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Abstract

In the field of microbiome studies, it is of interest to infer correlations between
abundances of different microbes (here referred to as operational taxonomic units,
OTUs). Several methods taking the compositional nature of the sequencing data into
account exist. However, these methods cannot infer correlations between OTU
abundances and other variables. In this paper we introduce the methods SparCEV
(Sparse Correlations with External Variables) and SparXCC (Sparse Cross-Correlations
between Compositional data) for quantifying correlations between OTU abundances
and either continuous phenotypic variables or components of other compositional
datasets, such as transcriptomic data. We compare these new methods to empirical
Pearson cross-correlations after applying naive transformations of the data (log and
log-TSS). Additionally, we test the centered log ratio transformation (CLR) and the
variance stabilising transformation (VST). We find that CLR and VST outperform
naive transformations, except when the correlation matrix is dense. For large numbers
of OTUs, SparCEV and SparXCC perform similarly to CLR and VST. SparCEV
outperforms all other tested methods when the number of OTUs is small (less than 100).
SparXCC outperforms all tested methods when at least one of the compositional
datasets has few variables (less than 50), and more so when both datasets have few
variables.

Author summary

Sequencing data of the microbiome posses a unique and challenging structure that
renders many standard statistical tools invalid. Features such as compositionality and
sparsity complicates statistical analysis, and as a result, specialized tools are needed.
Practitioners have long been interested in the construction of correlation networks
within the microbiome, and several methods for accomplishing this exist. However, less
attention has been paid to the estimation of cross-correlations between microbial
abundances and other variables (such as gene expression data or environmental and
phenotypic variables). Here, we introduce novel approaches, SparCEV and SparXCC,
for inferring such cross-correlations, and compare these to transformation-based
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approaches, namely log, log-TSS, CLR and VST. In some cases, SparCEV and
SparXCC yield superior results, while in other cases, a simpler transformation-based
approach suffices. The methods are used to study cross-correlations between bacterial
abundances in the skin microbiome and the severity of atopic dermatitis, as well as
cross-correlations between fungal and bacterial OTUs in the root microbiome of the
legume Lotus japonicus.

Introduction 1

Sequencing data are ubiquitous in modern biology [1]. For example, RNA-seq data have 2

been used to identify genes associated with clinical outcomes of cancer patients [2], for 3

human disease profiling [3], and to identify genes with possible links to Rett 4

Syndrome [4]. Microbiome data have drawn much attention in recent years, particularly 5

regarding the human gut microbiome. Composition of the human gut microbiome has 6

been shown to be associated with several aspects of human health, such as obesity [5] 7

and metabolic disorders [6]. More recently, the integration of microbiome data with 8

other omics data has received increasing interest [7–11]. 9

Data from sequencing technologies pose many specific challenges. They produce 10

count data with technical noise, which makes results from rare features difficult to 11

interpret. Additionally, they are compositional, meaning that the observed variables are 12

components of an arbitrary total. 13

Within the field of microbiome studies, several methods have been proposed to infer 14

interactions between microbial abundances. These include Local Similarity Analysis 15

(LSA) [12], which finds non-linear relationships through time using time series data; 16

Sparse Compositional Correlations (SparCC), which infers correlations based on 17

compositional data [13]; and Sparse Inverse Covariance Estimation for Ecological 18

Association Inference (SPIEC-EASI), which infers relations through graphical 19

models [14]. In this paper, we focus on the estimation of correlations. 20

When considering correlations in the context of compositional data, there are 21

essentially three cases of interest: A) correlations between features of the same 22

compositional dataset, B) cross-correlations between features of a compositional dataset 23

and non-compositional variables, and C) cross-correlations between two compositional 24

datasets. Correlations between bacterial abundances in a microbiome is an example of 25

case A. An example of case B is cross-correlations between gut microbes and clinical 26

features of patients [15], and an example of case C is cross-correlations between 27

microbial abundances and gene expression levels from RNA-seq data [7]. For an 28

overview of these cases, see Table 1. 29

Case Correlations Methods
A Within a composition SparCC

SPIEC-EASI
LSA

Pearson
B Between a composition and an external variable SparCEV

Pearson
C Between two compositions SparXCC

SPIEC-EASI
mmVec
Pearson

Table 1. Cases A, B, and C along with explanations and and overview of applicable
methods.
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The methods mentioned above all operate in case A. More recently, case C has 30

gained more interest, with new methods being developed. For example, SPIEC-EASI 31

has been extended to infer interactions between variables from two compositional 32

datasets [16]. Like the original SPIEC-EASI, pairs of variables that are conditionally 33

independent are identified by estimating the precision matrix using a penalized 34

estimation scheme to enforce sparsity. The method mmVec [17] is designed for 35

identifying interactions between OTU abundances and metabolite concentrations. This 36

method employs a neural network to estimate the probability of observing a metabolite, 37

given that a specific OTU is observed. It was shown to perform with similar accuracy as 38

the extended SPIEC-EASI and to outperform correlation-based procedures. However, 39

the correlations were estimated using a flawed methodology, where the centered 40

log-ratio (CLR) transformation was applied to both datasets simultaneously, rather 41

than separately, thus biasing the results. This was noted in a response from Quinn and 42

Erb [18], who showed that when the CLR-transformation was applied appropriately, 43

correlation-based methods outperform both mmVec and SPIEC-EASI in the setup 44

examined by Morton et al. [17]. However, in a counter-response Morton et al. showed 45

that it was possible to construct scenarios, where mmVec outcompeted all alternatives. 46

Futhermore they show that mmVec is better suited to handle sparse data than 47

correlation-based methods [19]. 48

In this paper, we focus on inferring cross-correlations in cases B and C. Inspired by 49

SparCC, we introduce two novel compositionally aware methods, SparCEV (Sparse 50

Correlations with External Variables) and SparXCC (Sparse Cross-Correlations between 51

Compositional data). Using simulation studies, we compare these methods to Pearson 52

cross-correlations applied to various transformations of the data. Theoretical 53

comparisons of transformation-based methods and derivations of new methods are given 54

in the supplementary material. 55

Materials and methods 56

Modelling Sequencing Data 57

Let ai denote the absolute abundance of OTU i, i = 1, . . . , p, A =
∑p
j=1 aj , and 58

ri = ai/A the relative abundance. The aim of this paper is to estimate the correlation 59

between log ai and other log transformed variables. However, we only have access to 60

observed read counts, denoted xi for OTU i. To theoretically compare the different 61

strategies and to develop new methods, we adopt a simplified modelling framework, 62

where 63

xi = riN, (1)

where N =
∑p
j=1 xj denotes the library size. We compare the methods considered using 64

simulations from models that are more complex and realistic than (1), see Section 65

Simulation models. In these models, xi given (ri, N) is not fixed. We use the term 66

technical variance for the variance of xi given (ri, N) and the term biological variance 67

for the variance of ri. The more realistic models are, however, intractable for theoretical 68

analysis. 69

All tested methods but one require log-transformation of the xis, which is 70

problematic if xi = 0 is observed. As a remedy, we add 1 to all read counts prior to 71

log-transformation of the data (the pseudo-count method). 72
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Existing Strategies for Cross-correlation Estimation 73

Naive transformation 74

We use the term naive transformation to refer to any transformation that does not take 75

the compositional nature of the data into account. Naive transformations considered in 76

this paper are log and log total sum scaling (TSS). Theoretically, naive transformations 77

do not adequately account for the compositional structure of the data (see S1 Text). 78

Nonetheless, it remains a common practice to apply these transformations [20] or no 79

transformations at all [15, 21–25]. As a result, any method that outperform naive 80

transformations would constitute an improvement relative to common practice. 81

Adapted Transformations 82

We use the term adapted transformations to refer to transformations that are adapted 83

to the particular structure of the data beyond differing library sizes. In this paper, we 84

consider the centered log-ratio (CLR) and the variance-stabilising transformation (VST). 85

See Table 2 for definitions of all transformations (naive and adapted) considered in this 86

paper. Some common transformations, such as trimmed M-means (TMM) [26], DESeq’s 87

median-based transformation [27], and upper-quartile transformation (UQ) [28], are not 88

included, since they do not correct for within-replicate biases and are thus not 89

applicable for correlation estimation. 90

Transformation Expression Interpretation
log log xi Log-transformed observed

read counts

log-TSS log TSS(xi) = log
(

xi∑p
j=1 xj

)
The log of estimated rela-
tive abundances

CLR CLR(xi) = log xi− 1
p

∑p
j=1 log xj Abundances relative to the

average abundance

VST VST(xik) =
∫ xik/ŝk
0

f(µ)dµ,
where f(µ) = µ2â0 + µ(1 + â1)

Removal of mean-variance
relationship

Table 2. An overview of the transformations used to assess cross-correlations. In VST,
k is a replicate index.

VST makes use of the DESeq modelling framework [27]. Specifically, it assumes that 91

xik ∼ NB(µik, φi), where µik = skλi and φi = a0 + a1/λi. The estimates â1, â0, λ̂i and 92

ŝk are obtained using the DESeq2 estimation procedures [27,29]. Here, k denotes the 93

index of the biological replicate. VST requires at least one feature without any zero 94

counts. This may be violated for data with small p which is frequently the case for our 95

simulated microbiome data. We therefore only consider the VST transformation in case 96

C for simulated gene expression data while applying CLR to the microbiome data. 97

For convenience, we use the term CLR for the method where empirical Pearson 98

cross-correlations are applied to CLR-transformed data, and likewise for log, log-TSS, 99

and VST. 100

Theoretical assessment of transformations 101

We examine theoretically whether empirical Pearson cross-correlations combined with
the transformations presented in Table 2 are likely to yield good approximations of
cross-correlations. We focus on case B, since it is simpler and the results in case C are
analogous. We seek an approximation of Corr [log ai, b], where b is a non-compositional
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variable, here referred to as a phenotypic variable. By (1) and Table 2 we have,

xi =
ai
A
N, TSS(xi) =

ai
A
, CLR(xi) = log ai −

1

p

p∑
j=1

log aj .

By definition, 102

Corr [log ai, b] =
Cov [log ai, b]√

Var [log ai]
√
Var [b]

, (2)

and we require good approximations of the numerator and the denominator. Since b is
not compositional, Var [b] can easily be estimated without the need for approximation.
According to our derivations in S1 Text, log, log-TSS, and CLR all lead to reasonable
approximations of the covariance Cov [log ai, b] under the model in (1) given appropriate
assumptions. Furthermore, we show that

Var [CLR(xi)] ≈ Var [log ai]

when p is large. However, analogous results do not hold for log and log-TSS, 103

demonstrating that naive transformations are not sufficient. Summing up, CLR can 104

yield good approximations under the model in (1) with the following assumptions: 105

(Bi) 1
p

∑
j 6=iCov [log ai, log aj ] ≈ 0 for all i 106

(Bii) 1
p

∑p
i=1 Cov [log ai, b] ≈ 0 for all i 107

(Biii) The number of OTUs, p, is large. 108

In case C, we we need (Bi), (Biii), and the additional assumptions 109

(Ci) 1
q

∑
l 6=k Cov [log bk, log bl] ≈ 0 for all k 110

(Cii) 1
q

∑q
l=1 Cov [log ai, bl] ≈ 0 for all i 111

(Ciii) 1
p

∑p
j=1 Cov [log aj , bk] ≈ 0 for all k 112

(Civ) The number of genes, q, is large 113

Conditions (Bi), (Bii) and (Ci)-(Ciii) hold if the correlation matrix is sparse; thus, 114

following the language of Friedman and Alm [13], we refer to these as sparsity 115

assumptions. This is a slight abuse of terminology, since these conditions may also hold 116

if all rows of the correlation matrix contain entries whose distributions are symmetric 117

around zero, even though such a matrix is not sparse. 118

Compositionally Aware Methods 119

Inspired by SparCC, we introduce compositionally aware methods for cases B and C. In
case B, we assume the same sparsity condition as for CLR in the previous section. We
then show in S1 Text that

Corr [log ai, b] ≈
1

σbαi

1

p− 1

∑
j 6=i

Cov

[
log

xi
xj
, b

]
,

where α2
i = Var [log ai] can be estimated by SparCC and σ2

b = Var [b] can be estimated 120

in a standard fashion. In contrast to CLR this method only requires conditions (Bi) and 121

(Bii), but not (Biii). Therefore, it is likely preferable when p is small. We name this 122

method Sparse Correlations of External Variables (SparCEV). 123
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In Case C, we let bk, k = 1, . . . , q, denote the gene expression level of the kth gene, 124

B =
∑q
k=1 bk, and M the library size. Similar to (1), we assume the model 125

yk =
bk
B
M

for the observed gene expression level. In S1 Text, we obtain the relation 126

Corr [log ai, log bk] ≈
(p− 1)qα2

i + p(q − 1)β2
k + q

∑
j 6=i α

2
j + p

∑
l 6=k β

2
l − tik

(p− 1)(q − 1)αiβk
, (3)

where

tik =

p∑
j=1

q∑
l=1

Var

[
log

(
xi/xj
yk/yl

)]
.

The parameters α2
i = Var [log ai] and β2

k = Var [log bk] can be approximated by 127

applying SparCC to the microbiome and gene expression datasets individually, and the 128

variances in tik can be estimated in a standard fashion. Details regarding efficient 129

computation of the tiks are given in the S1 Text. As with CLR, we need the 130

assumptions (Bi) and (Ci)-(Ciii), but unlike CLR, we do not need (Biii) and (Civ). We 131

refer to this method as Sparse Cross-Correlations of Compositional data (SparXCC, 132

where ”X” represents ”cross”). 133

Simulation models 134

We adopt the parametric model employed by SparseDOSSA2 [30], adapting the 135

methodology slightly to handle cases B and C. A simulated dataset contains n ≥ 1 136

replicates, where n is the number of microbiome samples sequenced. The individual 137

simulated variables (e.g. abundances or gene expression levels) are characterized by the 138

mean, µi, variance, σ2
i , and zero-probability, πi. The parameter πi reflects the 139

probability that OTU i is absent from a given replicate. We refer to this as a biological 140

zero. The correlation between variables is characterized by the correlation matrix R. We 141

simulate p OTU abundances, a1, . . . , ap and q other variables, b1, . . . , bq. In case B, 142

the latter q variables are non-compositional, typically q = 1, and we take πp+k = 0, 143

k = 1, . . . , q, so that biological zeros do not occur for the bks. In case C, q > 1 and the 144

bks are compositional. The library size Na is simulated from a log normal distribution 145

with parameters µa and σ2
a. 146

The simulation algorithm is given in the following steps. For ease of presentation, we 147

present the case where n = 1, but when n ≥ 1 the steps would simply be repeated n 148

times. 149

1. Simulate the p+ q-dimensional variable g ∼ N(0, R). 150

2. Define the variables Zi for i = 1, . . . , p+ q such that Zi = 0 if gi < Φ−1(πi) and
Zi = F−1i (Φ(gi)) otherwise, where Φ is the standard normal cumulative
distribution function (cdf) and Fi(t) = πi + (1− πi)Φ((log t− µi)/σ2

i ) is the cdf of
a zero-inflated log-Gaussian distribution with parameters (πi, µi, σ

2
i ). We now

have
logZi|Zi 6= 0 ∼ N(µi, σ

2
i ) and P (Zi = 0) = πi.

3. Set ai = Zi for i = 1, . . . , p as the absolute OTU abundances. In case C, 151

bj = Zj+p for the absolute gene expression levels. In case B, we let bj = logZj+p 152

for the non-compositional phenotypic variables. 153

4. Set rai = ai/
∑p
k=1 ak as the relative abundances of the OTUs, and in case C, set 154

rbj = bj/
∑q
k=1 bk as the relative expression levels. 155
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5. Simulate Na ∼ log N
(
µa, σ

2
a

)
and let dNae be the library size. 156

6. Simulate the vector, x = (x1, . . . , xp)
>, of observed read counts of OTU 1,. . . ,p as 157

x ∼ Multinom
(
dNae, ra1 , . . . , rap

)
. 158

7. In case C, simulate N b ∼ log N
(
µb, σ

2
b

)
and let dN be be the library size. 159

8. In case C, simulate the vector, y = (y1, . . . , yq)
>, of observed read counts of gene 160

j = 1, . . . , q as y ∼ Multinom
(
dN be, rb1, . . . , rbp

)
. 161

In case B, steps 7–8 are skipped. Excluding the simulation of the bjs, steps 1–6 in the 162

above procedure are identical to the procedure employed by SparseDOSSA2. The above 163

simulation scheme differs from the model (1) by the multinomial noise generated in 164

steps 6 and 8 where the multinomial model is a simplistic representation of the 165

randomness generated in the sequencing procedure. The correlation Corr [log ai, log aj ] 166

agrees with Rij when πi = πj = 0. This does not hold in the presence of biological 167

zeros, πi > 0 or πj > 0, in which case log ai or log aj may not even be well defined. We 168

nevertheless use R as a ground truth for comparison with our estimates, including the 169

case of biological zeros. In that way, the presence of biological zeros is considered a 170

source of noise relative to our method in addition to the multinomial noise. 171

The correlation matrix R is constructed using two methods described in S1 Text. 172

The first is called the cluster method, and it works by assigning a portion of the OTUs 173

to a ”cluster”. All OTUs in the cluster are correlated to each other with the same 174

correlation coefficient and uncorrelated to every other OTU. All OTUs outside the 175

cluster are also uncorrelated with each other. In case C, a similar portion of the genes 176

are also assigned to the cluster, and in case B, all non-compositional variables are also 177

assigned to the cluster. This gives us a high degree of control over the degree of sparsity 178

and the strength of the correlations. The second method is called the loadings method, 179

and it results in a correlation matrix without exact zero entries but where most 180

variables are only weakly correlated, with a relatively small proportion of highly 181

correlated variable pairs. The loadings method most likely results in more realistic 182

systems than the cluster method. 183

Throughout the simulations in this paper, we simulate n = 50 replicates. In many 184

practical settings, n is considerably lower than that. However, for the purposes of the 185

present simulation study, it is important that we can detect biases in the estimators. If 186

the bias is small relative to the variance of the estimator, it may be difficult to detect in 187

a simulation study. Since the variance of an estimator increases as n decreases, it is 188

counter-productive to perform simulation studies with small n. In other words, we 189

construct a situation where the main bottleneck to producing accurate results is the 190

chosen method, not the size of the dataset. 191

Selecting Parameter Values 192

In the simulations results shown in Figs 1 and 4, the log-scale parameters, µi and σ2
i , 193

and zero-probabilities, πi, are chosen using a real dataset as a template. We estimate 194

the mean, µri, and variance, σ2
ri of the observed read counts for i = 1, . . . , p. We then 195

choose µi and σ2
i such that the simulated variables have mean µri and variance σ2

ri, on 196

the linear scale. By the properties of the log-normal distribution, the means and 197

variances are related by 198

σ2
i = log

(
1 +

σ2
ri

µ2
ri

)
, µi = logµri −

σ2
i

2
. (4)

The parameters πi are set to half the proportion of zeros for the ith variable, with the 199

assumption that half of the zeros are biological and the other half are technical. In case 200
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B, the parameters of the phenotype variable are somewhat arbitrarily chosen so that it 201

has a mean of 30 and a variance of 1. 202

In Fig 2, considered later, we examine the impact of diversity on the accuracy of the 203

correlation estimation methods. We measure diversity using the effective number of 204

OTUs, peff. We have peff = eH , where H =
∑p
i=1 ri log ri is the entropy or Shannon 205

index. The quantity peff can be interpreted as the minimal number of OTUs such that a 206

replicate has entropy H. This occurs when all OTUs are equally abundant. We choose 207

σ2
i = 1 and πi = 0 for i = 1, . . . , p and µi in such a way that we get a specific value of 208

peff in expectation. This is accomplished by selecting the linear-scale mean relative 209

abundances νi = 1−ν1
p−1 for i ≥ 2 and obtaining ν1 by solving the equation 210

log peff = ν1 log ν1 +

p∑
i=2

1− ν1
p− 1

log
1− ν1
p− 1

(5)

for ν1 given a choice of peff. We then choose an arbitrary value for the microbial load, 211

say 1000, and set µri = 1000νi. Finally, the µi are obtained from the right part of (4). 212

Methods Assessment 213

We might assess the accuracy of correlation estimates ρ̂ij by comparing the true 214

correlations to the estimated correlations by computing, for example, the mean absolute 215

error (MAE). However, suppose we use the estimate ρ̂ij = 0 for all i, j and pick, for 216

example, c = 0.05 and ρ = 0.75 for the cluster method. Then, even though non-zero 217

correlations are not well estimated, the MAE, cρ = 0.0375, is quite low. Thus, we 218

separately consider the MAE of the pairs whose true correlation is zero and the MAE of 219

the pairs whose true correlation is non-zero. In case of the loadings method, no 220

correlations are exactly zero, so we then instead assess the MAE of pairs whose true 221

correlation-coefficient exceeds the thresholds 0, 0.1, . . . , 0.8. 222

In summary, for the cluster method, we use the criteria

1

|S|
∑

(i,j)∈S

|Rij − ρ̂ij |,
1

pq − |S|
∑

(i,j)/∈S

|Rij − ρ̂ij |,

where S = {(i, j) ∈ Apq|Rij 6= 0} and Apq = {(i, j) ∈ N2|0 ≤ i ≤ p, p < j ≤ p+ q}. For 223

the loadings method, we use the criteria 224

1

|St|
∑

(i,j)∈St

|Rij − ρ̂ij |, where St = {(i, j) ∈ Apq||Rij | ≥ t}, for t = 0, 0.1, . . . , 0.8, (6)

where t = 0 corresponds to the overall MAE. 225

Discriminating between Correlated and Uncorrelated pairs 226

Since sparsity is only an approximate assumption, any test-statistic used to derive
p-values is likely to be biased. This is exacerbated by the technical noise, which has
particularly high impact for low-abundance OTUs. We shall not attempt to remedy
these challenges here. Instead, we choose a dynamic threshold based on the data. Pairs
whose estimated absolute correlation exceeds this threshold are considered the most
likely candidates for genuinely correlated pairs. The threshold is derived in the following
way. Let X and Y be the two datasets under study (in case C, Y is compositional).
Permute each dataset separately. This breaks all cross-correlation, but not the
correlations within each dataset. Let Sperm be the set of cross-correlation estimates
obtained from the permuted data and let m be the 100(1-1/(pq))-percentile of Sperm.
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We might use m as a threshold, since almost all correlations should be smaller than m.
However, since all correlations are broken under the permutation, m may be too low for
real data where not all correlations are zero. More specifically,

Corr [log ai, b] = ρSparCEV
i + ε,

where ρSparCEV
i is the SparCEV estimate and where

ε = − 1

p− 1

∑
j 6=i

αi
αj

Corr

[
log

xi
xj
, b

]
in practice may differ from zero due to violation of sparsity condition (Bii). In practice, 227

ε may be small relative to the noise of ρSparCEV
i if n is sufficiently low. However, as n 228

grows, the noise of ρSparCEV
i shrinks, and the relative impact of ε grows. This may lead 229

to an unacceptable amount of false discoveries, as we see in S10 Fig. To remedy this, we 230

add an additional user-specified parameter, t, where only cross-correlations above t are 231

considered to be of interest. We then use m∗ = max{m, t} as the final threshold. By S9 232

Fig and S10 Fig, this sufficiently controls the false discovery rate when n is large. 233

Data Availability 234

All data used in this paper can be found at 235

https://github.com/IbTJensen/Microbiome-Cross-correlations/. The raw 236

sequencing data from Byrd et al. [31] can be found in NCBI Bioproject 46333, and the 237

OTU table was originally obtained from Morton et al. [32] at 238

https://github.com/knightlab-analyses/reference-frames. The raw sequencing 239

data from Thiergart et al. [20] can be found at the European Nucleotide Archive (ENA). 240

The 16S dataset has project accession no. PRJEB34100, and the ITS dataset has 241

project accession no. PRJEB34099. The OTU tables was originally obtained at 242

https://github.com/ththi/Lotus-Symbiosis. 243

Implementation and Code Availability 244

Illustrations are produced using ggplot2 version 3.4.1 [33], ggpubr version 0.6.0 [34], and 245

GGally version 2.1.2 [35]. The VST transformation was performed using DESeq2 246

version 1.34.0 [29], hypothesis testing on cross-correlations were carried out using psych 247

version 2.2.9 [36], and the SPIEC-EASI networks were estimated using the package 248

SpiecEasi version 1.1.2 [37]. The scripts used for the simulations and the code for 249

SparCEV and SparXCC can be found at 250

https://github.com/IbTJensen/Microbiome-Cross-correlations/. 251

Results 252

In this section, we compare the different estimation methods on simulated datasets with 253

the correlation matrices constructed using the cluster and the loadings methods. 254

Case B 255

Fig 1 shows the performance of the different correlation estimation methods, with 256

correlation matrices generated by both the cluster and the loadings method. All MAEs 257

are computed as means over 1000 simulated datasets, with n = 50 replicates. For the 258

cluster method ρ = 0.75 and for the loadings method k = 5. With both correlation 259

generation methods, poor results are obtained when only the log-transformation is 260
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applied, and all other methods yield better results. For the cluster method, CLR and 261

SparCEV outperform log-TSS when c = 0.1, and SparCEV outperforms CLR when p is 262

small. When c = 0.4, log-TSS performs the same or better than CLR and SparCEV for 263

p ≥ 100. For c = 0.7, 70% of pairs are correlated, and thus the sparsity assumption is 264

severely violated. As expected, this is a substantial obstacle to accurate estimation, 265

especially for CLR and SparCEV. In fact, log-TSS performs similarly or better than 266

both, except when p = 10, where SparCEV still has a slight edge. For the loadings 267

method, SparCEV outperforms all alternatives when p = 10. For p = 100, the difference 268

between SparCEV and CLR is negligible, but both outperform log-TSS. When p = 1000, 269

SparCEV and CLR perform practically identically, and they only outperform log-TSS at 270

higher thresholds and only by a small margin. For both the cluster and the loadings 271

methods, the difference between CLR and SparCEV shrinks as p increases, which is in 272

agreement with the theory presented in S1 Text. 273

Caption for Fig 1: MAE of different cross-correlation methods for correlation 274

matrices generated by the cluster method (left column) and the loadings method (right 275

column). For the cluster method, different p (number of OTUs) and c (the proportion 276

of OTUs in a cluster) are used. For the loadings method, threshold values 277

t = 0, 0.1, . . . , 0.8 and different p are used. The lines show the mean accuracy, and the 278

edges of the envelopes show ±1.96 standard errors (SE). The results are based on 1000 279

simulated datasets where each simulated dataset has 50 replicates. 280
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Fig 1. MAE of different cross-correlation methods for correlation matrices generated by the cluster method (left column)
and the loadings method (right column). For the cluster method, different p (number of OTUs) and c (the proportion of
OTUs in a cluster) are used. For the loadings method, threshold values t = 0, 0.1, . . . , 0.8 and different p are used. The lines
show the mean accuracy, and the edges of the envelopes show ±1.96 standard errors (SE). The results are based on 1000
simulated datasets where each simulated dataset has 50 replicates.

The general pattern observed in Fig 1 is that log yields the worst results, log-TSS is 281

an improvement, CLR and SparCEV outperform log-TSS (except when sparsity is badly 282

violated), and SparCEV outperforms CLR at low p. This behavior is consistent with 283

the theory presented in S1 Text. Situations where p is small may be encountered in 284

practice, for example, when abundances at high taxonomic levels are considered or when 285

synthetic communities are employed, as is sometimes done in the plant field [25]. 286

May 22, 2023 11/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.538214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.538214
http://creativecommons.org/licenses/by/4.0/


The Effect of Diversity 287

Friedman and Alm [13] showed that the accuracy of correlation estimates in case A 288

depends on the diversity of the microbiome. They show that the accuracy of empirical 289

Pearson correlation estimates decreases as peff increases, whereas SparCC is unaffected 290

by peff. Fig 2 shows the impact of diversity in case B with p = 100 and different average 291

peff. The simulation settings are identical to those in Fig 1 for p = 100, except that we 292

choose (µi, σ
2
i , πi) differently (see Parameter Selection under Material and Methods). 293

Specifically, we set πi = 0 for all i to avoid zero inflation. This is because a more 294

zero-inflated dataset will tend to have lower entropy (and thus lower peff) than a less 295

zero-inflated dataset. This introduces a chaotic element to the simulation process that 296

may muddle the patterns we seek to investigate. 297
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Fig 2. MAE of different cross-correlation methods for correlation matrices generated by the cluster method (left column)
and the loadings method (right column). For the cluster method, different peff (effective number of OTUs) and c (the
proportion of OTUs in a cluster) are used. For the loadings method, threshold values t = 0, 0.1, . . . , 0.8 and different peff are
used. The lines show the mean accuracy, and the edges of the envelopes show ±1.96 SE. The results are based on 1000
simulated datasets where each simulated dataset has 50 replicates.

In Fig 1, we show two sets of lines for the cluster method, one for correlated pairs 298

and one for uncorrelated pairs. In Fig 2, these lines would have fallen on top of each 299

other, so for ease of presentation, the lines for the uncorrelated pairs have been omitted. 300

The results for uncorrelated pairs are instead shown in S2 Fig, where the overall pattern 301

is similar to Fig 2. However, for uncorrelated pairs, both log and log-TSS perform 302

better than CLR and SparCEV when peff is high and sparsity is violated. 303

In Fig 2, we see that SparCEV and CLR are both only mildly affected by the 304

effective number of OTUs for correlation matrices generated by both the cluster method 305
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and the loadings method, regardless of threshold or density of the correlation matrix. 306

SparCEV still consistently outperforms CLR, although the difference is negligible (for 307

all peff, the difference is similar to the difference we saw in Fig 1 at p = 100). However, 308

the accuracy of the results obtained from log and log-TSS depend heavily on peff. The 309

accuracy of log-TSS is similar to that of CLR and SparCEV only for dense correlation 310

matrices with uniformly distributed abundances, which are unlikely to occur in nature. 311

In general, the benefit of using CLR or SparCEV is greater for less diverse microbiota. 312

This is consistent with established knowledge in case A [13]. 313

Application on Atopic Dermatitis Data 314

In this section, we analyze the correlations found in an atopic dermatitis dataset from 315

Byrd et al. [31]. The severity of the symptoms was quantified by the widely used 316

measure objective SCORing of Atopic Dermatitis (objective SCORAD) [38]. We 317

estimate the correlations between objective SCORAD and bacterial abundances at the 318

family level using SparCEV. We obtained a correlation threshold of 0.52 using the 319

threshold selection approach described in Materials and Methods. Additionally, we 320

calculated empirical bootstrap confidence intervals (CI) with the BCa-method according 321

to Efron [39]. The families with absolute correlation with SCORAD exceeding 0.52 are 322

shown in Fig 3A with the exception of two families whose 95%-CIs included zero. These 323

families were Nocardioidaceae (Estimate: -0.54, 95%-CI: [-0.76, 0.03]) and 324

Nakamurellaceae (Estimate: -0.55, 95%-CI: [-0.77, 0.02]). 325

It is well known that colonization by Staphylococcus aureus can exacerbate the 326

severity of atopic dermatitis [31]. Indeed, we find that Staphylococcaceae is the family 327

whose abundance has the strongest positive correlation with the objective SCORAD 328

(estimate: 0.65, 95%-CI: [0.34, 0.81]), see Fig 3A and Fig 3B. Some members of the 329

fungal family Malasseziaceae are believed to play a pathogenic role in atopic 330

dermatitis [40, 41], and this family also appears to be positively correlated with the 331

objective SCORAD, although it is not above our permutation threshold (estimate: 0.42, 332

95%-CI: [0.08, 0.74]). Other studies found that the relative abundance of the genus 333

Propionibacterium was depleted in patients with atopic dermatitis [42] and that the 334

genus Cutibacterium may inhibit the growth of Staphylococcus aureus [43]. Both these 335

genera are members of the family Propionibacteriaceae, but we did not find a 336

correlation between the objective SCORAD and the abundance of this family (estimate: 337

-0.20, 95%-CI: [-0.56, 0.20]). The strongest negative correlation detected was with the 338

family Hyphomicrobiaceae (estimate: -0.73, 95%-CI: [-0.84, -0.51]), but to our 339

knowledge, this family is not known to play a role in atopic dermatitis. According to 340

Byrd et al., the two predominant viruses were polyomaviruses and papillomaviruses. 341

The Byrd et al. data indicate a possible negative correlation with Polyomaviridae 342

(estimate: -0.41, 95%-CI: [-0.71, -0.04]), albeit below our threshold, while 343

Papillomaviridae is uncorrelated with SCORAD (estimate: -0.16, 95%-CI: [-0.62, 0.22]). 344

All correlations and their confidence intervals can be found in S1 Table. 345

Fig 3C shows that the diversity (as measured by effective number of families) is 346

negatively correlated with the objective SCORAD score. This is consistent with prior 347

knowledge that the diversity of the skin microbiome is substantially reduced in atopic 348

dermatitis patients [42,43]. The effective number of families is only 18 (out of 407 349

observed families) even in the most diverse replicate (the effective number of families in 350

the least diverse replicate is 1.2, with over 96% of the relative abundance occupied by 351

Staphylococcaceae). Thus, the diversity in all replicates is low, and by Fig 2 we expect 352

substantially more accurate correlation estimates from SparCEV or CLR compared with 353

log-TSS. According to Fig 3D, the estimates using log-TSS are consistently smaller than 354

those of SparCEV. Assuming the SparCEV estimates are more accurate, as is indicated 355

by Fig 1 and Fig 2, the log-TSS estimates possibly mask potential positive correlations 356
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Fig 3. Results from a correlation analysis on atopic dermatitis data from Byrd et al. [31]. A: All correlations exceeding the
permutation threshold of 0.52 with color according to the sign of the correlation and with error bars given by the empirical
bootstrap 95%-confidence interval. B: Scatter plot between the CLR-transformed abundance of Staphylococcaceae and the
objective SCORAD. The blue line is derived from a smooth line fitted to the data with error bars derived from the standard
deviation. C: Scatter plot between the effective number of families and the objective SCORAD. D: Scatter plot between the
estimated correlation using log-TSS and SparCEV. The straight line has slope 1 and intercept 0.
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and exaggerate negative correlations. 357

Case C 358

We repeated the numerical studies from Fig 1 in case C. The left column in Fig 4 shows 359

results with the correlation matrices obtained using the cluster method with c = 0.1. 360

For results with other values of c, see S4 Fig. On Fig 4, all tested methods perform 361

similarly on non-correlated pairs and on correlated pairs; CLR and CLR+VST yield 362

almost identical results and outperform log-TSS, while SparXCC is superior when p or q 363

is small, in agreement with the theory. On S4 Fig, we see that for c = 0.4, the 364

performance lead for SparXCC is reduced and for c = 0.7 it is almost nonexistent. Just 365

as in case B, a non-sparse correlation matrix is a considerable obstacle for SparXCC, 366

CLR, and CLR+VST. They are all outcompeted by log-TSS in this setting. With the 367

loadings method, we see a similar pattern as in case B. When p = q = 10, SparXCC 368

outcompetes all alternatives, especially for higher thresholds. For p = q = 100 the 369

difference between SparXCC and CLR or CLR+VST is reduced and for p = q = 1000, 370

SparXCC, CLR, and CLR+VST all perform identically and all outperform log-TSS. In 371

S5 Fig, we see results for all tested combinations of p and q. Here, we see that SparXCC 372

outperforms all tested transformation-based methods when either p or q is sufficiently 373

small. We also carried out the simulations without zero-inflation and found practically 374

identical results to those seen on Fig 4. We note that situations where p, q or both are 375

small may arise for example when examining correlations between 16S data (bacterial 376

OTUs) and ITS data (fungal OTUs). Specifically, when synthetic communities are 377

employed or when correlations at a high taxonomic level are of interest. 378

In case B, SparCEV did not have any meaningful drawbacks in relation to CLR. 379

There are cases where they are practically identical, and then there are cases where 380

SparCEV outcompetes CLR. It is not as simple in case C, since SparXCC requires 381

considerably more computational resources than SparCEV. As a result, it is advisable 382

to carefully consider one’s specific dataset before choosing a method. When both p and 383

q are large, there is little gain in using SparXCC over CLR, but it runs substantially 384

slower. 385

Application on plant microbiome data 386

In this section, we analyze the correlations found in the root microbiome of Lotus 387

japonicus in a dataset by Thiergart et al. [20]. We have two sequencing datasets (each 388

compositional), one from 16S ribosomal RNA (rRNA) and one from internal transcribed 389

spacers (ITS). The 16S data contains bacterial OTUs, and the ITS data contains fungal 390

OTUs. The data are from plants of multiple genotypes, the wild type (Gifu) and the 391

mutants ccamk, symrk, ram1, and nfr5. The data contains 15–22 replicates for each 392

genotype. We estimate the correlations using SparXCC. The replicates within each 393

genotype originate from three different experiments. This potentially has a confounding 394

effect on the results. For the purposes of this example, we employ the function 395

RemoveBatcheffect from the R-package limma [44] to correct for differing means 396

between experiments. The results can be seen on Fig 5. More details on correlated 397

OTUs can be found in S2 Table. A similar analysis was carried out on data collected 398

from the rhizosphere of the plant. The results of this can be found in S7 Fig and S3 399

Table. 400

Thiergart et al. estimate cross-correlations between bacterial and fungal OTUs only 401

on the Gifu data using Spearman correlations on TSS-transformed data 402

(Spearman-TSS). They consider a pair correlated when the p-value is less than 0.001 403

and thus obtain 585 pairs with significant correlations. Using permutation thresholding 404

on SparXCC, we find only 12 correlated pairs in Gifu when correcting for confounding 405
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Fig 4. MAE of different cross-correlation methods for correlation matrices generated by the cluster method (left column)
and the loadings method (right column) in case C. For the cluster method, different p (number of OTUs) and q (number of
genes) are used. For the loadings method, threshold values t = 0, 0.1, . . . , 0.8 and different p and q are used. The lines show
the mean accuracy, and the edges of the envelopes show ±1.96 standard errors (SE). The results are based on 500 simulated
datasets where each simulated dataset has 50 replicates.

effects. In order to make a direct comparison to the results in the original paper, we 406

also carried out the correlation estimation without correcting for confounding effects. 407

We then obtain 1229 correlations above the threshold. A substantial proportion of 408

correlations identified by Thiergart et. al were also found by SparXCC (66 %). On S6 409

Fig and in S4 Table, we see that in most cases, the methods find similar estimates, but 410

in some cases they may differ considerably. In fact, in some cases, the two methods 411

disagree on the sign of the correlation. The reason for the differences between the 412

methods may be that SparXCC approximates Pearson correlations, which measure 413
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Fig 5. Results from applying CLR to 16S and ITS sequencing data from the root microbiome of Lotus japonicus, from
Thiergart et al. [20]. Each circular vertex represents a bacterial OTU from the 16S data and a square vertex represents a
fungal OTU from the ITS data. Vertices are colored based on the phylum of the OTU it represents. Two vertices are
connected by an edge if their estimated correlation is above the permutation threshold. The analysis is carried out
separately for the genotypes Gifu, ram1, nfr5, ccamk, and symrk. Only cross-correlations are shown.

linear relationships, while Spearman correlations measure monotonic relationships. To 414

examine this possibility, we also estimated the Pearson correlations of the log-TSS 415

transformed data (Pearson-log-TSS) and found 1395 pairs with significant correlations. 416

Interestingly, we found that Pearson-log-TSS showed a greater degree of overlap with 417

Spearman-TSS than with SparXCC (87 % vs 72 %). 418

Of the pairs where SparXCC and Spearman-TSS disagreed on the sign, 21 were 419

above the permutation threshold, but not detected as significant by the t-test. All of 420

these pairs involved two specific fungal OTUs, both members of the phylum 421
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Ascomycota. Both had many reads (ranging from 95 to 2576), so these results are not 422

an artifact of low read counts. Additionally, all of these pairs showed the same pattern 423

when comparing SparXCC to Pearson-log-TSS; the estimated correlations had different 424

signs, but were not detected as significant by the t-test. This suggests that the model 425

structure in SparXCC is able to capture some pattern of association that is lost with 426

the transformation-based methods. 427

Discussion 428

For the theoretical considerations in this paper, we, like Friedman and Alm [13], assume 429

that the data follow the model in (1). According to this model, the true relative 430

abundances ri are observed, which would only be the case with infinite sequencing 431

depth. We nevertheless assess the different correlation estimation methods using data 432

simulated under a more realistic setting where the xis are noisy observations of the ris. 433

Specifically, SparseDOSSA2 assumes that the xis are multinomial, given the library size 434

N and the ris. Friedman and Alm [13] suggests mitigating the impact of the technical 435

variance of xi given (ri, N) by using a Monte Carlo sampling procedure based on a 436

uniform Dirichlet prior. However, in our simulation setup, we find that this reduces 437

accuracy compared to using a pseudo-count (See Fig S8 Fig). It is a topic of further 438

research to investigate the nature of the technical variance (e.g. if it is truly generated 439

by a multinomial model, as postulated by SparDossa2) and how to account for it in the 440

cross-correlation estimations. 441

We did not consider testing null hypotheses of zero correlation. Due to various 442

sources of bias, including the aforementioned technical variance, it is difficult to base 443

hypothesis testing on theoretical results. Friedman and Alm [13] use a bootstrapping 444

procedure when applying SparCC in case A. This is computationally demanding, 445

however, not least since corrections for multiple testing are needed when carrying out 446

hypothesis testing for a large number of correlations. Furthermore, in cases B and C, it 447

is challenging to construct a bootstrap simulation scheme that respects the null 448

hypothesis for a particular correlation while maintaining the remaining correlation 449

structure. Due to these difficulties, we believe that it may be more appropriate to rely 450

on the correlation estimates themselves, as we have done with the permutation 451

threshold selection. 452

A fundamental assumption in this paper is that the interactions between microbes 453

and other variables can be adequately described by a correlation matrix. To our 454

knowledge, no alternatives have been unambiguously shown to universally better 455

describe interactions between compositional datasets such as microbiome and RNA-seq 456

data. Which metric is more sensible may depend on the underlying biology of the 457

specific data under study. We compared the performance of SPIEC-EASI and 458

correlation-based approaches in case C. SPIEC-EASI uses a penalized regression scheme 459

to estimate the precision matrix, R-1, and does not aim to estimate the correlation 460

matrix, R, directly. Instead the primary aim is to discriminate between pairs that are 461

conditionally independent and pairs that are not. With a correlation matrix constructed 462

using the cluster method, a pair is uncorrelated if and only if it is conditionally 463

independent (i.e Rij = 0⇔ R−1ij = 0). Thus we can directly compare the power and 464

false discovery rate (FDR) of SPIEC-EASI with those found using pair-wise correlations. 465

To do this, we subjected the correlation estimates of CLR to a t-test and the estimates 466

of SparXCC to the permutation thresholding scheme described in the material and 467

methods section as well as using SPIEC-EASI to identify conditionally dependent pairs. 468

Compared to the thresholding method, we found that SPIEC-EASI has higher power for 469

n ≤ 50 but with a much higher FDR. The t-test had better power than the other 470

methods tested for n ≥ 50, but FDR increased as n increased. However, it was able to 471
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adequately control the FDR at n ≤ 50. Permutation thresholding saw relatively high 472

FDR at n = 20, but was otherwise able to better control the FDR than the other 473

methods tested, and it was nearly as powerful as the t-test. See S10 Fig for similar 474

simulations in case B, comparing a t-test, permutation thresholding with m as a 475

threshold, and permutation thresholding with m* as a threshold. 476

The interactions present in a real biological system are likely to be more complicated 477

than a correlation matrix generated by the cluster method can account for. In such 478

cases, the methods may diverge (in general, R−1ij = 0 need not imply that Rij = 0 or 479

vice versa), and it may not be clear which is more appropriate. 480

Conclusion 481

When estimating correlations between compositional variables and non-compositional 482

variables (case B), the results in Fig 1, Fig 2, and S1 Fig suggest that SparCEV should 483

be the method of choice. When the number of compositional variables is sufficiently 484

large (above 100 in our results), empirical Pearson correlations following the 485

CLR-transformation perform essentially just as well. When estimating cross-correlations 486

between two compositional datasets (case C), the results in Fig 4, S3 Fig, S4 Fig, and 487

S5 Fig suggest that the method of choice should be SparXCC. However, when both p 488

and q are large, CLR may be preferred, since it performs essentially just as well in these 489

cases, but with considerably less computational complexity. 490

Supporting information 491

S1 Fig. Case B without biological zeros Accuracy of the different 492

cross-correlation methods in case B, in the absence of biological zero by enforcing 493

πj = 0 for j = 1, . . . , p. Otherwise, the same simulation settings as Fig 1 are used. 494

S2 Fig. Case B diversity and zero correlations Accuracy of the different 495

cross-correlation methods in case B on uncorrelated pairs at different levels of diversity. 496

S3 Fig. Case C without biological zeros Accuracy of the different 497

cross-correlation methods in case C, in the absence of biological zero by enforcing 498

πj = 0 for j = 1, . . . , p+ q. Otherwise, the same simulation settings as Fig 4 are used. 499

S4 Fig. Cluster method in case C for large c Accuracy of the different 500

cross-correlation methods on correlation matrices generated by the cluster method in 501

case C for c = 04, 0.7. Otherwise, the same simulation settings as Fig 4 are used. 502

S5 Fig. Loadings method in case C for all combinations of p and q 503

Accuracy of the different cross-correlation methods on correlation matrices generated by 504

the loadings method in case C for all combinations of p = 10, 100, 1000 and 505

q = 10, 100, 1000. Otherwise, the same simulation settings as Fig 4 are used. 506

S6 Fig. Spearman correlations of relative abundances vs SparXCC The 507

estimated correlation coefficients as estimated by Spearman correlations of relative 508

abundances plotted against correlations approximated by SparXCC. For Spearman, a 509

pair is considered correlated when a t-test returns a p-value less than 0.001. For 510

SparXCC, a pair is considered correlated when it is above the permutation threshold. 511
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S7 Fig. Cross-correlation network constructed on rhizosphere data Graph 512

with edges between nodes when the cross-correlation is above a permutation threshold, 513

estimated by SparXCC on rhizosphere data. 514

S8 Fig. Pseudo-count versus Dirichlet Monte Carlo sampling Accuracy of 515

using a pseudo-count versus Dirichlet Monte Carlo for SparCEV. 516

S9 Fig. Separating correlated and uncorrelated pairs in Case C Power and 517

FDR of CLR with a t-test, SparXCC with permutation thresholding, and SPIEC-EASI. 518

S10 Fig. Separating correlated and uncorrelated pairs in Case B Power and 519

FDR of CLR with a t-test and SparCEV with permutation thresholding, using both m 520

and m* as defined in section Discriminating between Correlated and Uncorrelated pairs. 521

S1 Table Correlations between families and objective SCORAD score. 522

S2 Table Correlations between bacterial OTUs from 16S data and fungal OTUs from 523

ITS data from the root of Lotus japonicus. Confounding effects from the experiment 524

effect were removed and SparXCC was applied. 525

S3 Table Correlations between bacterial OTUs from 16S data and fungal OTUs from 526

ITS data from the rhizosphere of Lotus japonicus. Confounding effects from the 527

experiment effect were removed and SparXCC was applied. 528

S4 Table Correlations between bacterial OTUs from 16S data and fungal OTUs from 529

ITS data from the root of Lotus japonicus. The data was not corrected for confounding 530

effects prior to correlation estimation. 531

S1 Text Theoretical analysis of transformation-based correlations, derivation of 532

compositionally aware methods, and construction of correlation matrices. 533
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