively in one of the longitudinal zones (Table 2), a clear pattern emerged of the 367 

western zone including the highest number of species and the central zone (including Africa) having 368 

substantially lower richness.  369 

Table S3 in the Supporting Information cross tabulates the Tmo10 zones with the other zones. The cross 370 

tabulations clearly show that most tree species occur in tropical climates, with one exception for northern 371 

latitudes where more species occur in subtropical climates (8 ≤ Tmo10 < 12). Given that TreeGOER 372 

contains fewer than 49,000 tree species, the crosstabulation of the tropical zone with the longitudinal 373 

zones approximated patterns observed for the native distribution of over 58,000 tree species in the State of 374 

the World’s Trees (BGCI, 2021) reasonably well, where 23,631 species were observed in the Neotropics and 375 

9,237 species in the Afrotropics. A comparison with the BGCI results from the East was more complicated 376 

given the latitudinal and longitudinal ranges for Indo-Malaya (13,739 species) and Australasia (7,442 377 

species). 378 

The latitudinal differences clearly follow global latitudinal gradients in biodiversity as for example reviewed 379 

by Kinlock et al. (2018) or Nishizawa et al. (2022). Patterns observed in TreeGOER also agree with 380 

observations that tropical rain forests are the most species-rich terrestrial biomes of the planet and with 381 

the “Odd man out” of lower plant and tree diversity in Africa (Couvreur, 2015 ; Raven et al., 2020; Hagen et 382 

al., 2021; de Miranda et al., 2022).   383 

The version of the TreeGOER database described in this article is publicly archived on Zenodo under a CC-384 

BY 4.0 license so that it can be freely used, shared and modified as long as appropriate credit is given to the 385 

database (citing this article and https://doi.org/10.5281/zenodo.7922928). The database is stored as 386 

different text files delimited by the pipe “|” character, including the main file with the environmental 387 

ranges (TreeGOER_2023.txt), a file with information on taxonomy and standardization methods 388 

(TreeGOER_Taxonomy.txt; via the ‘SID’ field more taxonomic details can be easily obtained by linking to the 389 

taxonomic backbone databases of WFO or WCVP) and the identifications of the GBIF records involved in 390 

calculating the ranges (TreeGOER_GBIFID.txt; to reduce file size, for 126 species with over 10,000 391 

observations, a random subset is provided of 10,000 observations). Also provided are files that show the 392 

distribution of species in the Tmo10 and CMI zones with codes reflecting the columns of Table 2; these data 393 

can be used for filtering suitable species for different zones.  394 

 395 
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4 CASE STUDIES 397 

 398 

To showcase possible applications of the TreeGOER database in climate change investigations, I 399 

developed two case studies. In both case studies, baseline bioclimatic data were extracted from the raster 400 

data used to prepare TreeGOER. I used future climate data at 2.5 arc-minutes resolution from the full set 401 

of 23 downscaled General Circulation Model (GCM) outputs available for the 2050s and for shared socio-402 

economic pathway 3-7.0 (a higher emissions scenario; Meinshausen et al., 2020) from WorldClim 2.1 403 

(https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html; accessed in January-March 2023), 404 

including ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CanESM5-CanOE, CMCC-ESM2, CNRM-405 

CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, EC-Earth3-Veg, EC-Earth3-Veg-LR, GFDL-ESM4, GISS-E2-1-G, GISS-406 

E2-1-H, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, 407 

MRI-ESM2-0 and UKESM1-0-LL. Estimates for bioclimatic variables directly available from WorldClim were 408 

calculated as median values after extracting the 23 separate layers at the point locations of the case 409 

studies. The extended set of envirem variables was calculated at point locations for the different GCMs 410 

via BiodiversityR::ensemble.envirem.masterstack, 411 

BiodiversityR::ensemble.envirem.solradstack, and BiodiversityR::envirem.run. 412 

Prior to these calculations, monthly layers of extraterrestrial solar radiation were generated for 2050 via 413 

envirem::ETsolradRasters. Similar to the bioclimatic data from WorldClim, I calculated medians 414 

afterwards across the 23 GCMs.  415 

I selected a subset of environmental variables for the case studies that included bio01 (mean annual 416 

temperature), bio12 (annual precipitation), bio05 (maximum temperature of the warmest month), bio06 417 

(minimum temperature of the coldest month), bio16 (precipitation of the wettest quarter), bio17 418 

(precipitation of the driest quarter), climaticMoistureIndex (CMI), monthCountByTemp10 (Tmo10) and 419 

growingDegDays5 (GDD5). I selected these variables as they corresponded to bioclimatic variables used 420 

previously for BIOCLIM modelling of the future climatic adaptability of tree species by Nogués-Bravo et al. 421 

(2014) and Booth (2016) (GDD5, bio06 and a moisture index) or otherwise used by Esperon-Rodriguez et al. 422 

(2022) (bio01, bio05, bio06, bio12 and bio17). I expanded the set with bio16 to add a humid period variable 423 

to the dry period variable of bio17 analogous to having the cold period and warm period variables of bio05 424 

and bio06. I also added Tmo10 as it was used for zonation when describing TreeGOER above, but this 425 

variable was redundant for case study 2. 426 

I used a subset of the TreeGOER database where 5% and 95% statistics have been calculated from 20 or 427 

more observations; these were available for 22,448 species (Table 1). Esperon-Rodriguez et al. (2022) used 428 

the same criterion to create a species subset for their study. From my discussion of Figure 1 in the 429 

introduction, my assumption would be that the results obtained for the case studies are conservative, but 430 

this assumption also implies that the available records were representative for the environmental ranges of 431 

most species for the selected variables, and that these variables characterize the suitable niche well (see a 432 

discussion by Santini et al., 2021). 433 
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Case study 1: Testing the effect of climate change for urban locations 435 

 436 

Esperon-Rodriguez et al. (2022) conducted a global study on the climate change vulnerability of 3,129 437 

urban trees and shrubs. These authors also used median values for the 2050s, albeit for a different high 438 

emissions scenario (RCP 6.0) and a set of ten GCM projections specific for urban climates (Zhao et al., 439 

2021). Their analyses were based on 5% and 95% quantiles as well, but they selected 95% thresholds for 440 

temperature-based bioclimatic variables and 5% thresholds for precipitation-based ones (see above which 441 

variables they selected). A fundamental part of their analyses is that their estimates were done for each city 442 

separately for documented city-species observations (Ossola et al., 2020). Where the results that they 443 

present are for 164 cities, I excluded three cities as the geographical coordinates were outside the baseline 444 

30 arc-seconds raster terrestrial coverage. Given these differences in methodologies, my main objective 445 

here, besides showcasing that straightforward climate change analyses via TreeGOER can be conducted, 446 

therefore was to check whether still similar results would be obtained. I especially checked the Esperon-447 

Rodriguez et al. (2022) finding that cities at low latitudes would be more vulnerable to climate change. 448 

I estimated future species richness by two different methods. The first method (‘filter 1’) identified all 449 

species suitable to the future climate at the city location. The second method (‘filter 2’) first filtered species 450 

suitable to the baseline climate and then proceeded to further filter those species that remained suitable to 451 

the future climate. The difference between the two methods can be understood as allowing species to 452 

expand their ranges to occupy previously unoccupied sites, or not allowing migration to track suitable 453 

climatic conditions (Boisvert-Marsh and de Blois, 2021; Lima et al., 2022). 454 

With filter 1, locations furthest from the equator often were predicted to have larger proportions of species 455 

richness in the future climate (FP; Figure 2b; Data S5 in the Supporting Information). With filter 2, every city 456 

was predicted to lose some species, but generally more so at lower latitudes (Figure 2c).  457 

The results shown here (Figure 3) confirm the general pattern of increased vulnerability at lower latitudes 458 

that Esperon-Rodriguez et al. (2022) had documented. When investigating vulnerability (calculated as 100 459 

– min(c(FP, 100))) separately for three longitudinal zones, however, in the west the highest 460 

vulnerability manifested at mid-latitudes in the North. What I also observed was that cities near the 461 

equator with lower annual mean temperatures (a pattern that can be explained by their higher altitudes; 462 

see also Liang et al. (2022) and their discussion on the annual mean temperature as dominant predictor of 463 

global tree species richness patterns), such as Nairobi for the central zone and Bogota in the west, had a 464 

significantly lower risk. An effect of the moisture index was not immediately obvious with dryland and 465 

humid locations showing the full range of risks. What should not be forgotten both for the results of 466 

Esperon-Rodriguez et al. (2022) and those shown here is that the latitudinal pattern only explains a 467 

relatively small part of the variation among cities.  468 
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 470 

FIGURE 2 471 

Predicted species richness (SR) of suitable tree species in the baseline climate (a) and (b-c) predicted future 472 

proportions (FP) suitable in the future climate for 161 locations of cities (Data S5 in the Supporting 473 

Information). Panel (b) shows results where all suitable species were included, with proportions above 474 

200% depicted as 200% for six locations. Panel (c) shows results where only species suitable in the baseline 475 

climate at the city location were investigated for future suitability, a “no migration” scenario. Dryland 476 

locations were defined by a CMI < -0.35 conform global dryland definitions. Map lines obtained from a 477 

Natural Earth 1:110m vector layer (see methods) delineate study areas and do not necessarily depict 478 

accepted national boundaries. The maps were created in R with Equal Earth projection. 479 
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 481 

FIGURE 3 482 

Predicted proportions of species at risk for 161 locations of cities (Figure 4; the Central zone has longitudes 483 

between -30 and 65). With filter 1, all suitable species were included. With filter 2, only species suitable in 484 

the baseline climate at the city location were investigated. The colour scale corresponds to bio01, the mean 485 

annual temperature. Dryland locations were defined by a CMI < -0.35 conform global dryland definitions. 486 

Smoothed regression curves were added via ggplot2::geom_smooth (version 3.3.6) with the loess 487 

method. Dashed vertical reference lines corresponds to the equator. 488 
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 490 

Case study 2: Testing the effect of climate change for tropical locations 491 

 492 

In the second case study, I focused the climate change modelling on tropical areas (Tmo10 = 12) where I 493 

also excluded arid and hyperarid zones (CMI < -0.8; Table 2). This is the global area that is richest overall in 494 

plant and tree species, especially in humid areas (Couvreur 2015 ; Keppel et al. 2021; Gatti et al., 2022; 495 

Table S4 in the Supporting Information). I randomly sampled 2000 locations in this study area via 496 

dismo::randomPoints (version 1.3-9; Hijmans et al., 2022; the function uses a weighted sampling 497 

adjustment for longitude-latitude coordinate systems). Besides mapping overall patterns and differences of 498 

tree species richness in the baseline and future climate, I focused on patterns related to the moisture index 499 

as one of the explanatory variables for differences in species richness (this bioclimatic variable explains 500 

differences in total species richness between zones as documented and discussed in the previous section 501 

(Tables 2 and S4), but no obvious pattern had emerged in the first case study). The moisture index can also 502 

be linked to inter- and intra-specific variations in carbon sequestration potential (Jucker et al., 2022).  503 

Results for the baseline and future climate are available from Table S6 in the Supplementary Information 504 

and are shown in figures 4 and 5. Under changed climate conditions for the middle of the 21
st
 century and 505 

the higher emissions scenario, significant effects of climate change can be observed and especially so in 506 

South America (Figure 4 bc). These patterns can be seen clearly when comparing results for the different 507 

longitudinal zones separately (Figure 5). Strong declines in species richness can be seen in the west and 508 

especially so in humid zones with CMI > 0 (Figure 5). Also in the east, an overall trend of strong decline in 509 

species richness can be observed. The trend is less pronounced in central Africa, which can be partially 510 

explained by a larger fraction of species being suitable in this zone in future conditions.  511 

Figure 5a clearly suggests an effect of water availability, with dryland locations typically having lower 512 

predicted species richness. Figure 5c suggests that various dryland locations may become suitable to a 513 

larger range of species, for example in dryland areas in southern and eastern Africa, but not in west Africa. 514 

The highest species richness observed in the baseline climate was 5,252 in a Brazilian location in the 515 

western Amazon (longitude: -72.4042; latitude: -7.9042). All ten observations of richness above 5,000 were 516 

in Brazil. The highest observation of 4,635 species outside South America was in the Philippines at rank 42. 517 

The highest species richness was in a similar range between 5,000 and 6,000 species as shown by Keppel et 518 

al. (2021) across 463 geographic regions. What is interesting is that the results shown here are based on 519 

point estimates (α-diversity), whereas the Keppel et al. (2021) results refer to regional statistics (γ-520 

diversity). Cai et al. (2023) who recently conducted a sophisticated modelling exercise to predict plant 521 

diversity arrived at maximum estimates near 5,000 (and also important to note is that the study identified 522 

bioclimatic variables as the most important drivers of diversity; see also Keil and Chase (2019) and Liang et 523 

al. (2022) with similar observations for global studies of tree diversity). As my calculations had involved all 524 

candidate species regardless their native distribution and I had expected that this could partially explain 525 

differences with the other studies, I conducted an analysis where only species native to a particular country 526 

were investigated for baseline and future suitability (Figures S6 and S7 in the Supplementary Information; 527 

data on native country distribution was obtained from GlobalTreeSearch; Beech et al., 2017). Generally, the 528 

same patterns can be seen for native species as with the full set of species, but with maximum species 529 

richness values now below 2,500.   530 
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 532 

FIGURE 4 533 

Predicted species richness (SR) of suitable tree species in the (a) baseline and (b) future climate for 2000 534 

randomly selected locations in tropical areas that exclude (hyper-)arid zones (Tmo10 = 12 and CMI > -0.8; 535 

Data S6 in the Supporting Information). Panel (c) shows the future SR as a proportion of the baseline SR, 536 

with 20 locations with proportions above 200% depicted as 200%. Dryland locations were defined by a CMI 537 

< -0.35 conform global dryland definitions. Map lines obtained from a Natural Earth 1:110m vector layer 538 

(see methods) delineate study areas and do not necessarily depict accepted national boundaries. The maps 539 

were created in R with Equal Earth projection. 540 
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 542 

FIGURE 5 543 

Predicted species richness of suitable tree species in the baseline and future climate for three longitudinal 544 

zones for 2000 randomly selected locations in tropical areas that exclude (hyper-)arid zones (see Figure 2 545 

and Figure S3 in the Supporting Information; the Central zone has longitudes between -30 and 65). Shown 546 

richness values were transformed by adding 1, hence values of 1 correspond to a predicted species richness 547 

of 0. Smoothed regression curves were added via ggplot2::geom_smooth (version 3.3.6) with the 548 

loess method. Full vertical reference lines correspond to the CMI = -0.35 upper boundary of dryland 549 

zones, with dashed lines delimiting other CMI zones from Table 3. 550 
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5 FUTURE DEVELOPMENTS 552 

 553 

Looking ahead, when sufficient new observations become available in GBIF and particularly for species that 554 

are not yet covered, had low numbers of observations or with remaining large biases in geographical 555 

coverage (Meyer et al., 2016), TreeGOER could be expanded with this new information. With new plants 556 

that continue to be described (Raven et al., 2020) and estimates that the total number of tree species may 557 

be larger than 73,000 (Cazzolla Gatti et al., 2022), it is likely that coverage of TreeGOER could be 558 

expanded substantially. Potentially new observations would become available from locations of novel 559 

climate conditions (Williams and Jackson; 2007), what would benefit estimations of future geographical 560 

ranges. When updating TreeGOER for the new records, taxonomical changes should also be considered. 561 

Another reason to update TreeGOER would be when new versions of WorldClim or SoilGrids were 562 

released, as differences between previous versions are known to result in differences in climate change 563 

predictions (Cerasoli et al., 2022). One of the reasons that WorldClim might need a future revision is that it 564 

contains some anomalies for bioclimatic variables that combine temperature and precipitation data (Booth, 565 

2022).  566 

It is likely that I may expand TreeGOER with bioclimatic ranges inferred from CHELSA (Climatologies at 567 

high resolution for the earth's land surface areas) as this data set contains several unique bioclimatic 568 

variables and also used alternative methods of statistical downscaling compared to the ones used by 569 

WorldClim, such as estimating orographic and wind effects on precipitation (Karger et al., 2017; 570 

https://chelsa-climate.org/bioclim/). What could also be an important addition are observation data from a 571 

proposed global tree trial database (Booth 2023), especially if it was not straightforward to extract these 572 

data directly from such database. As fine-scale gradients in soil conditions have been shown to affect 573 

species distributions (e.g. Bartholomew et al., 2022), it may be wise to compare quantiles of soil variables 574 

observed in TreeGOER with those obtained from high resolution soil surveys – provided databases are 575 

available that document the full range of suitable soil conditions inferred by detailed sampling. 576 

 577 
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