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Abstract 12 

 Processing task-relevant visual information is important for the successful completion of 13 

many everyday tasks. Prior work demonstrated that aging is associated with increased 14 

susceptibility to distraction by salient stimuli. However, these studies often use simple stimuli 15 

and little is known about how aging influences visual attention in 3D environments that are more 16 

representative of real-world visual complexity. We asked young and older adults to complete a 17 

virtual reality-based visual search task with three levels of increasing visual complexity. As the 18 

visual complexity of the environment increased, all participants took longer to complete the task, 19 

in part because they increased the time spent re-fixating task-relevant objects and the time 20 

spent fixating task-irrelevant objects. We also found that older adults took longer to complete 21 

the task and spent more time re-fixating task-relevant objects and fixating task-irrelevant 22 

objects. In addition, we found that short-term and working memory capacities were related to 23 

multiple measures of performance in the visual search task. These results demonstrate the 24 

importance of assessing the effects of aging on the control of visual attention using tasks and 25 

environments that better capture features of the real world.  26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.18.540524doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.540524
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Introduction 27 

Selecting and processing relevant visual information from the environment is vital for 28 

planning and executing everyday tasks1–4. For example, to successfully find one’s luggage at a 29 

busy airport, it is essential to attend to visual features such as color and size to distinguish one’s 30 

luggage from another passenger's. Both natural and human-made environments are filled with a 31 

broad range of visual stimuli that may be relevant or irrelevant for guiding future actions. 32 

Processing all stimuli is impractical as the capacity for visual information processing is limited5. 33 

What is ultimately perceived is dictated by what is selected for using visual attention6.  34 

 The control of visual attention has been prominently described as a balance between 35 

top-down and bottom-up processes. Bottom-up processes emphasize saliency, a characteristic 36 

of visual stimuli based on low-level visual features such as contrast and luminance7. Highly 37 

salient visual stimuli have the effect of “popping out” of a scene and capturing attention 38 

automatically. In contrast, top-down processes control visual attention based on cognitive 39 

control processes that prioritize factors such as task demands and prior knowledge8. When 40 

selecting a stimulus to direct visual attention towards, top-down cognitive processes modulate 41 

bottom-up saliency by enhancing the representation of a desired region or stimuli while 42 

inhibiting others9–11. The use of top-down cognitive control to modulate bottom-up processes 43 

has also been demonstrated at the neural level during visual search in naturalistic 44 

photographs12. As measured using fMRI, neural activity was increased for search objects and 45 

decreased for distractors. As such, while highly salient stimuli attempt to capture attention 46 

automatically, top-down cognitive control can inhibit this process, allowing attention to be 47 

focused on relevant visual information. Task-dependent trade-offs between top-down and 48 

bottom-up control enable attention to be freely directed based on top-down factors, such as 49 

when performing a task while allowing it to be captured by highly salient stimuli when 50 

necessary. However, this interaction appears to rely heavily on an individual’s cognitive 51 

capacity, which has been demonstrated to be affected by normal aging.  52 
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 There is evidence that older adults are more susceptible to distraction by irrelevant 53 

visual stimuli due to aging-related changes in their cognition. In particular, their ability to exert 54 

top-down inhibitory mechanisms has been shown to be impaired13–15. These effects prevent 55 

older adults from suppressing the automatic capture of attention by salient task-irrelevant 56 

stimuli, negatively affecting their performance in visually demanding tasks16–19. Impaired 57 

capacity for inhibition can also lead to task-irrelevant information being encoded into working 58 

memory at the cost of task-relevant information17,20. This increased distractibility from task-59 

irrelevant stimuli is problematic as this may prevent older adults from completing everyday tasks 60 

and make them more vulnerable to accidents that may lead to injuries. However, these studies 61 

used simple visual scenes composed of arbitrarily selected shapes and letters. It is unclear 62 

whether these aging-related effects on visual attention extend to performing tasks in scenes 63 

more closely replicating the visual complexity in real-world environments. 64 

 Assessing the cognitive capacity of older adults, particularly their ability to direct visual 65 

attention appropriately, is important for developing interventions to improve their function in daily 66 

activities. The Trail Making Test21, especially part B, is a visual search task commonly used to 67 

assess cognitive domains such as visual attention, working memory, and inhibition22–24. It is 68 

typically implemented in a pen-and-paper format with numbers and letters as search targets, 69 

leaving questions about its ability to interrogate visual attention in environments that more 70 

closely resemble those encountered in the real world. Recent attempts have been made to 71 

increase the ecological validity of the Trail Making Test by transforming the task into a three-72 

dimensional reaching-like task in virtual reality (VR)25. However, the generalizability of this 73 

three-dimensional adaptation to real-world experiences remains as the search targets do not 74 

simulate stimuli present in natural environments. In addition, both implementations of the Trail 75 

Making Test cannot provide moment-to-moment information on visual attention or visual search 76 

strategies as they only measure time to completion. 77 
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 We aimed to determine how aging-related differences in cognition influence visual 78 

search and attention in naturalistic virtual environments. Participants performed a custom-79 

designed VR-based visual search task in three visual complexity levels that closely simulated 80 

real-world environments26. Performance was quantified by measuring time to completion, and 81 

allocation of visual attention was analyzed by quantifying re-fixation time on task-relevant 82 

objects, fixation time on task-irrelevant objects, and the saliency of fixated regions of the visual 83 

scene. Additionally, all participants completed assessments of global cognition, short-term 84 

memory, working memory, and inhibitory capacity. We hypothesized that as the complexity of 85 

the visual scene increased, participants would exhibit longer task completion times caused by a 86 

decreased capacity to encode task-relevant stimuli in working memory and to inhibit task-87 

irrelevant stimuli. In particular, all participants would be more prone to re-fixating search targets 88 

and directing their attention to salient, task-irrelevant distractors. In addition, we hypothesized 89 

that this performance decline would be greater in older adults due to aging-related impairments 90 

in their cognition. 91 

Results 92 

Feature congestion. The visual complexity of the three virtual environments used in the visual 93 

search task was quantified using feature congestion27. To determine whether manipulations of 94 

the virtual environments led to increasing levels of visual complexity, we performed Welch’s 95 

analysis of variance to compare the feature congestion of the three visual complexity levels (Fig. 96 

1b). Feature congestion increased monotonically across visual complexity levels (F(2,1203.7) = 97 

28690, p < 2.2e-16). Post-hoc Bonferroni-corrected pairwise comparisons using Wilcoxon rank 98 

sum tests indicate that the high visual complexity level had greater feature congestion than the 99 

medium (p < 2e-16) and low (p < 2e-16) visual complexity levels. In addition, feature congestion 100 

was higher in the medium visual complexity level than in the low (p < 2e-16). 101 
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 102 
Figure 1. Variation in feature congestion across the three visual complexity levels used in the 103 
visual search task. (a) Single frames from representative gameplay recordings of each visual 104 
complexity level. (b) Scatter plot comparing feature congestion of each visual complexity level 105 
with each data point representing a frame from representative gameplay recordings. * indicates 106 
statistically significant differences between visual complexity levels at p < 0.05. 107 

Task completion times. While all participants took longer to complete the task as the visual 108 

complexity of the environment increased, this effect was greater in older adults (Fig. 2a). There 109 

was a main effect of age group on task completion time (F(1,26) = 48.17, p = 2.277e-7), with the 110 

older adults spending more time completing the task than young adults (p < 0.0001). There was 111 

also a main effect of visual complexity level (F(2,52) = 74.82, p = 4.977e-16), with all 112 

participants spending more time completing the task in the high visual complexity level 113 

compared to the low (Bonferroni-corrected p < 0.0001) and medium (Bonferroni-corrected p < 114 

0.0001) visual complexity levels. We also found an interaction between age group and visual 115 

complexity level (F(2,52) = 9.27, p = 3.596e-4), with the difference in completion between age 116 

groups increasing with visual complexity level. 117 
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 118 
Figure 2. Effect of age group and visual complexity level on task performance. (a) Task 119 
completion time, (b) re-fixation time on task-relevant objects, (c) fixation time on task-irrelevant 120 
objects, and (d) saliency of fixated regions. ** indicates statistically significant differences 121 
between visual complexity levels at p < 0.05. * indicates statistically significant differences 122 
between age groups within a visual complexity level (p < 0.05). 123 

Re-fixation time on task-relevant objects. The increase in task completion time with visual 124 

complexity could be due to suboptimal search strategies, such as re-fixating task-relevant 125 

objects that were already fixated at an earlier time. As such, we next tested if longer task 126 

completion times for levels with higher visual complexity could be due to longer re-fixation times 127 

on task-relevant objects (Fig. 2b). A main effect of age group was found (F(1,26) = 37.16, p = 128 

1.924e-6), with the older adults exhibiting longer re-fixation times on task-relevant objects than 129 

young adults (p < 1e-4). A main effect of visual complexity was also found (F(2,52) = 42.37, p = 130 

1.208e-11), with all participants demonstrating longer re-fixation times on task-relevant objects 131 

longer in the high visual complexity level as compared to the low (Bonferroni-corrected p < 132 

0.0001) and medium (Bonferroni-corrected p < 1e-4) visual complexity levels. An interaction 133 
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between age group and visual complexity level was also found (F(2,52) = 6.07, p = 0.004223), 134 

such that the difference in average re-fixation time between age groups increased with visual 135 

complexity level.  136 

Fixation time on task-irrelevant objects. Participants may have also taken longer to complete 137 

the task as visual complexity increased because they were more susceptible to distraction and 138 

spent more time fixating task-irrelevant objects (Fig. 2c). A main effect of age group was found 139 

on the amount of time fixating task-irrelevant objects (F(1,26) = 27.96, p = 1.575e-5), with the 140 

older adults fixating task-irrelevant objects longer than young adults (p < 1e-4). A main effect of 141 

visual complexity was also found (F(2,52) = 142.434, p < 2.2e-16), with all participants spending 142 

more time fixating task-irrelevant objects in the high visual complexity level as compared to the 143 

low (Bonferroni-corrected p < 0.0001) and medium (Bonferroni-corrected p < 1e-4) visual 144 

complexity levels. There was also an interaction between age group and visual complexity level 145 

(F(2,52) = 26.598, p = 1.107e-8), such that the difference in the time that young and older adults 146 

spent fixating task-irrelevant objects increased with visual complexity level. 147 

Saliency of fixated regions. Although both young and older adults fixated longer on task-148 

irrelevant objects as the visual complexity of the environment increased, it does not appear to 149 

be caused by increased fixations to salient distractors (Fig. 2d). A main effect of age group on 150 

the saliency of fixated regions was found (F(1,26) = 32.55, p = 5.279e-6), with older adults 151 

fixating regions that are less salient than those fixated by young adults (p < 1e-4). A main effect 152 

of visual complexity was also found (F(2,52) = 186.37, p < 2.2e-16). All participants fixated more 153 

salient regions in the low visual complexity level compared to the medium (Bonferroni-corrected 154 

p < 1e-4) and hard (Bonferroni-corrected p < 1e-4) visual complexity levels. In addition, all 155 

participants also fixated more salient regions in the medium visual complexity level than the high 156 

visual complexity level (Bonferroni-corrected p < 1e-4). There was also an interaction between 157 

age group and visual complexity (F(2,52) = 11.83, p = 5.846e-5), such that between-group 158 

differences in the saliency of fixated regions increased with the level of visual complexity.  159 
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Cognitive assessment scores. Age-related differences were observed in several standard 160 

cognitive assessments (Table 1). In particular, older adults had lower global cognition according 161 

to their Montreal Cognitive Assessment scores (Wilcoxon rank sum test p = 0.0440) and poorer 162 

short-term memory according to their Corsi Block task results (Wilcoxon rank sum test p = 163 

0.0014). However, no differences were found in executive function, task switching, or inhibition. 164 

Cognitive 

Assessment 

Cognitive 

Domain 

Young Adults 

(Mean ± SD) 

Older Adults 

(Mean ± SD) 

P-value 

Montreal 

Cognitive 

Assessment 

Global Cognition 28 ± 2 27 ± 3 0.0440 * 

Trail Making 

Test-B 

Executive 

Function, Task-

Switching 

63 ± 20 s 65 ± 23 s 0.8012 

Corsi Block Test 

(Forwards) 

Short Term 

Memory 

6 ± 1 5 ± 1 0.0014 * 

Corsi Block Test 

(Backwards) 

Working 

Memory 

5 ± 1 5 ± 2 0.229 

Stroop Test Inhibition 58.87 ± 110.17 

ms 

110.69 ± 144.78 

ms 

0.293 

Flanker Test Inhibition 5 ± 70.17 ms -10.77 ± 95.82 

ms 

0.6203 

Table 1. Cognitive assessment scores (Mean ± SD) of young and older adults with the 165 
corresponding p-value from their comparisons using two-sample t-tests and Wilcoxon rank sum 166 
tests. * indicates statistically significant differences between age groups at p < 0.05. 167 

Task performance and cognition. Longer task completion times were associated with 168 

decreased short-term and working memory capacity across all participants (Fig. 3). A multiple 169 

linear regression model was used to test if short-term memory (Corsi Block task), working 170 

memory (Backwards Corsi Block task), and inhibitory capacity (Stroop and Flanker tasks) were 171 

associated with task completion time. The final regression model included the Corsi Block task 172 

and Backward Corsi Block task (Adjusted R2 = 0.48, F(4,23) = 7.219, p = 6.416e-4) with higher 173 

scores on the Corsi Block task (Fig. 3a; β = -4.27, p = 0.0299) and Backwards Corsi Block task 174 

(Fig 3b; β = -3.46, p = 0.0221) being associated with faster task completion time. 175 
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 176 
Figure 3. Added variable plots showing relationships between task performance and memory 177 
capacities. (a) Short-term memory capacity assessed using the Corsi Block task, and (b) 178 
working memory capacity assessed using the Backwards Corsi Block task. 179 

Re-fixation time and cognition. Longer re-fixation times on task-relevant objects were 180 

associated with decreased short-term and working memory capacity across all participants (Fig. 181 

4). A multiple linear regression model was fit to determine if short-term (Corsi Block task) and 182 

working (Backwards Corsi Block task) memory capacities were associated with re-fixation time 183 

on task-relevant objects. The final regression model included both assessments of memory  184 

(Adjusted R2 = 0.45, F(2,25) = 12.07, p = 2.146e-4) with higher scores on the Corsi Block task 185 

(Fig. 4a; β = -2.36, p = 0.0396) and Backwards Corsi Block task (Fig. 4b; β = -2.11, p = 0.0189) 186 

being associated with shorter re-fixation times on task-relevant objects. 187 

 188 
Figure 4. Added variable plots showing relationships between re-fixation time on task-relevant 189 
objects and memory capacities. (a) Short-term memory capacity assessed using the Corsi Block 190 
task and (b) working memory capacity assessed using the Backwards Corsi Block task. 191 

Discussion 192 
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We used a custom-designed VR-based visual search task to determine if age-dependent 193 

differences in the control of visual attention are observed in environments that simulate real-194 

world visual complexity. In addition, we also sought to understand which cognitive domains are 195 

associated with decreased performance in the task. As the visual complexity of the virtual 196 

environments increased, participants spent more time completing the task and had longer re-197 

fixation times on task-relevant and task-irrelevant objects. Each of these effects was greater in 198 

older than younger adults. However, increased distraction did not appear to be influenced by 199 

saliency in both groups, as the saliency of the fixated regions decreased as the visual 200 

complexity level increased. In addition, we found that the variability in performance across 201 

participants was explained, in part, by short-term and working memory capacities. 202 

As the complexity of the virtual environments increased, we found that all participants 203 

spent more time completing the search task. These results are consistent with those classically 204 

found in simple conjunction paradigms with simple stimuli composed of arbitrarily selected 205 

shapes and colors. In particular, when participants were asked to search for stimuli that shared 206 

features with distractors, search times increased as the number of distractors in the visual 207 

display increased28. Our results indicate that the effect of visual complexity on task performance 208 

was greater in older adults. Similar age-related differences in performance have been previously 209 

demonstrated using simple conjunction search paradigms29–31. These results have also been 210 

replicated in paradigms that used more complex stimuli. When participants were tasked with 211 

searching for and responding to a star-shaped stimulus in a vehicle’s digital dash oard, search 212 

times increased as the visual complexity of the display increased, with the effect being greater 213 

in older adults32. In a different study where participants were instructed to search for a specific 214 

face configuration among distractor faces, search times increased with the number of 215 

distractors, with the effect being similarly greater in older adults33. As such, it can be said that 216 

the negative effect of aging, visual complexity, and their combination on search performance 217 
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generalizes from two-dimensional displays to more naturalistic, three-dimensional virtual 218 

environments. 219 

Decreased performance in the search task as the visual complexity of the virtual 220 

environments increased coincided with longer fixation times on task-irrelevant objects in all 221 

participants. This increase in fixation time on task-irrelevant objects could be due to a 222 

decreased capacity for top-down suppression of irrelevant stimuli with increasing visual 223 

complexity of search displays34, making all participants more susceptible to fixating task-224 

irrelevant objects. Additionally, the effect of visual complexity on fixation times on task-irrelevant 225 

objects was greater in older adults. Increased susceptibility to distraction by task-irrelevant 226 

information in older adults has been attributed to cognitive impairments, particularly with 227 

deficiencies in inhibitory capacity13,14. This increased distractibility has been previously shown 228 

across a range of two-dimensional visual-perceptual tasks16–19,35. Together, these findings 229 

support the notion that visual attention, and by extension, performance in a visual search task, 230 

is affected not only by the visual complexity of the environment but also by aging. Interestingly, 231 

while fixation times on task-irrelevant objects increased with visual complexity, these times only 232 

accounted for a small portion of the task completion time. This finding is consistent with 233 

previous studies, which found that visual attention is allocated primarily toward task-relevant 234 

stimuli when completing various tasks3,4,36,37. 235 

While all participants became more prone to distraction by task-irrelevant stimuli as 236 

visual complexity increased, this effect does not seem to be driven by the saliency of these 237 

stimuli. In particular, the saliency of fixated regions decreased as the visual complexity of the 238 

virtual environments increased. This finding is inconsistent with previous studies showing that 239 

the susceptibility to distraction is greater in the presence of salient visual stimuli, particularly in 240 

older adults. In an onset distractor task, while young and older adults were similarly distracted 241 

when the search targets and the distractors had the same luminance, older adults became more 242 

susceptible to distraction when the distractors were more salient by making them brighter16. 243 
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Similarly, older adults were more distracted when distractors' saliency increased in selective 244 

attention tasks with task-relevant and task-irrelevant stimuli superimposed on each other18,35. 245 

The ability of visual stimuli to automatically capture visual attention may not be contingent upon 246 

the stimuli being highly salient. Instead, people may fixate more on task-irrelevant stimuli 247 

because greater demands are placed on information processing and memory as the complexity 248 

of the environment increases. Future studies should consider manipulating both the visual 249 

complexity of the search environments and the saliency of the stimuli present to better 250 

determine the role of saliency in visual information processing in naturalistic environments.  251 

Proper allocation of visual attention is important for successfully completing visual 252 

search tasks, and it appears to rely on intact cognition. Performance in our task was related to 253 

participants’ short-term and working memory capacity, as those who scored higher in the Corsi 254 

block task and the Backwards Corsi block task demonstrated faster task completion times. In 255 

addition, we found a relationship between re-fixation times on task-relevant objects and both 256 

short-term and working memory. Participants with shorter re-fixation times on task-relevant 257 

objects also scored higher in the Corsi block and Backwards Corsi block tasks. These findings 258 

echo the importance of short-term and working memory capacity on visual attention36,38,39, which 259 

has been demonstrated in simple selective attention40 and visual search33 tasks. Beyond 260 

memory, inhibitory capacity is another cognitive domain that influences the allocation of visual 261 

attention and the successful completion of visual search tasks. As previously discussed, 262 

inhibitory capacity allows for the proper allocation of visual attention by selecting for and 263 

processing information relevant to the task while suppressing those that are irrelevant. 264 

Surprisingly, scores on cognitive assessments that specifically targeted inhibitory capacity were 265 

not found to be related to task completion times, despite all participants spending more time 266 

fixating task-irrelevant objects as task completion time increased. It is possible that the Stroop 267 

and Flanker tasks failed to capture the domain of inhibitory capacity that is particular to the 268 
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visuospatial nature of the task. Future studies would benefit from including assessments that 269 

target multiple domains of inhibitory capacity.  270 

In conclusion, susceptibility to distraction by task-irrelevant information increases with 271 

the environment’s comple ity. This negative effect was greater in older adults, likely driven by 272 

age-related changes in their cognition. Increased susceptibility to distraction is potentially 273 

problematic as suboptimal allocation of visual attention may lead to difficulties completing 274 

everyday tasks and potentially can lead to injuries, such as when navigating complex terrain. 275 

Results from this study highlight the importance of using tasks with designs that closely simulate 276 

real-world conditions and everyday behaviors to accurately assess cognitive capacity, 277 

particularly in older adults. 278 

Methods 279 

Participants. 15 young (9 female, age: 27.7 ± 3.33 years) and 15 older adults (9 female, age: 280 

71.8 ± 4.46 years) with normal or corrected-to-normal vision participated in the study. Data from 281 

two older adults were excluded due to hardware/software issues. All study procedures were 282 

reviewed and approved by the University of  outhern  alifornia’s  nstitutional  eview  oard.  ll 283 

participants provided written informed consent before participating and were provided monetary 284 

compensation for their time. All aspects of the study conformed to the principles described in the 285 

Declaration of Helsinki. 286 

Experimental protocol. After informed consent was obtained, all participants completed a 287 

battery of tests to assess different domains of cognition. Two of these assessments, the 288 

Montreal Cognitive Assessment41 and the Trail Making Test-B21, were administered on paper 289 

and were used to assess global cognition and executive function, respectively while the rest 290 

were provided on a computer through Psytoolkit42,43. Of these computer-based assessments, 291 

the Corsi task44 was used to assess short-term memory, the backward Corsi task45 for working 292 

memory, and both the Stroop46 and Flanker47 tasks for inhibition. 293 
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After completing the cognitive assessments, the participants performed three 294 

familiarization trials for the visual search task. The first trial consisted of the experimenter 295 

guiding the participant through a single round of the task to provide a clear description of the 296 

goal of the task, the visual and auditory feedback that they will encounter, and the search target 297 

sequence. The guided familiarization trial was followed by two more trials where participants 298 

completed the task independently and were only provided feedback by the experimenter at the 299 

end. After the familiarization trials, the participants completed 30 trials of the visual search task 300 

presented in three sets of 10 trials, each corresponding to a different visual complexity level. 301 

VR task. Participants performed a VR-based visual search task (Fig. 1a) designed using 302 

principles of the Trail Making Test-B21. The Trail Making Test-B was selected based on its ability 303 

to test various cognitive domains, including visual attention, working memory, and inhibition22–24. 304 

They were instructed to search for and select targets alternating between letters of the alphabet 305 

and objects whose names start with those letters in ascending order. The search targets were 306 

positioned randomly in the virtual environment, and their position changed for each trial. The 307 

participants viewed the virtual environments using the HTC Vive Pro Eye (HTC, New Taipei, 308 

Taiwan) head-mounted display. To interact with the environment and select search targets, the 309 

participants used an HTC Vive Controller (HTC, New Taipei, Taiwan). A laser pointer extended 310 

from the top of the controller in the virtual environment, and participants selected targets by 311 

aiming the laser at the center of the target and pulling the trigger on the controller. Visual and 312 

auditory feedback was provided to indicate whether the selected target was correct. Specifically, 313 

a bell sound was played, and a “ orrect!” te t appeared in the environment when the correct 314 

target was selected. In contrast, a buzzer sound was played, and a “ ry  gain!” te t appeared 315 

when the selected target was incorrect or when the correct target was not selected properly 316 

(laser not aimed at the center of the target). 317 

 The visual search task was performed in virtual environments with three levels of 318 

increasing visual complexity (Fig. 1a). The sequence of complexity levels experienced by 319 
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participants was pseudo-randomized such that five participants in both young and older adult 320 

groups started with the low visual complexity level, five other participants started with the 321 

medium visual complexity level, and the rest started with the high visual complexity level. The 322 

visual complexity of the environment was manipulated by increasing the number of visual 323 

distractors in the foreground and background and was measured using feature congestion27. 324 

Feature congestion quantifies the distribution of low-level visual features of an image, which 325 

includes color, edge orientation, and luminance, as a single scalar measure with higher values 326 

indicating a more complex image. To determine if the modifications to the virtual environments 327 

produced increasing levels of visual complexity, we measured the feature congestion method in 328 

every frame of representative gameplay recording from each visual complexity level (using 329 

 osenholtz et al.’s  atla  implementation: https://dspace.mit.edu/handle/    . /      . 330 

Data collection and processing. Eye and head movement data were collected at 90Hz 331 

throughout each trial using eye trackers and an inertial measurement unit built into the HTC 332 

Vive Pro Eye. The eye trackers were calibrated following a 5-point calibration process provided 333 

by HTC. Additionally, video recordings of the first-person point of view of the participants were 334 

also recorded at 60 Hz for each trial using NVIDIA Shadowplay. All data processing was 335 

performed using a custom script in MATLAB R2022a (Mathworks, Natick, MA). Horizontal and 336 

vertical eye-in-head angles were calculated from the raw eye movement data and were 337 

combined with the horizontal and vertical rotations of the head to compute gaze angles. The 338 

gaze angles were then time-synchronized with the video recordings. Since the video recordings 339 

and the gaze angles did not have the same sampling rate, the gaze angles were then 340 

interpolated at each video recording frame. 341 

 As visual processing only occurs during periods of fixation48,49, it was important to 342 

identify which samples qualify as such to determine how visual attention was deployed 343 

throughout each trial. A simple velocity threshold was used to identify whether a sample is a 344 

fixation or a saccade. First, horizontal and vertical gaze angular velocities were calculated by 345 
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differentiating the interpolated gaze angles with respect to the time between video frames. A 346 

sample was categorized as a fixation if its horizontal or vertical gaze angular velocity was less 347 

than 100 degrees per second50. 348 

 Fixations were then classified as task-relevant or task-irrelevant based on the identity of 349 

the object being fixated. Gaze vectors were projected in the virtual environment with their origins 350 

based on head position in the virtual environment and their direction determined by the gaze 351 

angles. If the gaze vectors intersected a search target, the name of the fixated search target 352 

was recorded and identified as a task-relevant fixation. In contrast, if the gaze vector did not 353 

intersect a search target, it was identified as a task-irrelevant fixation. Fixation times on task-354 

irrelevant objects and re-fixation times on task-relevant objects were then calculated. 355 

 Saliency maps were created from each frame of every recording based on the original 356 

Itti, Koch, and Neibur51 algorithm as implemented by Harel (J. Harel, A Saliency Implementation 357 

in MATLAB: http://vision.caltech.edu/~harel/share/gbvs.php). Each video frame was 358 

decomposed into feature maps of its low-level visual features, which included color, orientation, 359 

and intensity. These feature maps were then combined into a saliency map with corresponding 360 

scalar values for each pixel. These scalar saliency values were then converted to percentile 361 

ranks52,53, with 100% indicating the most salient pixel while 0% the least salient pixel in the 362 

video frame. 363 

Statistical analysis. All statistical analyses were performed in R (R Project for Statistical 364 

Computing) with the alpha value set at p < 0.05. Tests for normality and equal variances were 365 

performed using the Shapiro-Wil  test and  evene’s test with functions from the stats and car 366 

pac ages, respectively. Welch’s analysis of variance and pairwise Wilco on ran  sum tests 367 

were used to compare the feature congestion of each visual complexity level using the stats 368 

package as assumptions of equal variance and normality were violated. 369 

Linear mixed-effects models were fit using the lme4 package to test for the effects of age 370 

group, visual complexity, and their interaction on VR task completion time, re-fixation time on 371 
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task-relevant objects, fixation time on task-irrelevant objects, and saliency of fixated regions. 372 

Fixed effects p-values were calculated using the lmerTest package, which uses Satterthwaite 373 

approximations for the degrees of freedom. For all models, random intercepts for each 374 

participant were added to account for repeated measures. Post-hoc Bonferroni-corrected 375 

pairwise comparisons were performed using the emmeans package when significant main 376 

effects or interactions, particularly differences between age groups within visual complexity 377 

levels, were found. 378 

Cognitive assessment scores were compared between age groups to determine the 379 

effect of age on various domains of cognition using functions from the stats package. 380 

Assumptions of normality and equal variance were tested using the Shapiro-Wil  and  evene’s 381 

tests, respectively. The Wilcoxon rank sum test was used when the normality assumption was 382 

violated; otherwise, a two-sample t-test was used. 383 

Multiple linear regression was used to test for associations between cognition and task 384 

performance measures. In particular, task completion time was used as the response, while 385 

scores on the Corsi Block task, Backwards Corsi Block task, Stroop task, and Flanker task were 386 

used as predictors. A separate multiple linear regression was used to test for associations 387 

between re-fixation times on task-relevant objects and measures of memory capacity. 388 

Specifically, re-fixation time on task-relevant objects was used as the response, while scores on 389 

the Corsi Block task and the Backwards Corsi Block task were used as predictors. 390 

Data Availability 391 

The analyzed data from this study are available from the corresponding author upon reasonable 392 

request. 393 
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Figure 1. Variation in feature congestion across the three visual complexity levels used in the 524 
visual search task. (a) Single frames from representative gameplay recordings of each visual 525 
complexity level. (b) Scatter plot comparing feature congestion of each visual complexity level 526 
with each data point representing a frame from representative gameplay recordings. * indicates 527 
statistically significant differences between visual complexity levels at p < 0.05. 528 

 529 

Figure 2. Effect of age group and visual complexity level on task performance. (a) Task 530 
completion time, (b) re-fixation time on task-relevant objects, (c) fixation time on task-irrelevant 531 
objects, and (d) saliency of fixated regions. ** indicates statistically significant differences 532 
between visual complexity levels at p < 0.05. * indicates statistically significant differences 533 
between age groups within a visual complexity level (p < 0.05). 534 

 535 

Figure 3. Added variable plots showing relationships between task performance and memory 536 
capacities. (a) Short-term memory capacity assessed using the Corsi Block task, and (b) 537 
working memory capacity assessed using the Backwards Corsi Block task. 538 

 539 

Figure 4. Added variable plots showing relationships between re-fixation time on task-relevant 540 
objects and memory capacities. (a) Short-term memory capacity assessed using the Corsi Block 541 
task and (b) working memory capacity assessed using the Backwards Corsi Block task. 542 

 543 

Table 1. Cognitive assessment scores (Mean ± SD) of young and older adults with the 544 
corresponding p-value from their comparisons using two-sample t-tests and Wilcoxon rank sum 545 
tests. * indicates statistically significant differences between age groups at p < 0.05. 546 
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