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Abstract
With the rapid adoption of high-density electrode arrays for recording neural activity, electrophysiology data volumes
within labs and across the field are growing at unprecedented rates. For example, a one-hour recording with a 384-
channel Neuropixels probe generates over 80 GB of raw data. These large data volumes carry a high cost, especially
if researchers plan to store and analyze their data in the cloud. Thus, there is a pressing need for strategies that can
reduce the data footprint of each experiment. Here, we establish a set of benchmarks for comparing the performance of
various compression algorithms on experimental and simulated recordings from Neuropixels 1.0 (NP1) and 2.0 (NP2)
probes. For lossless compression, audio codecs (FLAC and WavPack) achieve compression ratios 6% higher for NP1 and
10% higher for NP2 than the best general-purpose codecs, at the expense of a slower decompression speed. For lossy
compression, the WavPack algorithm in “hybrid mode” increases the compression ratio from 3.59 to 7.08 for NP1 and
from 2.27 to 7.04 for NP2 (compressed file size of ∼14% for both types of probes), without adverse effects on spike
sorting accuracy or spike waveforms. Along with the tools we have developed to make compression easier to deploy,
these results should encourage all electrophysiologists to apply compression as part of their standard analysis workflows.
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Introduction
In recent years, the field of extracellular electrophysiology has undergone a big data revolution. With the devel-
opment, commercialization, and distribution of CMOS-based neural probes such as Neuropixels (Jun et al. 2017;
Steinmetz et al. 2021),1 neuroscientists can now record brain function at unprecedented scales, accelerating
progress towards a better understanding of the nervous system (Churchland et al. 2007).5

Neuropixels 1.0 probes are capable of simultaneously sampling voltages from 384 electrodes at 30 kHz, in-
creasing data throughput by an order of magnitude compared to previous methods. These probes have already
been used to record spike trains from tens of thousands of neurons distributed across the entire brain (Steinmetz
et al. 2019; Siegle et al. 2021; Chen et al. 2023). Recently developed SiNAPS probes (Angotzi et al. 2019; Boi
et al. 2020) increase the number of simultaneously recorded electrodes per probe to 1024. And even higher elec-10

trode counts have been achieved in CMOS-based micro-electrode arrays (MEAs) for in vitro experiments, such as
the 3-Brain HyperCAM Alpha (6144 channels)2 and the Maxwell Biosystems MaxTwo (26,400 channels).3 All
these devices generate raw data at massive rates:

• Neuropixels 1.0: 30 kHz x 384 channels x 2 bytes/sample = ∼80 GB/hour4

• SiNAPS 4-shank: 25 kHz x 1024 channels x 2 bytes/sample = ∼185 GB/hour15

• HyperCAM Alpha: 6 wells x 1024 channels x 20 kHz x 2 bytes/sample = ∼885 GB/hour
• MaxTwo: 24 wells x 1024 channels x 20 kHz x 2 bytes/sample = ∼3.5 TB/hour

1. www.neuropixels.org
2. www.3brain.com/products/multiwell/hypercam-alpha
3. www.mxwbio.com/products/maxtwo-multiwell-microelectrode-array/
4. This calculation does not include the LF stream, which would result total rate of ∼87 GB/hour.
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As manufacturing shifts to even smaller CMOS processes, electrode counts will continue to grow (Buccino et
al. 2022).

Sharing and processing data at this scale is nontrivial. The electrophysiology community has therefore begun20

migrating data and workloads to flexible, scalable pipelines that run in the public cloud (e.g., DANDI (Halchenko
et al. 2022), NeuroCAAS (Abe et al. 2022), DataJoint (Yatsenko et al. 2015), and Code Ocean (Cheifet 2021)).
Cloud platforms offer the ability to remotely launch standardized analysis environments that read from a single,
immutable dataset, eliminating the need for individuals and labs to maintain local copies. However, cloud storage
can be expensive. Consider a hypothetical example of a medium-sized experimental neuroscience laboratory25

using Neuropixels 1.0 probes. If each of seven lab members records an average of five one-hour sessions per
month, the lab will produce ∼33.5 TB of uncompressed data per year. Kept in the most performant tier of public
cloud storage with an average cost of $0.023/GB per month,5 after five years data storage alone would incur an
annual cost of ∼$45,000. Effective compression may therefore be the deciding factor for whether a lab can afford
scalable cloud technologies in their work.30

Individual labs will not be the only ones facing mounting data storage costs. As of January 25th, 2023, all data
associated with publications funded by the NIH must be made available through publicly-funded data repositories,
many of which are backed by cloud technologies (National Institutes of Health 2021). Similar policies hold for
work funded by the European Union (European Commission Directorate-General for Research and Innovation
2021). To avoid skyrocketing bills for archiving these datasets in perpetuity, funding agencies have a big incentive35

to determine the maximum amount of compression that can be reasonably applied to raw data.
Effective data compression is of paramount importance from both financial and environmental perspectives

(because larger files require more energy to transfer and store). However, there has been little work investigating
how compression algorithms perform on large-scale electrophysiology data. In this report, we describe a set of
tools that make compression easier to deploy, and we use these tools to benchmark a wide array of compression40

strategies on both experimental and simulated electrophysiology data.
There are two general categories of compression, lossless and lossy, both of which are ubiquitous in everyday

computing. Lossless compression reduces the size of a file without removing any information, meaning the
original data will be perfectly intact following decompression. The final size of the compressed file depends
on the randomness or redundancy of the data it contains (a file with more random/unpredictable values will be45

less compressible). Different lossless compressors employ different strategies for eliminating redundancy, but so
far there has been no systematic comparison of how they interact with continuously sampled electrophysiology
signals, which display high correlations across both space and time.

Lossy compression can further reduce file sizes by removing information that may be unnecessary for down-
stream workflows, but care must be taken to ensure that patterns of interest are preserved in the decompressed50

data. Lossy compression of image, video, and sound files is indispensable for the reliable functioning of the Inter-
net, but it is rarely used in scientific applications. We believe that lossy compression of electrophysiology data will
become increasingly critical as data volumes explode. But before this can be applied at scale, we must identify
efficient compression algorithms that do not adversely affect the results of downstream analyses, especially spike
sorting.55

Materials and Methods
Compression framework
We chose Zarr as the software framework for running compression (Miles et al. 2020). The main reasons for
this choice were:

• It is natively developed in Python and has a mature API.60

• It stores data in a hierarchical directory structure that facilitates random access and streaming.
• It integrates a wide array of modern compression algorithms via the numcodecs6 package, which is developed

and maintained by the same team. The numcodecs API makes it easy to implement and distribute additional
codecs, which can be released as Python packages that are automatically registered in the Zarr framework.

5. as of March 2023, AWS: https://aws.amazon.com/s3/pricing/; GCP: https://cloud.google.com/storage/pricing
6. https://numcodecs.readthedocs.io/en/stable/
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• Neurodata Without Borders (Teeters et al. 2015; Rübel et al. 2022), a standard exchange format for neuro-65

physiology data, can now read and write .zarr files (Tritt et al. 2019).7

We chose Zarr over HDF5 (The HDF Group 2002), which is written in C++ and stores data in less cloud-
friendly monolithic binary files. Zarr is also becoming the standard in bioimaging (see OME-NGFF – Moore
et al. 2021).

To apply compression algorithms to large-scale electrophysiology data, we implemented a Zarr backend for70

SpikeInterface (Buccino et al. 2020), a Python package for building spike sorting pipelines (see Software
extensions). SpikeInterface can read data from all widely used electrophysiology data formats (thanks to
integration with the neo library) and, using the new backend, can output compressed .zarr files with a single
line of code.

We also considered two electrophysiology-specific compression packages, but ultimately decided not to in-75

clude them in our tests. The first, called mtscomp, is a Python library for lossless compression developed by the
International Brain Laboratory. (International Brain Laboratory 2022)8. It implements delta filters and zlib
compression, features that are also available via Zarr. We were thus able to test the same compression algo-
rithm within Zarr. The second, called MED (Multiscale Electrophysiology Data) (Brinkmann et al. 2009; Stead
& Halford 2016),9 specifies a custom data format that supports both lossless and lossy compression via predictive80

range-encoded differences, minimal bit encoding, variable frequency compression mode, and multiple deriva-
tive compression mode. While MED offers electrophysiologists a straightforward way to compress their data, the
difficulty of integrating it with other open-source tools (such as Zarr ) precluded us from testing it here.

Benchmark datasets
We used several experimental datasets to test lossless compression algorithms, while both experimental and simu-85

lated datasets were used to assess the performance of lossy approaches. We focused on data from Neuropixels 1.0
(NP1) (Jun et al. 2017) and 2.0 (NP2) (Steinmetz et al. 2021) probes, given their broad adoption by the neuro-
science community. However, we expect that our results and resources will be directly applicable to other types
of recording devices.

Experimental data90

Half of the NP1 datasets are from the IBL Brain Wide Map (International Brain Laboratory 2022) (IBL in Table 1).
We used the datasets in the spikesorting/benchmark folder on AWS, which includes four 20-minute (1200 s)
recordings from various brain regions. Acquisition was performed with SpikeGLX software (Karsh, n.d.). The
other half of the NP1 datasets and all NP2 datasets were pilot sessions acquired by the Allen Institute of Neural
Dynamics using Open Ephys software (Siegle et al. 2017) and targeting diverse brain regions (AIND in Table 1).95

Recording durations ranged from 732 s to 2430 s.
There are several key differences between NP1 and NP2 datasets that are expected to impact compression

performance. NP1 devices include an analog 300-Hz high-pass filter associated with the AP (action potential)
stream, which is sampled at 30 kHz. The same set of channels is also low-pass filtered at 1 kHz and sampled at
2.5 kHz to produce the LF (local field) stream (Dutta et al. 2019). We only tested compression performance on100

the AP stream. NP2 devices do not include comparable hardware filters and instead produce a single broadband
stream. In addition, although both NP1 and NP2 data are saved to disk as 16-bit integers, the NP1 device includes
analog-to-digital converters (ADCs) with 10-bit resolution, while NP2 includes ADCs with 14-bit resolution.10

The higher-bit-depth ADCs of NP2 are used both to record at 4× higher resolution (0.585 µV/sample for NP2
vs. 2.34 µV/sample for NP1) and to accommodate the dynamic range of the wide-band signals.105

We also considered the effects of the acquisition software, which can apply different scaling factors to the data
prior to saving. SpikeGLX outputs the raw values of the Neuropixels ADCs, which must be scaled to account for
the hardware amplifier gain prior to analysis. In this case, the data has a least significant bit (LSB) of 1, regardless of
which type of device was used. Open Ephys scales the data to have a final gain of 0.195 µV/sample, regardless of
the hardware gain settings. This decision was made to minimize the effects of rounding errors if online processing110

7. https://hdmf-zarr.readthedocs.io/en/latest/
8. https://github.com/int-brain-lab/mtscomp
9. https://medformat.org/

10. The final version of NP2 probes, which became publicly available in 2023, use 12-bit ADCs.
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steps, such as band-pass filtering, are applied before saving the data. However, if the raw Neuropixels data was
written, as it was in all the example datasets we analyzed, this rescaling makes the LSB equal to 12 for NP1 and
3 for NP2. Prior to compression, we rescaled the Open Ephys data to have an LSB of 1 by first removing each
channel’s median (since scaling could introduce rounding errors) and dividing by either 12 or 3.

Simulated data115

We used the MEArec software (Buccino & Einevoll 2021) to simulate voltage traces that resemble the Neuropixels
1.0 and 2.0 data as recorded by the Open Ephys Neuropix-PXI plugin (same acquisition device as the exper-
imental data from the AIND sources, see Table 1). We refer to these datasets as ground truth (GT), since the
underlying spiking activity is known. We simulated one dataset per probe type with the following characteristics:

• data type: int16120

• gain: 0.195 µV/sample
• number of ground-truth cells: 100
• noise level: 10 µV additive spatially correlated noise

The LSB was set to 12 for NP1 and 3 for NP2 to match the experimental settings.
Ground-truth recordings allow us to test whether lossy strategies significantly affect waveform features (in125

this case we can use the ground-truth spiking activity to compute waveforms from the lossy recordings) and also
to quantitatively benchmark spike sorting outcomes. For the latter case, our goal is not to quantify the overall
accuracy of a particular spike sorter but rather to measure how sorting results change with increasing levels of
lossiness. For this reason, the simulated datasets are relatively easy to sort, with only 100 ground truth units, no
additional drift, and no burst-related waveform attenuation.130

Lossless compression
Codecs
We benchmarked most of the codecs in the Zarr-numcodecs library. The BLOSC filter (The Blosc Development
Team, n.d.) is a high-performance meta-compressor optimized for binary data. It includes four codecs—LZ4,

Table 1: Overview of the experimental and simulated datasets

Session Source Type Probe Duration (s) Acquisition software Band Gain LSB

CSHZAD026_2020-09-04_probe00 IBL exp NP1 1200 SpikeGLX spike 2.34 1
CSHZAD029_2020-09-09_probe00 IBL exp NP1 1200 SpikeGLX spike 2.34 1
SWC054_2020-10-05_probe00 IBL exp NP1 1200 SpikeGLX spike 2.34 1
SWC054_2020-10-05_probe01 IBL exp NP1 1200 SpikeGLX spike 2.34 1
625749_2022-08-03_15-15-06_ProbeA AIND exp NP1 1817 Open Ephys spike 0.195 12
634568_2022-08-05_15-59-46_ProbeA AIND exp NP1 1766 Open Ephys spike 0.195 12
634569_2022-08-09_16-14-38_ProbeA AIND exp NP1 1741 Open Ephys spike 0.195 12
634571_2022-08-04_14-27-05_ProbeA AIND exp NP1 1815 Open Ephys spike 0.195 12
595262_2022-02-21_15-18-07_ProbeA AIND exp NP2 732 Open Ephys wide 0.195 3
602454_2022-03-22_16-30-03_ProbeB AIND exp NP2 901 Open Ephys wide 0.195 3
612962_2022-04-13_19-18-04_ProbeB AIND exp NP2 1030 Open Ephys wide 0.195 3
612962_2022-04-14_17-17-10_ProbeC AIND exp NP2 1055 Open Ephys wide 0.195 3
618197_2022-06-21_14-08-06_ProbeC AIND exp NP2 745 Open Ephys wide 0.195 3
618318_2022-04-13_14-59-07_ProbeB AIND exp NP2 949 Open Ephys wide 0.195 3
618384_2022-04-14_15-11-00_ProbeB AIND exp NP2 1273 Open Ephys wide 0.195 3
621362_2022-07-14_11-19-36_ProbeA AIND exp NP2 2430 Open Ephys wide 0.195 3
MEArec_NP1 MEArec sim NP1 600 MEArec spike 0.195 12
MEArec_NP2 MEArec sim NP2 600 MEArec spike 0.195 3
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LZ4HC (Collet, n.d.), ZLIB (Gailly & Adler, n.d.), ZSTD (Facebook, n.d.)—and two shuffling options (bit, byte).11
135

These codecs are referred to as blosc compressor type. In addition to the BLOSC interface, we tested other codecs
that are directly wrapped in numcodecs (including some also available through the BLOSC filter): GZIP (Gailly &
Adler, n.d.), LZMA (7zip) (Pavlov, n.d.), LZ4, ZLIB, and ZSTD. These numcodecs compressor types were also tested
with the byte shuffling option, available with the numcodecs.Shuffle filter.

Both blosc and numcodecs compressor types are general-purpose compressors, i.e., they make no assumption140

about the structure of the data. Electrophysiology data have many features in common with audio signals: they
are both time series that are sampled at a few tens of kHz (usually 30 kHz for electrophysiology and 44.1 kHz for
audio), they have similar frequency content, and they have channels that may be strongly correlated (e.g., left/right
stereo signals or nearby electrodes in neural probes). Given these similarities, we also tested the performance of
lossless compressors designed for audio signals, including FLAC (xiph.org Foundation et al., n.d.) and WavPack145

(Bryant, n.d.). Lossless audio codecs like FLAC and WavPack operate with two basic steps. The first step attempts
to model the characteristics of the data to produce a prediction of the sampled values. Then, for each sample, this
prediction is subtracted from the actual sample to generate an error value, sometimes referred to as the “residual.”
This step is called decorrelation because its purpose is to remove the correlation (or redundancy) that normally exists
in sampled signals. The correlation is generally highest in consecutive samples in the same channel; however, there150

is often correlation between channels that can also be utilized. Once the samples are represented as residuals, the
next step is entropy encoding, which refers to storing the samples with the minimum number of bits. FLAC uses
the simplest of these entropy encoding methods (Golomb-Rice codes). WavPack uses a more complex scheme
that provides better compression but is more computationally costly. Table 2 lists all the codecs that have been
tested in this study.155

Chunk size
The Zarr framework supports the storage (and compression) of N-dimensional arrays in chunks. Chunks are
stored in separate files that are compressed independently, which is critical for performant, parallel encoding
and decoding. In the case of extracellular electrophysiology, the input data is two-dimensional, with a shape of
(n_samples, n_channels). For Neuropixels data, n_channels is 384, since this is the number of channels that can be160

recorded simultaneously. For all codecs, we explored three different chunk sizes in time: 0.1 s, 1 s, and 10 s (which
correspond to 3,000, 30,000, and 300,000 samples per chunk). For general-purpose compressors (compressor
types blosc and numcodecs), which flatten an N-dimensional array before compression, we only chunked in time,

11. Shuffling refers to a re-organization of the samples before compression (at the byte or bit level) to make the data more compressible.

Table 2: Overview of the lossless compression codecs, shuffling options, channel block sizes, and compression levels
mapped to codec-specific parameters. For channel block size, a value of -1 indicates the array was flattened prior to com-
pression.

compressor compressor type shuffling options channel block size (low, medium, high) levels

blosc-lz4 blosc (no, byte, bit) -1 (1, 5, 9)
blosc-lz4hc blosc (no, byte, bit) -1 (1, 5, 9)
blosc-zlib blosc (no, byte, bit) -1 (1, 5, 9)
blosc-zstd blosc (no, byte, bit) -1 (1, 5, 9)
gzip numcodecs (no, byte) -1 (1, 5, 9)
lzma numcodecs (no, byte) -1 (1, 5, 9)
lz4 numcodecs (no, byte) -1 (9, 5, 1)
zlib numcodecs (no, byte) -1 (1, 5, 9)
zstd numcodecs (no, byte) -1 (1, 11, 22)
flac audio (no) (-1, 2) (1, 5, 8)
wavpack audio (no) (384) (1, 2, 3)
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so that the shape of each chunk is (n_samples_chunk, n_channels) (denoted as -1 in the channel block size column of
Table 2). For the FLAC compressor, whose Python implementation12 supports both mono and stereo (2-channel)165

signals, we utilized either flattening before compression (channel block size = -1) or blocks with 2 channels (to
mimic stereo signals). The WavPack codec supports any number of channels, and it internally constructs streams
of stereo pairs (with a final mono stream to handle odd channel counts) prior to compression. Therefore, for
WavPack we used a chunk size of (n_samples_chunk, n_channels).

Compression level170

All compressors listed in Table 2 allow different levels of compression. Higher levels achieve better compression
but are usually slower in compression and decompression speeds. Because each codec may use different numeric
values to specify compression level, we defined three compression levels for each codec evenly distributed over
the available range. The codec-specific compression levels corresponding to low, medium, and high are listed in
the right-most column of Table 2.175

Delta filters and pre-processing
A common pre-compression operation is to apply a delta filter, which encodes data as the difference between
adjacent values to reduce the dynamic range of the signals. While the numcodecs library provides an implemen-
tation of such a filter (numcodecs.Delta), this implementation is targeted to one-dimensional input data, and it
flattens any multi-dimensional input arrays. In the case of electrophysiology data, the input is two-dimensional180

(n_samples, n_channels), and it is therefore convenient to apply a delta filter across specific axes. To do so, we im-
plemented a Delta2D codec (see Software extensions) which allowed us to apply a delta filter across time, across
channels (or space), or across both directions sequentially.

Electrophysiology data contain both local field potentials (<300 Hz) and spiking activity (>300 Hz). As men-
tioned in the Experimental data section, NP1 probes output two separate streams for these two signals (LF and185

AP), while NP2 probes do not apply hardware filters and output a single wide-band stream. We therefore inves-
tigated whether pre-processing the input data affects compression performance by applying either a high-pass
filter (cutoff frequency at 300 Hz) or band-pass filters (with cutoffs at 300-6000 Hz and 300-15000 Hz), which is
a common alternative for pre-processing electrophysiology data. We also tested the application of an anti-aliasing
band-pass filter, with cutoffs at 0.5-15000 Hz. In all cases, we used 5th-order Butterworth filters implemented in190

the SpikeInterface.preprocessing module (highpass_filter() and bandpass_filter() functions)
prior to compression.

Lossy compression
We investigated two lossy compression strategies: bit truncation and the hybrid mode of the WavPack compressor.

Bit truncation195

As reported in previous sections, NP1 and NP2 data have a resolution of 2.34 µV/sample and 0.585 µV/sample,
respectively. Noise levels for Neuropixels probes are reported to be around 5.9 µVrms for NP1 (Jun et al. 2017)
and slightly higher (7.4 µVrms) for NP2 (Steinmetz et al. 2021).13 In contrast, spike amplitudes of neurons that
are usually considered well-isolated have amplitudes greater than 30 µV, implying that the voltage signal is over-
sampled.200

The bit truncation strategy reduces the resolution of the original data by “right-shifting” each sample. A
right shift (i.e., bit truncation) of n bits is equivalent to dividing the sampled values, and consequently decreasing
the resolution, by 2n. As an example, a bit truncation of NP1 data by 2 bits will result in a signal resolution of:
2.34 µV/sample ·22 = 9.36 µV/sample. Note that the NP2 probe has a resolution four times larger than NP1,
hence a 2-bit truncation of NP2 data will match the 2.34 µV/sample resolution of NP1 probes. The bit truncation205

operation should increase the compression performance because it effectively adds n 0s to replace the truncated
bits, reducing the amount of information that each sample carries.

12. https://github.com/sonos/pyFLAC
13. Note that Neuropixels 2.0 are still at a prototype stage, and this value might differ from the final commercially distributed design.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.22.541700doi: bioRxiv preprint 

https://github.com/sonos/pyFLAC
https://doi.org/10.1101/2023.05.22.541700


Compression strategies for ephys 7

Bit truncation is implemented with the numcodecs.FixedScaleOffset as a pre-compression filter, using
a scale of 1/2n. This strategy was combined with the blosc-zstd compressor, which performed best among the
general-compressor codecs. We tested truncations of up to 7 bits for both probe types.210

WavPack Hybrid mode
The WavPack codec includes a hybrid (lossy) mode in addition to the lossless mode.14 To implement the hybrid
compression mode, WavPack’s entropy encoder provides an optional “error limit” parameter which can be finely
and continuously controlled by the characteristics of the input samples to target a given bit rate in units of bits per
sample (bps). Because this error limit changes slowly, transients are more accurately encoded than with schemes215

that are restricted to a fixed number of bits per sample (like Adaptive Differential Pulse Code Modulation, or
ADPCM). This is not only useful for the audio compression applications for which it was optimized, but also for
the current application which relies on accurate reproduction of fast transients (i.e., spikes). We tested bps values
of 6, 5, 4, 3.5, 3, 2.5, 2.25 (from least to most aggressive lossy compression). Note that 2.25 is the minimum value
accepted by the WavPack hybrid mode.220

Evaluation and benchmarks
We used three metrics to quantify compression performance:

• Compression Ratio (CR), computed by dividing the number of bytes in the original data file by the number
of bytes written to disk after compression. The higher the compression ratio, the lower disk space the com-
pressed data will occupy. For example, a CR of 2 implies that the compressed data occupies half of the disk225

space (50%) compared to uncompressed data, a CR of 4 occupies 25% of the disk space, and so on.
• Compression speed (in units of xRT, or “times real-time”), computed by dividing the time needed to com-

press an entire recording divided by the original recording duration (see duration in Table 1).
• Decompression speed (in xRT), computed by dividing the time needed to decompress all channels (384) in

a 10 s time range by 10.230

The three metrics should not be weighted equally when evaluating overall performance. Compression ratio
directly relates to storage size and hence storage costs. Compression speed is potentially less important since,
ideally, a given dataset will only need to be compressed once. Decompression speed is more important because
decompression will be performed whenever the raw data must be accessed for analysis or visualization.

For lossy approaches, some information is irreversibly lost during compression. To quantify this loss of in-235

formation, we additionally compute the root-mean-square error (RMSE) between the original and the decom-
pressed lossy traces over 10 s (after applying a 300-6000 Hz band-pass filter). Since even small RMSE could affect
downstream analysis, we also evaluate whether the compression (1) affects spike sorting results or (2) significantly
changes spike waveforms. The latter requirement is important because features derived from the average extra-
cellular waveform, such as peak-to-valley duration, full-width half maximum duration, and peak-to-trough ratio,240

can provide information about the cell type identity of recorded neurons (Buccino et al. 2018; Jia et al. 2019).
We used both simulated and experimental data to examine the effects of lossy compression on spike sorting. In

all cases, we used Kilosort2.5 (Pachitariu et al. 2016; Pachitariu et al. 2023) with default parameters after pre-
processing with a band-pass filter and common median reference (the latter was only applied to experimental data,
since simulations do not have common noise sources by construction). After spike sorting, we applied a minimal245

post-processing step to remove duplicated units sharing more than 95% of spikes with other units, keeping the
units with more spikes. For simulated recordings, we compute the accuracy, precision, and recall (see Buccino
et al. 2020 for details) of the spike sorting outputs and compared them to the values obtained on the original data.
For experimental data, due to the lack of ground truth spike times, we counted the number of passing and failing
units following automatic curation based on three spike sorting quality metrics (Siegle et al. 2021; inter-spike-250

interval violations ratio < 0.1, presence ratio > 0.9, and amplitude cutoff < 0.1). We report the fraction of passing
and failing units with respect to the counts obtained by spike sorting the original uncompressed data. In addition,
we also compare the full spike trains of all units detected after lossy compression to matched units in the lossless
dataset.

14. A correction file can be generated to recover the original data, but we did not enable this option.
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Figure 1: Effect of least significant bit (LSB) correction, chunk duration, and probe type on compression metrics. a-
c, Effect of LSB correction on compression metrics (Open Ephys datasets only, N = 2700 compression jobs per condition,
including 900 with NP1 data and 1800 with NP2 data). d-f, Effect of chunk duration on compression metrics. Data points
without LSB correction are excluded (N = 1200 compression jobs per chunk duration). g-i, Effect of probe type on compres-
sion metrics (N = 600 compression jobs per probe type). Shaded diamonds represent outliers as defined in (Hofmann et
al. 2017). **: 10–4 ≤ p < 0.001, ***: p < 10–4.
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We used simulated datasets to evaluate the impact of lossy compression on spike shape, since they allowed us255

to compare waveform features to the ground-truth average waveforms. We computed the three aforementioned
metrics (peak-to-valley duration, full-width half maximum duration, and peak-to-trough ratio) both on the main
channel with the largest amplitude for each unit (i.e., the unit main channel) and on a peripheral channel 60 µm
away. This was done to ensure that not only are peak waveforms preserved, but features on peripheral channels
are also well estimated. Note that waveform features computed using multiple channels, or 2D features, have been260

shown to improve cell type classification (Jia et al. 2019).

Statistical analysis
For comparisons between two samples, we used the non-parametric Mann-Whitney U test; for population
tests (more than two samples), we used the non-parametric Kruskal-Wallis test. Post-hoc tests were run with
Conover’s test, with Holm’s correction for p-values. Tests were performed using scipy (Virtanen et al. 2020)265

and scikit-posthocs (Terpilowski 2019). In addition to reporting p-values for two-sample tests, we also re-
port the Cohen’s d coefficient as a proxy for the effect size. In figures, we denote p-values using the following
symbols:

• *: 0.001 ≤ p < 0.01
• **: 10–4 ≤ p < 0.001270

• ***: p < 10–4.

The values of compression metrics are always reported as the median ± standard deviation of the associated
distribution. We used the median due to its lower sensitivity to outliers. The shaded diamonds in all figures
represent outliers as defined in (Hofmann et al. 2017).

Results275

Lossless compression
We ran a total of 6300 independent compression jobs using a 16-CPU AWS EC2 instance with 128 GB of RAM,
coordinated via the Code Ocean compute platform. In all cases, compression ran with 16 parallel threads, while
decompression was not explicitly parallelized.15

LSB correction improves compression performance280

As mentioned in the Experimental data section, the Neuropixels data recorded by Open Ephys (in our case from
the AIND data source) do not have a unitary least significant bit (LSB = 12 for NP1, LSB = 3 for NP2). In principle,
dividing the samples by the LSB value would reduce the data range (and possibly improve compression) without
affecting data integrity. We denote this process as LSB correction. Compression ratio is significantly higher after
LSB correction, with a large effect size (Figure 1a; p < 10–10, effect size = 0.99). LSB correction decreases285

compression speed, likely due to the additional computational load of the median subtraction and LSB division
(Figure 1b; p < 10–10, effect size = 0.42), while slightly increasing decompression speed (Figure 1c; p < 0.01, effect
size = 0.08). Note that in this case, the distributions include observations for both probe types (1800 NP1 and
3600 NP2). Due to the large improvement in compression ratio, we continued the analysis with LSB correction.
We advise users to do so as well when using Open Ephys or other acquisition software that saves data with an290

LSB > 1, assuming that no other processing steps (such as a band-pass filter) have been applied (see the Software
extensions section for more details).

Chunk size affects compression speed, but not compression ratio
We analyzed compression metrics as a function of chunk duration, i.e., the size of each block fed into the com-
pression algorithm (0.1 s, 1 s, and 10 s). We did not detect differences in compression ratio (Figure 1d), while295

compression speed was significantly slower for chunks of 0.1 s (Figure 1e; 0.1 vs 1: p < 10–10, effect size = 0.57; 1
vs 10: p < 10–10, effect size = 0.49). Chunks of 1 s also resulted in higher decompression speeds with respect to the
other chunk sizes (Figure 1f; 0.1 vs 1: p < 10–5, effect size = 0.42; 1 vs 10: p < 10–4, effect size = 0.37). Given this

15. The blosc and WavPack codecs have inherently multi-threaded implementations, so some decompression steps did include parallelization.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.22.541700doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541700


10 Alessio P. Buccino et al.

significant increase in decompression speeds, and provided that 1 s chunk sizes are commonly used for parallel
processing (e.g., they are the default in SpikeInterface), we restricted further analysis to chunk durations of300

1 s (1200 total compression options).

Neuropixels 1.0 data is more compressible than 2.0 data

As described in the section, NP1 and NP2 devices have different properties that could impact the compressibility
of the data they generate: NP1 probes split each channel into separate AP and LF bands, both of which are digi-
tized with 10-bit ADCs. NP2 probes acquire broadband signals with 14-bit ADCs. We found that compression305

ratio was significantly higher for NP1 than NP2 (Figure 1g; p < 10–10, effect size = 1), while compression and
decompression speeds were similar for both probe types (Figure 1h-i). This confirms the higher compressibility
of NP1 data, with its more limited frequency content and lower ADC bit depth (see Table 1). Therefore, we
analyze the results from the two probes separately in the following sections.
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Figure 3: Effect of shuffling on compression performance. Distributions of compression ratios, compression speeds, and
decompression speeds for different pre-shuffling options. N = 24 compression jobs per condition. The upper half (a-f) is
for NP1, the lower half is for NP2 (g-l). The blosc codecs (a-c and g-i) support bit and byte shuffling, while Zarr’s built-in
numcodecs (d-f and j-l) only support byte shuffling.

Comparison of nine general-purpose codecs310

Figure 2 shows compression metrics for all the general-purpose codecs, applied separately to NP1 and NP2 data.
The same trends can be observed for both probe types: LZMA produces the highest average compression ratio,
immediately followed by zstd, whose blosc implementation (blosc-zstd) appears to outperform the numcodecs
version (zstd). Although LZMA achieved a higher compression ratio with respect to blosc-zstd (NP1 - LZMA:
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2.52±0.31, blosc-zstd: 2.38±0.36; NP2 - LZMA: 1.85±0.07, blosc-zstd: 1.76±0.15), its decompression315

speed is very slow (NP1 - LZMA: 0.89±0.41, blosc-zstd: 71.42±32.89; NP2 - LZMA: 0.81±0.94, blosc-zstd:
51.32±30.99). Note that, in general, blosc codecs achieve a much higher decompression speed than codecs directly
implemented in numcodecs. As mentioned in the Evaluation and benchmarks section, this is probably due to the
multi-threaded implementation of the BLOSC meta-compressor.

The distributions shown in Figure 2 aggregate data points from all shuffling options and compression levels.320

Figure 3 breaks down the results based on different shuffling options. Shuffling improves compression metrics,
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Figure 4: Effect of compression level on performance. Distributions of compression ratios, compression speeds, and de-
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especially compression ratio, for most compressors and both probe types (with the exception of LZMA for NP1,
for which the highest compression ratio is achieved when no shuffling is applied). For blosc codecs, bit shuffling
is also available and yields better compression metrics (except for the blosc-zlib codec, which does not behave
well with bit shuffling for medium and high compression levels, see Figure S1).325

Figure 4 shows the effect of varying compression level. As expected, as compression level increases from low to
high, one observes a higher compression ratio and lower compression/decompression speed (with the exception of
blosc-zlib, whose average compression ratio decreases between the low and medium settings). Figure S2, which
displays the compression ratio and decompression speed for each compressor depending on both the compression
level for the shuffling option, confirms the same trends and conclusions that we observed when looking at the330

shuffling and compression level parameters separately.

Audio codecs achieve a higher compression ratio than general-purpose codecs
Next, we investigated compression using audio codecs, namely FLAC and WavPack. Before directly comparing
the two, we observed how channel chunking options affected FLAC performance. By default, the FLAC codec
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Figure 5: Performance of audio codecs. Compression ratios, compression speeds, and decompression speeds for theFLAC
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NP1, the bottom row (d-f) is for NP2. N = 8 compression jobs for all distributions.
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Figure 6: Comparing audio codecs and the highest performing general-purpose codecs. Compression metrics for two
general-purpose codecs, blosc-zstd (green) and LZMA (orange), and the two audio codecs, FLAC (purple) and WavPack
(yellow). Reported values are based on the high compression level forblosc-zstd andLZMA, and the medium compression
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yielded best compression rations for the two probes: no shuffling for NP1 and bit shuffling for NP2. The top row (a-c) is for
NP1, the bottom row (d-f) is for NP2. N = 8 compression jobs for all distributions; individual data points are shown.

flattens the 384 Neuropixels channels into a single channel before compression (channel block size = -1). Enabling335

the option to group channels as stereo pairs (channel block size = 2) largely improves compression ratio (Figure S3a;
p < 10–3, effect size: 0.81) at the expense of compression speed (Figure S3b; p < 10–10, effect size: 1.75) and
decompression speed (Figure S3c; p < 10–10, effect size: 7.7). Since compression ratio is our main metric of
interest, we selected channel block size = 2 for further comparisons (see the Chunk size for more details).

The FLAC and WavPack codecs yield similar compression ratios, with slightly higher values for WavPack for340

NP1 (Figure 5a), but FLAC for NP2 (Figure 5d). While both codecs see an improvement in compression ratio
when transitioning from low to medium compression levels, the increase between medium and high is almost null
(< 0.01). However, there is a sharp decrease in compression speed at high compression (Figure 5b,e), and decom-
pression speed is also reduced for WavPack (Figure 5c,f ). Given these results, we used the medium compression
level for both audio codecs for all additional comparisons.345

In Figure 6, we show compression metrics for the two Zarr codecs that achieved the best performance,
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blosc-zstd and LZMA, alongside metrics for the two audio codecs, FLAC and WavPack. For LZMA, we selected
no shuffling for NP1 and byte shuffling for NP2, since these options achieved the highest compression ratio for
the respective probe types. We selected the high compression level for Zarr compressors and medium for audio
compressors, resulting in eight data points for each probe. Audio codecs clearly outperform general-purpose350

codecs in terms of compression ratio, with WavPack achieving a CR of 3.59±0.12 for NP1 (file size ∼27.9%)
and 2.26±0.13 for NP2 (file size ∼44.2%). The compression ratio of FLAC is almost identical to WavPack (NP1:
3.58±0.13; NP2: 2.27±0.12), but WavPack is faster at decompression (FLAC: 3.51±0.21 xRT for NP1, 3.45±0.08
xRT for NP2; WavPack: 12.82±0.57 xRT for NP1, 12.27±0.45 xRT for NP2). Compared to the Zarr-based
codecs, one can then expect around an 8% reduction in file size when using audio compression for both probe355
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types (NP1 - blosc-zstd: ∼35.8%, LZMA: ∼35.4%; NP2 - blosc-zstd: ∼52.63% 1.9±0.06, LZMA: ∼52.4%).
For applications in which decompression speed is critical—for example if the data needs to be accessed repeat-
edly with low latency—blosc-zstd appears to provide a good compromise between compression ratio and
decompression speed (note that in Figure 6c and 6f, the y-axis is plotted on a logarithmic scale).

Finally, we looked at the effects of delta filters and pre-processing options (Figure 7). While delta filters360

do not improve compression for audio codecs (WavPack compression is even impaired with 1d delta filtering),
filtering in the time dimension (2dT) appears to improve compression ratios for general-purpose codecs (the
same is true, to a lesser extent, for delta filters in time and space). With a time delta filter, compression ratio
for blosc-zstd increases from 2.79±0.33 to 3.24±0.09 for NP1 and from 1.9±0.06 to 2.13±0.12 for NP2,
reducing the gap with the audio codecs, which still provide the highest compression ratios. Nevertheless, the365

additional processing required to reconstruct the signals from their delta representation at decompression strongly
impacts decompression speeds, which for 2dT is reduced to 8.03±0.15 xRT and 8.03±0.23 xRT for NP1 and NP2,
respectively (Figure S4), making decompression with this option slower than using WavPack on its own.

Applying a high-pass filter slightly improves compression performance for all codecs and probes (Figure 7b,d).
This is also true for NP1, even though the AP stream includes an analog 300-Hz high-pass filter. This is probably370

due to the higher order of the digital filter applied here, which attenuates low frequencies with more efficacy.
Although NP2 data is broadband, the application of a high-pass filter prior to compression only marginally in-
creases compression ratio, which may indicate that the higher ADC resolution, and not the lack of an analog
high-pass filter, is the main reason for the lower compression ratios achieved for NP2 data. The application of
the 0.3-6 kHz band-pass filter, especially for audio codecs, greatly increases compression ratio in all cases, sug-375

gesting that high-frequency components of electrophysiology signals are harder to efficiently compress than low
frequencies. For WavPack, for example, the compression ratio goes from 3.59±0.12 for NP1 and 2.27±0.13 for
NP2 when no pre-precessing is applied, to 5.28±0.2 for NP1 and 3.85±0.22 for NP2 after band-pass filtering.
The application of a band-pass filter with a low-pass cutoff at the Nyquist frequency (15 kHz) only marginally
increases compression ratio with respect to a high-pass filter with a cutoff at 300 Hz. Applying an anti-aliasing380

filter between 0.5 Hz and 15 kHz results in an even lower or null compression ratio increase: for WavPack, for
example, the compression ratio increases to 3.61±0.13 for NP1, but no benefit is observed for NP2 (2.26±0.11).

Lossy compression
After comparing the available lossless compressors, we investigated lossy compression using two strategies: bit
truncation (using blosc-zstd as the base codec) and WavPack Hybrid mode (see Lossy compression in the385

Methods section). We used both experimental and simulated datasets for this comparison. To limit the necessary
computation time, we restricted the analysis to four experimental datasets for each probe type.16

All benchmarks, which included spike sorting with Kilosort2.5, were run on a 16-CPU machine with 64
GB of RAM and a GPU (AWS g4dn.4xlarge EC2 instance) through the Code Ocean computing platform.
Compression jobs were run using 16 parallel workers.390

How much can we gain from lossy compression?
We first look at how much, in terms of compression performance, we can gain if we employ a lossy compression
strategy (Figure 8). For bit truncation, compression ratio distributions for NP1 and NP2 do not overlap, due to
the higher ADC bit depth of NP2 compared to NP1 (14 bits vs. 10 bits). For NP1, right-shifting each sample
by 3-4 bits results in compression ratios between 5 and 10, while for larger truncations the compression ratio395

dramatically increases, which likely indicates that most of the samples are cut to zeros (Figure 8a). This is also
reflected in the root-mean-square error (RMSE) between the original and truncated samples, which increases to
values beyond 15 µV for bit truncations above 4 (Figure 8c). Considering that the nominal value of input-referred
noise for NP1 is reported to be 5.9 µV, such large values indicate that most of the signal is lost. For NP2, given
its higher ADC depth and dynamic range, the RMSE curve appears to be shifted to the right by 2 bits relative to400

that of NP1 (Figure 8c). This is due to the fact that NP2 signals have a resolution 4 times higher than NP1 AP
streams. However, the compression ratio curve for NP2 is lower than a right-shifted version of the NP1 curve

16. NP1: 625749_2022-08-03_15-15-06_ProbeA, 634568_2022-08-05_15-59-46_ProbeA, CSHZAD026_2020-09-04_probe00,
SWC054_2020-10-05_probe00; NP2: 595262_2022-02-21_15-18-07_ProbeA, 602454_2022-03-22_16-30-03_ProbeB, 612962_2022-04-
13_19-18-04_ProbeB, 618384_2022-04-14_15-11-00_ProbeB – see Table 1
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(see NP1 bit 5 versus NP2 bit 7 in Figure 8a). This discrepancy is likely due to the broadband nature of the NP2
signals.

The WavPack Hybrid approach (Figure 8b,d) shows similar compression ratios for NP1 and NP2 data, with405

curves for both probes reaching a compression ratio slightly above 7 (file size ∼14%) for a bps value of 2.25 (NP1:
7.08±0.02, NP2: 7.04±0.01). The RMSE curves remain below 5 µV for all values. The NP2 errors are slightly
higher than the NP1 ones, again probably due to the larger dynamic range of NP2 signals. Note that for NP1
and bps ≥ 5, the Hybrid compression is effectively lossless (Figure 8b). This can be explained by the fact that
WavPack can already compress losslessly with a CR of 3.59, i.e., the 16-bit samples can be already encoded, on410

average, at 16/3.59≈4.45 bits per sample.
The highest WavPack Hybrid compression ratio, therefore, is similar to that achieved by truncating between

3 and 4 bits for NP1 and between 6 and 7 bits for NP2 (NP1 - 3 bits: 6.07±1.51, 4 bits: 10.64±17.71; NP2 -
5 bits: 4.64±1.71, 6 bits: 11.2±0.87). Similar trends of compression ratios were obtained using simulated data
(Figure S5a-b). In simulations, however, the NP2 data only contain the AP band, which explains the different415
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values of compression ratio for high bit truncation values (6-7) compared to experimental data (see Figure 8a).
The WavPack Hybrid behavior on simulated data, instead, appears to match almost perfectly that obtained for
experimental data. Finally, RMSE values are lower for simulated data, which can be explained by the lower RMS
noise values of simulated data with respect to experimental data (Figure S5c-d).

To directly visualize the effects of lossy compression, we show 10 ms snippets of the voltage traces (after420

a bandpass filter and common median reference) as lossy compression becomes more aggressive (Figure 9). In
Appendix 1 we provide an more detailed view of the decompressed traces generated using the Figurl web-based
visualization plugin (Magland & Soules, n.d.).

Effects of lossy approaches on spike sorting
If it is to be used in practice, lossy compression must not degrade spike sorting results. To check whether lossy425

compression impacts spike sorting, we first used simulated data with known spiking activity. For these datasets, we
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can compute accuracy, precision, and recall metrics for each ground truth spike train (Figure 10). These three
performance metrics appear to be unaffected for all bps values and both probe types when using the WavPack
Hybrid strategy. For bit truncation, spike sorting NP1 data seems slightly affected after 5 bits are truncated and is
drastically impaired for 6 and 7 bits. For NP2 probes, 7 bits must be truncated before spike sorting performance430

is reduced, consistent with the 4× higher voltage resolution of these devices.
Accuracy, precision, and recall reflect the ability of a spike sorter to correctly detect ground truth units, but

they do not provide information about incorrectly identified units. To provide a more complete overview of spike
sorting performance, we analyzed the number of well-detected, false positive, redundant, and overmerged units
(Figure 11; see definitions in the Evaluation and benchmarks section). For example, for 5 bits truncated for NP1,435

the spike sorting metrics are only slightly affected (Figure 10a), but for the same condition, the number of false
positive and redundant units explode (Figure 11a). The exact same situation is also observed for 7 truncated bits
for NP2 (Figure 11c). For the WavPack Hybrid approach, the results confirm that spike sorting is not adversely
affected, with a relatively constant number of well-detected and redundant units for all bps values (Figure 11b,d).
Decreasing the target bit rate does seem to reduce the number of false positive units for NP2, presumably because440

compression has a slight denoising effect.
The results from our simulations suggest that the WavPack Hybrid approach does not affect spike sorting

outcomes. To validate this on experimental data, where ground truth spike trains are not available, we automati-
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cally curated the spike sorting outputs of eight sessions (see the Evaluation and benchmarks section) and counted
the fraction of passing and failing units compared to the lossless spike sorting result (Figure 12). We observed445

similar trends as in simulated data. For NP1, the number of failing units increases dramatically for more than
5 bits truncated, and the number of passing units is reduced after 4 bits. For NP2, the number of passing and
failing units both decrease for 6 and, more pronouncedly, 7 truncated bits. The fractions of passing and failing
units, instead, appear generally constant for WavPack Hybrid, with a slight reduction in the number of passing
and failing units for the lowest bps values (2.5 and 2.25).450

To further investigate how spike sorting results are affected by lossy compression, we compared the full spike
trains for all units passing QC against the best matching units detected in the lossless data. In Figure 13, each
line represents the fraction of spike times in agreement between different lossy sortings and the lossless scenario.
Even for two separate spike sorting runs applied to the same lossless data (the “0” line for bit truncation and the
“Lossless” line for WavPack Hybrid), the detected spike trains do not match perfectly, as indicated by the sloping455

of the agreement lines toward zero (an exact match would result in a flat line at 1). This is attributed to the
inherent run-by-run variability for Kilsort 2.5. Increasing the number of truncated bits quickly reduces the
agreement with respect to the lossless result for NP1 (Figure 13a), while the agreements for NP2 only seem to
be affected only after 6 and 7 truncated bits (Figure 13c). The abrupt drops in the agreements are due to partial
matches and over-splits. For WavPack Hybrid, spike sorting results are more stable (Figure 13b,d), but some460

divergence from the lossless output appears for bps of 2.5 and 2.25. However, for other datasets, the divergence
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Figure 12: Spike sorting performance following lossy compression of experimental data. Fraction of units passing or fail-
ing quality control compared to the spike sorting results on uncompressed data after bit truncation (a and c) or compression
with WavPack Hybrid (b and d). Top row is for NP1, bottom row is for NP2. N = 4 spike sorting runs for each condition.

can arise at higher bps values (Figures S6 and S7). The same divergence can be also observed when comparing
all detected units, rather than only those passing QC (Figure S8a,c).

We investigated whether these discrepancies might arise because the spike sorter consistently finds a larger
or smaller number of spikes after compression. To do so, we first compared the spike trains from the lossless465

compression with the ones from WavPack Hybrid with a bps of 2.25. Next, we selected all matching unit pairs
with an agreement above 0.5 and, for each of these pairs, we counted the fraction of excess spikes in the lossy
or lossless spike trains. The distributions of the fraction of excess spikes are symmetric (Figure S8b,d), which
confirms that lossy compression does not cause the spike sorter to consistently miss spikes, nor consistently find
additional spikes with respect to the lossless sort. Sample waveforms of excess spikes from a matched unit pair are470

visually indistinguishable (Figure S8b,d, inset), suggesting that the observed differences in spike sorting results
are likely to be attributed to inherent run-to-run variability, rather than to systematic modulation of waveforms
due to lossy compression.

Waveform preservation for lossy compression strategies
Preserving spike waveforms is critical for accurate spike sorting, and waveform features carries useful information475

about neurons’ underlying biophysical properties. To further assess whether lossy compression distorts spike
waveforms, we computed the relative errors of three commonly used features (peak-to-valley duration, half-
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Figure 13: Comparing spike trains detected before and after lossy compression. Each line represents the ordered agree-
ment of matching units between the lossy and lossless spike sorting outputs. If all spike times are identical, units will have an
agreement of 1. For the 0 bits truncated or lossless WavPack compression, we compared the outputs of two Kilosort 2.5
runs on the same data. The top and bottom rows display NP1 (CSHZAD026_2020-09-04_probe00) and NP2 (612962_2022-
04-13_19-18-04_ProbeB) results, respectively. Left panels (a and c, purples) represent bit truncation and right panels (b and
d, greens) are for WavPack Hybrid compression.

width duration, and peak-to-trough ratio) with respect to the ground truth average waveforms in our simulated
datasets. For each unit (N = 100), these features were computed on the main channel (the one with the largest
amplitude) and on a peripheral electrode 60 µm away (Figure 14). Truncating 3 to 4 bits for NP1 and 6 to 7 bits for480

NP2 results in errors well above 20%, especially for peripheral channels. The WavPack Hybrid strategy, on the
other hand, preserves waveform features with much higher fidelity, with all error distributions remaining well
below 10%, and staying largely constant with increasing bps. In terms of compression ratio, WavPack Hybrid
with a bps of 2.25 is equivalent to truncating between 3 and 4 bits for NP1 and 6 and 7 bits for NP2. Nevertheless,
lossy compression with WavPack Hybrid has a minimal impact on waveforms.485

Software extensions
As part of this project, we developed and shared a range of software tools. The following sections summarize our
contributions in this area.
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Figure 14: Effect of lossy compression on spike waveforms. Relative errors in estimating common waveform features
(from left to right columns: peak-to-valley duration, half-width duration, and peak-to-trough ratio) for NP1 (a-f) and NP2
(g-l) on simulated data. For each metric, values are computed on the main channel (darker hues, marked as 0 µm) and on
a peripheral channel at 60 µm distance from the main channel (lighter hues). For reference, the horizontal dashed lines
represent a 10% relative error. N = 100 units for all error distributions.
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Integration of Zarr-based compression in SpikeInterface
To facilitate the compression of electrophysiology data, we extended the SpikeInterface framework (Buccino490

et al. 2020) to support a Zarr backend (SI version 0.94 and higher). SpikeInterface natively reads over 30
common data acquisition formats (including Open Ephys and SpikeGLX), which can now be easily loaded and
written to disk as compressed Zarr files. We used this Zarr backend to systematically evaluate and benchmark
all the compression strategies presented in the Lossless compression and Lossy compression sections.

This code snippet shows how to compress an Open Ephys dataset with the spikeinterface.save() func-495

tion, using parallel processing (8 jobs) and chunked writing (1 s chunk size):

import spikeinterface as si
import spikeinterface.extractors as se
import spikeinterface.preprocessing as spre

from numcodecs import Blosc

openephys_folder = "path-to-open-ephys-folder"
recording = se.read_openephys(openephys_folder)
recording = spre.correct_lsb(recording)

compressor = Blosc(cname="zstd", clevel=5)
recording_zarr = recording.save(format="zarr", folder="open-ephys.zarr",

compressor=compressor, n_jobs=8,
chunk_duration="1s")

In this example, LSB correction (which we assessed in the Lossless compression section) is enabled via the
correct_lsb() function.

Because Zarr supports writing directly to cloud storage, the same interface can be used to save a local dataset
directly to a cloud bucket, just by specifying the appropriate access options:500

zarr_path = "s3://aind-bucket/open-ephys.zarr"
recording_zarr = recording.save(format="zarr", folder=zarr_path,

compressor=compressor)

We assume here that the local machine has the correct access credentials to write to the s3://aind-bucket
storage location.

Zarr datasets saved by SpikeInterface and stored on the cloud can be accessed lazily, i.e., only the re-
quested chunks are downloaded and decompressed:

zarr_path = "s3://aind-bucket/open-ephys.zarr"
recording_zarr = si.read_zarr(zarr_path)
# retrieve traces
traces_chunk = recording_zarr.get_traces(start_frame=100000,

end_frame=200000)
# only chunks between frames [100000, 200000] are downloaded and decompressed

This facilitates efficient access to the data within a cloud computing environment.505

Extensions to the numcodecs library
As part of this project, we developed three numcodecs extensions: the FLAC and WavPack audio codecs and a
Delta2D filter. The new codecs are open source, with the source code available on GitHub (flac-numcodecs,
wavpack-numcodecs, and delta2D-numcodecs) and Python packages on PyPi. The three packages are cross-
platform (tests are run on Windows, MacOS, and Ubuntu with Continuous Integration) and can be installed510

directly with pip:
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$ pip install flac-numcodecs wavpack-numcodecs delta2D-numcodecs

Once installed, the audio compressors are automatically added to the numcodecs registry and can be used
directly in Zarr or SpikeInterface . In this example, we show how to compress a recording with FLAC
(compression level = 8 – high, channel block size = 2), WavPack lossless mode (compression level = 3 – high),
and WavPack hybrid mode (bps = 3), as well as with a delta filter in the time dimension using the blosc-zstd515

compressor:

from wavpack_numcodecs import WavPack
from flac_numcodecs import Flac
from delta2D-numcodecs import Delta2D
from numcodecs import Blosc

compressor_flac = Flac(level=8)
compressor_wv = WavPack(level=3, bps=None)
compressor_wv_lossy = WavPack(level=3, bps=3)
delta2dt = Delta2D(dtype="int16", num_channels=384, axis=0)
compressor_blozc_zstd = Blosc(cname="zstd", clevel=9)

recording_flac = recording.save(format="zarr", folder="open-ephys-flac.zarr",
compressor=compressor_flac, channel_chunk_size=2,
n_jobs=8, chunk_duration="1s")

recording_wv = recording.save(format="zarr", folder="open-ephys-wv.zarr",
compressor=compressor_wv, n_jobs=8,
chunk_duration="1s")

recording_wv_lossy = recording.save(format="zarr", folder="open-ephys-wv-lossy.zarr",
compressor=compressor_wv_lossy, n_jobs=8,
chunk_duration="1s")

recording_delta_t = recording.save(format="zarr", folder="open-ephys-delta2d.zarr",
compressor=compressor_blozc_zstd, filters=[delta2dt],
n_jobs=8, chunk_duration="1s")

Integration with NWB
All the compression strategies that we utilized (and developed) in this contribution can be used to compress
electrophysiology data in the Neurodata Without Borders (NWB) format (Teeters et al. 2015; Rübel et al. 2022)
through the recently developed Zarr backend (Tritt et al. 2019).17 The FLAC codec, but not WavPack, is also520

available as an HDF5 Registered Filter Plugin.18

Discussion
We have presented a detailed comparison of compression strategies for large-scale electrophysiology data. In ad-
dition, we implemented a Zarr-based compression framework within the SpikeInterface API, which is now
available for the community to use. Below, we consider the implications of our findings and provide recommen-525

dations for other researchers collecting similar types of data.

Lossless compression
We compared 11 different lossless codecs across multiple types of recordings and compression options (including
chunk size, compression level, and pre-shuffling). We found that audio codecs (FLAC and WavPack) outperform
general-purpose codecs in terms of compression ratio (CR), allowing one to compress Neuropixels 1.0 data up530

to a CR of 3.59±0.12 (file size ∼28%), and Neuropixels 2.0 data up to a CR of 2.27±0.13 (file size ∼44%). The
downside of audio compressors is that they have relatively slow decompression speeds (e.g., ∼12 xRT for WavPack
vs. ∼50-90 xRT for blosc-zstd). However, the reported decompression speed is computed by decompressing

17. https://hdmf-zarr.readthedocs.io/en/latest/
18. https://portal.hdfgroup.org/display/support/Registered+Filter+Plugins
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10 s of traces without explicit parallelization. In most cases, decompression (i.e., reading the data) only needs
to be performed a handful of times and can utilize multiple CPU cores. If the parallel reading (and processing)535

of the compressed data matches the chunk size (e.g., 1 s), then one can expect a speed-up proportional to the
number of parallel workers. The very high speed of the natively multi-threaded blosc-zstd codec (Figure 6c,f )
could make this the best option for applications that require frequent decompression, such as trace visualization.
When using general-purpose compressors, applying an additional delta filter in the time dimension can further
boost compression performance (Figure 7a-b), but would also reduce decompression speed to less than 10 xRT540

(Figure S4a-b).
In the Evaluation and benchmarks section, we argued that compression ratio and decompression speed are the

main metrics to consider when evaluating compression performance. Compression ratio is inversely proportional
to the price of long-term data storage, but decompression requires compute resources, which have a nonzero cost.
How much, then, can we actually expect to save by using WavPack, which has a higher compression ratio, instead545

of blosc-zstd, which can decompress faster? To take a concrete example, we compare the costs associated with
lossless compression of one hour of NP1 data (80 GB). Assuming storage at $0.023/GB per year, blosc-zstd
will produce a compressed file of 28.67 GB (average CR = 2.79) that will cost $7.91/year to store. WavPack will
compress the same data down to a 22.28 GB file (average CR = 3.59) which will cost $6.15/year. Assuming a
cost of $0.05/CPU per hour,19 and assuming decompression occurs at the median speeds reported in Figure 6c550

(88.89 xRT for blosc-zstd and 12.82 xRT for WavPack), blosc-zstd would become cheaper overall only if
the full dataset were decompressed at least 528 times in a year (with similar calculations, the number of required
decompressions for NP2 would be 532).20 Since we expect a typical cloud analysis pipeline will decompress the
data only prior to pre-processing and spike sorting and to generate, at that time, appropriate visualizations for
quality control and inspection, we conclude that WavPack is the more cost-effective choice. While the raw data555

may need re-processing, for example when testing new methods for pre-processing or spike sorting, we expect
this to happen, at most, a few times a year, well below the 500+ decompressions needed to reach the break-even
point.

We also showed that pre-processing with a high-pass or band-pass filter can increase compression ratio (Fig-
ure 7c-d). Although we included the effect of pre-processing in the lossless section, it’s important to note that560

pre-processing effectively results in lossy compression, since the frequencies that are filtered out cannot be re-
covered. While it may be tempting to apply such filters prior to compression, rather than after decompression, it
is worth noting that the frequency content of spike waveforms can extend below 1000 Hz, as well as above the
6 kHz cutoff frequency used in typical band-pass filters for electrophysiology data. Several spike sorters, includ-
ing Kilosort, pre-process the data with a high-pass filter to retain signals up to Nyquist frequencies that may565

help distinguish waveforms from nearby neurons. There are even attempts to develop spike sorting methods that
use broadband data as input (Le Cam et al. 2023). For these reasons, we recommend compressing the raw data
directly, without applying any pre-processing to boost compression ratio.

Lossy compression
After benchmarking lossless compression, we evaluated two lossy strategies: bit truncation and WavPack Hybrid570

mode. Using simulated data, we showed that WavPack Hybrid is superior to naive bit truncation, as it can
achieve a compression ratio of around 7 (∼14% file size) for both probe types without affecting spike sorting
results (Figures 10 and 11) or altering spike waveforms (Figure 14). Although we observed similarly unaffected
results using experimental data (Figure 12), it is harder to reach strong conclusions in this case due to the absence
of ground-truth spike trains. Therefore, our findings on experimental data should be interpreted with caution, as575

counting the number of units that pass certain thresholds based on quality metrics does not provide a full picture
of spike sorting performance. For example, even with lossless compression, spikes from a single neuron might be
over-split into two units, both of which may pass quality control. We must also be wary of incomplete units, e.g.
a unit that includes only 30% of the original spikes but still passes quality control.

To assess the impact of lossy compression on experimental data in more detail, we used the spike sorting580

results from the original (lossless) recording as “pseudo ground truth” (Figures 13, S6, and S7). In general,
sorting outputs when using WavPackHybrid closely matched those of the original recording, even for the highest

19. AWS on-demand pricing for an m4 instance as of March 2023: https://aws.amazon.com/ec2/pricing/on-demand/
20. For simplicity, we assume that the decompression speeds can be achieved using a single CPU.
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compression levels. However, the exact bps value at which sorting outputs began to diverge from the original
varied by experiment. While this comparison is able to reveal more subtle changes in spike sorting outputs,
it may penalize lossy compression options that actually improve sorting accuracy, for example by lowering the585

noise floor and making spikes more easily detectable. Due to the remaining uncertainty around the precise
impact of lossy compression, for our initial round of data acquisition at the Allen Institute of Neural Dynamics
we are performing lossless compression with WavPack. However, given the potential for additional cost savings,
it is worth pursuing further validation of lossy strategies. One option would be to assess sorting performance
with hybrid recordings (Rossant et al. 2016; Wouters et al. 2021), where artificial spikes are injected into a real590

dataset, or paired recordings, in which the same neuron is simultaneously observed with an extracellular electrode
and an intracellular pipette (Neto et al. 2016; Marques-Smith et al. 2018). An alternative approach could target
downstream analysis: if the same scientific conclusions are reached from raw and lossy recordings, then one could
argue that lossy compression is not affecting spike sorting in a meaningful way.

Other lossy compression strategies might also be worth exploring. Simple bit truncation, as we have utilized595

here, is the least computationally intensive method for reducing the bit-depth of digitally sampled signals. There
are several additional compression techniques that we plan to explore in future work: dithering, wherein a small
random signal is added to the sample values before truncation to reveal details in the signal below the least-
significant bit; noise shaping, wherein the quantization error introduced by the truncation is high-pass filtered
and included in subsequent samples; and ADPCM (Adaptive Delta Pulse Code Modulation), which is a simple600

scheme for representing pulse code modulated signals using a small fixed number of bits for each sample.

Conclusion

Given the similar properties of all extracellular electrophysiology signals, we anticipate that the results we obtained
with NP1 and NP2 data will generalize to different probe types and acquisition systems, as well as brain regions
and species. For example, we can expect compression ratios to be inversely related to the ADC bit depth of605

the acquisition device and to be lower for broadband signals compared to narrower “spike-band” signals. By
providing the community with a ready-to-use compression toolbox and associated benchmarks, we hope to
enable electrophysiologists to employ and customize compression strategies to immediately start reducing storage
costs and conserving resources for other research activities.

Data and code availability

The raw data used in this paper and listed in Table 1 is publicly available at:
s3://benchmark-data/ephys-compression through the Registry of Open Data on AWS.

The scripts used to generate the figures in this paper can be found at: https://github.com/AllenNeuralDynamics/
ephys-compression/ in the scripts folder. All figures can be reproduced using the following Code Ocean cap-
sule: https://github.com/AllenNeuralDynamics/aind-capsule-ephys-compression-results, which is also available
in the Code Ocean Open Science Library: https://codeocean.com/capsule/3822095/tree/v1.
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Appendix 1. Lossy compression visualization
In this appendix, we provide Figurl-based visualizations of 1 s snippets of traces for the eight experimental
datasets used for lossy compression evaluation. For each dataset and compression strategy (WavPack Hybrid
and bit truncation), the drop-down window on the top left of the view allows one to select different layers
corresponding to different levels of compression (# of bits truncated for Bit truncation, bps for WavPack Hybrid).
Level 0 is the original recording in both cases.

• 595262_2022-02-21_15-18-07_ProbeA

– Bit truncation
– WavPack Hybrid

• 602454_2022-03-22_16-30-03_ProbeB

– Bit truncation
– WavPack Hybrid

• 612962_2022-04-13_19-18-04_ProbeB

– Bit truncation
– WavPack Hybrid

• 618384_2022-04-14_15-11-00_ProbeB

– Bit truncation
– WavPack Hybrid

• 625749_2022-08-03_15-15-06_ProbeA

– Bit truncation
– WavPack Hybrid

• 634568_2022-08-05_15-59-46_ProbeA

– Bit truncation
– WavPack Hybrid

• CSHZAD026_2020-09-04_probe00

– Bit truncation
– WavPack Hybrid

• SWC054_2020-10-05_probe00

– Bit truncation
– WavPack Hybrid
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Supplementary figures
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Figure S1: Combined effect of compression level and shuffling for blosc-zlib. Compression ratios for the blosc-zlib
codec with increasing compression levels (low to high) for different shuffling options (none, bit, and byte). While compres-
sion ratio increases with increasing compression levels for none and byte shuffling options, the opposite behavior is ob-
served for bit shuffling. N = 16 compression jobs for all distributions.
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Figure S2: Compression ratio and decompression speed for all general-purpose compressors, shuffling options, and
levels. Combined effect of compression level (marker size) and shuffling (marker shape) on compression ratio (x-axis) and
decompression speed (y-axis) for blosc (a and c) and numcodecs (b and d) compressors. Top row is for NP1 (a-b), bottom
row is for NP2 (c-d).
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Figure S3: Effect of channel block size on FLAC compression. Compression ratio (a), compression speed (b), and de-
compression speed (c) for the FLAC codec with different channel block sizes. A channel block size of -1 corresponds to a
flattening of the 2D input data before compression; a block size of 2 groups channels into stereo pairs. N = 48 compression
jobs for all distributions.

blos
c-z

std lzm
a

fla
c

wav
pac

k

De
co

m
pr

es
si

on
 s

pe
ed

 (x
RT

)

blos
c-z

std lzm
a

fla
c

wav
pac

k

none
1d
2dT
2dS
2dTS

delta filter

100

10

1

0.1

100

10

1

14-bit ADC
broadband

NP2a bNP1
10-bit ADC
high-pass

Figure S4: Effect of delta filters on decompression speed. Decompression speeds for blosc-zstd, LZMA, FLAC, and
WavPack after applying different delta filters to NP1 (a) or NP2 (b) data. N = 8 compression jobs for all distributions.
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Figure S5: Impact of lossy compression on simulated data. Compression ratios (a-b) and root-mean-square error (RMSE)
values (c-d) for bit truncation (left, purples) and WavPack Hybrid (right, greens). The x-axes represent the number of bits
truncated (for bit truncation) or the target bps (for WavPack Hybrid). In all panels, lossiness increases from left to right.
Horizontal dashed lines are added for reference and mark compression ratios of 5 and 10 or an RMSE of 5 µV.
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Figure S6: Comparing spike trains detected before and after lossy compression (NP1). Same as Figure 13 for the remain-
ing NP1 sessions that were analyzed: a, 625749_2022-08-03_15-15-06_ProbeA. b, 634568_2022-08-05_15-59-46_ProbeA. c,
SWC054_2020-10-05_probe00.
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Figure S7: Comparing spike trains detected before and after lossy compression (NP2). Same as Figure 13 for the remain-
ing NP2 sessions that were analyzed: a, 595262_2022-02-21_15-18-07_ProbeA. b, 602454_2022-03-22_16-30-03_ProbeB. c,
618384_2022-04-14_15-11-00_ProbeB.
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Figure S8: Extended comparison of lossless and lossy spike trains. Ordered agreement of all matching units between a
lossless sorting output and seven levels of WavPack Hybrid compression, for NP1 (a) and NP2 (c) data (same datasets as
Figure 13). For each matched unit with an agreement above 0.5, the number of excess spikes in the lossless and lossy (bps
= 2.25) spike trains are shown (b,d). Excess spike waveforms for one example unit appear as insets: lighter waveforms are
computed from the lossless recording, while darker ones are from the lossy recording.
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