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Abstract14

Understanding whole-brain-scale electrophysiological recordings relies on the collective work of many labs. Because two labs15

recording from the same region can reach di�erent conclusions, it is critical to quantify and control features that hinder16

reproducibility. To address this, we formed a multi-lab collaboration using a shared, open-source behavioral task and17

experimental apparatus. Experimenters in ten laboratories repeatedly targeted Neuropixels probes to the same location18

(spanning secondary visual areas, hippocampus, and thalamus) in mice making decisions. A�er applying quality-control criteria,19

we found that neuronal yield, firing rates, spike amplitudes, and task-modulated neuronal activity were largely reproducible20

across laboratories. To quantify variance in neural activity explained by task variables, we developed a multi-task neural21

network model, and found that within- and between-lab random e�ects captured by this model were comparable. Our results22

demonstrate that across-lab standardization can produce reproducible results from large-scale Neuropixels recordings. Our23

dataset, code, and protocols are openly accessible.24

Introduction25

Reproducibility is a cornerstone of the scientific method: a given sequence of experimental methods should lead to comparable26

results if applied in di�erent laboratories. In some areas of biological and psychological science, however, the reliable generation27

of reproducible results is a well-known challenge (Baker, 2016; Voelkl et al., 2020; Li et al., 2021; Errington et al., 2021). In systems28

neuroscience at the level of single-cell-resolution recordings, evaluating reproducibility is di�icult: experimental methods are29

su�iciently complex that replicating experiments is technically challenging, and many experimenters feel little incentive to do30

such experiments since negative results can be di�icult to publish. Unfortunately, variability in experimental outcomes has31

been well-documented on a number of occasions. These include the existence and nature of "preplay" (Dragoi and Tonegawa,32

2011; Silva et al., 2015; Ólafsdóttir et al., 2015; Grosmark and Buzsáki, 2016; Liu et al., 2019), the persistence of place fields in33

the absence of visual inputs (Ha�ing et al., 2005; Barry et al., 2012; Chen et al., 2016; Waaga et al., 2022), and the existence of34

spike-timing dependent plasticity (STDP) in nematodes (Zhang et al., 1998; Tsui et al., 2010). In the latter example, variability in35

experimental results arose from whether the nematode being studied was pigmented or albino, an experimental feature that36

was not originally known to be relevant to STDP. This highlights that understanding the source of experimental variability can37

facilitate e�orts to improve reproducibility.38

For electrophysiological recordings, several e�orts are currently underway to document this variability and reduce it through39

standardization of methods (de Vries et al., 2020; Siegle et al., 2021). These e�orts are promising, in that they suggest that when40
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approaches are standardized and results undergo quality control, observations conducted within a single organization can be41

reassuringly reproducible. However, this leaves unanswered whether observations made in separate, individual laboratories42

are reproducible when they likewise use standardization and quality control. Answering this question is critical since most43

neuroscience data is collected within small, individual laboratories rather than large-scale organizations. A high level of44

reproducibility of results across laboratories when procedures are carefully matched is a prerequisite to reproducibility in the45

more common scenario in which two investigators approach the same high-level question with slightly di�erent experimental46

protocols. Therefore, establishing the extent to which observations are replicable even under carefully controlled conditions is47

critical to provide an upper bound on the expected level of reproducibility of findings in the literature more generally.48

We have previously addressed the issue of reproducibility in the context of mouse psychophysical behavior, by training49

140 mice in 7 laboratories and comparing their learning rates, speed, and accuracy in a simple binary visually-driven decision50

task. We demonstrated that standardized protocols can lead to highly reproducible behavior (The International Brain Laboratory51

et al., 2021). Here, we build on those results by measuring within- and across-lab variability in the context of intra-cerebral52

electrophysiological recordings. We repeatedly inserted Neuropixels multi-electrode probes (Jun et al., 2017) targeting the same53

brain regions (including posterior parietal cortex, hippocampus, and thalamus) in mice performing an established decision-54

making task (The International Brain Laboratory et al., 2021). We gathered data across ten di�erent labs and developed a common55

histological and data processing pipeline to analyze the resulting large datasets. This pipeline included stringent new histological,56

and electrophysiological quality-control criteria (the "Recording Inclusion metrics and Guidelines for Optimal Reproducibility",57

or RIGOR) that are applicable to datasets beyond our own.58

We define reproducibility as a lack of systematic across-lab di�erences: that is, the distribution of within-lab observations is59

comparable to the distribution of across-lab observations, and thus a data analyst would be unable to determine in which lab a60

particular observation was measured. This definition takes into account the natural variability in electrophysiological results.61

A�er applying the RIGOR quality control measures, we found that features such as neuronal yield, firing rate, and normalized62

LFP power were reproducible across laboratories according to this definition. Similarly, the proportions of cells modulated by63

decision-making variables (such as the sensory stimulus or the choice) was largely reproducible across labs. Finally, to quantify64

variance in neural activity explained by task variables (e.g., stimulus onset time), behavioral variables (timing of licks/paw65

movements), and other variables (e.g., spatial location in the brain or the lab ID), we developed a multi-task neural network66

encoding model that extends common, simpler regression approaches by allowing nonlinear interactions between variables.67

Again, we found that within-lab random e�ects captured by this model were comparable to between-lab random e�ects. Taken68

together, these results suggest that across-lab standardization of electrophysiological procedures can lead to reproducible69

results across laboratories.70

Results71

Neuropixels recordings during decision-making target the same brain location72

To quantify reproducibility across electrophysiological recordings, we set out to establish standardized procedures across the73

International Brain Laboratory (IBL) and to test whether this standardization led to reproducible results. Ten IBL labs collected74

Neuropixels recordings from one repeated site, targeting the same stereotaxic coordinates, during a standardized decision-75

making task in which head-fixed mice reported the perceived position of a visual grating (The International Brain Laboratory76

et al., 2021). The experimental pipeline was standardized across labs, including surgical methods, behavioral training, recording77

procedures, histology, and data processing (Figure 1a, b); see Methods for full details. Neuropixels probes were selected as the78

recording device for this study due to their standardized industrial production, and their ability to sample many neurons in each79

of multiple brain regions simultaneously. Further, the commercial availability and popularity of Neuropixels probes made them80

an attractive alternative to probes that must be made in-house (Shin et al., 2019) or currently have limited availability (Zhao81

et al., 2022; Chung et al., 2019). In each experiment, Neuropixels 1.0 probes were inserted, targeted at −2.0 mm AP, −2.24 mm ML,82

4.0 mm DV relative to bregma; 15° angle (Figure 1c). This site was selected because it encompasses brain regions implicated in83

visual decision-making, including visual area A (Najafi et al., 2020; Harvey et al., 2012), dentate gyrus, CA1, (Turk-Browne, 2019),84
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and thalamic nuclei LP and PO (Saalmann and Kastner, 2011; Roth et al., 2016).85

Figure 1. Standardized experimental pipeline and apparatus; location of the repeated site. a, The pipeline for electrophysiology
experiments. b, Drawing of the experimental apparatus. c, Location and brain regions of the repeated site. VISa: Visual Area A; CA1:
Hippocampal Field CA1; DG: Dentate Gyrus; LP: Lateral Posterior nucleus of the thalamus; PO: Posterior Nucleus of the Thalamus. d,
Acquired repeated site trajectories shown within a 3D brain schematic. Target trajectory shown in red. e, Raster plot from one example
session.

Figure 1–Figure supplement 1. Detailed experimental pipeline for the Neuropixels experiment.
Figure 1–Figure supplement 2. Spiking activity qualitatively appears heterogeneous across recordings.
Figure 1–Figure supplement 3. Electrophysiology data quality examples.
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Stereotaxic probe placement limits resolution of probe targeting86

As a first test of experimental reproducibility, we assessed variability in Neuropixels probe placement around the planned87

repeated site location. Brains were perfusion-fixed, dissected, and imaged using serial section 2-photon microscopy for 3D88

reconstruction of probes (Figure 2a). Whole brain auto-fluorescence data was aligned to the Allen Common Coordinate Framework89

(CCF) (Wang et al., 2020) using an elastix-based pipeline (Klein et al., 2010) adapted for mouse brain registration (West, 2021). cm-90

DiI labelled probe tracks were manually traced in the 3D volume (Figure 2b; supp. 1). Trajectories obtained from our stereotaxic91

system and traced histology were then compared to the planned trajectory. To measure probe track variability, each traced92

probe track was linearly interpolated to produce a straight line insertion in CCF space (Figure 2c).93

We first compared the micro-manipulator brain surface coordinate to the planned trajectory to assess variance due to94

targeting strategies only (targeting variability, Figure 2d). Targeting variability occurs when experimenters must move probes95

slightly from the planned location to avoid blood vessels or irregularities. These slight movements of the probes led to a degree96

of variance from the planned insertion site (Figure 2d, total mean displacement = 103.7 µm).97

We tested for systematic di�erences in targeting variability across labs via permutation testing. As a metric to quantify across98

lab variability, we consider the di�erences between the cumulative distribution function (CDF) of individual lab displacements99

to the CDF of all other labs. We took the largest of these deviations as the overall measure for variability (see Methods for details).100

To generate a null distribution, we computed this maximum deviation for data in which the lab labels were shu�led over mice.101

From this, we generated a p-value from the value in the null distribution corresponding to the observed deviation (p=0.10, Figure102

2g). This provides reassurance that there were not systematic, lab-to-lab di�erences in targeting variability.103

Geometrical variability, obtained by calculating the di�erence between planned and final identified probe position acquired104

from the reconstructed histology, encompasses targeting variance, anatomical di�erences, and errors in defining the stereotaxic105

coordinate system. Geometrical variability was more extensive (Figure 2e and h, total mean displacement = 336.0 µm). Assessing106

geometrical variability for all probes with permutation testing revealed a p-value of 0.23 across laboratories (Figure 2h), arguing,107

again, that systematic lab-to-lab di�erences don’t account for the observed variability.108

To determine the extent that anatomical di�erences drive this geometrical variability, we regressed histology-to-planned109

probe insertion distance at the brain surface against estimates of animal brain size. Regression against both animal body110

weight and estimated brain volume from histological reconstructions showed no correlation to probe displacement (R2 < 0.03),111

suggesting di�erences between CCF and mouse brain sizes are not the major cause of variance. An alternative explanation is112

that geometrical variance in probe placement at the brain surface is driven by inaccuracies in defining the stereotaxic coordinate113

system, including discrepancies between skull landmarks and the underlying brain structures.114

Accurate placement of probes in deeper brain regions is critically dependent on probe angle. We assessed probe angle115

variability by comparing the final histologically-reconstructed probe angle to the planned trajectory. We observed a consistent116

mean displacement from the planned angle in both medio-lateral (ML) and anterior-posterior (AP) angles (Figure 2f and i, total117

mean di�erence in angle from planned: 7.3 degrees). Angle di�erences can be explained by the di�erent orientations and118

geometries of the CCF and the stereotaxic coordinate systems. The di�erence in histology angle to planned probe placement119

was assessed with permutation testing across labs, and shows a p-value of 0.56 (Figure 2i). This suggests there are no systematic120

di�erences in insertion angle across labs.121

In conclusion, insertion variance, in particular geometrical variability, is sizeable enough to impact probe targeting to desired122

brain regions and could serve as a hindrance to reproducibility. We were unable to identify a prescriptive analysis to predict123

probe placement accuracy, which may reflect that the major driver of probe placement variance derives from di�erences in skull124

landmarks used for establishing the coordinate system and the underlying brain structures. Our data suggest the resolution of125

probe insertion targeting on the brain surface to be approximately 370 µm, which must be taken into account when planning126

probe insertions.127
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Repeated site trajectories
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Figure 2. Histological reconstruction reveals resolution limit of probe targeting. a, Histology pipeline for electrode probe track
reconstruction and assessment. Three separate trajectories are defined per probe: planned, micro-manipulator (based on the
experimenter’s stereotaxic coordinates) and histology (interpolated from tracks traced in the histology data). b, Example tilted slices
through the histology reconstructions showing the repeated site probe track. Plots show the green auto-fluorescence data used for CCF
registration and red cm-DiI signal used to mark the probe track. White dots show the projections of channel positions onto each tilted slice.
Scale bar: 1mm. c, Histology probe trajectories, interpolated from traced probe tracks, plotted as 2D projections in coronal and sagittal
planes, tilted along the repeated site trajectory over the allen CCF, colors: laboratory. Scale bar: 1mm. d, e, f, Scatterplots showing
variability of probe placement from planned to: micro-manipulator brain surface insertion coordinate (d, targeting variability, N=83),
histology brain surface insertion coordinate (e, geometrical variability, N=89), and histology probe angle (f, angle variability, N=89). Each line
and point indicates the displacement from the planned geometry for each insertion in anterior-posterior (AP) and mediolateral (ML) planes,
color-coded by institution. g, h, i, Assessment of probe displacement by institution from planned to: micro-manipulator brain surface
insertion coordinate (g), histology brain surface insertion coordinate (h), and histology probe angle (i). Kernel density estimate plots (top)
are followed by boxplots (bottom) for probe displacement, ordered by descending median value. Legend continues on next page.
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Figure 2 (previous page). A minimum of four data points per institution led to their inclusion in the plot and subsequent analysis. Dashed
vertical lines display the mean displacement across institutions, indicated in the respective scatterplot in (d, e, f).

Figure 2–Figure supplement 1. Tilted slices along the histology insertion for all insertions used in assessing probe placement.

Electrophysiological features are reproducible across laboratories in cortex and thalamus128

Having established that targeting of Neuropixels probes to the desired target location was a source of substantial variability, we129

next measured the variability and reproducibility of electrophysiological features recorded by the probes. We implemented130

eleven exclusion criteria. Two of these were specific to our experiments: a behavior criterion where the mouse completed at least131

400 trials of the behavioral task, and a session number criterion for analyses that directly compared across labs (permutation132

tests; Fig 3d-f, 4e, 5). The remaining nine criteria, which we collectively refer to as the "Recording Inclusion metrics and Guidelines133

for Optimal Reproducibility" (RIGOR; Table 1), were more general and could be applied widely to electrophysiology experiments:134

a yield criterion, a noise criterion, qualitative criteria for visual assessment (lack of dri�, epileptiform activity, noisy channels135

and artifacts, see Figure 1-supplement 3 for examples), and single unit metrics (refractory period violation, amplitude cuto�,136

and median of the amplitudes).137

We recorded a total of 96 sessions targeted at our planned repeated site (Figure 3a). Of these, 12 sessions were excluded due138

to incomplete data acquisition caused by a hardware failure during the experiment (7) or because we were unable to complete139

histology on the subject (5). Next, we applied exclusion criteria to the remaining complete datasets. We first applied the RIGOR140

standards described in Table 1. Upon manual inspection, we observed 1 recording fail due to dri�, 8 recordings fail due to noisy141

channels, 2 recordings fail due to artefacts, and 1 recording fail due to epileptiform activity. 13 recordings failed our criterion for142

low yield, and 3 recordings failed our criterion for noise level. Next, we applied criteria specific to our behavioral experiments,143

and found that 2 recordings failed our behavior criterion by not meeting the minimum of 400 trials completed). Some of our144

analysis also required further (stricter) inclusion criteria (see Methods).145

When plotting all recordings, including those that failed to meet quality control criteria, one can observe that discarded146

sessions were clear outliers (Figure 3-supplemental 1). In subsequent figures, only recordings that passed these quality control147

criteria were included. Overall, we analyzed data from the 54 remaining sessions recorded in ten labs to determine the repro-148

ducibility of our electrophysiological recordings. The responses of 3013 single neurons (all passing the metrics defined in Table149

1) are analyzed below; this total reflects an average of 61 ± 44 [mean ± std] per insertion.150

We then evaluated whether electrophysiological features of these neurons, such as firing rates and LFP power, were re-151

producible across laboratories. In other words, is there consistent variation across laboratories in these features that is larger152

than expected by chance? We first visualized LFP power, a feature used by experimenters to guide the alignment of the probe153

position to brain regions, for all the repeated site recordings (Figure 3b). The dentate gyrus (DG) is characterized by high power154

spectral density of the LFP (Penttonen et al., 1997; Bragin et al., 1995; Senzai and Buzsáki, 2017) and this feature was used to guide155

physiology-to-histology alignment of probe positions (Figure 3-supplementary 2). By plotting the LFP power of all recordings156

along the length of the probe side-by-side, aligned to the boundary between the DG and thalamus, we confirmed that this band157

of elevated LFP power was visible in all recordings at the same depth. The variability in the extent of the band of elevated LFP158

power in DG was due to the fact that the DG has variable thickness and due to targeting variability not every insertion passed159

through the DG at the same point in the sagittal plane (Figure 3-supplemental 2).160

The probe alignment allowed us to attribute the channels of each probe to their corresponding brain regions to investigate161

the reproducibility of electrophysiological features for each of the target regions of the repeated site. To visualize all the neuronal162

data, each neuron was plotted at the depth it was recorded overlaid with the position of the target brain region locations163

(Figure 3c). From these visualizations it is apparent that there is recording-to-recording variability. This raises two questions:164

(1) Is the recording-to-recording variability within an animal the same or di�erent compared to across animals? (2) Is the165

recording-to-recording variability lab dependent?166

To answer the first question we performed several bilateral recordings in which the same insertion was targeted in both167

hemispheres, as mirror images of one another. This allowed us to quantify the variability between insertions within the same168

6 of 38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Criterion Definition

W
ho

le
re

co
rd

in
g

Co
m

pu
t e

d

Yield At least 0.1 neurons (that pass single unit criteria) per
electrode channel in each region.

Noise level AP band: Median action-potential band RMS (AP RMS)
less than 40 uV (computed post-destriping)
LF band: Median LFP power less than -140 dB (may di�er
for other electrodes) (computed pre-destriping).

Vi
su

al
ly

as
se

ss
ed

Dri� Absence of pronounced instability of recording ("dri�"),
as observed on the raster plot.

Epileptiform activity Absence of epileptiform activity, which is characterized
by sharp discontinuities on the raster plot (not driven by
movement or noise artifacts) or strong periodic spiking
spanning many channels.

Noisy channels Absence of noisy or poor impedance channels groups
(e.g., lack of visible action potential on the raw data plot).

Artefacts Absence of artefacts, which are characterised by a sud-
den discontinuity in the raw signal, spanning nearly all
channels at once.

Si
ng

le
un

it

Co
m

pu
te

d

Refractory period violation Each neuron must pass a sliding refractory period metric,
a false positive estimate which computes the confidence
that a neuron has below 10% contamination for all pos-
sible refractory period lengths (from 0.5 to 10 ms). A
neuron passes if the confidence metric is greater than
90% for any possible refractory period length.

Amplitude cuto� Each neuron must pass a metric that estimates the num-
ber of spikes missing (false negative rate) and ensures
that the distribution of spike amplitudes is not cut o�,
without a Gaussian assumption.

Median amplitude Each neuron must have a median amplitude greater than
50 uV.

Table 1. Recording Inclusion metrics and Guidelines for Optimal Reproducibility (RIGOR). These criteria could be applied to other
electrophysiology experiments to enhance reproducibility. Note that whole recording metrics are most relevant to large scale (>20 channel)
recordings. For those recordings, manual inspection of datasets passing these criteria will further enhance data quality.
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animal and compare this variability to the across-animal variability (Figure 3-supplemental 3). We found that whether within- or169

across-animal variance was larger depended on the electrophysiological feature in question (Figure 3-supplemental 3f). For170

example, for neuronal yield across variance was larger compared to within variance whereas for action-potential band root171

mean square (AP band RMS), the within variance was o�en the largest.172

Is the recording-to-recording variability lab dependent? To answer this question, the reproducibility of electrophysiological173

features over laboratories was investigated using a permutation testing approach. The tested features were neuronal yield,174

firing rate, spike amplitude, LFP power, and AP band RMS and were calculated per brain region (Figure 3-supplemental 4). As175

was the case when analysing probe placement variability, the permutation test assesses whether the distribution over features176

varies significantly across labs. When correcting for multiple testing, systematic corrections (like a Bonferroni correction) proved177

too strong in light of our power analysis, instead we opted to use a slightly more stringent alpha of 0.01 when establishing178

significance. The permutation test revealed a significant e�ect for the AP band RMS values and neuron yield in CA1, the former179

presumably reflects 50/60 Hz line noise which is likely to be rig-dependent. Otherwise, we found that all electrophysiological180

features were reproducible across laboratories for all regions studied (Figure 3d).181

The permutation testing approach tested the reproducibility of each electrophysiological feature separately. It could also be182

the case, however, that some combination of these features varied systematically across laboratories. To test whether this was the183

case we trained a Random Forest classifier to try to predict in which lab a recording was made, based on the electrophysiological184

markers. The decoding was performed separately for each brain region because of their distinct physiological signatures.185

A null distribution was generated by shu�ling the lab labels and decoding again using the shu�led labels (500 iterations).186

The significance of the classifier was defined as the fraction of times the accuracy of the decoding of the shu�led labels was187

higher compared to the original labels. To validate the decoder we first decoded brain region instead of lab identity from the188

electrophysiological features; the decoder was able to decode brain region with very high accuracy (Figure 3e, le�). The classifier189

could only decode lab identity from the dentate gyrus and not from any of the other regions above chance, indicating that190

the electrophysiological features were reproducible across laboratories for these regions (Figure 3e, right). Importantly, when191

including all recordings, regardless of QC status, the classifier was able to decode lab identity from 4/5 regions (Figure 3f). This192

indicates that our QC criteria were successful in reducing lab-to-lab variability.193

8 of 38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Figure 3. Electrophysiological features are reproducible across laboratories in cortex and thalamus. (a) Number of experimental
sessions recorded; number of sessions used in analysis due to exclusion criteria. Up arrows indicate general-use RIGOR criteria on the
quality of the electrophysiology, as presented in Table 1); down arrows indicate IBL-specific criteria applied. (b) Power spectral density
between 20 and 80 Hz of each channel of each probe insertion (vertical columns) shows reproducible alignment of electrophysiological
features to histology. Insertions are aligned to the boundary between the dentate gyrus and the thalamus. Legend continues on next page.
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Figure 3 (previous page). CSHL: Cold Spring Harbor Laboratory [(C): Churchland lab, (Z): Zador lab], NYU: New York University, SWC:
Sainsbury Wellcome Centre, UCL: University College London, UCLA: University of California, Los Angeles, UW: University of Washington. (c)
Firing rates of individual neurons according to the depth at which they were recorded. Colored blocks indicate the target brain regions of
the repeated site, grey blocks indicate a brain region that was not one of the target regions. If no block is plotted, that part of the brain was
not recorded by the probe because it was inserted too deep or too shallow. Each dot is a neuron, colors indicate firing rate. (d) P-values for
five electrophysiological metrics, computed separately for all target regions, assessing the reproducibility of the distributions over these
features across labs. P-values are plotted on a log-scale to visually emphasize values close to significance. (e) Trained on sessions that
passed QC, a Random Forest classifier could successfully decode the brain region from five electrophysiological features (neuron yield,
firing rate, LFP power, AP band RMS and spike amplitude), but could only decode lab identity from the dentate gyrus. The red line indicates
the decoding accuracy and the grey violin plots indicate a null distribution obtained by shu�ling the labels 500 times. The decoding of lab
identity was performed per brain region. (f) Trained on all recording, regardless of QC level, the classifier could successfully decode lab
identity from 4/5 brain regions. (* p < 0.05, ** p < 0.01, *** p < 0.001)

Figure 3–Figure supplement 1. Recordings that didn’t pass QC were visual outliers
Figure 3–Figure supplement 2. High LFP power in dentate gyrus was used to align probe locations in the brain.
Figure 3–Figure supplement 3. Bilateral recordings assess within- vs across-animal variance.
Figure 3–Figure supplement 4. Values used in the decoding analysis, per metric and per brain region.

Functional activity is broadly reproducible across laboratories194

Concerns about reproducibility extend not only to electrophysiological properties, but also functional properties. To address195

this, we analyzed the reproducibility of the relationship between neural activity and task variables from the decision-making196

task. In particular, we were interested in whether the targeted brain regions have comparable neural responses to task events,197

such as stimulus onset, movement onset, and reward delivery. An inspection of individual neurons revealed clear modulation198

by, for instance, the onset of movement in a specific direction (Figure 4a). Neurons were variable in the extent to which they199

were modulated by task events (Figure 4b) (Urai et al., 2022). Plotting the session-averaged response for each experiment in a200

given area revealed that despite this variability, many key features were reproduced, such as the general response time course201

(Figure 4c and d; also Figure 5d).202

Having observed that many individual neurons are modulated by task variables during decision-making, we examined203

the reproducibility of the proportion of modulated neurons. Within each brain region, we compared the proportion of the204

neural population that was sensitive to specific elements of the task (Figure 4e). We used six tests (Wilcoxon sign-rank tests and205

Wilcoxon rank-sum tests (Steinmetz et al., 2019)) to identify neurons with significantly modulated firing rates during candidate206

time windows (Figure 4e and Figure 4-supplemental 1). For most tests, the proportions of modulated neurons across sessions207

and across brain regions were quite variable (Figure 4e and Figure 4-supplemental 1).208

To evaluate the reproducibility of task modulation quantitatively, we applied a permutation test to the proportion of209

modulated neurons by each task event, and the distribution of firing rate di�erences between the test-specific time-periods210

across labs (Figure 4g). We did not observe systematic lab-to-lab di�erences in the proportion of neurons modulated by task211

events (Figure 4h, top). This reproducibility seems at first reassuring, and indeed many papers use the proportion of responsive212

neurons as evidence that a particular area subserves a particular function. However, when we instead compared not the213

proportion of modulated neurons but the full distribution of firing rate modulations, reproducibility was more tenuous, and214

failed in some areas/tests (Figure 4h, bottom). Failures were driven by, for instance, outlier labs that had fewer low firing rate215

modulations. We propose that future studies report not only the proportion of modulated neurons, but also the distribution of216

firing rates observed so that functional activity can be more comprehensively compared.217

To ensure that our measurements a�orded su�icient power to detect di�erences across labs, we conducted a power analysis218

(Figure 4f,g). For this analysis we considered a particular modulation, such as the distribution of firing rate modulations by219

the stimulus onset. For each individual lab, we shi�ed the entirety of its datapoints either upwards or downwards, searching220

for the shi� at which the modulation would register as significantly di�erent from the other labs. This provides insight into221

how sensitive each test is to deviations within individual labs. For the majority of tests and regions, our tests were su�iciently222
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well-powered to detect shi�s within the expected range, given the type and amount of data examined (an exception is explained223

below) (Figure 4-supplemental 2).224

To further investigate how neural activity is modulated by decision-making, we measured the Fano Factor of single units.225

The Fano Factor, defined as the spike count variance over trials divided by spike count mean, enables the comparison of the226

fidelity of signals across neurons and regions, despite di�erences in firing rates (Tolhurst et al., 1983). We selected the period227

between 40-200 ms a�er movement onset (for correct trials with full-contrast stimuli on the right side) to calculate an average228

Fano Factor per neuron and quantify di�erences in Fano Factor across labs. This window was selected since the Fano Factor229

tends to be consistently low around movement time (Churchland et al., 2010, 2011). We found no reliable di�erence across labs230

a�er applying a permutation test (Figure 4h). However, because the Fano Factor was more variable across neurons/sessions231

than other measures, our power analysis suggested limits in our ability to detect systematic di�erences among labs (Fig4-Figure232

Supplement 2). Therefore we report reproducibility of the Fano Factor across labs with some caution.233

11 of 38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Figure 4. Neural activity is modulated during decision-making in five neural structures, with no significant di�erence between
laboratories. (a) Raster plot (top) and firing rate time course (bottom) of an example neuron in LP, aligned to movement onset, split for
correct le� and right choices. Legend continues on next page.

12 of 38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Figure 4 (previous page). This neuron was task-modulated using the following tests only: movement, movement initiation, and le� vs.
right movement. The firing rate is calculated using a causal sliding window; each time point includes a 60 ms window prior to the indicated
point. (b) Peri-event time histograms (PETHs) of all LP neurons from a single mouse, aligned to movement onset (only correct choices in
response to right-side stimuli are shown). These PETHs are baseline-subtracted by a pre-stimulus baseline. Shaded areas show standard
error of mean (and propagated error for the overall mean). The thicker line shows the average over this entire population, colored by the lab
from which the recording originates. (c,d) Average PETHs from individual mice across labs (similar to thick line in (b)) for LP (c) and the
remaining four repeated site brain regions (d). Line thickness indicates the number of neurons in each recording (ranging from 4 to 86). (e)
Schematic defining all six task-modulation tests (top) and proportion of task-modulated neurons for each mouse in each brain region for an
example test (movement initiation) (bottom). Each column and color indicate, in order, a di�erent recording session and lab. (Note that
there is no correspondence here between columns across di�erent brain regions.) (f)Two hypothetical distributions: first, when the test is
sensitive, a small shi� in the distribution is enough to make the test significant (non-significant shi�s shown with broken line in grey,
significant shi� outlined in red). By contrast, when the test is less sensitive, the vertical line is large and a corresponding large range of
possible shi�s is present. The possible shi�s we find usually cover only a small range. (g) Power analysis example for modulation by the
stimulus in CA1. Violin plots: distributions of firing rate modulations for each lab; horizontal line: mean across sessions; vertical line at right:
how much the distribution can shi� up- or downwards before the test becomes significant. (h) Permutation test results for task-modulated
activity and the Fano Factor. Top: tests based on proportion of modulated neurons; Bottom: tests based on the distribution of firing rate
di�erences. Comparisons performed for correct trials with non-zero contrast stimuli.

Figure 4–Figure supplement 1. Proportion of task-modulated neurons, defined by six tests, across mice, labs, and brain regions.
Figure 4–Figure supplement 2. Power analysis of permutation tests

Neural response dynamics are similar across labs234

The results above indicate that task-driven modulations in neural activity are reproducible across labs. However, the tests used235

thus far leave unanswered whether the dynamics of neural responses within each area are likewise reproducible. To test the236

reproducibility of dynamics, we first summarized the response for each neuron by computing peri-event time histograms (PETHs,237

Figure 5a). Because temporal dynamics may depend on reaction time, we generated separate PETHs for fast (< 0.15 s) and slow238

(> 0.15 s) reaction times. We concatenated the resulting vectors to obtain a more informative summary of each cell’s average239

activity. The results (below) did not depend strongly on the details of the trial-splitting; for example, splitting trials by “le�" vs240

“right" behavioral choice led to similar results.241

Next, we projected these high-dimensional summary vectors into a low-dimensional “embedding" space using principal242

component analysis (PCA). This embedding captures the variability of the population while still allowing for easy visualization243

and further analysis. Specifically, we stack each cell’s summary double-PETH vector (described above) into a matrix (containing244

the summary vectors for all cells across all sessions) and run PCA to obtain a low-rank approximation of this matrix (see Methods).245

The accuracy of reconstructions from the top two principal components (PCs) varied across cells (Figure 5a); PETHs for the246

majority of cells could be well-reconstructed with just 2 PCs (Figure 5b).247

This simple embedding is su�iciently powerful to expose di�erences in brain regions (Figure 5c; e.g., PO and CA1 show248

displaced clusters, illustrating regional di�erences in response dynamics). Region-to-region di�erences are also visible in the249

region-averaged PETHs and cumulative distributions of the first PCs (Figure 5d, e). By contrast, such clusters are not obvious250

when coloring the same embedded activity by labs (Figure 5f, g, h). The activity point clouds overlap homogeneously across251

most labs, indicating similar activity (Figure 5-supplemental 1 for scatter plots, PETHS, cumulative distributions for each region252

separately, colored by lab).253

We quantified this observation via two tests. Firstly, a permutation test using the first 2 PCs of all cells, computing each254

region’s distance between its mean embedded activity and the mean across all remaining regions, then comparing these values255

to the null distribution of values obtained in an identical manner a�er shu�ling the region labels. Secondly, we directly compared256

the distributions of the first PCs, applying the Kolmorogov-Smirnov (KS) test to determine whether the distribution of a subset of257

cells was di�erent from that of all remaining cells, targeting either labs or regions. The KS test results were nearly identical to the258

distance permutation test results, hence we focus on the KS test results in the following.259
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When testing regions, we found that all regions di�er significantly from the remaining cells, bottom row in Figure 5i. Testing260

labs, we found that CCU, UCLA, NYU and Berkeley di�ered significantly from the remaining cells, when using all cells. Region-261

restricted lab-targeted tests were significant only for Berkeley in VISa/am (Figure 5i and 5-supplemental 1).262

These results may be skewed due to sample size di�erence of the compared distributions. We controlled for this by applying263

all tests to randomly chosen subsets of all cells (subset sizes randomly sampled across region sizes). Averaging p-values across264

100 such sub-sample runs resulted in p > 0.27 for all lab-targeting tests while all regions in region-targeting tests have p-values265

below 0.05, Figure 5j. Taken together, these tests demonstrate that overall, temporal dynamics of firing rates are similar across266

labs.267
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Figure 5. Principal component embedding of peri-event time histograms separates cells from di�erent brain regions but not cells
from di�erent labs. (a) PETHs from two example cells (black, fast reaction times only) and 2-PC-based reconstruction (red). Goodness of fit
r2 indicated on top with an example of a poor (top) and good (bottom) fit. (b) Histograms of reconstruction goodness of fit across all cells
based on reconstruction by 1-3 PCs. Since PETHs are well approximated with only the first 2 PCs, subsequent analyses used the first 2 PCs
only. (c) Two-dimensional embedding of PETHs of all cells colored by region (each dot corresponds to a single cell). (d) Mean firing rates of
all cells per region, note visible pink/green divide in line with scatter plot observation. Error bands are standard deviation across cells
normalised by the square root of the number of sessions in the region. (e) Cumulative distribution of the first embedding dimension (PC1)
per region with inset of KS statistic measuring the distance between the distribution of a region’s first PC values and that of the remaining
cells; asterisks indicate false-discovery-rate (FDR) corrected significance at p = 0.01. (f) same data as in (c) but colored by lab. Visual
inspection does not show lab clusters. (g) Mean activity for all labs (color conventions the same as in (f)). Error bands are standard
deviation across cells normalised by square root of number of sessions in lab. (h) same as (e) but grouping cells per lab. (i) FDR-corrected
p-values of all KS tests without sub-sampling. The statistic is the KS distance of the distribution of a target subset of cells’ first PCs to that of
the remaining cells. Columns: the region to which the test was restricted and each row is the target lab of the test. Bottom row "all":
p-values reflecting a region’s KS distance from all other cells. Right most column "all": p-values of testing a lab’s KS distance from all other
cells. Small p-values indicate that the target subset of cells can be significantly distinguished from the remaining cells. Note that all
region-targeting tests are significant while lab-targeting tests much less so. Legend continues on next page.
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Figure 5 (previous page). (j) FDR-corrected p-values of all KS tests averaged across 100 random subsets of cells, to account for varying
sample sizes, resulting in clearly lower p-values for lab-targeting tests than region-targeting tests. Note that only 7 labs are included in this
analysis, as we only include labs that have at least 3 recordings per region (see exclusion criterion Table 1).

Figure 5–Figure supplement 1. Lab-grouped average PETH, CDF of the first PC and 2-PC embedding, separate per brain region.

Di�erences in spatial position and spike characteristics are only a minor source of variability268

While we found little variability between laboratories in terms of electrophysiological features and task variables, we observed269

considerable variability between recording sessions and mice (Figure 3, Figure 4, and Figure 4-supplemental 1). Due to the270

variability in the spatial position of the Neuropixels probes (Figure 2), we examined variability in targeting as a potential source271

of di�erences in neuronal activity. We also considered single-unit spike waveform characteristics as a source of variability. In the272

following section, we will examine other potential sources of variability (e.g., mouse movements).273

To investigate variability in session-averaged firing rates, we identified neurons that had firing rates di�erent from the274

majority of neurons within each brain region (absolute deviation from the median firing rate being >15% of the firing rate275

range). These outlier neurons, which mostly turned out to be high-firing (except in LP), were compared against the general276

population of neurons in terms of five features: spatial position (x, y, z, computed as the center-of-mass of each unit’s spike277

template on the probe, localized to CCF coordinates in the histology pipeline) and spike waveform characteristics (amplitude,278

peak-to-trough duration). We observed that recordings in all areas, such as LP (Figure 6a), indeed spanned a wide space within279

those areas. Interestingly, in areas other than CA1 and DG, the highest firing neurons were not entirely uniformly distributed280

in space. For instance, in LP, outlier neurons tended to be positioned more laterally and centered on the anterior-posterior281

axis (Figure 6b). In VISa/am, only the spatial position of neurons, but not di�erences in spike characteristics, contributed to282

di�erences in session-averaged firing rates (Figure 6-supplemental 1b). In contrast, outlier neurons in only LP and PO, but not283

cortical and hippocampal regions, had di�erent spike characteristics compared to other neurons in their respective regions284

(Figure 6b and 6-supplemental 3b). It does not appear that high-firing neurons in any brain region belong to a specific neuronal285

subtype (see Figure 6-supplemental 5).286

To quantify the amount of variability in session-averaged firing rates of individual neurons that can be explained by spatial287

position or spike characteristics, we fit a linear regression model with these five features (x, y, z, spike amplitude, and duration of288

each neuron) as the inputs. For each brain region, the features that had significant weights were mostly consistent with the289

results reported above: In VISa/am, z position, or neuron depth, and spike amplitude explained part of the variance; in CA1 and290

DG, the variance could not be explained by spatial position nor spike characteristics; in LP and PO, x and y positions as well as291

spike amplitudes explained some of the variance. In LP and PO, where the most amount of variability could be explained by this292

regression model (having higherR2 values), these five features accounted for a total of ∼13% of the firing rate variability. In293

VISa/am, CA1, and DG, they accounted for approximately 8%, 1%, and 4% of the variability, respectively.294

Next, we examined whether neuronal spatial position and spike features contributed to variability in task-modulated activity.295

We found that brain regions other than CA1 and DG had minor, yet significant, di�erences in spatial positions of task-modulated296

and non-modulated neurons (using the definition of at least of one of the six tests in Figure 4e and Figure 4-supplemental 1). For297

instance, LP neurons modulated according to the movement initiation test, were positioned more ventrally and centered along298

the anterior-posterior axis (Figure 6c), while LP neurons modulated according to the le� versus right movement test, tended to299

be more ventral (Figure 6d). Other brain regions had weaker spatial di�erences than LP (Figure 6-supplemental 1, 2, 3). Spike300

amplitudes were significantly di�erent between task-modulated and non-modulated neurons only for some tests and only in LP301

and PO (Figure 6-supplemental 1c-d and 3b-d). On the other hand, the task-aligned Fano Factors of neurons did not have any302

di�erences in spatial position except for in VISa/am, where lower Fano Factors (<1) tended to be located ventrally, and in PO,303

where lower Fano Factors were positioned more laterally (Figure 6-supplemental 4). Spike characteristics of neurons with lower304

vs. higher Fano Factors were only di�erent in VISa/am (possibly related to di�erences in cell type; Figure 6-supplemental 4).305

Lastly, we trained a linear regression model to predict the 2D embedding of PETHs of each cell shown in Figure 5c from the x, y, z306

coordinates and found that spatial position contains little information (R2 ∼ 5%) about the embedded PETHs of cells.307
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In summary, our results suggest that spatial position within an area usually contributes only a small amount variability to308

session-averaged firing rates and task-modulated neuronal activity. Spike characteristics also have a minor contribution to the309

observed variability. Because the contributions of spatial position and spike features were small, we examine other sources of310

variability in the next section.311
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Figure 6. High-firing and task-modulated LP neurons have slightly di�erent spatial positions than other LP neurons, potentially
contributing to variability between sessions. (a) Spatial positions of recorded neurons in LP. Colors: session-averaged firing rates.
Legend continues on next page.
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Figure 6 (previous page). (b) Spatial positions of LP neurons plotted as distance from the planned target center of mass, indicated with red
x. To enable visualization of overlapping data points, jitter was added to the unit locations. Larger circles: outlier neurons, including both
high-firing and low-firing neurons (firing rate thresholds shown on the colorbar). In LP, 182 out of 784 neurons were outliers (only 13 of them
being low-firing neurons). Only histograms of the spatial positions and spike waveform features that were significantly di�erent between
the outlier neurons (yellow) and the general population of neurons (blue) are shown (two-sample Kolmogorov-Smirnov test with Bonferroni
correction for multiple comparisons; * and ** indicate corrected p-values of <0.05 and <0.01). Shaded areas: the area between 20th and 80th
percentiles of the neurons’ locations. (c) (Le�) Histogram of firing rate changes during the reaction period from the pre-stimulus period
(Figure 4e, Figure 4-supplemental 1c) for task-modulated (orange) and non-modulated (gray) neurons. (Right) Spatial positions of
task-modulated and non-modulated LP neurons, with histograms of significant features (here, y and z positions) shown. (d) Same as c but
using the le� vs. right movement test (Figure 4e and Figure 4-supplemental 1f) to identify task-modulated units.

Figure 6–Figure supplement 1. High-firing and task-modulated VISa/am neurons.
Figure 6–Figure supplement 2. High-firing and task-modulated CA1 neurons.
Figure 6–Figure supplement 3. High-firing and task-modulated DG and PO neurons.
Figure 6–Figure supplement 4. Time-course and spatial position of neuronal Fano Factors.
Figure 6–Figure supplement 5. Neuronal subtypes and firing rates.

A multi-task neural network accurately predicts activity and quantifies sources of neural variability312

As discussed above, variability in neural activity between labs or between sessions can be due to many factors. These include313

di�erences in behavior between animals, di�erences in probe placement between sessions, and uncontrolled di�erences in314

experimental setups between labs. How can we quantify and distinguish these di�erent sources of variability? Simple linear315

regression models or generalized linear models (GLMs) are likely too inflexible to capture the nonlinear contributions that many316

of these variables, including lab IDs and spatial positions of neurons, might make to neural activity. On the other hand, fitting a317

di�erent nonlinear regression model (involving many covariates) individually to each recorded neuron would be computationally318

expensive and could lead to poor predictive performance due to overfitting.319

To estimate a flexible nonlinear model given constraints on available data and computation time, we adapt an approach320

that has proven useful in the context of sensory neuroscience (McIntosh et al., 2016; Batty et al., 2016; Cadena et al., 2019). We321

use a “multi-task" neural network (MTNN; Figure 7a) that takes as input a set of covariates (including the lab ID, the neuron’s322

3D spatial position in standardized CCF coordinates, the animal’s estimated pose extracted from behavioral video monitoring,323

feedback times, and others; see Table 2 for a full list). The model learns a set of nonlinear features (shared over all recorded324

neurons) and fits a Poisson regression model on this shared feature space for each neuron. With this approach we e�ectively325

solve multiple nonlinear regression tasks simultaneously; hence the “multi-task" nomenclature. The model extends simpler326

regression approaches by allowing nonlinear interactions between covariates. In particular, previous reduced-rank regression327

approaches (Kobak et al., 2016; Izenman, 1975) can be seen as a special case of the multi-task neural network, with a single328

hidden layer and linear weights in each layer.329

Figure 7b shows model predictions on held-out trials for a single neuron in VISa/am. We plot the observed and predicted330

peri-event time histograms and raster plots, split into le� vs. right trials (only the plots for le� trials are shown). As a visual331

overview of which behavioral covariates are correlated with the MTNN prediction of this neuron’s activity on each trial, the332

predicted raster plot and various behavioral covariates that are input into the MTNN are shown in Figure 7c. Overall, the MTNN333

approach accurately predicts the observed firing rates. When the MTNN and GLMs are trained on movement, task-related,334

and prior covariates, the MTNN slightly outperforms the GLMs on predicting the firing rate of held-out test trials (See Figure335

7-supplemental 1b).336

Next we use the predictive model performance to quantify the contribution of each covariate to the fraction of variance337

explained by the model. Following Musall et al. (2019), we run two complementary analyses to quantify these e�ect sizes:338

single-covariate fits, in which we fit the model using just one of the covariates, and leave-one-out fits, in which we train the339

model with one of the covariates le� out and compare the predictive explained to that of the full model. As an extension340
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Figure 7. Single-covariate, leave-one-out, and leave-group-out analyses show the contribution of each (group of) covariate(s) to
the MTNN model. Lab and session IDs have low contributions to the model. (a) We adapt a MTNN approach for neuron-specific firing
rate prediction. The model takes in a set of covariates and outputs time-varying firing rates for each neuron for each trial. See Table 2 for a
full list of covariates. (b) MTNN model estimates of firing rates (50 ms bin size) of a neuron in VISa/am from an example subject during
held-out test trials. The trials with stimulus on the le� are shown and are aligned to the first movement onset time (vertical dashed lines).
We plot the observed and predicted PETHs and raster plots. The blue ticks in the raster plots indicate stimulus onset, and the green ticks
indicate feedback times. The trials above (below) the black horizontal dashed line are incorrect (correct) trials, and the trials are ordered by
reaction time. The trained model does well in predicting the (normalized) firing rates. The MTNN prediction quality measured inR2 is 0.33
on held-out test trials and 0.93 on PETHs of held-out test trials. (c) We plot the MTNN firing rate predictions along with the raster plots of
behavioral covariates, ordering the trials in the same manner as in (b). We see that the MTNN firing rate predictions are modulated
synchronously with several behavioral covariates, such as wheel velocity and paw speed.
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Figure 7 (previous page). (d) Single-covariate analysis, colored by the brain region. Each dot corresponds to a single neuron in each plot.
(e) Leave-one-out and leave-group-out analyses, colored by the brain region. The analyses are run on 239 responsive neurons across 20
sessions. The leave-one-out analysis shows that lab/session IDs have low e�ect sizes on average, indicating that within and between-lab
random e�ects are small and comparable. The “noise" covariate is a dynamic covariate (white noise randomly sampled from a Gaussian
distribution) and is included as a negative control: the model correctly assigns zero e�ect size to this covariate. Covariates that are constant
across trials (e.g., lab and session IDs, neuron’s 3D spatial location) are le� out from the single-covariate analysis.

Figure 7–Figure supplement 1. Scatter plot of MTNN prediction quality (R2) vs. mean firing rate (spikes/sec); MTNN slightly outperforms
GLMs on predicting the firing rates of held-out test trials; PETHs and MTNN predictions for held-out test trials
Figure 7–Figure supplement 2. MTNN prediction quality on the data simulated from GLMs is comparable to the GLMs’ prediction quality.
The e�ect sizes computed by the MTNN leave-one-out analysis are similar to the e�ect sizes computed by the GLMs’ leave-one-out analysis
Figure 7–Figure supplement 3. Pairwise scatterplots of MTNN single-covariate e�ect sizes.

of the leave-one-out analysis, we run the leave-group-out analysis, in which we quantify the contribution of each group of341

covariates (electrophysiological, task-related, and movement) to the model performance. Using data simulated from GLMs, we342

first validate that the MTNN leave-one-out analysis is able to partition and explain di�erent sources of neural variability (See343

Figure 7-supplemental 2).344

We then run single-covariate, leave-one-out, and leave-group-out analyses to quantify the contributions of the covariates345

Covariate Name Type Group Note
Lab ID Categorical / Static
Session ID Categorical / Static
Neuron 3D
spatial position

Real / Static Electrophysiological In standardized
CCF coordinates

Neuron amplitude Real / Static Electrophysiological Template amplitude
Neuron waveform width Real / Static Electrophysiological Template width
Paw speed Real / Dynamic Movement Inferred from DLC
Nose speed Real / Dynamic Movement Inferred from DLC
Pupil diameter Real / Dynamic Movement Inferred from DLC
Motion energy Real / Dynamic Movement

Stimulus Real / Dynamic Task-related Stimulus side,
contrast and onset timing

Go cue Binary / Dynamic Task-related
First movement Binary / Dynamic Task-related
Choice Binary / Dynamic Task-related
Feedback Binary / Dynamic Task-related
Wheel velocity Real / Dynamic Movement
Mouse Prior Real / Static Mouse’s prior belief

Last Mouse Prior Real / Static Mouse’s prior belief
in previous trial

Lick Binary / Dynamic Movement Inferred from DLC

Decision Strategy Real / Static Decision-making strategy
(Ashwood et al., 2021)

Brain region Categorical / Static Electrophysiological 5 repeated site regions
Table 2. List of covariates input to the multi-task neural network.
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listed in Table 2 to the predictive performance of the model on held-out test trials. The results are summarized in Figure 7d346

and 7e. According to the single-covariate analysis (Figure 7d), paw speed, face motion energy (derived from behavioral video),347

wheel velocity, and first movement onset timing can individually explain about 5% of variance of the neurons on average.348

The leave-one-out analysis (Figure 7e le�) shows that most covariates have low unique contribution to the predictive power.349

This is because many covariates are correlated and are capable of capturing variance in the neural activity even if one of the350

covariates is dropped (See behavioral raster plots in Figure 7c). According to the leave-group-out analysis (Figure 7e right), the351

“movement" covariates as a group have the highest unique contribution to the model’s performance while the task-related and352

electrophysiological variables have close-to-zero unique contribution. Most importantly, the leave-one-out analysis shows that353

lab and session IDs, conditioning on the covariates listed in Table 2, have close to zero e�ect sizes, indicating that within-lab and354

between-lab random e�ects are small and comparable.355
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Discussion356

We set out to test whether the results from an electrophysiology experiment could be reproduced across geographically357

separated laboratories. We observed notable variability in the position of the electrodes in the brain despite e�orts to target358

the same location. Still, a�er applying stringent quality-control criteria (including the RIGOR standards, Table 1), we found359

that electrophysiological features such as neuronal yield, firing rate, and normalized LFP power were largely reproducible360

across laboratories; their intra-lab distributions did not di�er more than expected by chance. Similarly, the proportion of361

cells whose responses are tuned to behaviorally-relevant task events was reproducible across labs (although the exact firing362

rate distributions underlying these proportions was somewhat more variable). Finally, a multi-task neural network approach363

predicted the firing rates of di�erent units across sessions, and again, the within-lab random e�ects estimated by this model364

were comparable to between-lab random e�ects. Taken together, our results suggest that careful standardization can lead to365

reproducible electrophysiological results across laboratories.366

The reassuring absence of systematic di�erences across labs argues that standardization of procedures is a helpful step367

in generating reproducible results. Interestingly, although our standardization eliminated most systematic di�erences, we368

cannot determine whether the reproducibility we observed was driven by person-to-person standardization or lab-to-lab369

standardization. Most likely, both factors contributed: all lab personnel received standardized instructions for how to implant370

head bars, train mice, and train animals, which likely reduced personnel-driven di�erences. In addition, our use of standardized371

instrumentation and so�ware minimized lab-to-lab di�erences that might normally be present.372

Reproducibility in our electrophysiology studies was further enhanced by rigorous quality control metrics that ultimately373

led us to exclude a significant fraction of datasets (54/96 sessions). Quality control was enforced for diverse aspects of the374

experiments, including histology, behavior, targeting, neuronal yield, and the total number of completed sessions. Among these375

measures, recordings with high noise and low neuronal yield were significantly represented in sessions that were excluded.376

A number of issues contributed here, including artifacts present in the recordings, inadequate grounding, and a decline in377

craniotomy health; all of these can potentially be improved with experimenter experience. A few quality control metrics were378

specific to our experiments (and thus not listed in Table 1). For instance, we excluded sessions with fewer than 400 trials which379

could be too stringent (or not stringent enough) for other experiments.380

These observations suggest that future experiments would be more consistently reproducible if researchers followed, or381

at least reported, a number of agreed upon criteria, such as the RIGOR standards we define in Table 1. This approach has382

been successful in other fields: for instance, the neuroimaging field has agreed upon a set of guidelines for “best practices,"383

and has identified factors that can impede those practices (Nichols et al., 2017). The genomics field likewise adopted the384

Minimum Information about a Microarray Experiment (MIAME) standard, designed to ensure that data from microarrays could be385

meaningfully interpreted and experimentally verified (Brazma et al., 2001). Finally, the autophagy community have standards386

for experiments that were established in 2008 (Klionsky, 2016). Our work here suggests the creation of a similar set of standards387

for electrophysiology and behavioral experiments would be beneficial. These could include expectations for reporting (such388

as histological information and behavioral trial numbers) as well as suggestions for minimizing variability (e.g., agreed upon389

standards for the noise level that would exclude a recording). We propose that our "Recording Inclusion metrics and Guidelines390

for Optimal Reproducibility" (RIGOR, Table 1) constitute a set of criteria that could be adopted across the field to improve391

reproducibility.392

Establishment of such standards has the potential to enhance lab-to-lab reproducibility, but experiment-to-experiment393

variability may not be entirely eliminated. A large-scale e�ort to enhance reproducibility in C. elegans aging studies successfully394

replicated average lifespan curves across 3 labs by standardizing experimental methods such as handling of organisms and395

notation of age (e.g. when egg is hatched vs laid) (Lithgow et al., 2017; Lucanic et al., 2017). Still, variability in the lifespan curves396

of individual worms nevertheless persisted, warranting further studies to understand what molecular di�erences might explain397

this. Similarly, we observed no systematic di�erence across labs in either electrophysiological measures (Fig 3d) or functional398

responses (Figure 5j), but nonetheless found considerable variability across experiments within each lab (Figure 4g).399

We found probe targeting to be a large source of variability, driven by micro-manipulator positioning and anatomical400

discrepancies. One possibility is that some aspect of our workflow led us to discard more insertions than would be typical.401
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However, another possibility is that our workflow uncovered a weakness in the standard targeting methods. Specifically, we402

used an automated histological pipeline combined with alignment and tracing that required agreement between multiple403

users. This approach, which exceeds what is done in many experimental labs, revealed for instance that much of the variance in404

targeting was due to the probe entry positions at the brain surface, which were randomly displaced across the dataset. The405

source of this variance could be due to a discrepancy in skull landmarks compared to the underlying brain anatomy. Accuracy406

in placing probes along a planned trajectory is therefore limited by this variability (about 400µm). Probe angle also showed a407

small degree of variance and a bias in both anterior-posterior and medio-lateral direction, indicating that the Allen Common408

Coordinate Framework (CCF) (Wang et al., 2020) and stereotaxic coordinate systems are slightly o�set. Minimizing variance in409

probe targeting is an important element in increasing reproducibility, as slight deviations in probe entry position and angle410

can lead to samples from di�erent populations of neurons. Our approach suggests a path forward to minimize these biases:411

probe angles must be carefully computed from the CCF, as the CCF and stereotaxic coordinate systems do not define the same412

coronal plane angle. Small di�erences in probe location may be responsible for other studies arriving at di�erent conclusions,413

highlighting the need for agreed upon methods for targeting specific areas (Rajasethupathy et al., 2015; Andrianova et al., 2022).414

Our results also highlight the critical importance of reproducible histological processing and subsequent probe alignment.415

Specifically, we used a centralized histology and registration pipeline to assign each recording site on each probe to a particular416

anatomical location, based on registration of the histological probe trajectories to the CCF and the electrophysiological features417

recorded at each site. This di�ers from previous approaches, in which stereotaxic coordinates alone were used to target an area418

of interest and exclusion criteria were not specified; see e.g. (Najafi et al., 2020; Harvey et al., 2012; Goard et al., 2016; Raposo419

et al., 2014; Erlich et al., 2015). The reliance on stereotaxic coordinates for localization, instead of standardized histological420

registration, is a possible explanation for conflicting results across laboratories in previous literature. Our results speak to the421

importance of adopting standardized procedures more broadly across laboratories.422

A major contribution of our work is open-source data and code: we share our full dataset (link to data portal) and suite423

of analysis tools for quantifying reproducibility (link to code repository) and computing the RIGOR standards. The analyses424

here required significant improvements in data architecture, visualization, spike sorting, histology image analysis, and video425

analysis. Our analyses uncovered major gaps and issues in the existing toolsets that required improvements (see Methods and426

The International Brain Laboratory (2021a,b) for full details); the large-scale dataset analyzed here proved to be a useful stress427

test pointing to improved analysis pipelines. For example, we improved existing spike sorting pipelines with regard to scalability,428

reproducibility, and stability. These improvements contribute towards advancing automated spike sorting, and move beyond429

subjective manual curation, which scales poorly and limits reproducibility. We anticipate that our open-source dataset will play430

an important role in further improvements to these pipelines and also the development of further methods for modeling the431

spike trains of many simultaneously recorded neurons across multiple brain areas and experimental sessions.432

Scientific advances rely on the reproducibility of scientific findings. The current study demonstrates that reproducibility is433

attainable for large-scale neural recordings during a standardized perceptual detection task across ten laboratories. We o�er434

several recommendations to increase reproducibility, including (1) standardized protocols for data collection, (2) protocols for435

data processing, and (3) rigorous data quality metrics. Furthermore, we have made improvements in data architecture and436

processing, now available to the public. Our study provides a framework for the collection and analysis of large neural datasets437

in a reproducible manner that will play a key role as neuroscience continues to move towards increasingly complex datasets.438
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Resources439

Data access440

Please visit https://int-brain-lab.github.io/iblenv/notebooks_external/data_release_repro_ephys.html to access the data used441

in this article. Please visit the visualisation website https://viz.internationalbrainlab.org/app to view the data (use the tab442

Repeated site).443

Code repository444

Please visit https://github.com/int-brain-lab/paper-reproducible-ephys/ to access the code used to produce the results and445

figures presented in this article.446

Protocols and pipelines447

Please visit https://figshare.com/projects/Reproducible_Electrophysiology/138367 to access the protocols and pipelines used in448

this article.449

450

Quality control and data inclusion451

Please see this spreadsheet (link) for a comprehensive overview of which recordings are used in what figure panels, as well as452

the reasons for inclusion or exclusion.453

Methods and Materials454

All procedures and experiments were carried out in accordance with local laws and following approval by the relevant institutions:455

the Animal Welfare Ethical Review Body of University College London; the Institutional Animal Care and Use Committees of Cold456

Spring Harbor Laboratory, Princeton University, University of California at Los Angeles, and University of California at Berkeley;457

the University Animal Welfare Committee of New York University; and the Portuguese Veterinary General Board.458

Animals459

Mice were housed under a 12/12 h light/dark cycle (normal or inverted depending on the laboratory) with food and water460

available ad libitum, except during behavioural training days. Electrophysiological recordings and behavioural training were461

performed during either the dark or light phase of the cycle depending on the laboratory. N=48 adult mice (C57BL/6, male and462

female, obtained from either Jackson Laboratory or Charles River) were used in this study. Mice were aged 17-41 weeks and463

weighed 16.4-34.5 g on the day of the headbar implant surgery.464

Materials and apparatus465

Briefly, each lab installed a standardized electrophysiological rig (named ‘ephys rig’ throughout this text), which di�ered slightly466

from the apparatus used during behavioral training (The International Brain Laboratory et al., 2021). The general structure of the467

rig was constructed from Thorlabs parts and was placed inside a custom acoustical cabinet clamped on an air table (Newport,468

M-VIS3036-SG2-325A). A static head bar fixation clamp and a 3D-printed mouse holder were used to hold a mouse such that its469

forepaws rest on the steering wheel (86652 and 32019, LEGO) (The International Brain Laboratory et al., 2021). Silicone tubing470

controlled by a pinch valve (225P011-21, NResearch) was used to deliver water rewards to the mouse. The display of the visual471

stimuli occurred on a LCD screen (LP097Q × 1, LG). To measure the precise times of changes in the visual stimulus, a patch of472

pixels on the LCD screen flipped between white and black at every stimulus change, and this flip was captured with a photodiode473

(Bpod Frame2TTL, Sanworks). Ambient temperature, humidity, and barometric air pressure were measured with the Bpod474

Ambient module (Sanworks), wheel position was monitored with a rotary encoder (05.2400.1122.1024, Kubler).475

Videos of the mouse were recorded from 3 angles (le�, right and body) with USB cameras (CM3-U3-13Y3M-CS, Point Grey).476

The le� camera acquires at 60Hz; full resolution (1280 x1024), right camera at 150Hz; half resolution (640x512), and body camera477
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at 30Hz; half resolution (640Hzx512). A custom speaker (Hardware Team of the Champalimaud Foundation for the Unknown,478

V1.1) was used to play task-related sounds, and an ultrasonic microphone (Ultramic UM200K, Dodotronic) was used to record479

ambient noise from the rig. All task-related data was coordinated by a Bpod State Machine (Sanworks). The task logic was480

programmed in Python and the visual stimulus presentation and video capture were handled by Bonsai (Lopes et al., 2015)481

utilizing the Bonsai package BonVision (Lopes et al., 2021).482

All recordings were made using Neuropixels probes (Imec, 3A and 3B models), advanced in the brain using a micromanipulator483

(Sensapex, uMp-4) tilted by a 15 degree angle from the vertical line. The aimed electrode penetration depth was 4.0 mm. Data484

were acquired via an FPGA (for 3A probes) or PXI (for 3B probes, National Instrument) system and stored on a PC.485

Headbar implant surgery486

Briefly, mice were placed in an induction box with 3-4% isoflurane and maintained at 1.5-2% isoflurane. Saline 10mg/kg487

subcutaneously is given each hour. The mouse is placed in the stereotaxic frame using ear bars placed in the ridge posterior488

to the ear canal. The mouse is then prepped for surgery, removing hair from the scalp using epilation creme. Much of the489

underlying periosteum was removed and bregma and lambda were marked. Then the head was positioned such that there was490

a 0 degree angle between bregma and lambda in all directions. Lateral and middle tendons are removed using fine forceps. The491

head bar was then placed in one of three stereotactically defined locations and cemented in place These locations are: AP -6.90,492

ML +/- 1.25(curved headbar placed caudally onto cerebellum), AP +1.36, ML +/- 1.25 (curved headbar placed rostrally onto frontal493

zones), and AP -2.95, ML +/-1.25 (straight headbar placed centrally).. The location of the future craniotomies were measured494

using a pipette referenced to bregma, and marked on the skull using either a surgical blade or pen. A small amount of vetbond495

was applied to the edges of the skin wound to seal it o� and create more surface area. The exposed skull was then covered with496

cement and clear UV curing glue, ensuring that the remaining scalp was unable to retract from the implant.497

Behavioral training and habituation to the ephys rig498

All recordings performed in this study were done in expert mice. To reach this status, animals were habituated for three days and499

trained for several days in the equal probability task version where the Gabor patch appears on the right or le� side of the screen500

with equal probability. Animals are trained to move the visual stimulus controlled by a wheel toward the center of the screen.501

Animals must reach a ’trained 1b’ status wherein each of the three consecutive sessions, the mouse completed over 400 trials502

and performed over 90% on the easy (contrast >= 50%) trials. Additionally, the median reaction time across these sessions must503

be below 2 seconds for the 0% contrast. Lastly, a psychometric curve is fitted with four parameters bias, lapse right, lapse le�504

and threshold, must meet the following criteria: the absolute bias must be below 10, the threshold below 20, and each lapse505

below 0.1. Once these conditions are met, animals progress to ’biasedChoiceWorld’ in which they are first presented with an506

unbiased block of trials and subsequently blocks are from either of two biased blocks: Gabor patch is presented on the le�507

and right with probabilities of 0.2 and 0.8 (20:80) respectively, and in the other block type the Gabor patch is presented on the508

le� and right with probabilities of 0.8 and 0.2 (80:20) respectively.In summary, once mice learned the biasedChoiceWorld task509

(criteria ‘ready4ephysRig’ reached), they were habituated to the electrophysiology rig. Briefly, this criterion is met by performing510

three consecutive sessions that meet ’trained 1b’ status. Additionally, psychometric curves (separately fit for each block type)511

have bias shi�s < 5%, and lapse rates measured on asymmetric blocks are below 0.1. Their first requirement was to perform one512

session of biasedChoiceWorld on the electrophysiology rig, with at least 400 trials and 90% correct on easy contrasts (collapsing513

across block types). Once this criterion was reached, time delays were introduced at the beginning of the session; these delays514

served to mimic the time it would take to insert electrodes in the brain. To be included in subsequent sessions, mice were515

required to maintain performance for 3 subsequent sessions (same criterion as ‘ready4ephysRig’), with a minimum of one516

session with a 15-minute pre-session delay.517

In this study, electrophysiology sessions were considered in the analysis if the mice performed at least 400 trials.518
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Electrophysiological recording using Neuropixels probes519

Data acquisition520

Briefly, upon the day of electrophysiological recording, the animal was anaesthetised using isoflurane and surgically prepared.521

The UV glue was removed using ethanol and a biopsy punch or scalpel blade. Exposed skull was then checked for infection.522

A test was made to check whether the implant could hold liquid without leaking to ensure that the brain does not dry during523

the recording. Subsequently, a grounding pin was cemented to the skull using Metabond. One or two craniotomies (1 × 1 mm)524

were made over the marked locations using either a biopsy punch or drill. The dura was le� intact, and the brain was lubricated525

with ACSF. DuraGel was applied over the dura as a moisturising sealant, and covered with a layer of Kwikcast. The mouse was526

administered analgesics subcutaneously, and le� to recover in a heating chamber until locomotor and grooming activity were527

fully recovered.528

Once the animal was recovered from the craniotomy, it was fixed in the apparatus. Once a craniotomy was made, up to 4529

subsequent recording sessions were made in that same craniotomy. Up to two probes were implanted in the brain on a given530

session.531

532

Probe track labeling533

CM-Dil (V22888 Thermofisher) was used to label probes for subsequent histology. Store CM-Dil in the freezer -at 20C until ready for534

use. On the day of recording, thaw CM-Dil at room temperature, protecting it from light. Labeling took place under a microscope535

while the Neuropixels probe was secured onto a micromanipulator, electrode sites facing up. 1uL of CM-Dil was placed onto536

either a coverslip or parafilm. Using the micromanipulator, the probe tip was inserted into the drop of dye with care taken to not537

get dye onto the electrode sites. For Neuropixels probes, the tip extends about 150um from the first electrode site. The tip is kept538

in the dye until the drop dries out completely (approximately 30 seconds) and then the micromanipulator is slowly retracted to539

remove the probe).540

Spike sorting541

Raw electrophysiological recordings were initially saved in a flat uncompressed binary format, representing a storage of 1.3GB per542

minute. To save disk space and achieve better transfer speeds we utilized simple lossless compression to achieve a compression543

ratio between 2x and 3x. In many cases, we encounter line noise due to voltage leakage on the probe. This translates into large544

"stripes" of noise spanning the whole probe. To reduce the impact of these noise "stripes" we perform three main pre-processing545

steps including: (1) correction for "sample shi�" along the length of the probe by aligning the samples with a frequency domain546

approach; (2) automatic detection, rejection and interpolation of failing channels; (3) application of a spatial “de-striping" filter.547

A�er these preprocessing steps, spike sorting was performed using a modified version of the Kilosort 2.5 algorithm (Steinmetz548

et al., 2021). At this step, we apply registration, clustering, and spike deconvolution. We found it necessary to improve the original549

code in several aspects (e.g., improved modularity and documentation, and better memory handling for datasets with many550

spikes) and developed an open-source Python port; the code repository is here: (The International Brain Laboratory, 2021b). See551

The International Brain Laboratory et al. (2022) for full details.552

Single cluster quality metrics553

To determine whether a single cluster will be used in downstream analysis, we used three metrics: the refractory period, an554

amplitude cut-o� estimate, and the median of the amplitudes. First, we developed a metric which estimates whether a neuron is555

contaminated by refractory period violations (indicating potential overmerge problems in the clustering step) without assuming556

the length of the refractory period. For each of the many refractory period lengths, we compute the number of spikes (refractory557

period violations) that would correspond to some maximum acceptable amount of contamination (chosen as 10%). We then558

compute the likelihood of observing fewer than this number of spikes in that refractory period under the assumption of Poisson559

spiking. For a neuron to pass this metric, this likelihood that our neuron is less than 10% contaminated, must be larger than 90%560

for any one of the possible refractory period lengths.561
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Next, we compute an amplitude cut-o� estimate. This metric estimates whether an amplitude distribution is cut o� by562

thresholding in the deconvolution step (thus leading to a large fraction of missed spikes). To do so, we compare the lowest bin563

of the histogram (the number of neurons with the lowest amplitudes), to the bins in the highest quantile of the distribution564

(defined as the top 1/4 of bins higher than the peak of the distribution.) Specifically, we compute how many standard deviations565

the height of the low bin falls outside of the mean of the height of the bins in the high quantile. For a neuron to pass this metric,566

this value must be less than 5 standard deviations, and the height of the lowest bin must be less than 10% of the height of the567

peak histogram bin.568

Finally, we compute the median of the amplitudes. For a neuron to pass this metric, the median of the amplitudes must be569

larger than 50 uV.570

Local field potential (LFP)571

Concurrently with the action potential band, each channel of the Neuropixel probe recorded a low-pass filtered trace at a572

sampling rate of 2500 Hz. A denoising was applied to the raw data, comprising four steps. First a Butterworth low-cut filter573

is applied on the time traces, with 2Hz corner frequency and order 3. Then a subsample shi� is applied to rephase each574

channel according to the time-sampling di�erence due to sequential sampling of the hardware. Then faulty bad channels575

are automatically identified, removed and interpolated. At last the median reference is subtracted at each time sample. See576

The International Brain Laboratory et al. (2022) for full details. A�er this processing, the power spectral density at di�erent577

frequencies was estimated per channel using the Welch’s method with partly overlapping Hanning windows of 1024 samples.578

Power spectral density (PSD) was converted into dB as follows:579

dB = 10 ∗ log(PSD) (1)

Serial section two-photon imaging580

Mice were given a terminal dose of pentobarbital intraperitoneally. Toe-pinch is performed as confirmation that the mouse581

is under before proceeding with the surgical procedure. Thoracic cavity is opened, atrium is cut, and PBS followed by 4%582

formaldehyde solution (Thermofisher 28908) in 0.1M PB pH 7.4 is perfused through the le� ventricle. Whole mouse brain was583

dissected, and post-fixed in the same fixative for a minimum of 24 hours at room temperature. Tissues were washed and stored584

for up to 2-3 weeks in PBS at 4C, prior to shipment to the Sainsbury Wellcome Centre for image acquisition.585

The brains were embedded in agarose and imaged in a water bath filled with 50 mM PB using a 4 kHz resonant scanning serial586

section two-photon microscopy (Ragan et al., 2012; Economo et al., 2016). The microscope was controlled with ScanImage Basic587

(Vidrio Technologies, USA), and BakingTray, a custom so�ware wrapper for setting up the imaging parameters (Campbell, 2020).588

Image tiles were assembled into 2D planes using StitchIt (Campbell, 2021). Whole brain coronal image stacks were acquired at a589

resolution of 4.4 x 4.4 x 25.0 µm in XYZ (Nikon 16x NA 0.8), with a two-photon laser wavelength of 920 nm, and approximately 150590

mW at the sample. The microscope cut 50 µm sections using a vibratome (Leica VT1000) but imaged two optical planes within591

each slice at depths of about 30 µm and 55 µm from the tissue surface using a PIFOC. Two channels of image data were acquired592

simultaneously using Hamamatsu R10699 multialkali PMTs: ‘Green’ at 525 nm ±25 nm (Crhoma ET525/50m); ‘Red’ at 570 nm593

low pass (Chroma ET570lp).594

Whole brain images were downsampled to 25µm isotropic voxels and registered to the adult mouse Allen common coordinate595

framework (Wang et al., 2020) using BrainRegister (West, 2021), an elastix-based (Klein et al., 2010) registration pipeline with596

optimised parameters for mouse brain registration. Two registrations are performed, samples are registered to the CCF template597

image and the CCG template is registered to the sample.598

Probe track tracing and alignment599

Tracing of Neuropixels electrode tracks is performed on registered image stacks. This is performed by the experimenter and an600

additional member. Neuropixels probe tracks were manually traced to yield a probe trajectory using Lasagna (Campbell et al.,601

2020), a Python-based image viewer equipped with a plugin tailored for this task. Tracing was performed on the merged images602

on the green (auto-fluorescence) and red (CM-Dil labeling) channels, using both coronal and sagittal views. Traced probe track603
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data was uploaded to an Alyx server (Rossant et al., 2021); a database designed for experimental neuroscience laboratories. Neu-604

ropixels channels were then manually aligned to anatomical features along the trajectory using electrophysiological landmarks605

with a custom electrophysiology alignment tool (Faulkner, 2020) (Liu et al., 2021).606

Permutation tests and power analysis607

We use permutation tests to study the reproducibility of neural features across laboratories. To this end, we first defined a test608

statistic that is sensitive to systematic deviations in the distributions of features between laboratories: the maximum absolute609

di�erence between the cumulative distribution function (CDF) of a neural feature within one lab and the CDF across all other610

labs (similar to the test statistic used for a Kolmogorov–Smirnov test). For the CDF, each mouse might contribute just a single611

value (e.g. in the case of the deviations from the target region), or a number for every neuron in that mouse (e.g. in the case of612

comparing firing rate di�erences during specific time-periods). The deviations between CDFs from all the individual labs are613

then reduced into one number by considering only the deviation of the lab with the strongest such deviation, giving us a metric614

that quantifies the di�erence between lab distributions. The null hypothesis is that there is no di�erence between the di�erent615

laboratory distributions, i.e. the assignment of mice to laboratories is completely random. We sampled from the corresponding616

null distribution by permuting the assignments between laboratories and mice randomly 50,000 times (leaving the relative617

numbers of mice in laboratories intact) and computing the test statistic on these randomised samples. Given this sampled null618

distribution, the p-value of the permutation test is the proportion of the null distribution that has more extreme values than the619

test statistic that was computed on the real data.620

For the power analysis in Fig. 2, the goal was to find how strongly we have to shi� all values (firing rate modulations or Fano621

factors) within the individual labs, in order to create a significant p-value for any given test. This grants us a better understanding622

of the workings and limits of our test. As we chose an � level of 0.01, we needed to find the perturbations that gave a p-value623

< 0.01. To achieve this for a given test and a given lab, we took the values of every neuron within that lab, and shi�ed them all624

up or down by a certain amount. We used binary search to find the exact points at which such an up- or down-shi� caused the625

test to become significant. This analysis tells us exactly at which points our test becomes significant, and importantly makes626

sure that our permutation test is actually sensitive enough to pick up on deviations of certain magnitudes. It may seem counter627

intuitive that some tests allow for larger deviations than others, or that even within the same test some labs have a di�erent628

range of possible perturbations than others. This is because the test considers the entire distribution of values, resulting in629

possibly complex interactions between the labs. Precisely because of these interactions of the data with the test, we performed630

a thorough power analysis to ensure that our procedure is su�iciently sensitive to across-lab variations. The bottom row of631

Fig. 2 shows the overall distribution of permissible shi�s, the large majority of which is below one standard deviation of the632

corresponding lab distribution.633

Dimensionality reduction of PETHs via principal component analysis634

In Figure 5 we use principal component analysis (PCA) to embed PETHs into a two-dimensional feature space for visualization635

and further analysis. Our overall approach is to compute PETHs, split into fast-reaction-time and slow-reaction-time trials, then636

concatenate these PETH vectors for each cell to obtain an informative summary of each cell’s activity. Next we stack these double637

PETHs from all labs into a single matrix and use PCA to obtain a low-rank approximation of this PETH matrix.638

In detail, the two PETHs consist of one averaging fast reaction time (< 0.15sec) trials and the other slow reaction time639

(> 0.15sec) trials, each of length T time steps. We used 20ms bins, from −0.5 sec to 1.5 sec relative to motion onset, so T = 100.640

We also performed a simple normalization on each PETH, dividing the firing rates by the baseline firing rate (prior to motion641

onset) of each cell plus a small positive o�set term (to avoid amplifying noise in very low-firing cells), following Steinmetz et al.642

(2021).643

Let the stack of these double PETH vectors be Y , being aN × 2T matrix, whereN is the total number of neurons recorded644

across 5 brain regions and labs. Running principal components analysis (PCA) on Y (singular value decomposition) is used to645

obtain the low-rank approximationUV ≈ Y . This provides a simple low-d embedding of each cell: U isN × k, with each row of646

U representing a k-dimensional embedding of a cell that can be visualized easily across labs and brain regions. V is k × 2T and647
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corresponds to the k temporal basis functions that PCA learns to best approximate Y . Figure 5(a) shows two cells of Y and the648

corresponding PCA approximation fromUV .649

The scatter plots in Figure 5 show the embeddingU across labs and brain regions, with the embedding dimension k = 2.650

Each k × 1 vector inU , corresponding to a single cell, is assigned to a single dot in Figure 5c.651

652

Linear regression model to quantify the contribution of spatial and spike features to variability653

To fit a linear regression model to the session-averaged firing rate of neurons, for each brain region, we used a Nx5 predictor654

matrix where N is the number of recorded neurons within the region. The five columns contain the following five covariates for655

each neuron: x, y, z position, spike amplitude, and spike peak-to-trough duration. The Nx1 observation matrix consisted of the656

average firing rate for each neuron throughout the entire recording period. The linear model was fit using ordinary least-squares657

without regularization. The unadjusted coe�icient of determination (R2) was used to report the level of variability in neuronal658

firing rates explained by the model.659

Video analysis660

In the recording rigs, we used three cameras, one called ‘le�’ at full resolution (1280x1024) and 60 Hz filming the mouse from661

one side, one called ‘right’ at half resolution (640x512) and 150 Hz, filming the mouse symmetrically from the other side, and662

one called ‘body’ filming the trunk of the mouse from above. Several quality control metrics were developed to detect video663

issues such as poor illumination or accidental misplacement of the cameras.664

We used DeepLabCut (Mathis et al., 2018) to track various body parts such as the paws, nose, tongue, and pupil. The pipeline665

first detects 4 regions of interest (ROI) in each frame, crops these ROIs using �mpeg (Tomar, 2006) and applies a separate network666

for each ROI to track features. For each side video we track the following points:667

• ROI eye:668

‘pupil_top_r’, ‘pupil_right_r’, ‘pupil_bottom_r’, ‘pupil_left_r’669

• ROI mouth:670

‘tongue_end_r’, ‘tongue_end_l’671

• ROI nose:672

‘nose_tip’673

• ROI paws:674

‘paw_r’, ‘paw_l’675

The right side video was flipped and spatially up-sampled to look like the le� side video, such that we could apply the same676

DeepLabCut networks. The code is available here: (The International Brain Laboratory, 2021a).677

Extensive curating of the training set of images for each network was required to obtain reliable tracking across animals and678

laboratories. We annotated in total more than 10K frames, across several iterations, using a semi-automated tracking failure679

detection approach, which found frames with temporal jumps, three-dimensional re-projection errors when combining both680

side views, and heuristic measures of spatial violations. These selected ‘bad’ frames were then annotated and the network681

re-trained. To find further raw video and DeepLabCut issues, we inspected trial-averaged behaviors obtained from the tracked682

features, such as licking aligned to feedback time, paw speed aligned to stimulus onset and scatter plots of animal body parts683

across a session superimposed onto example video frames. See The International Brain Laboratory (2021a) for full details.684

Despite the large labeled dataset and multiple network retraining iterations described above, DeepLabCut was not able to685

achieve su�iciently reliable tracking of the paws or pupils. Therefore we used an improved tracking method for these body parts686

(Biderman et al., 2023), trained on the same final labeled dataset used to train DeepLabCut.687
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Multi-task neural network model to quantify sources of variability688

Data preprocessing689

For the multi-task neural network (MTNN) analysis, we used data from 20 sessions recorded in CCU, CSHL (C), SWC, UCL, and690

Berkeley. We filtered out the sessions with unreliable behavioral traces from video analysis, and selected labs with at least 4691

sessions for the MTNN analysis. For the labs with more than 4 sessions, we randomly subsampled 4 sessions. We included various692

covariates in our feature set (e.g. go-cue signals, stimulus/reward type, Deep Lab Cut behavioral outputs). For the “decision693

strategy" covariate, we used the posterior estimated state probabilities of the 4-state GLM-HMMs trained on the sessions used694

for the MTNN analysis (Ashwood et al., 2021). Both biased and unbiased data were used when training the 4-state model. For695

each session, we first filtered out the trials where no choice is made. We then selected the trials whose stimulus onset time696

is no more than 0.4 seconds before the first movement onset time and feedback time is no more than 0.9 seconds a�er the697

first movement onset time. Finally, we selected responsive neurons whose mean firing rate is greater than 5 spikes/second698

for further analyses. For sessions with more than 15 such responsive neurons, we randomly sampled 15 neurons, in order to699

keep the MTNN training time at a reasonable level while also preventing the sessions with relatively high number of neurons700

from dominating the losses and updates during MTNN training. The lab IDs and session IDs were each encoded in a “one-hot”701

format (i.e., each lab (or session) is encoded as a length 4 one-hot vector). For the leave-one-out e�ect size of the session IDs,702

we compared the model trained with all of the covariates in Table 2 against the model trained without the session IDs. For the703

leave-one-out e�ect size of the lab IDs, we compared the model trained without the lab IDs against the model trained without704

both the lab and session IDs. We prevented the lab and session IDs from containing overlapping information with this encoding705

scheme, where the lab IDs cannot be predicted from the session IDs, and vice versa, during the leave-one-out analysis.706

Model Architecture707

Given a set of covariates in Table 2, the MTNN predicts the target sequence of firing rates from 0.5 seconds before first movement708

onset to 1 second a�er, with bin width set to 50 ms (30 time bins). More specifically, a sequence of feature vectors xdynamic ∈709

ℝDdynamic×T that include dynamic covariates, such as Deep Lab Cut (DLC) outputs, and wheel velocity, and a feature vector710

xstatic ∈ ℝDstatic that includes static covariates, such as the lab ID, neuron’s 3-D location, are input to the MTNN to compute711

the prediction ypred ∈ ℝT , whereDstatic is the number of static features,Ddynamic is the number of dynamic features, and T is712

the number of time bins. The MTNN has initial layers that are shared by all neurons, and each neuron has its designated final713

fully-connected layer.714

Given the feature vectors xdynamic and xstatic for session s and neuron u, the model predicts the firing rates ypred by:

estatic = f (wTstaticxstatic + bstatic) (2)
edynamic = f (wTdynamicxdynamic + bdynamic) (3)

ℎ(forward)t = max(0, U1edynamic,t + V1ℎ
(forward)
t−1 + bforward) (4)

ℎ(backward)t = max(0, U2edynamic,t + V2ℎ
(backward)
t+1 + bbackward) (5)

ypredt = f (wT(s,u)concat(estatic, ℎ
(forward)
t , ℎ(backward)t ) + b(s,u)) (6)

where f is the activation function. Eqn. (2) and Eqn. (3) are the shared fully-connected layers for static and dynamic covariates,715

respectively. Eqn. (4) and Eqn. (5) are the shared one-layer bidirectional recurrent neural networks (RNNs) for dynamic covariates,716

and Eqn. (6) is the neuron-specific fully-connected layer, indexed by (s, u). Each part of the MTNN architecture can have an717

arbitrary number of layers. For our analysis, we used two fully-connected shared layers for static covariates (Eqn. (2)) and718

three-layer bidirectional RNNs for dynamic covariates, with the embedding size set to 64.719

Model training720

The model was implemented in PyTorch and trained on a single GPU. The training was performed using Stochastic Gradient721

Descent on the Poisson negative loglikelihood (Poisson NLL) loss with learning rate set to 0.1, momentum set to 0.9, and weight722

decay set to 10−15. We used a learning rate scheduler such that the learning rate for the i-th epoch is 0.1 × 0.95i, and the dropout723
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rate was set to 0.15. We also experimented with mean squared error (MSE) loss instead of Poisson NLL loss, and the results were724

similar. The batch size was set to 512.725

The dataset consists of 20 sessions, 239 neurons and 6480 active trials in total. For each session, 20% of the trials are used as726

the test data and the remaining trials are split 20:80 for the validation and training sets. During training, the performance on the727

held-out validation set is checked a�er every 3 passes through the training data. The model is trained for 100 epochs, and the728

model parameters with the best performance on the held-out validation set are saved and used for predictions on the test data.729

Simulated experiments730

For the simulated experiment in Figure 7-supplemental 2, we first trained GLMs on the same set of 239 responsive neurons from731

20 sessions used for the analysis in Figure 7d and 7e, with a reduced set of covariates consisting of stimulus timing, stimulus side732

and contrast, first movement onset timing, feedback type and timing, wheel velocity, and mouse’s priors for the current and733

previous trials. The kernels of the trained GLMs show the contribution of each of the covariates to the firing rates of each neuron.734

For each simulated neuron, we used these kernels of the trained GLM to simulate its firing rates for 400 randomly initialized735

trials. The random trials were 1.5 seconds long with 50 ms bin width. For all trials, the first movement onset timing was set to736

0.5 second a�er the start of the trial, and the stimulus contrast, side, onset timing and feedback type, timing were randomly737

sampled. We used wheel velocity traces and mouse’s priors from real data for simulation. We finally ran the leave-one-out738

analyses with GLMs/MTNN on the simulated data and compared the e�ect sizes estimated by GLMs and MTNN.739

740
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Figure 1–Figure supplement 1. Detailed experimental pipeline for the Neuropixels experiment. The experiment follows the
main steps indicated in the le�-hand black squares in chronological order from top to bottom. Within each main step, actions
are undertaken from le� to right; diamond markers indicate points of control.
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Figure 1–Figure supplement 2. (Le�) 3D schematic of the probe insertions of the repeated site from 12 mice. Colors correspond
to the quality of the probe insertion: good (yellow); blue (miss target); red (low yield). (Right) Spiking activity qualitatively
appears heterogeneous across recordings. Example raster plots of neural activity recorded from the repeated site in 12 mice. The
raster plots in the first top two rows originate from sessions marked as being of good quality. The middle and bottom rows are
raster plots from recordings that were excluded, based either on the probe misplacement, or the low number of detected units.
Allen Mouse CCF Labels: Anterior pretectal nucleus (APN); Dentate Gyrus (DG); Field CA1 (CA1); Field CA3 (CA3); Lateral dorsal
nucleus of the thalamus (LD); Dorsal part of the lateral geniculate complex (LGd); Lateral posterior nucleus of the thalamus
(LP); Midbrain (MB); Midbrain reticular nucleus (MRN); Posterior complex of the thalamus (PO); Posterior limiting nucleus of
the thalamus (POL); Suprageniculate nucleus (SGN); Substantia nigra, reticular part (SNr); Primary somatosensory area (SSp);
Ventral posterolateral nucleus of the thalamus (VPL); Ventral posteromedial nucleus of the thalamus (VPM); Anterior area (VISa);
Anteromedial visual area (VISam); Posteromedial visual area (VISpm).
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Figure 1–Figure supplement 3. (a) Example raster (le�) and raw electrophysiology data snippet (right) for a recording that
passes quality control. The blue lines on the raster plot mark the start and end of the behavioral task. (b) Example raster and
raw data snippets for four recordings that fail quality control; either because of the presence of epileptic seizures (top-le�),
pronounced dri� (top-right), artifacts (bottom-le�), or large number of noisy channels (bottom-right).
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Figure 2–Figure supplement 1. Plots of all subjects with a repeated site insertion that were included in the analysis of probe
placement. Coronal tilted slices are made along the linearly interpolated best-fit to the histology insertion, shown through
the raw histology (green: auto-fluorescence data for image registration; red: cm-DiI fluorescence signal marking probe tracks).
Traced probe tracks are highlighted in white. Scale bar: 1mm.
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Figure 3–Figure supplement 1. (a, b) Probe plots as in Figure 3a,b. Above each probe plot is the name of the mouse, the color
indicates whether the recording passed QC (green is pass, red is fail).
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Figure 3–Figure supplement 2. Power spectral density between 20 and 80 Hz recorded along each probe shown in figure 3
overlaid on a coronal slice. Each coronal slice has been rotated so that the probe lies along the vertical axis. Colors correspond
to probe insertions belonging to a single lab (Berkeley - blue; Champalimaud - orange; CSHL (C) - green; CSHL (Z) - red; NYU
- purple; Princeton - brown; SWC - pink; UCL - grey; UCLA - yellow; UW - teal). Numbers above the image denote a recording
session for individual mice. Red line is a 1 mm scalebar.
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Figure 3–Figure supplement 3. Bilateral recordings of the repeated site in both hemispheres show within-animal variance is
o�en smaller than across-animal variance. (a, b), Power spectral density and neural activity of all bilateral recordings. L and
R indicate the le� and right probe of each bilateral recording. Each L/R pair is recorded simultaneously. The color indicates
the lab (lab-color assignment identical to figure 3). (c) Within-animal variance is smaller than across-animal variance for LFP
power. The across-animal variance is depicted as the distribution of all pair-wise absolute di�erences in LFP power between any
two recordings in the entire dataset (blue shaded violin plot). The black horizontal ticks indicate where the bilateral recordings
(within-animal variance) fall in this distribution. (d, e) Violin plots for firing rate and spike amplitude in VISa/am, similar analysis
as in (c). (f) Whether within or across animal variance is larger is dependent on the metric and brain region; red colors indicate
that within < across and green colors within > across. Variance is quantified here as the interquartile distance of the distributions
in c-e.
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Figure 3–Figure supplement 4. All electrophysiological features (rows) per brain region (columns) that were used in the
permutation test and decoding analysis of Figure 3. Each dot is a recording, colors indicate the laboratory.
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Figure 4–Figure supplement 1. (a)-(f) Schematics of six tests to quantify neuronal task modulation. Each panel includes a
schematic of example trials showing potential caveats of each method. For instance, in a the stimulus period may or may not
include movement, depending on the reaction time of the animal. In c, the reaction period is only calculated in trials with >50 ms
between the stimulus and movement onset, and up to 200 ms before movement for trials with longer reaction times. Below each
schematic, the proportion of task-modulated neurons for the test is shown, across mice and brain regions, colored by lab ID.
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Figure 4–Figure supplement 2. For every test and every lab, we performed a power analysis to test how far the values of that
lab would have to be shi�ed upwards or downwards to cause a significant permutation test (tests that were significant in that
absence of such shi�s are crossed out). Horizontal lines indicate the means of the lab distributions, vertical bars indicate the
magnitude of the needed up- and downwards perturbations for a significant test (p-value< 0.01), the titles of the individual
tests denote the p-value of the original unperturbed test. The magnitudes usually span a rather small range of permissible
values, which means that our permutation testing procedure is sensitive to deviations of individual labs. The plot on the bottom
le� shows the correlation between shi� size and standard deviation within the labs. In the bottom right is a histogram of
the magnitude of shi�s in units of the standard deviation of the corresponding distribution. Most shi�s are below 1 standard
deviations of the corresponding lab distribution
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Figure 5–Figure supplement 1. Mean firing rates across all labs per region including VISa/am, CA1, DG, LP, and PO (panels
a, d, g, j, m). In addition, the second column of panels (panels b, e, h, k, n) shows for each region the cumulative distribution
function (CDF) of the first embedding dimension (PC1) per lab. The insets show the Kolmororov-Smirnov distance (KS) per lab
from the distribution of all remaining labs pooled, annotated with an asterisk if p < 0.01 for the KS test (corrected for multiple
comparisons per region). The third column of panels (c, f, i, l, o) displays the embedded activity of neurons from VISa/am, CA1,
DG, LP, and PO. Only for Berkeley in VISa/am were dynamics significantly di�erent from the mean of all remaining labs using the
KS test.
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Figure 6–Figure supplement 1. High-firing and task-modulated VISa/am neurons were located in deeper layers than other
VISa/am neurons. (a-d) Similar to Figure 6 but for VISa/am.
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Figure 6–Figure supplement 2. High-firing and task-modulated CA1 neurons had no di�erence in spatial position or spike
characteristics compared to regular firing and non-task-modulated neurons. (a-d) Similar to Figure 6 but for CA1.
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Figure 6–Figure supplement 3. Spatial positions and spike characteristics of outlier and task-modulated neurons in PO, but
not DG, were di�erent from other neurons. (a) Spatial positions of DG neurons plotted as distance from the planned target center
of mass, indicated with the red x. Spatial positions and waveform features were not significantly di�erent between the outliers
(yellow) and the general population of neurons (blue). (b) Spatial positions and spike waveform features of task-modulated and
non-modulated DG neurons are not di�erent (using the movement initiation test). (c-d) Same as a-b but for PO neurons, where
spatial position and spike amplitudes were significantly di�erent between outliers and the general population of neurons, as
well as between task-modulated and non-modulated neurons (as shown with the histograms).
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Figure 6–Figure supplement 4. Time-course and spatial position of neuronal Fano Factors. (a) Le� column: Change in firing
rate (top) and Fano Factor (bottom) averaged over all VISa/am neurons when aligned to movement onset a�er presentation of le�
or right full-contrast stimuli (correct trials only; Fano Factor calculation limited to neurons with a session-averaged firing rate >1
sp/sec). Error bars: standard error means between neurons. Right column: Neuronal Fano Factors (averaged over 40-200 ms post
movement onset a�er right-side full-contrast stimuli) and their spatial positions. Larger circles indicate neurons with Fano Factor
<1. (b-e) Same as a for CA1, DG, LP, and PO. Spatial position between high vs. low Fano Factor neurons was only significantly
di�erent in VISa/am (deeper neurons had lower Fano Factors) and PO (neurons with lower Fano Factors were positioned more
laterally). In VISa/am, spike duration between high and low Fano Factor neurons was also significantly di�erent, possibly due to
cell type di�erences (neurons with shorter spike durations tended to have higher Fano Factors; histograms not shown).
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Figure 6–Figure supplement 5. High-firing neurons do not belong to a specific cell subtype. To identify putative Fast-Spiking (FS)
and Regular-Spiking (RS) neuronal populations, we examined spike peak-to-trough durations (Jia et al., 2019). This distribution
was bimodal in Visa/am, CA1, and DG, but not LP and PO (as expected from Jia et al. (2019)). This bimodality (indicated with the
black and blue boxes) suggests distinct populations of FS and RS neurons only in cortical and hippocampal regions, which should
have narrow (black) and wide (blue) spike widths, respectively. To confirm the distinct populations of FS and RS neurons, we next
plotted the cumulative probability of firing rate for these two putative neuronal categories. Indeed, in cortex and hippocampus,
neurons with narrow spikes tend to have higher firing rates (in black) while neurons with wider spikes have lower firing rates (in
blue). In contrast, in LP and PO, we did not identify specific populations of neuronal subtypes using the spike waveform (to our
knowledge, this has not been done in previous work either). Importantly, even in cortex/hippocampus where putative RS and FS
neurons are distinguishable, there is still a large firing rate overlap between these two groups, especially for firing rates above
10-15 sp/s (the firing rate threshold from Figure 6 and supplemental figures). Hence, high-firing neurons do not seem to belong
to a specific neuronal subtype.
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Figure 7–Figure supplement 1. (a) For each neuron in each session, we plot the MTNN prediction quality on held-out test trials
against the firing rate of the neuron averaged over the test trials. Each lab/session is colored/shaped di�erently. R2 values on
concatenations of the held-out test trials are shown on the le�, and those on PETHs of the held-out test trials on the right. (b)
MTNN slightly outperforms GLMs on predicting the firing rates of held-out trials when trained on movement/task-related/prior
covariates. (c) The le� half shows for each neuron the trial averaged activity for le� choice trials and next to it right choice trials.
The vertical green lines show the first movement onset. The horizontal red lines separate recording sessions while the blue
lines separate labs. The right half of each of these images shows the MTNN prediction of the le� half. The trial-averaged MTNN
predictions for held-out test trials captures visible modulations in the PETHs.
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Figure 7–Figure supplement 2. To verify that the MTNN leave-one-out analysis is sensitive enough to capture e�ect sizes, we
simulate data from GLMs and compare the e�ect sizes estimated by the MTNN and GLM leave-one-out analyses. We first fit GLMs
to the same set of sessions that are used for the MTNN e�ect size analysis and then use the inferred GLM kernels to simulate data.
(a) We show the scatterplot of the GLM and MTNN predictive performance on held-out test data, where each dot represents the
predictive performance for one neuron. The MTNN prediction quality is comparable to that of GLMs. (b) We run GLM and MTNN
leave-one-out analyses and compare the estimated e�ect sizes for eight covariates. The e�ect sizes estimated by the MTNN and
GLM leave-one-out analyses are comparable.
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Figure 7–Figure supplement 3. We plot pairwise scatterplots of MTNN single-covariate e�ect sizes. Each dot represents the
e�ect sizes of one neuron and is colored by lab. There is no outlier lab. The e�ect sizes are highly correlated.
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