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Abstract

One of the key problems the brain faces is inferring the state of the world
from a sequence of dynamically changing stimuli, and it is not yet clear how
the sensory system achieves this task. A well-established computational
framework for describing perceptual processes in the brain is provided by the
theory of predictive coding. Although the original proposals of predictive
coding have discussed temporal prediction, later work developing this theory
mostly focused on static stimuli, and key questions on neural implementation
and computational properties of temporal predictive coding networks remain
open. Here, we address these questions and present a formulation of the
temporal predictive coding model that can be naturally implemented in
recurrent networks, in which activity dynamics rely only on local inputs to
the neurons, and learning only utilises local Hebbian plasticity. Additionally,
we show that predictive coding networks can approximate the performance
of the Kalman filter in predicting behaviour of linear systems, and behave
as a variant of a Kalman filter which does not track its own subjective pos-
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terior variance. Importantly, predictive coding networks can achieve similar
accuracy as the Kalman filter without performing complex mathematical
operations, but just employing simple computations that can be implemented
by biological networks. Moreover, we demonstrate how the model can be
effectively generalized to non-linear systems. Overall, models presented in
this paper show how biologically plausible circuits can predict future stimuli
and may guide research on understanding specific neural circuits in brain
areas involved in temporal prediction.

Author summary

While significant advances have been made in the neuroscience of how the brain
processes static stimuli, the time dimension has often been relatively neglected.
However, time is crucial since the stimuli perceived by our senses typically dy-
namically vary in time, and the cortex needs to make sense of these changing
inputs. This paper describes a computational model of cortical networks processing
temporal stimuli. This model is able to infer and track the state of the environment
based on noisy inputs, and predict future sensory stimuli. By ensuring that these
predictions match the following stimuli, the model is able to learn the structure
and statistics of its temporal inputs. The model may help in further understanding
neural circuits in sensory cortical areas.

Introduction

This paper is concerned with extending the theory of predictive coding to the
problem of processing dynamically changing sequences of sensory inputs arriving
over time. Predictive coding, which originated from an algorithm for compression
in information theory (Spratling, 2017), was initially developed and applied to
the analysis of the brain by Srinivasan, Laughlin, and Dubs (1982) and Mumford
(1992) and then formalized into a general computational model of the cortex by
Rao and Ballard (1999). The core intuition behind predictive coding is that the
brain computes predictions of its observed input, and compares these predictions to
the actually received input. The difference between the two is called the prediction
error and quantifies how incorrect the brain’s prediction was. The brain then
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adjusts its neural activities and synaptic strengths to minimize prediction errors
which ultimately results in more accurate predictions (Clark, 2015; Friston, 2005).
Thus, solely by minimizing prediction errors, the brain is forced to learn a general
world model which can generate accurate predictions of its incoming sensory input
(Friston, 2003, 2005). Moreover, these prediction errors are computed locally
between the local input to the neuron and the predictions it receives. This means
that learning in predictive coding model requires only local information and can
be accomplished in most cases with purely Hebbian synaptic plasticity (Bogacz,
2017; Buckley, Kim, McGregor, & Seth, 2017; Millidge, Tschantz, Seth, & Buckley,
2020).

Predictive coding has become an influential theoretical model for understanding
cortical functions (Friston, 2003, 2005; Rao & Ballard, 1999; Walsh, McGovern,
Clark, & O’Connell, 2020). In their original study, Rao and Ballard (1999) trained
predictive coding networks to generate static images of natural scenes, and demon-
strated that the network learnt receptive fields similar to those found in V1, as
well as reproduced extra-classical receptive fields and end-stopping. Since then it
has been demonstrated that predictive coding networks can explain many intrigu-
ing phenomena such as repetition suppression (Auksztulewicz & Friston, 2016),
bistable perception (Hohwy, Roepstorff, & Friston, 2008; Weilnhammer, Stuke,
Hesselmann, Sterzer, & Schmack, 2017), illusory motions (Watanabe, Kitaoka,
Sakamoto, Yasugi, & Tanaka, 2018), retinal stabilization (Millidge & Shillcock,
2019) and even potentially attentional modulation of perception (Feldman & Fris-
ton, 2010; Kanai, Komura, Shipp, & Friston, 2015). Moreover, there has been
much work matching the underlying neurophysiology of cortical microcircuits to
the fundamental computations required by the predictive coding algorithm (Bastos
et al., 2012; Keller & Mrsic-Flogel, 2018; Millidge, Seth, & Buckley, 2021), thus
providing a potential low-level basis for the implementation of predictive coding in
neural circuitry.

Alongside the aforementioned works that have successfully reproduced many
neurophysiological phenomena, recent progresses in predictive coding have been
concerned with machine learning tasks such as the classification or generation
of static images (Millidge, Tschantz, & Buckley, 2020; Ororbia & Kifer, 2022;
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Song, Lukasiewicz, Xu, & Bogacz, 2020; Sun & Orchard, 2020), and multiple
lines of research have investigated the relationship between predictive coding and
backpropagation, the driving force behind modern machine learning systems (Song
et al., 2020; Whittington & Bogacz, 2017). However, most of these works are
concerned with inputs that are independent and identically distributed (i.i.d.)
samples from some dataset and are presented in batches to the predictive coding
model in random order. However, the visual input to the brain is not like this.
Instead, the brain receives a continually changing sensory stream conveying an
endless sequence of individual images with much correlation and rich structure
embedded in the timing of the sequence elements. Therefore, to better describe
the information processing in the brain, predictive coding models must take into
account one more crucial element: time.

There are several established algorithms in statistics and machine learning for
sequence processing over time, but they typically require very complex compu-
tations that would be difficult for biological circuits to perform. Nevertheless,
it is useful to consider them as a reference against which the performance of
biologically plausible models can be assessed. When there is a linear relationship
between the current and future states (and noise is assumed to be Gaussian), the
optimal temporal predictions can be achieved by the Kalman filter (Kalman, 1960).
For more complex nonlinear problems, one can employ recurrent neural networks
(Jordan, 1990), which contain recurrent connections which maintain and update
an internal hidden state over time. While these recurrent networks, and more
advanced successors such as the Long-Short-Term-Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) can be very expressive and powerful, they are typically trained
with backpropagation through time algorithm (BPTT) (Werbos, 1988; Williams,
1992; Williams & Zipser, 1995) which requires storing a history of all computations
through a sequence and then ‘unrolling’ it sequentially backwards through time
to make updates. This algorithm is biologically implausible, because the brain
can only receive inputs in a sequential stream, and must be able to process them
online – i.e. as the inputs are received, and seems unlikely to be able to unfold a
precise sequence of computations in reverse. In this work, we focus our comparison
to these statistical and machine learning models on the Kalman filter which is an
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online algorithm, i.e. it processes data sequentially, as biological systems need to
do.

Within the field of predictive coding, there are a few tracks of research that have
considered incorporating the temporal dimension. Earlier works (Rao, 1997; Rao
& Ballard, 1997) employed Kalman filtering to model the visual processing of
dynamical sequences. Instead of using fixed transformation matrices which are
assumed to be known as in Kalman filtering, these works introduced learning
rules to model synaptic plasticity in neural circuits performing filtering. Friston
(2008) have proposed the notion of extending predictive coding to use generalized
coordinates (Friston, Stephan, Li, & Daunizeau, 2010; Friston, Trujillo-Barreto, &
Daunizeau, 2008a) which model a dynamical state by including a set of temporal
derivatives into the state vector and making predictions of these derivatives along
with the current state. A few recent studies have also developed predictive coding
models that perform well in various tasks involving temporal dependencies, such as
those commonly examined in machine learning (Jiang & Rao, 2022; Kutschireiter,
Surace, Sprekeler, & Pfister, 2017; Ororbia, Mali, Giles, & Kifer, 2020). However,
the works mentioned above have departed from the simple and flexible architecture
of classical predictive coding for static inputs (Rao & Ballard, 1999) in order to
take into account the temporal dimension. For example, the pioneering work that
introduced Kalman filtering into predictive coding (Rao, 1997; Rao & Ballard, 1997)
has not described how the computations of Kalman filtering could be implemented
in biological networks. Mapping of models employing generalized co-ordinates
(Friston, 2008) on a neural circuit would require explicit hard-coding of the expected
temporal dependencies between different dynamical orders. Other models include
specially designed network features to aid the temporal processing, such as hyper-
networks (Jiang & Rao, 2022), multiple sub-networks (Kutschireiter et al., 2017)
or complex connectivity and neuron types (Ororbia et al., 2020).

In this paper, we propose a simple predictive coding network that also incorporates
the temporal dimension, which we call temporal predictive coding. This model
generates predictions not only about the current inputs but also about its own
future neural responses, which is achieved by recurrent connections between
neurons to transmit the prediction of one time-step to the next. The paper
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makes three main contributions: First, we propose a predictive coding model
that addresses the problem of temporal prediction, while inheriting from static
predictive coding (Rao & Ballard, 1999) the simple and biologically plausible
neural network implementations employing only local connectivity and Hebbian
plasticity rules. Second, when the model is linear, we show that our model is a
close approximation of the Kalman filtering model analytically, and has empirical
performance comparable to Kalman filtering in benchmark filtering tasks while
being computationally cheaper and requiring only biologically plausible operations.
Also, unlike the Kalman filter, our model can learn the parameters of the system
online. Finally, we extend the model to the nonlinear case and show promising
performance on a number of nonlinear filtering and sequence prediction tasks.
Overall, our model provides a possible computational mechanism underlying the
cortical processing of dynamic inputs based on predictive coding, suggesting that
the brain may learn to represent both static and continuous sensory observations
using a single computational framework.

Models

The structure of the exposition in this section is as follows. Firstly, we present
the underlying graphical structure of our proposed generative temporal predictive
coding network i.e., a Hidden Markov Model (HMM). Next, we show that, with
Gaussian assumptions on the HMM and certain parametric assumptions on the
nonlinear generative processes, we can derive an objective function that is similar
to the original predictive coding network (Rao & Ballard, 1999) but taking into
account the temporal dimension. We then demonstrate that neural dynamics and
plasticity rules can be derived via minimization of the objective function by gradient
descent, and a corresponding training algorithm is presented. Finally, we show
that the proposed computations and algorithms afford biologically plausible neural
implementations in several different cases and discuss how they may be mapped
to neural circuitry in the cortex. Since this paper contains much mathematical
notation, for ease of reading, we have collected it in Table 1 for quick reference.
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Notation Meaning

y Observation
x Latent state
u Control input
k Observation ‘frame’
t Inference time
A Dynamics matrix
B Control matrix
C Observation matrix
Σx Process noise
Σy Observation noise
f Nonlinear function
x̂ Inferred latent state
q(·) Variational distribution
F Variational free energy
εx Dynamics prediction error
εy Observation prediction error
η learning rate

∆t Inference step size
Σk Posterior variance
K Kalman Gain matrix

Table 1: Table of mathematical notation used in the paper.

Model foundations: HMM and free energy

The conceptual level of our model is grounded within the Bayesian Brain paradigm
(Friston, 2005; Friston & Ao, 2012; Knill & Pouget, 2004; Pouget, Beck, Ma,
& Latham, 2013). Specifically, we assume that the problem of perception is
fundamentally an inference problem, where there exists some real world ‘out
there’, from which we only receive noisy and distorted sensory input. The task
of perception is to untangle and counteract the noise in order to reconstruct the
real (but hidden) state of the world given only our sensory observations. Thus,
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Figure 1: Graphical model of the generative process assumed by the temporal
predictive coding networks. xk correspond to hidden states, yk to observations, and
uk to control inputs. Circles denote latent variables, squares denote observations,
and arrows denote conditional dependence of the variables (the absence of an arrow
indicates conditional independence).

mathematically, we can represent the problem of perception as trying to infer
a series of latent states of the world xk (k = 1, 2, . . . ) from their corresponding
sensory observations yk (k = 1, 2, . . . ). We assume that the underlying graphical
structure of our temporal predictive coding network is an HMM, where the hidden
states xk follow a Markov chain. That is, the current hidden state of the world
only depends upon the previous hidden state. Also, the current observation is
generated by the current state of the world only, with no dependence on past noisy
observations. Figure 1 shows the generative process of the temporal predictive
coding where, for generality, we have also added ‘control’ inputs u which can be
thought of as known inputs to the system at every time step (such inputs are
included in the Kalman filter that we will later use as a benchmark). This control
input is useful to model systems where there are known external forces acting on
the system (such as an agent’s own actions) which we don’t necessarily want to
model simply as part of the environmental dynamics.

From the generative model in Figure 1, we can also write out specific equations
for the dynamics of the states and observations in what is called the state-space
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representation:
xk = Af(xk−1) +Buk + ωx (1)

yk = Cf(xk) + ωy (2)

where A is the matrix that transitions the previous hidden state xk−1 to xk, B is
the matrix governing how the control input uk affects the current hidden state,
and C is the ‘emission’ matrix that determines how the observation yk is generated
from the hidden state. f is a function transforming xk that may be nonlinear.
The above state-space representation also includes sources of noise ωx and ωy.
We will assume a white Gaussian noise model such that ωx ∼ N (0,Σx) and
ωy ∼ N (0,Σy) are zero-mean Gaussian random variables with covariance matrices
Σx, Σy

1. Therefore, xk and yk can be considered as random variables that follow
the Gaussian distributions:

xk|xk−1, uk ∼ N (Af(xk−1) +Buk,Σx) (3)

yk|xk ∼ N (Cf(xk),Σy) (4)

The objective of our model is to obtain an estimate x̂k of the current xk, given the
previously estimated x̂k−1, current noisy observation yk and control input uk. This
objective can be expressed as estimating the posterior distribution p(xk|yk, x̂k−1, uk),
which takes an analogous form of the objective used in static predictive coding and
more generally, free energy principle (Bogacz, 2017; Friston, 2005). If function f is
non-linear, directly estimating this posterior is intractable, and thus variational
inference (Beal et al., 2003; Ghahramani, Beal, et al., 2000; Neal & Hinton, 1998)
is utilized to find an approximate of the posterior. Specifically, we assume that
there exists an approximate posterior q(xk) and we seek an approximate posterior
that is as close as possible to the ‘true’ posterior p(xk|yk, x̂k−1, uk), and variational

1In the control theory literature, the process noise Σx is often denoted as Q and the observation
noise Σy as R. We instead follow the convention that has arisen within the predictive coding
literature, which we also believe is more straightforward, by calling them Σx and Σy, since it
makes explicit that these variances are simply the variances of the two distributions composing
the generative model.
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inference finds such a q(xk) by minimizing an upper bound on the divergence
between the true and approximate posteriors called the variational free energy.
If we make an additional simplifying assumption that q(xk) follows a Gaussian
distribution with its density highly concentrated at its mean, the free energy Fk
becomes approximately equal to (Bogacz, 2017; Buckley et al., 2017):

Fk = − ln p(yk, xk|x̂k−1, uk)

= − ln p(yk|xk)p(xk|x̂k−1, uk)
(5)

and it is also sufficient to estimate the mode of the approximate posterior (which
is the same as its mean) instead of estimating the whole distribution with this
assumption. Furthermore, with the Gaussian assumptions in Equations 3 and 4,
the free energy becomes:

Fk = (yk − Cf(xk))
TΣ−1y (yk − Cf(xk))

+ (xk − Af(x̂k−1)−Buk)TΣ−1x (xk − Af(x̂k−1)−Buk)
(6)

Importantly, we can express this objective as the sum of squared prediction errors
weighted by their inverse covariances (which are often called precisions in the
predictive coding literature). In this model, there are two kinds of prediction
errors – ‘sensory’ prediction errors which are the difference between the observation
and predicted observation yk − Cf(xk) and ‘temporal’ prediction errors which are
the difference between the inferred current state and the current state predicted
from the previous state xk − Af(x̂k−1) − Buk. Thus, by finding an estimate
x̂k = argminxk Fk, we effectively minimize the squared sum of these prediction
errors while the precision matrices serve to weight the importance of the sensory
and temporal prediction errors in accordance with their intrinsic variance (so highly
variable prediction errors are weighted less). After the minimization finishes, the
estimated x̂k can then be used to estimate the hidden state at the next step k + 1.

Algorithm in the model

With the objective function in Equation 6, it is then possible to derive an iterative
algorithm to perform its minimization via gradient descent. Similar to static
predictive coding (Rao & Ballard, 1999), the gradient descent is performed on two
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sets of values: the hidden states xk and the weight parameter matrices A, B and
C. As we will show in the next subsection, the former can be implemented as
neural responses and the latter can be implemented as synaptic connections in a
neural circuit in a similar way to static predictive coding. For the hidden state xk,
its dynamics follow:

dxk
dt

= −∂Fk
∂xk

(7)

At convergence, we can say that the equilibrium value x̂k represents the optimal
inference about the mean of the true hidden state of the world. It is worth
mentioning that we now introduced two different indices k and t for distinct time
scales: for discrete steps k at which the observations arise and continuous real
time t in which computations are made within the model, and we will discuss the
relationship between them in detail in the next subsection.

To derive the exact expression for the inferential dynamics, we can define the
precision-weighted state and observation prediction errors as εx and εy respectively
as follows:

εy = Σ−1y (yk − Cf(xk)) (8)

εx = Σ−1x (xk − Af(x̂k−1)−Buk) (9)

We can then write Equation 7 as:

dxk
dt

= −∂Fk
∂xk

= −εx + f ′(xk)� CT εy (10)

where � denotes the element-wise product between vectors. The dynamics have
contributions from both the sensory and the temporal prediction errors, and the
contribution of the sensory prediction error is ‘mapped backwards’ through the
transpose matrix CT .

Similarly, if we assume that the A, B and C parameter matrices are learnable, we
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can derive update rules also following gradient descent on Fk:

∆A = −η∂Fk
∂A

= ηεxf(x̂k−1)
T

∆B = −η∂Fk
∂B

= ηεxu
T
k

∆C = −η∂Fk
∂C

= ηεyf(xk)
T

(11)

In the above equations, η denotes a scalar learning rate. As we will see below,
the iterative updates will correspond to local Hebbian plasticity in the neural
implementation of the model.

Typically, if the A, B, and C matrices are learned, then the matrices are updated
for a single step according to Equations 11 after the xk has already converged and
using the equilibrium values x̂k. This is because it is often assumed that these
variables represent more slowly changing variables in the real world. Moreover, in
the neural implementation, these matrices are often assumed to be implemented by
synaptic strengths which typically change slowly while the x̂ variables are typically
mapped to neural firing rates, which change quickly.

The algorithm for learning a temporal predictive coding model is shown in Algo-
rithm 1. The algorithm assumes that sensory observations yk arrive at discrete
steps k. At each step k, we first initialize the xk values with the previous estimated
x̂k−1 value from the last step. Then, we iterate Equation 10 until convergence for
a given observation yk. Upon convergence our x̂k becomes our best estimate of the
true state of the world. Given this x̂k we can update the A, B, and C matrices
using Equations 11.

Neural circuit implementation

The update rules and dynamics we have derived in Equations 10 and 11 can be
mapped to a recurrent predictive coding network architecture with biologically
plausible Hebbian learning rules. In this section we present two examples of
networks implementing the algorithm exactly, and then a simplified network that
approximates the algorithm.
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Algorithm 1: Single training epoch for temporal predictive coding
N : Discrete steps of observations
for k = 1 to N do

Initialize xk with previously inferred x̂k−1
while xk not converged do

Perform inference dxk
dt

(Equation 10)
end
Update weight matrices ∆A, ∆B, ∆C (Equation 11) using inferred x̂k

end

Figure 2A presents a potential example of how the update rules we have derived can
be implemented in a neural network with only local and Hebbian plasticity, which
is similar to the standard predictive coding network (Rao & Ballard, 1999). In
this network observations yk enter at the lowest level, and cause sensory prediction
errors εy as the observations are met by top-down predictions. These prediction
errors are explicitly represented by the firing rates of ‘prediction error neurons’.
These prediction error neurons receive top-down inhibitory connections from ‘value
neurons’ in the layer above which, through their firing rates, represent the inferred
posterior values x̂k. Similarly, at the layer above there are additional prediction
error neurons that represent the difference between the current activity and that
predicted based on the previous inference mapped through the dynamics function
(Equation 9), and we assume that there are dedicated neurons that ‘memorize’
latent activities x̂k−1 inferred at the previous discrete time step, which is used
to make a prediction of the current latent activities and reloaded at the end of
inference at each time step.

There are several important aspects to note about this model. First, all the required
update rules can be implemented using purely local information. The dynamics of
the hidden state estimates xk (Equation 10) can be reproduced locally since the
value neurons receive inhibitory connections from the prediction error neurons εx at
their ‘layer’ as well as excitatory connections from the prediction error neurons εy
at the layer below. Similarly, the prediction errors εy can be computed according to
Equation 8 as the corresponding prediction error neurons receive excitatory input
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error value excitatory inhibitory (excitatory) apical dendrite

A B C

Figure 2: Possible neural implementations of temporal predictive coding. A:
Potential neural circuit implementing the iterative recurrent predictive coding
algorithm. For simplicity, we have depicted each neural ‘layer’ as possessing only
two neurons. B: Version of the model where the prediction errors are represented
by the difference in membrane potential in soma and at apical dendrites (depicted
as rectangles). C: Neural circuitry required to implement the single-iteration
predictive coding algorithms. This model no longer includes a separate set of
neurons explicitly storing the estimate of the previous timestep, but instead the
temporal prediction errors are computed naturally through recurrent connections.
For simplicity we omitted the control inputs Buk, which can be implemented in a
similar way to the recurrent inputs Ax̂k−1 to the error neurons or apical dendrites.

yk and inhibition from neurons encoding xk. Scaling by inverse covariance matrix
could be achieved through additional inhibitory connections between prediction
error neurons (not shown for simplicity) as described by Bogacz (2017), and
it was recently demonstrated that the inverse of covariance matrix can also be
reparameterised as a recurrent weight matrix to circumvent the implausibility of the
inversion (Tang et al., 2023). The prediction error εx can be computed analogously.
The update rules for the A, B, and C weight matrices (Equations 11) are also
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precisely Hebbian, since they are outer products between the prediction errors and
the value neurons of the layer above which, crucially, are also precisely the pre
and post-synaptic activities of the neurons where the synapses implementing these
weight matrices are located.

The network shown in Figure 2A follows a standard predictive coding architecture,
but it could be simplified because the prediction error neurons encoding εx only
project to corresponding neurons encoding x, and we could thus borrow the idea
of dendritic computing similar to the model of Sacramento, Costa, Bengio, and
Senn (2018). In particular, substituting Equation 9 into Equation 10, we obtain:

dxk
dt

= −xk + Af(x̂k−1) +Buk + f ′(xk)� CT εy (12)

where, for clarity of explanation, we omitted the precision Σ−1x that can be
implemented in ways mentioned above. By writing the dynamical equation in this
way, we assume that there is no building block within the model that encodes the
error explicitly; rather, the apical dendrite will encode the inputs Af(x̂k−1) +Buk

and send the signal to the soma of the pyramidal neuron. This dendritic signal
excites the soma and drives the inferential dynamics (Equation 12), together
with the decay −xk that is intrinsic to the soma and feedback signals from the
observation layer. The corresponding neural implementation is shown in Figure 2B.
Although the architecture of the network becomes simpler, learning parameters
A and B is less straightforward because the prediction error εx is not explicitly
represented in activity of any neurons in the network. Nevertheless, it is possible to
construct models in which εx is represented in internal signals (e.g. concentrations
of particular ions or proteins) within neurons encoding x: Notice that the error
can be represented as the difference between the neural activity and the membrane
potential in the apical dendrite. Since both of these quantities are encoded within
the same neuron, it is plausible that this computation could be performed, where
the error is implicitly encoded in an internal signal. Such a signal could then drive
local synaptic plasticity to learn the A and B matrices.

While simulating the model, we update state estimated by numerically solving
Equation 12 using the Euler method, i.e. we calculate the state estimates for every
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interval ∆t:

xk(t+ ∆t) = xk(t) + ∆t
[
−xk(t) + Af(x̂k−1) +Buk + f ′(xk(t))� CT εy

]
(13)

The above expression highlights that the algorithm has two nested timescales –
firstly there is the ‘external’ timescale which is where sensory inputs yk are received
in a sequence of steps we index by subscript k. Then, for each external step, there
is an internal inference of the hidden state that is numerically implemented as
a set of recurrent iterations within that external step, which we denote as t. In
such a nested framework, the implementations in Figure 2A and B suffer from
the need to store and hold fixed the state estimate of the previous step while the
iterative inference of the state estimate for the current step is ongoing. Specifically,
the estimate from the previous step x̂k−1 needs to be held fixed throughout the
iterative procedure while the actual current values xk(t) vary in order to find a
balance x̂k between the demands of matching the prediction from the last step
and also the current observation (Algorithm 1). Once the iterations are complete
for a step, the new value of x̂k needs to be loaded into the memory and stored as
the last step for the next set of iterations. In situations where the observation are
separated in time, it is known that neurons are able to store the representation of
stimuli presented a few seconds earlier in their activity (Rainer, Asaad, & Miller,
1998). In the case where sensory input arrives continuously, the two time-scales
coincide, and there may be no time for inference between steps of sensory input.
In that latter case, the algorithm can be adapted to remove the issue of nested
timescales without unduly harming filtering performance by simply using a single
iteration of the internal inference for each external step. This means that there is
effectively no ‘inner loop’ of the algorithm any more, since the inner loop consists
of just a single iteration. This makes the algorithm fully online in the sense that it
receives a new sensory input for every step. In particular, note that by equating
time indices t = k∆t in Equation 13, we obtain:

x̂k = xk + ∆t
[
−xk + Af(x̂k−1) +Buk + f ′(xk(t))� CT εy

]
(14)

A diagram of a potential neural circuit implementing this single-step algorithm
is presented in Figure 2C. This network no longer includes neurons storing past
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inferences. Instead, the temporal prediction errors are computed solely using
recurrent connections labelled A, which are now assumed to introduce a temporal
delay of one step.

The advantage of this approach is that it eschews the challenge of storing and
loading the memory of the last step; instead, this memory can be dynamically
maintained across a single external step simply through recurrent connections
via their intrinsic synaptic delays. The disadvantage of this approach is that the
update rules of the algorithm were derived as gradient descent on an objective
function, and this approach is equivalent to taking only a single gradient step for
each example. Clearly, in many cases, such an algorithm simply would not work
because a single step is nowhere near enough to approach the optimum. However,
there are two features of the problem that ameliorate much of this difficulty in
practice. The first is that, when f is a linear function, the objective is actually
convex, and thus the loss landscape is extremely well-behaved. This allows for the
use of relatively high integration steps to move large distances in a single, or a
few steps, without fear of overshooting the optimum or running into divergences.
The other factor is due to the nature of the external world: typically, visual scenes
change relatively slowly on a microsecond-by-microsecond level, and thus the
optimum estimated hidden state for a single step is likely extremely close to the
optimum hidden state for the next. In this case, since we initialize the inference of
each step with the optimum of the last step, this will usually be extremely close to
the optimum for the current step as well, thus meaning that the algorithm simply
does not have to make many iterations to achieve the optimum since it already
starts close by. In the next section, we show that in practice on standard tracking
and filtering tasks, these two factors can often simplify the inference problem
enough that this single iteration approach often works successfully, although it
usually does not perform quite as well as multi-step methods.

Results

The results of this paper are partitioned into a theoretical section and experimental
sections. In the theoretical section, we examine the relationship between the
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temporal predictive coding model and Kalman filtering and demonstrate that the
temporal predictive coding network, under certain assumptions, is equivalent to a
Kalman filter with a fixed posterior variance. In simulations, we demonstrate that
despite not correctly representing the posterior variance, the temporal predictive
coding network nevertheless exhibits strong and robust tracking performance on
both linear and nonlinear filtering tasks while also being capable of online system
identification through the learning of the A and C matrices, unlike the Kalman
filter. All code required for replicating the simulation presented in this paper can be
found freely online at https://github.com/C16Mftang/temporal-predictive-coding.

Relationship to Kalman filtering

Here we show that both Kalman filtering (Kalman, 1960) and temporal predictive
coding can be derived as special cases of the Bayesian filtering problem. Bayesian
filtering concerns the problem of inferring the sequence of hidden ‘causes’ x1, ..., xK
of the observations y1, ..., yK . This problem can be effectively factorised into a
sequence of online inference problems i.e., inferring the hidden state xk at time
step k, given the whole history of observations y1, ..., yk (Jazwinski, 2007; Stengel,
1986). For simplicity of notation, we denote x1:k = x1, ..., xk and y1:k = y1, ..., yk.
The Bayesian filtering problem can thus be formulated as inferring the following
posterior distribution:

p(xk|y1:k) (15)

We show in Appendix A that this posterior distribution is proportional to:

p(xk|y1:k) ∝ p(yk|xk)
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (16)

where the integral is effectively the marginal distribution p(xk|y1:k−1) of the joint
p(xk, xk−1|y1:k−1) and can be considered as the prior on xk. Notice that the term
p(xk−1|y1:k−1) is exactly the posterior inferred from the previous time step k − 1,
making Bayesian filtering a recursive method (Chen et al., 2003). As a special case
of Bayesian filtering, Kalman filtering assumes that the conditional distributions
p(yk|xk) and p(xk|xk−1) can be parameterized linearly as follows:

yk|xk ∼ N (Cxk,Σy); xk|xk−1 ∼ N (Axk−1 +Buk,Σx) (17)
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Further, it assumes that the posterior estimated at the previous step k− 1 follows:

xk−1|y1:k−1 ∼ N (x̂k−1,Σk−1) (18)

where x̂k−1 is the MAP estimate from the previous step k − 1 and is the mode
(or mean) of the Gaussian posterior with covariance Σk−1 at step k − 1. Under
the above Gaussian assumptions, the prior p(xk|y1:k−1) on xk (i.e., the integral in
Equation 16) can be written as (Bishop & Nasrabadi, 2006):

p(xk|y1:k−1) = N (Ax̂k−1 +Buk, AΣk−1A
T + Σx) (19)

Kalman filtering then performs maximum a posteriori (MAP) to find x̂k:

x̂k = argmax
xk

log p(xk|y1:k)

= argmin
xk

(yk − Cxk)TΣ−1y (yk − Cxk)

+ (xk − Ax̂k−1 −Buk)T (AΣk−1A
T + Σx)

−1(xk − Ax̂k−1 −Buk)

(20)

Since all the transformation functions in this optimization problem are linear, an
analytical expression for x̂k can be derived, which will result in the well-known
algorithm for Kalman filtering i.e., the ‘projection’:

x̂−k = Ax̂k−1 +Buk

Σ−k = AΣk−1A
T + Σx

(21)

and the ‘correction’ step where we then incorporate the new information we have
received from the environment to correct our estimates:

x̂k = x̂−k +K(yk − Cx̂−k )

Σk = (I −KC)Σ−k

K = Σ−k C
T
[
CΣ−k C

T + Σy]
−1

(22)

where K is known as the Kalman Gain matrix and is central to the Kalman Filter
update rules for the estimated mean and variance in the correction step (Welch,
Bishop, et al., 1995). x̂k and Σk are then our estimated mean and covariance of the
posterior Gaussian distribution. The derivation of the projection and correction
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rules can be found in prior works (Chen et al., 2003; Millidge, Tschantz, Seth, &
Buckley, 2021), while we also provide the derivation in Appendix B as to compare
to the update rules of our temporal predictive coding model, which is demonstrated
below.

Our temporal predictive coding model also aims to solve the Bayesian filtering
problem in Equation 16, and it can also make the linear and Gaussian assumptions
in Equation 17. Notice that Equation 17 is identical to Equations 3 and 4, but
with a linear f . Temporal predictive coding differs from Kalman filtering by
making a different assumption on the distribution on the previous-step posterior
p(xk−1|y1:k−1). Instead of assuming it as a Gaussian distribution in Equation 18,
it assumes:

xk−1|y1:k−1 ∼ δ(xk−1 − x̂k−1) (23)

where δ(xk−1 − x̂k−1) denotes a Dirac distribution with its density concentrated at
x̂k−1. The prior on xk for predictive coding thus becomes:

p(xk|y1:k−1) = p(xk|x̂k−1) = N (Ax̂k−1 +Buk,Σx) (24)

since the density of p(xk−1|y1:k−1) is concentrated at x̂k−1. The MAP estimation
of x̂k performed by predictive coding is thus:

x̂k = argmax
xk

log p(xk|y1:k)

= argmin
xk

(yk − Cxk)TΣ−1y (yk − Cxk)

+ (xk − Ax̂k−1 −Buk)TΣ−1x (xk − Ax̂k−1 −Buk)

(25)

which is the free energy in Equation 5 with a linear f . The above derivation
thus provides another interpretation of the temporal predictive coding model i.e.,
a special case of the Bayesian filtering problem that assumes at each step the
variance estimated at the previous step is 0. Again, as all transformations in the
optimization objective are linear, we can derive an analytical expression for x̂k:

x̂−k = Ax̂k−1 +Buk

x̂k = x̂−k +K(yk − Cx̂−k )

K = ΣxC
T
[
CΣxC

T + Σy]
−1

(26)
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which is similar to the projection and correction steps for Kalman filtering (Equa-
tions 21 and 22), but with Σk−1 assumed to be 0 i.e., temporal predictive coding
does not propagate the uncertainty estimations. The derivation of these equations
can be found in Appendix B.

It is also worth mentioning that in the temporal predictive coding model, although
we did not specify the estimation of uncertainty Σk at each step, not propagating
the uncertainty Σk−1 from the previous step is not equivalent to not estimating it.
In fact, as we show in Appendix C, even when we choose to estimate Σk in the
temporal predictive coding model, it is still not propagated. Therefore, our MAP
estimation x̂k will not be affected.

To summarize, by assuming a linear f , here we have shown that both Kalman
filtering and temporal predictive coding are special cases of the Bayesian filtering
problem, while the key difference is that predictive coding ignores the uncertainty
estimated at the previous step when estimating the most likely hidden ‘cause’ at
the current time step, whereas Kalman filtering always estimates this uncertainty.
However, as we will show in the experimental results section, in the benchmark
tracking tasks, predictive coding performs on par with Kalman filtering, albeit not
estimating the posterior uncertainty. Importantly, there are several advantages
of predictive coding over Kalman filtering as a model of dynamical processing
in the brain. Firstly, the projection and correction steps of Kalman filtering
require complicated matrix algebra and are challenging to compute in neural
circuitry, especially the Kalman Gain matrix K. On the other hand, although we
can derive analytical results for the estimates of predictive coding as well, these
estimates can be obtained via the iterative methods mentioned above, which afford
plausible circuitry implementations (Figure 2). Secondly, the iterative nature of
our predictive coding model also makes it adaptable to nonlinear f , where there
are no analytical solutions to the Bayesian filtering problem. In contrast, extending
the Kalman Filter to nonlinear systems is challenging and standard methods such
as the extended Kalman filter (Ruck, Rogers, Kabrisky, Maybeck, & Oxley, 1992)
work by linearizing around the nonlinearity and thus require knowledge of the
Jacobian of the nonlinearity at every state, which is also challenging to implement
in neural circuits. Finally, the Kalman filter assumes knowledge of the correct A, B,
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and C matrices while these must presumably be learned from sensory observations
in the brain.

Simulations of the models

As well as these theoretical results, we empirically quantify how the predictive
coding network performs on Bayesian filtering tasks in both the linear and nonlinear
setting. This allows us to directly compare our algorithm to the Kalman filter to
assess how important representing the posterior variance is, as well as to investigate
the success of the online learning of the A and C matrices. Since other recent
studies of related temporal predictive coding models have simulated them on tasks
used in machine learning (Ororbia et al., 2020) and visual neuroscience (Jiang &
Rao, 2022), in this paper we focus on simulating tasks following the setup assumed
by the Kalman filter.

Linear model

Here we first present results for the linear model on a simple tracking task of the
kind to which the Kalman filter is commonly applied in industry, and which also
shares a close relationships with those the brain must solve – such as tracking a
moving object with visual saccades during smooth pursuit. Here, the goal is simply
to infer the unknown hidden state (position, velocity, acceleration) of an object
which is undergoing an unknown acceleration. We receive noisy observations of
the position, state, and acceleration of the object which are mapped through a
random C matrix with additional observation noise. We use a random C matrix
for the observation mapping to simulate and test the most difficult scenario where
the observations are entirely scrambled.

Mathematically, the generative process of this task can be represented according to
a linear state space model. We assume that the position, velocity, and acceleration
of the object follow the usual laws of Newtonian physics, while the control input
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only affects the acceleration, giving us the following A and B matrices,

A =

1 ∆k 1
2
∆k2

0 1 ∆k

0 0 1

 , B =
[
0 0 1

]
(27)

In Equation 27, ∆k denotes the duration of the interval between successive sensory
observations (we used ∆k = 0.001). Additionally, we draw a C matrix from a
random Gaussian distribution C ∼ N (0, 1). The process and observation noise
Σx and Σy were set to identity matrices. We then generate the true latent states
xk and the noisy observations yk using Equations 1 and 2, initialized with a zero
vector when k = 0. The performance of the models is then measured as the mean
squared error (MSE) between the estimated x̂k and true xk across all observation
time steps. Figure 3A shows an example of the true system state that we generated
across 1000 time steps, and Figure 3B shows its corresponding noisy observations.
As can be seen, the projected observations are completely scrambled by matrix C,
making it a challenging task for the models to retrieve the true system states.

We then investigate tracking performance using the predictive coding model
compared to the Kalman filter for both 5 steps of inference between observations
(∆k = 5∆t) and 1 step (∆k = ∆t). Since the problem is linear, we also investigate
the performance of a predictive coding model when its inference dynamics have
reached the equilibrium, using the equilibrium condition derived in Equation 26.
Since tracking performance is extremely good when zoomed out over 1000 timesteps,
in Figure 3C, we plot the estimates of acceleration (x3) on the 40 timesteps between
560 and 600 steps in. It can be seen from Figure 3C that both the predictive
coding model with 5 inference steps and that with fully converged inferential
dynamics could achieve comparable performance to Kalman filter. Interestingly,
the estimates of predictive coding tend to be closer to those of the Kalman filtering,
rather than the true values. Although the predictive coding model with a single
inference step (corresponding to the neural implementation in Figure 2C) has worse
tracking performance, it is able to estimate a smoothed version of the trajectory
of the system state. We hypothesize that the smoothed estimate with a single
inference step is likely due to the fact that the predictive coding algorithm does
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A B

C D

Figure 3: The tracking task and the impact of inference step size and the number
of inference steps on performance. A. The dynamics of the true hidden state
represented as a 3-dimensional vector at each time step, with entries corresponding
to position (x1), velocity (x2) and acceleration (x3). B. The projected noisy
observations from the true system state in A. C: Estimates of the acceleration with
different models, zoomed in at the interval between 560 and 600 time steps. D:
MSE difference between predictive coding and Kalman filter, with varying number
of inference steps and step sizes for predictive coding. PC stands for predictive
coding and KF stands for Kalman filter.

not completely converge in 1 iteration, and so does not completely optimize its
estimate on every timestep, with the effect that the estimate is less sensitive to new
information and effectively averages over recent experiences rather than optimally
solving each one independently. A similar performance comparison is obtained on
the position (x1) and velocity (x2) and is thus not shown.
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To quantify the effect of the number of inference iterations and integration step
size ∆t upon performance, in Figure 3D we plotted the MSE difference between
predictive coding models with various inference iterations and inference step sizes
and the Kalman filter, which is the optimal solution to the tracking problem. The
MSE is calculated as the mean squared difference between the estimated system
state x̂k and true state xk, averaged across time steps and trials. We find that with
a small number of inference steps, the performance of the predictive coding model
is worse, indicating that additional steps of inference aid the tracking performance
of the algorithm. Moreover, although increasing the step size will initially improve
the performance, the MSE will start to increase if the step size is too large. It
can also be seen that with more inference steps and appropriate step sizes, the
performance of predictive coding will be able to approximate that of the (optimal)
Kalman filter.

Learning

In the previous investigations, we fixed the parameters A, B and C to the true
values and only performed the inference dynamics. However, in many cases, simply
inferring the hidden states of the world is not enough because we cannot assume
that we know a-priori the structure of the dynamics or observation functions
of the world. That is, in most real-world situations, the A, B, and C matrices
are unknown. Instead, we must learn these matrices from observations. In our
recurrent predictive coding model, we have a natural Hebbian plasticity-based
learning rule which we can use to learn these matrices directly (Equation 11).
Here, we investigate how learning these parameters affects the performance of our
predictive coding model. Specifically, we investigate three different ways of setting
the values for A and C: 1) fixing them to the true values used for generating
the data; 2) learning them using Equation 11 and Algorithm 1; 3) fixing them
to random values. We then examine the performance of these models on two
levels, the latent state level (x) and the observation level (y), by measuring how
well the model estimates the activities on both levels. It is worth noting that the
observation estimates are calculated by performing a forward pass at each time
step i.e., ŷk = C(Ax̂k−1 +Buk), where the value of C is obtained at each time step
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Figure 4: Effects of learning parameters A and C. A, B: Estimation of the state
and observation trajectories respectively by different models. ‘True’, ‘Learnt’ and
‘Random’ denote the predictive coding model with true, learned and random A and
C respectively. Only the first dimension of the latent and observation is shown for
simplicity. The other two dimensions have similar performance. C, D: MSE of the
predictions on the hidden and observation levels respectively. Boxplots obtained
with 40 trials on each model.

k via the aforementioned three approaches. The results are shown in Figure 4.

For this set of results, we use 20 inference steps with a step size 0.2 to get the
optimal performance for the predictive coding models, based on Figure 3D. Figure
4A shows that, while our predictive coding model estimates the latent state well
with true A and C, when asked to learn the parameters, the model fails to accurately
estimate the latent state. Quantitatively, as shown in Figure 4C, the estimation
MSE of the learning model on the state level is similar as for the predictive coding
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model with totally random parameters, which is much higher than those of the
Kalman filter and predictive coding model with true parameters. On the other
hand, however, we find that the model learning A and C can accurately estimate
the observations even with the incorrectly estimated latent state (Figure 4B). This
effect arises because the problem of inferring the true hidden state from the data
is fundamentally under-determined. There are many possible hidden states that,
given a flexible learnt mapping, could result in an identical predicted observation.
Importantly, despite inferring a different representation of the hidden state, the
network is able to learn A and C that correctly predicts the incoming observations
(Figure 4D).

Simple non-linear model

We tested the nonlinear predictive coding model in two different experiments. In
this section we focus on a simple simulation in which observations are generated
from a probabilistic model of the same form as that of non-linear predictive coding
network. In such setting we expected the non-linear temporal predictive coding
network to learn predict these data well, and we wished to test if it can do it better
than a linear model.

We generated a time-series of 100, two-dimensional stimuli according to Equations
1 and 2 where the nonlinear function f is chosen to be the hyperbolic tangent
function, and ωy and ωx correspond to standard Gaussian noise sampled from an
i.i.d. Gaussian distribution with a mean of 0 and a variance of 0.01. In this 2D
example, parameters of C and A were set to a rotation matrix and the identity
matrix multiplied by 3, respectively, which are as follows,

A =

[
−1
2

∆k 1

−1 −1
2

∆k

]
× 3

C =

[
1 0

0 1

]
× 3 (28)

The multiplication by 3 in both matrices above was performed to produce a system
that operates beyond the linear range of the hyperbolic tangent function (we
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used ∆k = 0.5). The observed stimuli are periodic signals which are simply noisy
versions of the hidden variables.

Both a liner and non-linear models were trained to predict these stimuli. The models
were simulated with single state of inference between samples (∆k = ∆t). For the
learning process, the parameters of the C matrix were initialized as identity matrix
while the weights between hidden units were initialized to zeros. Additionally, each
neuron x̂ was initialized to 0, and the model was trained according to Equations
11.

Figures 5A,B show zoomed-in time-series with predictions of nonlinear and linear
models (for the sake of visualization, only one dimension is shown). Figure
5A demonstrates that in the first 50 time steps of the simulation both models
significantly move their predictions towards true time-series. Figure 5B shows the
final 50 time steps, where the nonlinear model performed relatively better than
the linear model.

The observation prediction error of each model is depicted in Figure 5C. Within
the first 50 to 100 time steps, the linear model has a much higher rate of reduction
in its prediction error compared with the nonlinear model; however, this rapid drop
in the error is followed by a stationary line and even a slow divergence from the
optimum toward the end of the simulation. On the other hand, the nonlinear model
shows a slower, but relatively steady, rate of error reduction which ultimately leads
to convergence. The lower loss achieved by the nonlinear model could be explained
by the fact that the ground-truth simulation data has a different oscillatory pattern
as a result of the nonlinearity in the Equations 1 and 2 that were used to generate
such data. Therefore, the shape of the signal is different than one would expect to
observe from a simple linear system. To show this, we generated a simulation data
based on the following equation:

ŷk = a sin(bk + c), (29)

where a, b, and c were approximated by a least squares optimisation so they match
the ground-truth data. The comparison is depicted in Figure 5D.
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A

True A

Learned A (linear) Learned A (nonlinear)

E F

D

Figure 5: Comparison between nonlinear and linear model predictions for randomly
generated time-series. A: Time-series and the corresponding predictions of the
nonlinear and linear models during the first 50 time steps of learning. B: Analogous
data and predictions during the last 50 time steps of the simulation. C: Observation
prediction error during training. The solid lines indicate the average errors from
the 100 simulations with the shaded area as standard errors. D: Comparison of
the shape of the ground-truth signal versus the shape obtained from simulating
a parametric sin data with coefficients and constants optimised to match the
ground-truth. E: Comparison of the learned A matrices (mean values) of both
models against the true matrix. F: Mean error of the learned A parameters (with
standard errors). 29
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To better understand the behaviour of each model, we investigated how well the
transition matrix A is learnt in each case. In Figure 5E, we plotted the mean
learnt matrix by colour-coding the elements and normalising it to the minimum
and maximum values of the true matrix. As expected, the parameters of the A
matrix are closer to the true values when compared against their corresponding
values in the linear model. To quantify it, we also plotted the average errors of the
learned parameters for both models, showing that the linear model has a much
higher error (almost by three folds) versus the nonlinear model - see Figure 5F.

Pendulum

In order to investigate if temporal predictive coding model can learn to predict
time-series for which the generative process does not explicitly follow that of the
model, we trained the model on the simulated motion of a pendulum. Figure 6A
shows a free-body diagram of the pendulum that we simulated in this experiment,
demonstrating the mass, length L, and force vectors acting on the system. We
describe the state of the pendulum by the angle of the pendulum θ1 and its angular
velocity θ2. According Newton’s second Law of Motion, the angle of the pendulum
evolves according to:

θ̈1 = − g
L

sin(θ1) (30)

where g is gravity. We can express this motion in a set of first-order equations:

θ̇1 = θ2 (31)

θ̇2 = − g
L

sin(θ1) (32)

In simulation we used the following parameters: g = 9.81 m/s2, L = 3.0 m. We then
simulated the system as an initial value problem by numerically integrating the
equations using the explicit Runge-Kutta method for 2500 seconds with ∆k = 0.1

second time steps and initial values of θ1 = 1.8 rad and θ2 = 2.2 rad/s. These values
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θ

θ -mg cosθ
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-mg sinθ

m

L

A CB

Figure 6: Simulations of the pendulum. A: A free-body diagram of a simple
pendulum that has a mass m attached to a string with length L. Also shown are
the forces applied to the mass. The restoring force −mg sin θ is a net force toward
the equilibrium position. B: A phase portrait of the pendulum simulation showing
the result of our linear versus nonlinear models prediction for the ground-truth
data. The vector field (i.e. set of small arrows) was created by computing the
derivatives of dθ1

dt
and dθ2

dt
at t = 0 on a grid of 30 points over the range of −π to

+π and -4 to +4 for θ1 and θ2, respectively. C: The barplot shows the difference
between the mean prediction errors of the linear model versus the nonlinear model
from 100 simulations with varying noise profiles. The mean errors are significantly
different (p << 0.001).

were chosen to simulate the pendulum motion with a large amplitude of oscillation
to shift the system into a more nonlinear regime. The time-series presented to the
models yk were created by adding these numerical solutions and Gaussian noise
with zero-mean and standard deviation of 0.1.

We trained non-linear and linear temporal predictive coding models to predict
these time-series. Parameters of C and A were initialized as identity matrix and
zero, respectively. The learning was performed as in the previous section.

Figure 6B shows the results from the pendulum simulations using the phase portrait
of the system. The solutions of the ground-truth simulation and our nonlinear
model prediction are plotted on the vector field for the final 80 seconds. Even
though both models performed relatively well by correctly predicting the behaviour
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of the pendulum motion, the linear model performed worse when the pendulum
reached its highest angular displacements (see the noisy prediction around the
extremities of the θ1 axis in Figure 6B). On the other hand, the nonlinear model
stayed relatively stable throughout the entire prediction. Figure 6C shows the
mean squared error of prediction averaged over 100 separate simulations, and the
non-linear model consistently outperformed the linear one.

Discussion

In this paper, we have analysed the recurrent predictive coding architecture for
temporal prediction and filtering. This task is important because processing
time-varying sequences of inputs and using them to infer dynamically changing
hidden states of the world is the core task of the sensory regions of the brain. As
such, it is likely that these regions have an architecture heavily specialised for
performing such filtering tasks. Here we have shown that the filtering problem can
be tackled with a simple and biologically plausible algorithm with a straightforward
implementation in neural circuitry.

We have derived our temporal predictive coding model from first principles as a
variational filtering algorithm, provided a clear algorithmic derivation in terms
of gradient descents on the resulting free energy functionals, and proposed a
direct implementation in neural circuitry which relies on only local information
transmission as well as purely Hebbian plasticity that inherits the simple neural
implementation of static predictive coding networks. We have also demonstrated
that in the linear case, the algorithm is closely related to Kalman filtering, and is
capable of robustly solving filtering and tracking tasks at a level close to the optimal
linear solution. Moreover, and unlike the Kalman filter, we have demonstrated that
our model can perform online learning of the parameters using Hebbian plasticity,
which works rapidly and effectively in predicting the correct observations. We
have also extended the algorithm to the nonlinear case, and demonstrated that,
when presented with noisy nonlinear stimuli, the nonlinear model has a superior
performance over a comparable linear model in both learning the dynamics and
predicting the behaviour of the input sensory observation both spatially and
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temporally.

Related Work

Several earlier works have tried to approach the problem of Kalman filtering in the
brain. Wilson and Finkel (2009) repurpose a line attractor network and show that
it recapitulates the dynamics of a Kalman filter in the regime of low prediction
error. However their model only works for a single-dimensional stimulus, does
not encode uncertainty, and also only works when a linearisation around zero
prediction error holds. Deneve, Duhamel, and Pouget (2007) encoded Kalman
filter dynamics in a recurrent attractor network. Their approach however encodes
stimuli by means of basis functions, which leads to an exponentially growing
number of basis functions required to tile the space as the dimensionality of the
input grows. In the predictive coding approach, neurons directly encode the mean
of the estimated posterior distribution, which means that the network size scales
linearly with the number of dimensions. Our gradient method also completely
eschews the direct computation of the Kalman gain, which simplifies the required
computations significantly. Additionally, Beck, Ma, Latham, and Pouget (2007)
show that probabilistic population coding approaches can compute posteriors for
the exponential family of distributions of which the Gaussian distribution is a
member. However, no explicitly worked-out application of the population coding
approach to Kalman filtering exists, to our knowledge. Recent work has also
addressed the question of how biological recurrent neural networks can be trained
for temporal prediction (Bellec et al., 2020). They proposed that synapses maintain
eligibility traces encoding to what extent they contributed to neural activity over
time, and when combined with error signals, such traces enable effective credit
assignment. It would be interesting to investigate how such eligibility traces could
be incorporated into temporal predictive coding networks.

Moreover, other works have also explored predictive coding for temporal predic-
tions. For instance, early works Rao (1997, 1999); Rao and Ballard (1997) utilized
a Kalman filter combined with sparse image representations to make future predic-
tions of visual stimuli, but these works did not describe how the Kalman filter can
be implemented in biological circuits, and how their Kalman filter-based models
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can be extended to the nonlinear case. More recently, Jiang and Rao (2022) trained
temporal predictive coding networks on sequences of natural video (filmed by a
person walking through a forest) and observed that neurons have spatiotemporal
receptive fields resembling those in the primary visual cortex. Temporal predictive
coding networks have been extended to include multiple levels of hierarchy (Jiang
& Rao, 2022; Ororbia et al., 2020). Analysis of these networks revealed that
neurons on higher levels change their activity with a slower time scale than the
neurons at the lower levels of the hierarchy (Jiang & Rao, 2022). It has been also
demonstrated that hierarchical temporal predictive coding networks can achieve
performance comparable to BPTT in standard machine learning benchmarks
(Ororbia et al., 2020). However, these models require complex neural network
implementations to perform these temporal tasks. It is thus an interesting future
direction to see whether our temporal predictive coding model, which inherits the
simple neural implementation of the static predictive coding network, can present
similar performance and neural responses.

Work by Lotter, Kreiman, and Cox (2016) adapted deep recurrent neural networks
to perform a kind of predictive coding whereby the network was trained to predict
future prediction errors of each layer. They demonstrated that the resulting
network was capable of correctly predicting sequences of video frames. While
substantially scaling up predictive coding architectures to challenging machine
learning tasks, the networks of Lotter et al. (2016) diverged in many ways from
classical predictive coding architectures, and also utilized many non-biologically
plausible components from machine learning such as convolutional and LSTM
layers as well as training their network with BPTT.

Kutschireiter et al. (2017) addressed the question of how temporal predictive
coding networks can be extended so they represent posterior uncertainty. They
demonstrated that if multiple copies of the network are made, and the dynamics
of each network include noise with an appropriate magnitude, then each network
can represent a sample from the posterior distribution p(xk|y1 . . . yk) and the
collection of networks as a whole can represent the posterior distribution of state
in a sampling-based manner. Their model is particularly interesting because
the posterior uncertainty can be decoded from the differences in the activity of
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individual networks. However, the encoding of posterior uncertainty comes with a
cost of a larger number of neurons required to form multiple networks.

Relationship to Kalman filtering

The similarities and differences between the temporal predictive coding algorithms
and classical filtering algorithms like Kalman filtering are of significant theoretical
interest, as earlier works by Rao and Ballard (1997) have already used Kalman
filtering as a model of dynamical processing in the brain. We have found that
the crucial distinction is in the representation of the model’s uncertainty, mathe-
matically represented in the posterior variance Σk. Specifically, in the temporal
predictive coding model, although it represents the two ‘objective’ uncertainties Σx

and Σy of the dynamical system it is inferring, it does not represent the uncertainty
in the estimated posterior distribution (unlike the extended model of Kutschireiter
et al. (2017)). Crucially, it is the assumption of the prior at each time step that
prevents the temporal predictive coding model from successfully propagating the
posterior uncertainty through time.

Although temporal predictive coding does not optimally update and represent the
dynamically changing posterior uncertainty of the agent, it has other computational
advantages over Kalman filtering, which may render it more suitable for implemen-
tation in neural circuitry. The key advantage of the predictive coding approach is
its computational simplicity compared to the Kalman filtering update rules which
require complex matrix algebra and especially matrix inversions to compute the
Kalman Gain matrix which are unlikely to be implementable in neural circuitry
directly, while the predictive coding equations are simple and only require local
and Hebbian updates and can be directly translated into relatively straightforward
neural circuits. Moreover, as seen in Figure 3, the predictive coding estimate and
the Kalman filter estimates of a given dynamical system end up closely converging
anyway, which means that temporal predictive coding networks could provide the
brain an efficient and cheap way to approximate the highly effective Kalman filter
using only simple circuitry.

One reason why predictive coding networks achieve performance similar to the
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Kalman filter is that the posterior uncertainty decays rapidly over trials (for an
illustration see Figure 5A in a paper by Moeller, Manohar, and Bogacz (2022)).
Furthermore, for deterministic transition processes (with Σx = 0), the posterior
uncertainty decays to Σk = 0 (Moeller et al., 2022). Therefore, as the learning pro-
gresses, the Kalman filter becomes more similar or even identical (for deterministic
processes) to the temporal predictive coding.

Our work thus raises an interesting empirical question as to what kinds of uncer-
tainties various agents – such as humans or animals – actually appear to represent
in dynamical inference tasks. For instance, it is not clear that in the literature
that subjective confidence ratings are highly correlated with the true dynamical
uncertainty of the decisions in a task (Navajas et al., 2017). Although the Kalman
filter has been used to describe reinforcement learning (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006), direct comparison with simpler reinforcement learning
models did not favour the Kalman filter (Howard-Jones, Bogacz, Yoo, Leonards,
& Demetriou, 2010). It may be interesting, therefore, to compare predictions
of the Kalman filter (and the extended model representing posterior uncertainty
(Kutschireiter et al., 2017)) and the original temporal predictive coding models
to experimental data directly. For example, one could compare if learning rate in
reinforcement learning tasks is better described by the Kalman gain or the value
from temporal predictive coding.

Relationship with Generalized coordinates

A further interesting theoretical property of the model is its potential to au-
tonomously learn to represent the dynamics of systems in generalized coordinates
of motion (Friston, 2008; Friston et al., 2008a) if provided with generalized coordi-
nates as inputs. Generalized coordinates, introduced into the predictive coding
literature by Friston et al. (2008a), and well known in engineering practice, in-
volve representing the n’th order derivatives of a state as additional coordinate
dimensions. In effect, a point in generalized coordinates of motion to n’th order
reflects the approximate trajectory of the state given by the n’th order Taylor
expansion around that point. Original predictive coding models involving gen-
eralized coordinates typically required hardcoding the relationships between the
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coordinates, and the relative precisions between different dynamical orders (Friston,
2008; Friston, Trujillo-Barreto, & Daunizeau, 2008b; Parr & Friston, 2018) which
results in intricate and complex hardcoded connectivity, reducing the ultimate
biological plausibility of such models. However, our model’s capability to directly
learn the A and C matrices from data allows the model to simply receive a gen-
eralized coordinate state as input and learn the required connectivity online, as
demonstrated in our pendulum simulations.

Neural Implementation

There are several interesting questions regarding the biological plausibility of
the multi-step neural implementation. Initially these schemes, while they arise
directly from the gradient descent derivation, appear biologically implausible for
two reasons. The first is the issue of storage. Iterative schemes require the initial
conditions (state estimate x̂k−1) to be held fixed throughout multiple iterations,
and this means that this state must be stored somewhere accessible to be utilized
multiple times during the iterative inference phase. It is not clear where or how this
information could be stored in the brain, especially in low-level sensory systems.
This storage must be local and ubiquitous as a naive implementation of the multi-
step algorithms proposed in this paper would require separate storage for every
single value neuron.

The second issue relates to the time it takes for an iterative algorithm to converge.
Specifically, if we model the brain as receiving visual input as a continuous stream,
then multiple iterations based upon a single stimulus would necessitate ignoring
the data arriving in the intervals while the iterations are taking place. Moreover,
an iterative approach would also take more time to update upon information newly
received, which could be crucial for survival in some cases. There are also multiple
potential solutions to this problem – firstly, the cortex may implement both an
iterative and an amortized feedforward pass solution simultaneously (Tschantz,
Millidge, Seth, & Buckley, 2022), and there is substantial evidence for precisely this.
Firstly, core visual functions can often occur within 100-200 ms (Carlson, Tovar,
Alink, & Kriegeskorte, 2013; Keysers, Xiao, Földiák, & Perrett, 2001; Thorpe, Fize,
& Marlot, 1996; Thunell & Thorpe, 2019) which is too short to allow multiple steps
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of recurrent optimization, thus demonstrating that some kind of rapid single-step
inference is possible. Conversely, there is much evidence that increased viewing
time allows for the refinement of representations, reduction of uncertainty, and
improvement in accuracy over time, which strongly speaks to the existence of some
iterative recurrent processing occurring as well.

Finally, there is some interesting evidence that most brain regions, including the
visual cortex, operate on a characteristic frequency (Buzsaki, 2006; Buzsaki &
Draguhn, 2004). In the case of the visual cortex, the dominant rhythm is the alpha
band at 5-15 Hz. Experiments have found that information presented in phase with
these oscillations is processed normally; however, if the information is presented out
of phase, then a drop of accuracy ensues, suggesting that the information has not
been fully or successfully processed (Ruzzoli, Torralba, Fernández, & Soto-Faraco,
2019). These findings are consistent with the iterative convergence algorithms
proposed here being implemented in the cortex.

A further avenue for future work relates to the challenge of learning long-term
dependencies which span over many time steps. This has long been a central
challenge with these recurrent models, and emerges essentially due to the fact
that information is permuted or lost at every step of the recurrent pass, and
thus tracking dependencies across many recurrent loops becomes increasingly
difficult (Hochreiter, 1998; Hochreiter & Schmidhuber, 1997; Tallec & Ollivier,
2018). Numerous solutions to this have been suggested in the literature, ranging
from specially designed cell architectures that can explicitly store or pass along
information unaltered (Hochreiter & Schmidhuber, 1997; Tallec & Ollivier, 2018)
to having a nested hierarchy of recurrent models which allow for the propagation
of information over longer and longer timescales (Koutnik, Greff, Gomez, &
Schmidhuber, 2014).

The recurrent temporal predictive coding model we propose can also be imple-
mented when representing prediction errors in dendrites as in Sacramento et al.
(2018) and Guerguiev, Lillicrap, and Richards (2017) instead of using explicit pre-
diction error neurons as in Figure 2A. Such an architecture can reconcile predictive
coding networks with the lack of strong evidence for there being explicit prediction
error neurons in the cortex (Walsh et al., 2020), unlike the dopaminergic reward
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prediction error neurons in the mid-brain whose existence has been established for
decades (Schultz, 1998; Schultz, Dayan, & Montague, 1997).

Conclusion

In this paper, we have proposed neural implementations of temporal predictive
coding model in recurrent networks which utilize only biologically plausible Hebbian
learning rules. We demonstrate that the model can successfully perform both linear
and nonlinear tracking tasks successfully, along with online system identification
of both transition and observation dynamics, and can come close to the optimal
tracking performance of the Kalman filter. Moreover, by analyzing closely the
mathematical relationship of the model to the Kalman filter, we have identified
representation of subjective uncertainty as the key difference between the Kalman
filter and the temporal predictive coding networks.
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A Appendix: Derivation of recursive Bayesian es-

timation

Here we provide detailed derivations of Equation 16, showing that the original
Bayesian filtering problem can be simplified as a recursive estimation process that
finally leads to Kalman filtering and our own temporal predictive coding:

p(xk|y1:k) =

∫
p(x1:k|y1:k)dx1, . . . , dxk−1

(a)
∝
∫
p(y1:k|x1:k)p(x1:k)dx1, . . . , dxk−1

(b)
=

∫ k∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−1

= p(yk|xk)
∫
p(xk|xk−1)

k−1∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−1

= p(yk|xk)
∫
p(xk|xk−1)

[∫ k−1∏
i=1

p(yi|xi)p(xi|xi−1)dx1, . . . , dxk−2

]
dxk−1

(c)
∝ p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(33)

where step (a) is achieved by Bayes’ rule, step (b) is achieved by the Markov
assumption we made on the hidden states, and step (c) is achieved by observing
that the integral in the square bracket in the penultimate line is proportional to
the Bayesian filtering posterior at the previous step k − 1. This can be observed
by comparing it with the expression on the third line of the above equations.
Importantly, this expression provides a recursive solution to the problem i.e.,
knowing the posterior at step k − 1, we could estimate the posterior at step k.

B Appendix: Derivation of the update rules for

the models

Here we derive the update rule for x̂k that underlies both predictive coding and
Kalman filtering (Equations 22 and 26). Notice that the objective functions for
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these two models follow a unified form:

Fk = (yk − Cxk)TΣ−1y (yk − Cxk) + (xk − x̂−k )TS−1(xk − x̂−k ) (34)

where S = Σx for predictive coding and S = AΣk−1A
T + Σx for Kalman filtering.

To obtain x̂k that minimizes Fk, we first take the derivative of Fk with respect to
xk:

∂Fk
∂xk

= (CTΣ−1y C + S−1)xk − (CTΣ−1y yk + S−1x̂−k ) (35)

Then, by setting the derivative to 0 we have the optimal x̂k:

x̂k = (CTΣ−1y C + S−1)−1(CTΣ−1y yk + S−1x̂−k )

(a)
= [S − SCT (Σy + CSCT )−1CS](CTΣ−1y yk + S−1x̂−k )

(b)
= [S −KCS](CTΣ−1y yk + S−1x̂−k )

= x̂−k −KCx̂
−
k + [SCTΣ−1y −KCSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k + [KK−1SCTΣ−1y −KCSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k +K[(Σy + CSCT )C−TS−1SCTΣ−1y − CSCTΣ−1y ]yk

= x̂−k −KCx̂
−
k +Kyk

= x̂−k + SCT (Σy + CSCT )−1(yk − Cx̂−k )

(36)

In step (a) we use the Woodbury matrix inversion identity and in step (b) we
replace SCT (Σy+CSCT )−1 with K. Substituting S = Σx for predictive coding and
S = AΣk−1A

T + Σx for Kalman filtering we get Equations 22 and 26 respectively.

C Appendix: Estimating uncertainty in temporal

predictive coding

In the previous derivations, we have shown that temporal predictive coding differs
from Kalman filtering in that it does not propagate the uncertainty estimated
at the previous time step. Initially, this may seem to result from the fact that
temporal predictive coding does not model the uncertainty at any step at all
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since it performs MAP estimation and does not have a separate estimation of the
posterior covariance. However, as we show in this appendix, even if we choose to
model the posterior covariance i.e., model the full Gaussian posterior, the optimal
covariance Σ∗k at step k will still be independent of the previously estimated Σk−1.

As was shown in Equation 25, the objective of temporal predictive coding simplifies
to maximizing the following joint probability with respect to xk:

p(yk, xk|x̂k−1) = p(xk|yk, x̂k−1)p(yk|x̂k−1) (37)

Since p(yk|x̂k−1) does not depend on xk, this is equivalent to maximizing the
posterior probability p(xk|yk, x̂k−1). If, instead of finding the maximum of this
posterior, we want to model the full posterior distribution, a common approach
is to perform variation inference, where we assume an approximate posterior
distribution q(xk) that approximates this true posterior. Here, we assume that
q(xk) is Gaussian:

q(xk) = N (µk,Σk) (38)

We want to find the distribution parameters µk and Σk that minimizes the diver-
gence between the approximate and true posteriors:

q∗ = argmin
q

DKL [q(xk)||p(xk|yk, x̂k−1)] (39)

which is equivalent to minimizing the following KL divergence (see (Bogacz, 2017)
for details):

q∗ = argmin
q

DKL [q(xk)||p(xk, yk|x̂k−1)] (40)

Following the definition of KL divergence, we can explicitly write this KL divergence
as:

DKL [q(xk)||p(xk, yk|x̂k−1)] = Eq[log q(xk)]− Eq[log p(xk, yk|x̂k−1)]

= Eq[log q(xk)]− Eq[log p(yk|xk)]− Eq[log p(xk|x̂k−1)]
(41)

We now evaluate the three expection terms. For the first term Eq[log q(xk)], notice
that it is simply the negative entropy of the distribution q(xk). Since q(xk) is
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Gaussian, this term is simply:

Eq[log q(xk)] = −Dx

2
(1 + log 2π)− 1

2
log |Σk|

= c0 −
1

2
log |Σk|

(42)

where we assume xk has dimension Dx for any k. Since the first term is independent
of Σk, we denote it as a constant c0.

For the second term, since we assume that the generative process yk|xk ∼
N (Cxk,Σy), we can write it as:

Eq[log p(yk|xk)] = Eq
[
−Dy

2
log 2π − 1

2
log |Σy| −

1

2
(yk − Cxk)TΣ−1y (yk − Cxk)

]
= −Dy

2
log 2π − 1

2
log |Σy| −

1

2
Eq
[
(yk − Cxk)TΣ−1y (yk − Cxk)

]
(a)
= c1 + yTk Σ−1y Cµk −

1

2
Eq
[
xTkC

TΣ−1y Cxk
]

= c1 + yTk Σ−1y Cµk −
1

2
Eq
[
tr(xTkC

TΣ−1y Cxk)
]

= c1 + yTk Σ−1y Cµk −
1

2
tr
(
CTΣ−1y CEq

[
xkx

T
k

])
(b)
= c1 + yTk Σ−1y Cµk −

1

2
tr
(
CTΣ−1y C

[
Σk + µkµ

T
k

])
= c1 + yTk Σ−1y Cµk −

1

2
µTkC

TΣ−1y Cµk −
1

2
tr
(
CTΣ−1y CΣk

)
(43)

where we assume the observations yk ∈ RDy , and tr() denotes the trace of matrix.
In step (a) we use the fact that the first two terms in the second line are independent
of µk and Σk and thus can be denoted as a constant c1. In step (b) we use the
fact that cov(x, x) = E[xxT ]− E[x]E[x]T .

Similarly, for the third term, since we assumed that xk|x̂k−1 ∼ N (Ax̂k−1,Σx), we
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can write it as:

Eq[log p(xk|x̂k−1)] = −Dx

2
log 2π − 1

2
log |Σx|

− Eq
[

1

2
(xk − Ax̂k−1)TΣ−1x (xk − Ax̂k−1)

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
xTkΣ−1x xk

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
tr(xTkΣ−1x xk)

]
= c2 + x̂Tk−1A

TΣ−1x µk −
1

2
Eq
[
tr(Σ−1x xkx

T
k )
]

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
tr(Σ−1x Eq

[
xkx

T
k

]
)

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
tr(Σ−1x

[
Σk + µkµ

T
k

]
)

= c2 + x̂Tk−1A
TΣ−1x µk −

1

2
µkΣ

−1
x µk −

1

2
tr(Σ−1x Σk)

(44)

Putting these three terms together, we can define the objective function Fk as:

Fk := DKL [q(xk)||p(xk, yk|x̂k−1)]

= c+
1

2
µTk (Σ−1x + CTΣ−1y C)µk − (yTk Σ−1y C + x̂Tk−1A

TΣ−1x )µk

− 1

2
log |Σk|+

1

2
tr
(
CTΣ−1y CΣk

)
+

1

2
tr
(
Σ−1x Σk

) (45)

Taking the derivative of Fk with respective to µk and Σk and set them to 0 we get
(notice that Fk is a convex function with respect to both µk and Σk):

µ∗k = (Σ−1x + CTΣ−1y C)−1(CTΣ−1y yk + Σ−1x Ax̂k−1) (46)

Σ∗k = (Σ−1x + CTΣ−1y C)−1 (47)

Notice that µ∗k is exactly the MAP estimate x̂k of xk we obtained in the main text,
and Σ∗k is independent of the previously estimated Σk−1.
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