


Figure 4: Effects of learning parameters A and C. A, B: Estimation of the state
and observation trajectories respectively by different models. ‘True’, ‘Learnt’ and
‘Random’ denote the predictive coding model with true, learned and random A and
C respectively. Only the first dimension of the latent and observation is shown for
simplicity. The other two dimensions have similar performance. C, D: MSE of the
predictions on the hidden and observation levels respectively. Boxplots obtained
with 40 trials on each model.

k via the aforementioned three approaches. The results are shown in Figure 4.

For this set of results, we use 20 inference steps with a step size 0.2 to get the
optimal performance for the predictive coding models, based on Figure 3D. Figure
4A shows that, while our predictive coding model estimates the latent state well
with true A and C, when asked to learn the parameters, the model fails to accurately
estimate the latent state. Quantitatively, as shown in Figure 4C, the estimation
MSE of the learning model on the state level is similar as for the predictive coding
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model with totally random parameters, which is much higher than those of the
Kalman filter and predictive coding model with true parameters. On the other
hand, however, we find that the model learning A and C can accurately estimate
the observations even with the incorrectly estimated latent state (Figure 4B). This
effect arises because the problem of inferring the true hidden state from the data
is fundamentally under-determined. There are many possible hidden states that,
given a flexible learnt mapping, could result in an identical predicted observation.
Importantly, despite inferring a different representation of the hidden state, the
network is able to learn A and C that correctly predicts the incoming observations
(Figure 4D).

Simple non-linear model

We tested the nonlinear predictive coding model in two different experiments. In
this section we focus on a simple simulation in which observations are generated
from a probabilistic model of the same form as that of non-linear predictive coding
network. In such setting we expected the non-linear temporal predictive coding
network to learn predict these data well, and we wished to test if it can do it better
than a linear model.

We generated a time-series of 100, two-dimensional stimuli according to Equations
1 and 2 where the nonlinear function f is chosen to be the hyperbolic tangent
function, and ωy and ωx correspond to standard Gaussian noise sampled from an
i.i.d. Gaussian distribution with a mean of 0 and a variance of 0.01. In this 2D
example, parameters of C and A were set to a rotation matrix and the identity
matrix multiplied by 3, respectively, which are as follows,

A =

[
−1
2

∆k 1

−1 −1
2

∆k

]
× 3

C =

[
1 0

0 1

]
× 3 (28)

The multiplication by 3 in both matrices above was performed to produce a system
that operates beyond the linear range of the hyperbolic tangent function (we
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used ∆k = 0.5). The observed stimuli are periodic signals which are simply noisy
versions of the hidden variables.

Both a liner and non-linear models were trained to predict these stimuli. The models
were simulated with single state of inference between samples (∆k = ∆t). For the
learning process, the parameters of the C matrix were initialized as identity matrix
while the weights between hidden units were initialized to zeros. Additionally, each
neuron x̂ was initialized to 0, and the model was trained according to Equations
11.

Figures 5A,B show zoomed-in time-series with predictions of nonlinear and linear
models (for the sake of visualization, only one dimension is shown). Figure
5A demonstrates that in the first 50 time steps of the simulation both models
significantly move their predictions towards true time-series. Figure 5B shows the
final 50 time steps, where the nonlinear model performed relatively better than
the linear model.

The observation prediction error of each model is depicted in Figure 5C. Within
the first 50 to 100 time steps, the linear model has a much higher rate of reduction
in its prediction error compared with the nonlinear model; however, this rapid drop
in the error is followed by a stationary line and even a slow divergence from the
optimum toward the end of the simulation. On the other hand, the nonlinear model
shows a slower, but relatively steady, rate of error reduction which ultimately leads
to convergence. The lower loss achieved by the nonlinear model could be explained
by the fact that the ground-truth simulation data has a different oscillatory pattern
as a result of the nonlinearity in the Equations 1 and 2 that were used to generate
such data. Therefore, the shape of the signal is different than one would expect to
observe from a simple linear system. To show this, we generated a simulation data
based on the following equation:

ŷk = a sin(bk + c), (29)

where a, b, and c were approximated by a least squares optimisation so they match
the ground-truth data. The comparison is depicted in Figure 5D.
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A

True A

Learned A (linear) Learned A (nonlinear)

E F

D

Figure 5: Comparison between nonlinear and linear model predictions for randomly
generated time-series. A: Time-series and the corresponding predictions of the
nonlinear and linear models during the first 50 time steps of learning. B: Analogous
data and predictions during the last 50 time steps of the simulation. C: Observation
prediction error during training. The solid lines indicate the average errors from
the 100 simulations with the shaded area as standard errors. D: Comparison of
the shape of the ground-truth signal versus the shape obtained from simulating
a parametric sin data with coefficients and constants optimised to match the
ground-truth. E: Comparison of the learned A matrices (mean values) of both
models against the true matrix. F: Mean error of the learned A parameters (with
standard errors). 29
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To better understand the behaviour of each model, we investigated how well the
transition matrix A is learnt in each case. In Figure 5E, we plotted the mean
learnt matrix by colour-coding the elements and normalising it to the minimum
and maximum values of the true matrix. As expected, the parameters of the A
matrix are closer to the true values when compared against their corresponding
values in the linear model. To quantify it, we also plotted the average errors of the
learned parameters for both models, showing that the linear model has a much
higher error (almost by three folds) versus the nonlinear model - see Figure 5F.

Pendulum

In order to investigate if temporal predictive coding model can learn to predict
time-series for which the generative process does not explicitly follow that of the
model, we trained the model on the simulated motion of a pendulum. Figure 6A
shows a free-body diagram of the pendulum that we simulated in this experiment,
demonstrating the mass, length L, and force vectors acting on the system. We
describe the state of the pendulum by the angle of the pendulum θ1 and its angular
velocity θ2. According Newton’s second Law of Motion, the angle of the pendulum
evolves according to:

θ̈1 = − g
L

sin(θ1) (30)

where g is gravity. We can express this motion in a set of first-order equations:

θ̇1 = θ2 (31)

θ̇2 = − g
L

sin(θ1) (32)

In simulation we used the following parameters: g = 9.81 m/s2, L = 3.0 m. We then
simulated the system as an initial value problem by numerically integrating the
equations using the explicit Runge-Kutta method for 2500 seconds with ∆k = 0.1

second time steps and initial values of θ1 = 1.8 rad and θ2 = 2.2 rad/s. These values
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θ

θ -mg cosθ

mg

-mg sinθ

m

L

A CB

Figure 6: Simulations of the pendulum. A: A free-body diagram of a simple
pendulum that has a mass m attached to a string with length L. Also shown are
the forces applied to the mass. The restoring force −mg sin θ is a net force toward
the equilibrium position. B: A phase portrait of the pendulum simulation showing
the result of our linear versus nonlinear models prediction for the ground-truth
data. The vector field (i.e. set of small arrows) was created by computing the
derivatives of dθ1

dt
and dθ2

dt
at t = 0 on a grid of 30 points over the range of −π to

+π and -4 to +4 for θ1 and θ2, respectively. C: The barplot shows the difference
between the mean prediction errors of the linear model versus the nonlinear model
from 100 simulations with varying noise profiles. The mean errors are significantly
different (p << 0.001).

were chosen to simulate the pendulum motion with a large amplitude of oscillation
to shift the system into a more nonlinear regime. The time-series presented to the
models yk were created by adding these numerical solutions and Gaussian noise
with zero-mean and standard deviation of 0.1.

We trained non-linear and linear temporal predictive coding models to predict
these time-series. Parameters of C and A were initialized as identity matrix and
zero, respectively. The learning was performed as in the previous section.

Figure 6B shows the results from the pendulum simulations using the phase portrait
of the system. The solutions of the ground-truth simulation and our nonlinear
model prediction are plotted on the vector field for the final 80 seconds. Even
though both models performed relatively well by correctly predicting the behaviour
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of the pendulum motion, the linear model performed worse when the pendulum
reached its highest angular displacements (see the noisy prediction around the
extremities of the θ1 axis in Figure 6B). On the other hand, the nonlinear model
stayed relatively stable throughout the entire prediction. Figure 6C shows the
mean squared error of prediction averaged over 100 separate simulations, and the
non-linear model consistently outperformed the linear one.

Discussion

In this paper, we have analysed the recurrent predictive coding architecture for
temporal prediction and filtering. This task is important because processing
time-varying sequences of inputs and using them to infer dynamically changing
hidden states of the world is the core task of the sensory regions of the brain. As
such, it is likely that these regions have an architecture heavily specialised for
performing such filtering tasks. Here we have shown that the filtering problem can
be tackled with a simple and biologically plausible algorithm with a straightforward
implementation in neural circuitry.

We have derived our temporal predictive coding model from first principles as a
variational filtering algorithm, provided a clear algorithmic derivation in terms
of gradient descents on the resulting free energy functionals, and proposed a
direct implementation in neural circuitry which relies on only local information
transmission as well as purely Hebbian plasticity that inherits the simple neural
implementation of static predictive coding networks. We have also demonstrated
that in the linear case, the algorithm is closely related to Kalman filtering, and is
capable of robustly solving filtering and tracking tasks at a level close to the optimal
linear solution. Moreover, and unlike the Kalman filter, we have demonstrated that
our model can perform online learning of the parameters using Hebbian plasticity,
which works rapidly and effectively in predicting the correct observations. We
have also extended the algorithm to the nonlinear case, and demonstrated that,
when presented with noisy nonlinear stimuli, the nonlinear model has a superior
performance over a comparable linear model in both learning the dynamics and
predicting the behaviour of the input sensory observation both spatially and
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temporally.

Related Work

Several earlier works have tried to approach the problem of Kalman filtering in the
brain. Wilson and Finkel (2009) repurpose a line attractor network and show that
it recapitulates the dynamics of a Kalman filter in the regime of low prediction
error. However their model only works for a single-dimensional stimulus, does
not encode uncertainty, and also only works when a linearisation around zero
prediction error holds. Deneve, Duhamel, and Pouget (2007) encoded Kalman
filter dynamics in a recurrent attractor network. Their approach however encodes
stimuli by means of basis functions, which leads to an exponentially growing
number of basis functions required to tile the space as the dimensionality of the
input grows. In the predictive coding approach, neurons directly encode the mean
of the estimated posterior distribution, which means that the network size scales
linearly with the number of dimensions. Our gradient method also completely
eschews the direct computation of the Kalman gain, which simplifies the required
computations significantly. Additionally, Beck, Ma, Latham, and Pouget (2007)
show that probabilistic population coding approaches can compute posteriors for
the exponential family of distributions of which the Gaussian distribution is a
member. However, no explicitly worked-out application of the population coding
approach to Kalman filtering exists, to our knowledge. Recent work has also
addressed the question of how biological recurrent neural networks can be trained
for temporal prediction (Bellec et al., 2020). They proposed that synapses maintain
eligibility traces encoding to what extent they contributed to neural activity over
time, and when combined with error signals, such traces enable effective credit
assignment. It would be interesting to investigate how such eligibility traces could
be incorporated into temporal predictive coding networks.

Moreover, other works have also explored predictive coding for temporal predic-
tions. For instance, early works Rao (1997, 1999); Rao and Ballard (1997) utilized
a Kalman filter combined with sparse image representations to make future predic-
tions of visual stimuli, but these works did not describe how the Kalman filter can
be implemented in biological circuits, and how their Kalman filter-based models
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can be extended to the nonlinear case. More recently, Jiang and Rao (2022) trained
temporal predictive coding networks on sequences of natural video (filmed by a
person walking through a forest) and observed that neurons have spatiotemporal
receptive fields resembling those in the primary visual cortex. Temporal predictive
coding networks have been extended to include multiple levels of hierarchy (Jiang
& Rao, 2022; Ororbia et al., 2020). Analysis of these networks revealed that
neurons on higher levels change their activity with a slower time scale than the
neurons at the lower levels of the hierarchy (Jiang & Rao, 2022). It has been also
demonstrated that hierarchical temporal predictive coding networks can achieve
performance comparable to BPTT in standard machine learning benchmarks
(Ororbia et al., 2020). However, these models require complex neural network
implementations to perform these temporal tasks. It is thus an interesting future
direction to see whether our temporal predictive coding model, which inherits the
simple neural implementation of the static predictive coding network, can present
similar performance and neural responses.

Work by Lotter, Kreiman, and Cox (2016) adapted deep recurrent neural networks
to perform a kind of predictive coding whereby the network was trained to predict
future prediction errors of each layer. They demonstrated that the resulting
network was capable of correctly predicting sequences of video frames. While
substantially scaling up predictive coding architectures to challenging machine
learning tasks, the networks of Lotter et al. (2016) diverged in many ways from
classical predictive coding architectures, and also utilized many non-biologically
plausible components from machine learning such as convolutional and LSTM
layers as well as training their network with BPTT.

Kutschireiter et al. (2017) addressed the question of how temporal predictive
coding networks can be extended so they represent posterior uncertainty. They
demonstrated that if multiple copies of the network are made, and the dynamics
of each network include noise with an appropriate magnitude, then each network
can represent a sample from the posterior distribution p(xk|y1 . . . yk) and the
collection of networks as a whole can represent the posterior distribution of state
in a sampling-based manner. Their model is particularly interesting because
the posterior uncertainty can be decoded from the differences in the activity of
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individual networks. However, the encoding of posterior uncertainty comes with a
cost of a larger number of neurons required to form multiple networks.

Relationship to Kalman filtering

The similarities and differences between the temporal predictive coding algorithms
and classical filtering algorithms like Kalman filtering are of significant theoretical
interest, as earlier works by Rao and Ballard (1997) have already used Kalman
filtering as a model of dynamical processing in the brain. We have found that
the crucial distinction is in the representation of the model’s uncertainty, mathe-
matically represented in the posterior variance Σk. Specifically, in the temporal
predictive coding model, although it represents the two ‘objective’ uncertainties Σx

and Σy of the dynamical system it is inferring, it does not represent the uncertainty
in the estimated posterior distribution (unlike the extended model of Kutschireiter
et al. (2017)). Crucially, it is the assumption of the prior at each time step that
prevents the temporal predictive coding model from successfully propagating the
posterior uncertainty through time.

Although temporal predictive coding does not optimally update and represent the
dynamically changing posterior uncertainty of the agent, it has other computational
advantages over Kalman filtering, which may render it more suitable for implemen-
tation in neural circuitry. The key advantage of the predictive coding approach is
its computational simplicity compared to the Kalman filtering update rules which
require complex matrix algebra and especially matrix inversions to compute the
Kalman Gain matrix which are unlikely to be implementable in neural circuitry
directly, while the predictive coding equations are simple and only require local
and Hebbian updates and can be directly translated into relatively straightforward
neural circuits. Moreover, as seen in Figure 3, the predictive coding estimate and
the Kalman filter estimates of a given dynamical system end up closely converging
anyway, which means that temporal predictive coding networks could provide the
brain an efficient and cheap way to approximate the highly effective Kalman filter
using only simple circuitry.

One reason why predictive coding networks achieve performance similar to the
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Kalman filter is that the posterior uncertainty decays rapidly over trials (for an
illustration see Figure 5A in a paper by Moeller, Manohar, and Bogacz (2022)).
Furthermore, for deterministic transition processes (with Σx = 0), the posterior
uncertainty decays to Σk = 0 (Moeller et al., 2022). Therefore, as the learning pro-
gresses, the Kalman filter becomes more similar or even identical (for deterministic
processes) to the temporal predictive coding.

Our work thus raises an interesting empirical question as to what kinds of uncer-
tainties various agents – such as humans or animals – actually appear to represent
in dynamical inference tasks. For instance, it is not clear that in the literature
that subjective confidence ratings are highly correlated with the true dynamical
uncertainty of the decisions in a task (Navajas et al., 2017). Although the Kalman
filter has been used to describe reinforcement learning (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006), direct comparison with simpler reinforcement learning
models did not favour the Kalman filter (Howard-Jones, Bogacz, Yoo, Leonards,
& Demetriou, 2010). It may be interesting, therefore, to compare predictions
of the Kalman filter (and the extended model representing posterior uncertainty
(Kutschireiter et al., 2017)) and the original temporal predictive coding models
to experimental data directly. For example, one could compare if learning rate in
reinforcement learning tasks is better described by the Kalman gain or the value
from temporal predictive coding.

Relationship with Generalized coordinates

A further interesting theoretical property of the model is its potential to au-
tonomously learn to represent the dynamics of systems in generalized coordinates
of motion (Friston, 2008; Friston et al., 2008a) if provided with generalized coordi-
nates as inputs. Generalized coordinates, introduced into the predictive coding
literature by Friston et al. (2008a), and well known in engineering practice, in-
volve representing the n’th order derivatives of a state as additional coordinate
dimensions. In effect, a point in generalized coordinates of motion to n’th order
reflects the approximate trajectory of the state given by the n’th order Taylor
expansion around that point. Original predictive coding models involving gen-
eralized coordinates typically required hardcoding the relationships between the
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coordinates, and the relative precisions between different dynamical orders (Friston,
2008; Friston, Trujillo-Barreto, & Daunizeau, 2008b; Parr & Friston, 2018) which
results in intricate and complex hardcoded connectivity, reducing the ultimate
biological plausibility of such models. However, our model’s capability to directly
learn the A and C matrices from data allows the model to simply receive a gen-
eralized coordinate state as input and learn the required connectivity online, as
demonstrated in our pendulum simulations.

Neural Implementation

There are several interesting questions regarding the biological plausibility of
the multi-step neural implementation. Initially these schemes, while they arise
directly from the gradient descent derivation, appear biologically implausible for
two reasons. The first is the issue of storage. Iterative schemes require the initial
conditions (state estimate x̂k−1) to be held fixed throughout multiple iterations,
and this means that this state must be stored somewhere accessible to be utilized
multiple times during the iterative inference phase. It is not clear where or how this
information could be stored in the brain, especially in low-level sensory systems.
This storage must be local and ubiquitous as a naive implementation of the multi-
step algorithms proposed in this paper would require separate storage for every
single value neuron.

The second issue relates to the time it takes for an iterative algorithm to converge.
Specifically, if we model the brain as receiving visual input as a continuous stream,
then multiple iterations based upon a single stimulus would necessitate ignoring
the data arriving in the intervals while the iterations are taking place. Moreover,
an iterative approach would also take more time to update upon information newly
received, which could be crucial for survival in some cases. There are also multiple
potential solutions to this problem – firstly, the cortex may implement both an
iterative and an amortized feedforward pass solution simultaneously (Tschantz,
Millidge, Seth, & Buckley, 2022), and there is substantial evidence for precisely this.
Firstly, core visual functions can often occur within 100-200 ms (Carlson, Tovar,
Alink, & Kriegeskorte, 2013; Keysers, Xiao, Földiák, & Perrett, 2001; Thorpe, Fize,
& Marlot, 1996; Thunell & Thorpe, 2019) which is too short to allow multiple steps
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of recurrent optimization, thus demonstrating that some kind of rapid single-step
inference is possible. Conversely, there is much evidence that increased viewing
time allows for the refinement of representations, reduction of uncertainty, and
improvement in accuracy over time, which strongly speaks to the existence of some
iterative recurrent processing occurring as well.

Finally, there is some interesting evidence that most brain regions, including the
visual cortex, operate on a characteristic frequency (Buzsaki, 2006; Buzsaki &
Draguhn, 2004). In the case of the visual cortex, the dominant rhythm is the alpha
band at 5-15 Hz. Experiments have found that information presented in phase with
these oscillations is processed normally; however, if the information is presented out
of phase, then a drop of accuracy ensues, suggesting that the information has not
been fully or successfully processed (Ruzzoli, Torralba, Fernández, & Soto-Faraco,
2019). These findings are consistent with the iterative convergence algorithms
proposed here being implemented in the cortex.

A further avenue for future work relates to the challenge of learning long-term
dependencies which span over many time steps. This has long been a central
challenge with these recurrent models, and emerges essentially due to the fact
that information is permuted or lost at every step of the recurrent pass, and
thus tracking dependencies across many recurrent loops becomes increasingly
difficult (Hochreiter, 1998; Hochreiter & Schmidhuber, 1997; Tallec & Ollivier,
2018). Numerous solutions to this have been suggested in the literature, ranging
from specially designed cell architectures that can explicitly store or pass along
information unaltered (Hochreiter & Schmidhuber, 1997; Tallec & Ollivier, 2018)
to having a nested hierarchy of recurrent models which allow for the propagation
of information over longer and longer timescales (Koutnik, Greff, Gomez, &
Schmidhuber, 2014).

The recurrent temporal predictive coding model we propose can also be imple-
mented when representing prediction errors in dendrites as in Sacramento et al.
(2018) and Guerguiev, Lillicrap, and Richards (2017) instead of using explicit pre-
diction error neurons as in Figure 2A. Such an architecture can reconcile predictive
coding networks with the lack of strong evidence for there being explicit prediction
error neurons in the cortex (Walsh et al., 2020), unlike the dopaminergic reward
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prediction error neurons in the mid-brain whose existence has been established for
decades (Schultz, 1998; Schultz, Dayan, & Montague, 1997).

Conclusion

In this paper, we have proposed neural implementations of temporal predictive
coding model in recurrent networks which utilize only biologically plausible Hebbian
learning rules. We demonstrate that the model can successfully perform both linear
and nonlinear tracking tasks successfully, along with online system identification
of both transition and observation dynamics, and can come close to the optimal
tracking performance of the Kalman filter. Moreover, by analyzing closely the
mathematical relationship of the model to the Kalman filter, we have identified
representation of subjective uncertainty as the key difference between the Kalman
filter and the temporal predictive coding networks.
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A Appendix: Derivation of recursive Bayesian es-

timation

Here we provide detailed derivations of Equation 16, showing that the original
Bayesian filtering problem can be simplified as a recursive estimation process that
finally leads to Kalman filtering and our own temporal predictive coding:

p(xk|y1:k) =

∫
p(x1:k|y1:k)dx1, . . . , dxk−1

(a)
∝
∫
p(y1:k|x1:k)p(x1:k)dx1, . . . , dxk−1

(b)
=

∫ k∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−1

= p(yk|xk)
∫
p(xk|xk−1)

k−1∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−1

= p(yk|xk)
∫
p(xk|xk−1)

[∫ k−1∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−2

]
dxk−1

(c)
∝ p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(33)

where step (a) is achieved by Bayes’ rule, step (b) is achieved by the Markov
assumption we made on the hidden states, and step (c) is achieved by observing
that the integral in the square bracket in the penultimate line is proportional to
the Bayesian filtering posterior at the previous step k − 1. This can be observed
by comparing it with the expression on the third line of the above equations.
Importantly, this expression provides a recursive solution to the problem i.e.,
knowing the posterior at step k − 1, we could estimate the posterior at step k.

B Appendix: Derivation of the update rules for

the models

Here we derive the update rule for x̂k that underlies both predictive coding and
Kalman filtering (Equations 22 and 26). Notice that the objective functions for
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these two models follow a unified form:

Fk = (yk − Cxk)TΣ−1y (yk − Cxk) + (xk − x̂−k )TS−1(xk − x̂−k ) (34)

where S = Σx for predictive coding and S = AΣk−1A
T + Σx for Kalman filtering.

To obtain x̂k that minimizes Fk, we first take the derivative of Fk with respect to
xk:

∂Fk
∂xk

= (CTΣ−1y C + S−1)xk − (CTΣ−1y yk + S−1x̂−k ) (35)

Then, by setting the derivative to 0 we have the optimal x̂k:

x̂k = (CTΣ−1y C + S−1)−1(CTΣ−1y yk + S−1x̂−k )

(a)
= [S − SCT (Σy + CSCT )−1CS](CTΣ−1y yk + S−1x̂−k )

(b)
= [S −KCS](CTΣ−1y yk + S−1x̂−k )

= x̂−k −KCx̂
−
k + [SCTΣ−1y −KCSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k + [KK−1SCTΣ−1y −KCSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k +K[(Σy + CSCT )C−TS−1SCTΣ−1y − CSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k +Kyk

= x̂−k + SCT (Σy + CSCT )−1(yk − Cx̂−k )

(36)

In step (a) we use the Woodbury matrix inversion identity and in step (b) we
replace SCT (Σy+CSCT )−1 with K. Substituting S = Σx for predictive coding and
S = AΣk−1A

T + Σx for Kalman filtering we get Equations 22 and 26 respectively.

C Appendix: Estimating uncertainty in temporal

predictive coding

In the previous derivations, we have shown that temporal predictive coding differs
from Kalman filtering in that it does not propagate the uncertainty estimated
at the previous time step. Initially, this may seem to result from the fact that
temporal predictive coding does not model the uncertainty at any step at all
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since it performs MAP estimation and does not have a separate estimation of the
posterior covariance. However, as we show in this appendix, even if we choose to
model the posterior covariance i.e., model the full Gaussian posterior, the optimal
covariance Σ∗k at step k will still be independent of the previously estimated Σk−1.

As was shown in Equation 25, the objective of temporal predictive coding simplifies
to maximizing the following joint probability with respect to xk:

p(yk, xk|x̂k−1) = p(xk|yk, x̂k−1)p(yk|x̂k−1) (37)

Since p(yk|x̂k−1) does not depend on xk, this is equivalent to maximizing the
posterior probability p(xk|yk, x̂k−1). If, instead of finding the maximum of this
posterior, we want to model the full posterior distribution, a common approach
is to perform variation inference, where we assume an approximate posterior
distribution q(xk) that approximates this true posterior. Here, we assume that
q(xk) is Gaussian:

q(xk) = N (µk,Σk) (38)

We want to find the distribution parameters µk and Σk that minimizes the diver-
gence between the approximate and true posteriors:

q∗ = argmin
q

DKL [q(xk)||p(xk|yk, x̂k−1)] (39)

which is equivalent to minimizing the following KL divergence (see (Bogacz, 2017)
for details):

q∗ = argmin
q

DKL [q(xk)||p(xk, yk|x̂k−1)] (40)

Following the definition of KL divergence, we can explicitly write this KL divergence
as:

DKL [q(xk)||p(xk, yk|x̂k−1)] = Eq[log q(xk)]− Eq[log p(xk, yk|x̂k−1)]

= Eq[log q(xk)]− Eq[log p(yk|xk)]− Eq[log p(xk|x̂k−1)]
(41)

We now evaluate the three expection terms. For the first term Eq[log q(xk)], notice
that it is simply the negative entropy of the distribution q(xk). Since q(xk) is
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Gaussian, this term is simply:

Eq[log q(xk)] = −Dx

2
(1 + log 2π)− 1

2
log |Σk|

= c0 −
1

2
log |Σk|

(42)

where we assume xk has dimension Dx for any k. Since the first term is independent
of Σk, we denote it as a constant c0.

For the second term, since we assume that the generative process yk|xk ∼
N (Cxk,Σy), we can write it as:

Eq[log p(yk|xk)] = Eq
[
−Dy

2
log 2π − 1

2
log |Σy| −

1

2
(yk − Cxk)TΣ−1y (yk − Cxk)

]
= −Dy

2
log 2π − 1

2
log |Σy| −

1

2
Eq
[
(yk − Cxk)TΣ−1y (yk − Cxk)

]
(a)
= c1 + yTk Σ−1y Cµk −

1

2
Eq
[
xTkC

TΣ−1y Cxk
]

= c1 + yTk Σ−1y Cµk −
1

2
Eq
[
tr(xTkC

TΣ−1y Cxk)
]

= c1 + yTk Σ−1y Cµk −
1

2
tr
(
CTΣ−1y CEq

[
xkx

T
k

])
(b)
= c1 + yTk Σ−1y Cµk −

1

2
tr
(
CTΣ−1y C

[
Σk + µkµ

T
k

])
= c1 + yTk Σ−1y Cµk −

1

2
µTkC

TΣ−1y Cµk −
1

2
tr
(
CTΣ−1y CΣk

)
(43)

where we assume the observations yk ∈ RDy , and tr() denotes the trace of matrix.
In step (a) we use the fact that the first two terms in the second line are independent
of µk and Σk and thus can be denoted as a constant c1. In step (b) we use the
fact that cov(x, x) = E[xxT ]− E[x]E[x]T .

Similarly, for the third term, since we assumed that xk|x̂k−1 ∼ N (Ax̂k−1,Σx), we
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can write it as:

Eq[log p(xk|x̂k−1)] = −Dx

2
log 2π − 1

2
log |Σx|

− Eq
[

1

2
(xk − Ax̂k−1)TΣ−1x (xk − Ax̂k−1)

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
xTkΣ−1x xk

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
tr(xTkΣ−1x xk)

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
tr(Σ−1x xkx

T
k )
]

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
tr(Σ−1x Eq

[
xkx

T
k

]
)

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
tr(Σ−1x

[
Σk + µkµ

T
k

]
)

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
µkΣ

−1
x µk −

1

2
tr(Σ−1x Σk)

(44)

Putting these three terms together, we can define the objective function Fk as:

Fk := DKL [q(xk)||p(xk, yk|x̂k−1)]

= c+
1

2
µTk (Σ−1x + CTΣ−1y C)µk − (yTk Σ−1y C + x̂Tk−1A

TΣ−1x )µk

− 1

2
log |Σk|+

1

2
tr
(
CTΣ−1y CΣk

)
+

1

2
tr
(
Σ−1x Σk

) (45)

Taking the derivative of Fk with respective to µk and Σk and set them to 0 we get
(notice that Fk is a convex function with respect to both µk and Σk):

µ∗k = (Σ−1x + CTΣ−1y C)−1(CTΣ−1y yk + Σ−1x Ax̂k−1) (46)

Σ∗k = (Σ−1x + CTΣ−1y C)−1 (47)

Notice that µ∗k is exactly the MAP estimate x̂k of xk we obtained in the main text,
and Σ∗k is independent of the previously estimated Σk−1.
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