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ABSTRACT 

The long-term persistence of species in the face of climate change can be evaluated by examining the 

interplay between selection and genetic drift in the contemporary evolution of populations. In this 

study, we focused on spatial and temporal genetic variation in four populations of the cold-water kelp 

Laminaria digitata using thousands of SNPs (ddRAD-seq). These populations were sampled from the 

center to the south margin in the North Atlantic at two different time points, spanning at least two 

generations. By conducting genome scans for local adaptation from a single time point, we successfully 

identified candidate loci that exhibited clinal variation, closely aligned with the latitudinal changes in 

temperature. This finding suggests that temperature may drive the adaptive response of kelp 

populations, although other factors, such as the species' demographic history should be considered. 

Furthermore, we provided compelling evidence of positive selection through the examination of allele 

frequency changes over time, offering additional insights into the impact of genetic drift. Specifically, 

we detected candidate loci exhibiting temporal differentiation that surpassed the levels typically 

attributed to genetic drift at the south margin, confirmed through simulations. This finding was in 

sharp contrast with the lack of detection of outlier loci based on temporal differentiation in a 

population from the North Sea, exhibiting low levels of genetic diversity, that further decreased over 

time. These contrasting evolutionary scenarios among populations can be primarily attributed to the 

differential prevalence of selection relative to genetic drift. In conclusion, our study highlights the 

potential of temporal genomics to gain deeper insights into the contemporary evolution of marine 

foundation species in response to rapid environmental changes. 
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1. INTRODUCTION  

The different selective pressures that arise from varying environments, both spatially and temporally, 

can lead to distinct trait values through local adaptation, phenotypic plasticity, or a combination of 

both (de Villemereuil et al., 2018; Reger et al., 2018). When population divergence is driven by 

adaptation, gene flow between populations can serve as an important source of genetic variation for 

traits under selection. The rate at which populations respond to environmental change is directly 

proportional to the genetic variation present in fitness-related traits, particularly when adaptation 

arises from existing genetic variation (Barrett & Schluter, 2008). Local adaptation is thus considered a 

promising phenomenon that can facilitate species’adaptation to climate change (Aitken et al., 2008; 

Savolainen et al., 2013). However, genetic differentiation also arises from stochastic processes, such 

as genetic drift, especially in small and isolated populations. These populations, with limited gene flow, 

may experience reduced genetic diversity, which can impede or slow down the process of local 

adaptation (Lande, 1988; Willi et al., 2006). Therefore, it is important to disentangle the effects of 

natural selection from neutral processes for assessing the adaptive potential of natural populations in 

the face of rapid environmental change. This knowledge holds value in the development of genetically 

informed ecological niche models (Ikeda et al., 2017; DeMarche et al., 2019) and the implementation 

of effective conservation strategies that integrate adaptive patterns of genetic variation and assess 

their potential mismatch with future climate change (e.g., Sgrò et al., 2011; Von der Heyden, 2017; 

Xuereb et al., 2020). 

Genome-wide screening of genetic variation has provided evidence supporting the potential for 

populations to undergo local adaptation to specific environmental conditions, despite experiencing 

substantial rates of genetic drift. Indeed, several studies have identified candidate loci for positive 

selection in relatively small, structured populations (e.g., Funk et al., 2016; Perrier et al., 2017; Leal et 

al., 2021; Pratlong et al., 2021), raising questions regarding the relative contribution of selection and 

genetic drift. However, it is crucial to acknowledge the potential impact of factors, such as high 

variance in FST among loci and other sources of spatial variation in allele frequencies on the sensitivity 

of genome scans, particularly those utilizing FST-based approaches (Storz, 2005; Bierne et al., 2011; 

Lotterhos & Whitlock, 2015; Hoban et al., 2016). Furthermore, the effectiveness of these approaches 

can be limited when detecting weak or recent events of positive selection or when selection acts upon 

numerous loci with small effect sizes (de Villemereuil et al., 2014).  

One potential improvement to enhance genome scans for local adaptation is the inclusion of samples 

collected at multiple time points (see for review Clark et al., 2023). This approach offers valuable 

insights into both neutral and adaptive patterns of genomic variation, as demonstrated by studies, 

such as Therkildsen et al. (2013a, 2013b) and Frachon et al. (2017). The underlying premise of temporal 

genomics is that loci under positive selection exhibit a consistent directional trend in allele frequency, 
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which allows them to be distinguished from random changes due to genetic drift. Hence, comparing 

temporal genetic differentiation expected by genetic drift using forward genetic simulation (Goldringer 

& Bataillon, 2004), as well as, assessing, covariance in allele frequencies over time (Buffalo & Coop, 

2019, 2020), can be informative for detecting loci contributing to temporal genetic changes underlying 

rapid adaptation to novel selective pressures. Temporal genomics also provides an opportunity to 

measure temporal variance in allele frequencies, which is expected to provide insight into 

contemporary estimates of effective size (Ne) compared to methods using linkage disequilibrium 

(Waples, 1989, 2005). This has significantly enhanced the power to detect declines and more accurate 

inferences of Ne, particularly when historical population sizes were large (Nadachowska-Brzyska et al., 

2021; Reid & Pinsky, 2022). 

The Laminariales, commonly known as kelps, present an interesting model for investigating the 

interplay between selection and genetic drift in the contemporary evolution of populations to rapid 

climate warming. Understanding the ability of such cold-temperate water species to adapt to warmer 

conditions is crucial in assessing their vulnerability to local extinction (Araújo et al., 2016; Arafeh-

Dalmau et al., 2019; Filbee-Dexter et al., 2020). Recent studies on Laminaria digitata in the Northern 

Hemisphere have suggested that populations at the south margin may exhibit lower sensitivity to heat 

stress compared to those in the North (Liesner et al., 2020; Schimpf et al., 2022). Although significant 

progress has been made in understanding the genetic basis of thermal preference and heat tolerance 

in kelp species (Mao et al., 2020; Guzinski et al., 2020; Vranken et al., 2021), identifying candidate loci 

by genome scans for local adaptation at a single time point remains challenging due to pronounced 

levels of neutral differentiation. Kelps typically display considerable genetic structuring attributed to 

limited dispersal capacities and seascape features, leading to relatively low to moderate effective 

population sizes at the trailing edge (Coleman et al., 2011; Brennan et al., 2014; Assis et al., 2022; 

Fouqueau et al., 2023). Based on the current state of knowledge, the question of whether populations 

at the southern margin are locally adapted to warmer temperatures or if the previously observed 

patterns of thermal adaptation arose from phenotypic plasticity remains unresolved. 

The main objective of our study was to investigate the impact of local selection and genetic drift on 

the contemporary evolution of the kelp Laminaria digitata across both spatial and temporal 

dimensions. To achieve this, we employed a reduced representation sequencing technique (ddRAD-

seq, Peterson et al., 2012) on four populations, with three of these populations sampled at two 

different time points. Our specific aims were as follows: i) estimating contemporary effective 

population size (Ne) based on temporal genetic changes to assess whether limited genetic variation at 

the southernmost margin may hinder the population's adaptive response, ii) conducting genome scans 

across space to identify potential signatures of selection in response to thermal conditions, iii) 

differentiating the effects of genetic drift from selection by analyzing changes in allele frequencies over 

time, allowing us to detect potential signatures of ongoing selection or genetic erosion that may occur 
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within a few generations. Overall, our results point out the promise of temporal genomics to gain 

deeper insights into the contemporary response of this fundamental marine species to rapid 

environmental changes.  

 

2. MATERIAL AND METHODS  

2.1 Sampling  

Populations of Laminaria digitata were sampled from four locations spanning from the species’ center 

to its southern margin. The sampling sites included Clachan, Scotland (CLA); Helgoland, Germany 

(HLG); Roscoff, France (ROS) and Quiberon, France (QUI) (Table 1, Figure 1). Tissue samples of 

approximately 3cm were collected from 30-40 sporophytes in the low intertidal zone at each site. The 

samples were promptly stored in silica gel to preserve their genetic material. For three out of the four 

populations (HLG, ROS, QUI), samples were collected at two different time points to capture changes 

in allele frequencies over a short period and gain insights into the relative influence of directional 

selection and genetic drift. The time interval between the two sampling periods ensured that at least 

two generations of sporophytes were included in the study (Bartsch et al., 2008). The first set of 

samples was collected between 2005 and 2011, while the second set was collected in 2018. Regarding 

the CLA population, samples were collected in 2008 and 2018 from two separate sites, CLA_1 and 

CLA_2, which were approximately 20 km apart. Given the frequent observation of genetic structure 

within the species at scales of 1-10 km (e.g., Billot et al., 2003, Robuchon et al., 2014), the samples 

from CLA were treated as separate populations rather than multiple time points of the same 

population. 

 

2.2 Temperature data acquisition 

Given the increasing body of evidence supporting the role of temperature in driving adaptation within 

the species (King et al., 2019; Liesner et al., 2020; Schimpf et al., 2022) sea surface temperature (SST) 

was considered the most relevant factor for investigating adaptive differentiation among populations.  

To characterize the SST ranges experienced by the populations, we utilized daily mean SST data 

obtained from satellite observations with a resolution of 0.05° × 0.05°, sourced from the E.U. 

Copernicus Marine Service Information (E.U. Copernicus Marine Service, 2022). In order to account for 

the influence of ongoing climate warming on temporal genetic changes, we differentiated SST 

predictors between two distinct periods: 1993-2000 and 2000-2018. This approach allowed us to 

consider the slight increase in SST experienced by the respective generations during the first and 

second time points. 
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2.3 Library preparation, SNP and genotype calling  

DNA extraction was performed on dried tissue that has been preserved in silica gel for several years 

using the Nucleospin R 96 plant kit II (Macherey-Nagel, Düren, Germany), following the manufacturer’s 

protocol. Two double-digest RAD-sequencing libraries (ddRAD-seq, Peterson et al., 2012) were 

prepared, with 117 individuals for the first time point and 104 individuals for the second time point, 

including eight replicates (i.e. eight samples with the same DNA extract but independent library 

preparation, sequencing, reads mapping, and SNP calling) in each population and time point. 

Individuals were randomly distributed across the libraries, along with 355 samples of distinct projects 

to prevent batch effects and ensure library diversity. Library preparation was conducted according to 

Reynes et al., (2021), using 100 ng of DNA and the PstI and HhaI enzymes (NEB). Paired-end reads with 

150 cycles were obtained by sequencing the libraries on an Illumina Hiseq 4000 platform (Génome 

Québec Innovation Centre, McGill Univ., Montreal, Canada). Quality control of the sequences was 

performed using FASTQC v.0.11.7 (Andrews, 2010). Adaptors were removed, and the reads were 

trimmed to 137 bp using Trimmomatic (Bolger et al., 2014). The paired-end reads were then mapped 

to the draft reference genome of L. digitata using BWA-mem with default parameters in BWA v.0.7.17 

(Li & Durbin, 2009). The N50 of the draft genome is ~9.9 Mb with a genome assembly size of ~470 Mb 

among 127 552 scaffolds. Uniquely mapped reads were retained with SAMtools v.1.13 (Danecek et al., 

2021). SNP calling was performed with the reference mode of the Stacks v.2.52 pipeline (Catchen et 

al., 2011). Genotyping and SNP calling were carried out separately for individuals at each time point, 

and the shared SNPs between the datasets were selected before merging individuals across these SNP 

positions. The bcftools isec and bcftools merge functions of BCFtools v.1.9 (Danecek et al., 2021) were 

used for these steps. Post-call filtering of SNPs was performed on the merged dataset by keeping SNPs 

with a call rate >90% per population in one or more populations using pop_missing_filter.sh of the 

dDocent pipeline (Puritz et al., 2014). Problematic individuals (n = 23) with a call rate below 80% were 

discarded. Filtering based on mean read depth (DP) and minor allele frequency was implemented using 

vcftools v.0.1.16 (Danecek et al., 2011), with specific parameters outlined in Table 2. To address the 

effects of excessive linkage disequilibrium (LD) between loci, SNPs with a square correlation (r2) >0.2 

were removed using PLINK v.1.9 (Chang et al., 2015). The calculation of r2 values was performed 

separately for each population to separate the effects of physical proximity among SNPs from the 

effects of genetic structure in LD patterns. SNPs with r2 values exceeding the threshold in all 

populations were discarded (Table 2). After all post-filtering steps, a total of 2 854 SNPs remained 

among 190 individuals (excluding the eight replicates). Genotyping concordance was assessed in this 

dataset by calculating the SNP error rate between replicate pairs following Mastretta-Yanes et al., 

(2015). 
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2.4 Genetic differentiation 

The genetic differentiation among populations and over time was assessed using an analysis of 

molecular variance (AMOVA) implemented in Arlequin v.3.11 (Excoffier et al., 2005), with 10 000 

permutations. To account for temporal changes, the AMOVA considered genetic variation between 

two time points within each of the three populations that were resampled over time. Spatial and 

temporal genetic differentiation were quantified by calculating FST (Weir and Cockerham, 1984) using 

the R package diveRsity v1.9.90. The significance of FST values was evaluated using an exact test of 

genic differentiation (Raymond and Rousset, 1995) with the Markov chain method and default 

parameters. A combination of all tests across loci was performed using Fisher’s method. Genetic 

structure was investigated using the sNMF algorithm implemented in the R package LEA v.2.8 (Frichot 

et al.,2014; Frichot and François, 2015). The analyses involved 10 000 iterations and 20 repetitions, 

with K ranging from 1 to 16. The best K value was determined based on the cross-entropy criterion. A 

complementary analysis of genetic structure was performed using a principal component analysis 

(PCA) on SNP variation, utilizing the R packages Bigsnpr v.1.3.0 and Bigstatsr v.1.2.3 (Privé et al., 2018). 

Missing genotypes were imputed by replacing them with the average allele frequencies before 

performing the PCA. 

 

2.5 Genetic diversity and effective population size 

Genetic diversity within populations was assessed using the complete set of 2 854 SNPs. Expected 

heterozygosity (He) was estimated using the R package diveRsity v.1.9.90. Differences in He between 

populations and time points were evaluated using pairwise Wilcoxon tests, with adjustment for 

multiple comparisons using the Bonferroni method. To estimate the proportion of polymorphic loci 

(P%) within each population and time point, a custom bash script (available upon request) was used. 

The P% was calculated by randomly sampling 20 individuals (with replacement) and iterating the 

procedure 100 times. A minor allele frequency threshold of 0.01 was applied, and averages and 

standard errors of P% were computed. The contemporary effective population size (Ne) was estimated 

based on the temporal variance in allele frequencies using three methods: two methods based on F-

statistics Fc (Nei & Tajima, 1981) and Fs (Jorde & Ryman, 2007) and a likelihood estimator (Wang & 

Whitlock 2003), known for its improved precision and accuracy in the presence of rare alleles (Wang, 

2001). For the F-statistics methods, the software Neestimator v.2.1 (Do et al., 2014) was employed, 

while the likelihood approach was performed using MLNe v.2.0 (Wang & Whitlock, 2003). The 95% 

confidence intervals of the likelihood estimate and moment F statistics were also calculated. The Ne 

estimation considered the plan II sampling procedure, assuming individuals are sampled before 

reproducing and are not returned to the population (Waples, 1989). Additionally, it was assumed that 

two generations had passed between the time points.  
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2.6 Outlier detection across space  

Outlier tests based on spatial differentiation were conducted to identify loci that exhibited patterns of 

differentiation among populations deviating from neutral expectations, potentially indicating the 

influence of directional selection. These outlier tests were performed separately for each time point. 

Individuals from CLA_1 (2008) and CLA_2 (2018) were included in these tests, despite their exclusion 

from analyses based on temporal genetic changes. Three different methods were employed for outlier 

detection across space. Firstly, the Bayesian approach of Beaumont & Balding (2004), implemented in 

BayeScan 2.1 (Foll & Gaggiotti, 2008) was used. The program was run with different prior odds (3, 5, 

10 and 100) with 20 pilot runs of 5 000 iterations each, followed by a burn-in of 50 000 iterations and 

5 000 samplings. The second method utilized a principal component analysis implemented in the R 

package pcadapt (Luu et al., 2017). Pcadapt assessed the contribution of individual SNPs to K principal 

components, considering their relationship to population structure. Lastly, OutFLANK v.0.2 software 

(Whitlock & Lotterhos, 2015) was employed, which identifies outliers by comparing differentiation at 

each SNP against a trimmed null distribution of FST values. OutFLANK was run with LeftTrimFraction = 

0.55 and RightTrimFraction = 0.10. To account for multiple testing, the p-values obtained from each 

method were corrected using the R package qvalue v.2.18, with a threshold set at 0.10. Overlapping 

outlier SNPs identified by multiple methods and datasets were analyzed using jvenn (Bardou et al., 

2014) to assess the common outliers across the different approaches. 

 

2.7 Outlier detection across time 

Outlier tests were performed between time points to differentiate the effects of selection from genetic 

drift in allele frequency changes. Initially, using SLiM 3 (Haller & Messer, 2019), we simulated SNP 

frequencies 5000 times to evaluate the expected level of genetic differentiation after two generations 

of genetic drift alone. The initial SNP frequencies for each simulation matched the frequencies 

observed in our samples at the first time point. We assumed panmictic reproduction while neglecting 

mutation and migration. N individuals were sampled, considering the previously estimated Ne (see 

Table 3), to establish the next generation. Genetic differentiation under genetic drift was then 

evaluated after two generations by sampling n individuals of the same size as the second time point's 

sample. This framework allowed for the detection of candidate loci undergoing selection, which 

exhibited higher temporal differentiation than expected from neutral simulations.  For each of the 

three populations considered (HLG, ROS, QUI), simulations were conducted using the lowest and 

highest estimates of Ne based on temporal methods. Subsequently, we assessed the effect of Ne on 

the detection of outlier SNPs (see Supplementary S1). The vcf output files, which included empirical 

and simulated SNPs (5000 files for each population and Ne scenario) were processed using vcftools 

v.0.1.16 to calculate pairwise FST. Finally, the p-value of the outlier test, which corresponded to the 

proportion of simulated FST equal and larger than the observed FST was calculated at a focal SNP using 
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a custom R script (available upon request). We compared the outlier test based on SLiM to the method 

implemented in TempoDiff, which aimed to distinguish neutral from selected polymorphisms, using 

temporal differentiation (Frachon et al., 2017). Additionally, we ran BayeScan, OutFLANK and pcadapt 

using the same parameters as reported in the “Outlier detection across space” of the manuscript. The 

p-values of the tests were corrected for multiple testing before conducting an overlap analysis among 

methods, as described in the above section. 

 

2.8 SNPs-temperature associations 

To investigate SNPs potentially under selection, we examined whether their allele frequencies were 

correlated with Sea Surface Temperature (SST). We specifically focused on SNPs identified as outliers 

by at least two outlier tests across space. For these loci, we tested the association between SNPs-

temperature following the logistic regression framework described by Bataillon et al. (2022). The 

primary objective was to identify SNPs whose frequencies were correlated with temperature while 

controlling for neutral patterns of genetic structure. To achieve this, we employed a binomial 

Generalized Linear Model (GLM) with log link (‘glm’ function in R). The response variable was the count 

of the reference allele at a focal SNP, coded as 0, 1, or 2. The model accounted for the effect of genetic 

structure by including the first five PCs that explained 68.1% of the variation of the PCA of SNP variation 

based on all SNPs. The assess the effect of temperature, we considered the first two PCs derived from 

the PCA conducted on daily mean SST statistics, including the average, minimum, maximum, and 

amplitude coefficient values (see Temperature data acquisition section). Only the first two PCs were 

retained as they accounted for 74.5% and 25.4% of the variation respectively, and effectively 

distinguished populations, likely reflecting SST differences between regions. Before performing the 

PCA, all SST predictors were centred and normalized. Three distinct GLMs were fitted: A background 

model that included PC1 to PC5 of SNP variation, and two additional models (ENV1 model and ENV2 

model) that incorporated PC1 or PC2 of daily mean SST parameters as supplementary predictors of the 

five SNP variation predictors. Non-significant variables were initially removed using the ‘dropterm’ 

function from the R package MASS v.7.3. The model fit was evaluated using McFadden's pseudo R-

squared and compared to each other using the likelihood ratio test, implemented in the R package 

lmtest v.0.9. The p-values from the likelihood tests were adjusted using Bonferroni correction to 

account for multiple testing, as the association between SST and allele count was tested across 

multiple SNPs.  

 

2.9 Gene ontology analysis 

Candidate loci identified through outlier tests across space and time by at least two methods were 

subjected to functional annotation using ‘Omics Box’ v.1.3.11 (Götz et al., 2008). Initially, candidate 

loci were annotated using the NCBI Basic Local Alignment Search Tool (BLAST, Johnson et al., 2008) 
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with the non-redundant protein sequences database. The BLASTx approach was employed, with a 

specific focus on Phaeophyceae sequences. The resulting BLAST hits were further mapped to the Gene 

using InterProScan (Zdobnov & Apweiler, 2001) and Gene Ontology (Ashburner et al., 2000) analysis 

was conducted. Finally, the results from both analyses were merged to obtain comprehensive 

functional annotation for the candidate loci.  

 

3. RESULTS  

3.1 Sequencing, SNP filtering and data quality   

A total of 98.7 million reads were obtained for the first time point, while 327 million reads were 

obtained for the second time point. The individual proportion of mapped reads was on average 86.6% 

for the first time point and 95.5% for the second time point. Both the count of high-quality reads and 

the mapping rate were significantly lower in the first time point compared to the second time-point 

(Wilcoxon test, p-value < 0.001). As a result, the SNP discovery was approximately 8.3 times higher for 

the second time point (644 794 SNPs) compared to the first time point (77 193 SNPs). After filtering 

for shared loci between time points, with a call rate >90% per population in one or more populations, 

a total of 4 151 SNPs were retained (Table 2). Additional quality filtering, including individual 

missingness, read depth, minor allele frequency (MAF), and linkage disequilibrium further refined the 

dataset to a final set of 2 854 SNPs across 190 individuals, excluding eight technical replicates (Table 

2). The analysis of eight technical indicated a high level of genotype concordance for the set of 2 854 

SNPs, which was consistent across both time points. Specifically, the SNP error rate ranged from 0.007 

to 0.036 for the first time point and from zero to 0.02 for the second time point (Table S1). The mean 

read depth was 16.73 X ± 17.93 SE for the first time point and 22.52 X ± 14.15 SE for the second time 

point. Despite the difference in sequencing depth between the two-time points, there was no 

significant difference in heterozygosity per individual (Wilcoxon test, p-value = 0.23).  

 

3.2 Genome-wide genetic diversity  

Overall, expected heterozygosity (He) showed significant differences between sites (Wilcoxon test, p-

value < 0.001). the northern population (CLA_1 and CLA_2) exhibited the highest value of He, which 

was seven times higher than the population experiencing the most challenging summer temperatures 

for reproduction (HLG, Bartsch et al., 2013). Furthermore, the He values in CLA_1 and CLA_2 were 1.5 

to 2.7 times higher compared to those observed in Brittany (ROS and QUI, respectively, Table 1). In the 

temporal comparison, it was found that He slightly decreased (∼2%) in HLG (Wilcoxon test over SNPs, 

p-value < 0.001), while its slight increase in Brittany was not statistically significant (Wilcoxon test over 

SNPs p-value = 0.13 for ROS and p-value = 0.047 for QUI). Moreover, a reduction (∼3%) in the 

proportion of polymorphic loci over time further supported the decrease in genetic diversity in HLG 
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(Table 1). The contemporary estimation of Ne based on allele frequency variation over time for HLG, 

ROS and QUI aligned with the observed patterns in He and P%. Specifically, significant differences in 

Ne were reported between HLG (59-104) and QUI (104-227), in contrast to ROS (247-43 063). The 

different values for each population represented the range of Ne estimation obtained from F-statistics 

estimators and the likelihood-based estimator (Table 3). 

 

3.3 Genetic structure  

The AMOVA analyses conducted on the complete SNPs dataset revealed that variation was primarily 

attributable to variance within individuals (81%, p-value < 0.001) and between populations (21%, p-

value=0.002). However, the effect of time was not significant (-0.61%, p-value = 0.708, Table 4). The 

average FST values among populations ranged from 0.196 to 0.221 for the first and second time point 

respectively. When excluding CLA_1 and CLA_2, the average FST values were 0.100 and 0.129 for the 

first and second time point respectively. All pairwise FST values in space were greater than or equal to 

0.078 with a maximum value of 0.297 observed between CLA_2 and the second time point of HLG 

(Table S2). In space, all pairwise tests of genic differentiation showed significance (p-values < 0.001), 

while in time, they did not exhibit significance (p-values = 1), which was supported by temporal 

pairwise FST values close to zero (Table S2). The lack of significant differentiation over time using the 

complete SNPs dataset was further confirmed by the Sparse Non-negative Matrix Factorization 

(sNMF), as there was no significant change in genetic structure between time points (Figure S1). In 

contrast, there was a substantial genetic structure in space, with the northern populations (CLA_1 and 

CLA_2) showing differentiation from HLG ROS and QUI when considering K = 2. Results obtained at K 

= 3 differentiated ROS from QUI and HLG, and this was supported by the individual coordinates of 

these populations on PC1 and PC2 of the PCA of SNP variation (Figure S2). Finally, when considering 

the most informative number of clusters according to the minimum cross-entropy criterion (K = 5), 

individuals were grouped by sites, with an additional distinction between CLA_1 and CLA_2.  

 

3.4 Outlier SNPs based on spatial differentiation 

Among the 261 outliers (9.1 %) identified by at least one method, 97 (3.4%) were detected at both 

time points, indicating that genetic differentiation at these focal SNPs was conserved over time. On 

the other hand, 47 SNPs were exclusively detected in the first time point, and 88 SNPs were exclusively 

detected in the second time point. Interestingly, 36 SNPs were also identified as outliers by the 

temporal data-based tests. To reduce the number of false positives, we further considered only those 

SNPs that were detected by at least two out of the three detection methods. Consequently, no outlier 

SNPs remained for the first time point, while 16 SNPs remained for the second time point. Among 

these 16 SNPs, 15 were detected by both OutFlank and pcadapt, and only one SNP was detected by all 

three methods (OutFlank, pcadapt and BayeScan). 
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3.5 Outlier SNPs based on temporal differentiation 

A total of 149 SNPs (5,2%) were identified by at least one method among the simulation framework 

described in the Methods section, TempoDiff and OutFLANK.  BayeScan and pcadapt did not detect 

any outliers. The outlier tests based on our simulation framework reported the occurrence of 127 and 

131 SNPs with higher FST than the neutral expectations when using, respectively, the lowest and 

highest Ne estimates. Due to the high correlation (r = 0.98) between p-values of the outlier tests 

conducted for the low and high Ne scenarios (Supplementary S1), we focused on the latter scenario, 

which utilized the Ne value estimated by the likelihood method (see Table 3). In this configuration, out 

of the 53 SNPs detected by TempoDiff, 35 (66%) were also identified by the simulation framework, 

including 13 SNPs that were detected by all three methods (simulations, TempoDiff and OutFLANK). 

When considering only the SNPs detected by at least two methods, the number of outlier SNPs 

decreased to 38, which were not detected by genome scans across space. Among these 38 SNPs, 23 

were detected in ROS and 15 in QUI, while none were present in HLG (Figure 2A). Furthermore, we 

observed a substantial increase in observed heterozygosity (Ho) over time for these SNPs compared 

to putatively neutral ones. Specifically, Ho increased over time from 0.125 to 0.192 for ROS and from 

0.087 to 0.184 for QUI. This pattern starkly contrasted with the low Ho values observed at HLG, which 

decreased from 0.033 to 0.021 over time. The increase in heterozygosity at QUI and ROS for these focal 

SNPs was strongly supported by high temporal FST values that exceeded 2.4 to 3 times the threshold of 

the 99% upper limit of neutral expectation, as determined by simulations (Figure 2BC, Figure 3). 

Conversely, only a very small number of SNPs exclusively detected by this method reached the 99% 

upper limit of neutral expectation at HLG. 

 

3.6 SNPs-temperature associations 

We conducted association tests between the 16 outliers detected across space by at least two methods 

and SST using GLMs to account for the confounding effect of genetic drift in genetic structure. The 

results showed that incorporating PC1 or PC2 of the PCA performed on SST predictors, in addition to 

the five PCs of SNPs variation, resulted in a better fit for genetic differentiation (pseudo R2 = 0.50-0.84) 

for eight out of the 16 SNPs compared to the background model (pseudo R2 = 0.42-0.63; Table 5), which 

only included neutral predictors. However, the two SST-based PCs did not contribute equally to the 

patterns of genetic differentiation, as PC1 was never selected after performing one-term deletions 

(Table 5). The biplot of the PCA from SST predictors (Figure S3), showed that PC2 separated populations 

based on the maximum SST, with CLA having a lower maximum SST compared to other sites. 

Additionally, for six out of the eight SNPs, the frequency of alternate alleles averaged 0.78 in the 

northern populations with a maximum SST of 16.4°C (CLA_1 and CLA_2). However, this average 

frequency dropped to 0.03 in ROS (max. SST of 19.3°C) and was below 0.01 in HLG and QUI, where the 
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max. SST was above 21°C (Figure 4). This indicates a strong association between latitudinal change in 

the maximum SST and allele frequencies. The SNP ID ‘71212:99:-‘ exhibited a more gradual trend, with  

the alternate allele maintained at intermediate frequencies in southern populations (0.29 at ROS; 0.12 

at QUI). In contrast, two outlier SNPs (‘86197:151:+’and ‘232251:239:+’, see Figure 4) showed an 

opposite trend, where the alternative allele reached high frequency at QUI but was absent in other 

populations.  

 

3.7 Gene ontology  

Functional analyses using the OmicsBox 2.2.4/Blast2GO pipeline were restricted to 53 loci that had 

SNPs detected as outliers in both space (16 SNPs) and time (38 SNPs) by at least two methods. Out of 

the 53 loci, nine (16.58%) showed significant hits in the BLASTX search against the UniProt database. 

The top hits were found to be related to brown algae of the Ectocarpus genus, with seven top hits 

having an e-value equal to or lower than 1.52E-4 (Table S3). Among these sequences, four sequences 

had SNPs detected by outlier tests across space while the remaining five sequences were detected 

over time. Gene Ontology functional annotation of these contigs resulted in hits for eight out of the 

nine significant BLASTX matches. The annotated sequences were functionally categorized into various 

categories, including metabolic processes, cellular processes, biological regulation, response to stimuli, 

and others. (Table S3). 

 

4. DISCUSSION  

Our study has yielded valuable insights into the contemporary evolution of populations of the kelp 

Laminaria digitata by examining spatial and temporal genetic variation. While initial genome scans 

conducted at a single time point indicated the potential involvement of temperature in the 

populations' adaptive response, temporal genomics has provided valuable insight for deciphering the 

effects of ongoing selection relative to genetic drift in allele frequency changes. Below we outline two 

contrasting evolutionary scenarios and discuss their implication for the long-term survival of the 

species.  

 

4.1 Signals of adaptive response at the southern margin 

This study supports the theoretical expectation whereby populations at the southern margin are 

genetically impoverished relative to core populations due to smaller effective population size and/or 

geographical isolation (Blows & Hoffmann, 1993; Johannesson & André, 2006; Eckert et al., 2008; 

Pilczynska et al., 2019). The observed reduction in the levels of genetic diversity at the southern-most 

limit (QUI, Quiberon) compared to a central population (ROS, Roscoff) is consistent with previous 

studies using microsatellite markers (Oppliger et al., 2014; Robuchon et al., 2014; Liesner et al., 2020). 
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However, despite the moderately effective population size in Quiberon relative to Roscoff, there was 

no evidence of reduced adaptive potential in Quiberon. This is supported by the detection of, (i) 

candidate loci with high spatial differentiation potentially associated with maximum sea surface 

temperature (SST), and (ii) candidate loci with higher temporal differentiation than expected under 

genetic drift alone, which were reported in equivalent proportion between Roscoff and Quiberon. In 

addition, some of these candidate loci have important metabolic and cellular functions that could be 

involved in adaptive responses. While our findings support the hypothesis that SST is driving the 

adaptive response of L. digitata, consistent with previous heat stress experiments performed on the 

same populations (Liesner et al., 2020; Schimpf et al., 2022) and genome scans of other kelp species 

(Guzinski et al., 2020; Mao et al., 2020; Vranken et al., 2021), it is important to note that confounding 

factors may also be at play. This is particularly relevant in the present study because of the 

phylogeographical history of the species along the North Eastern coast of the Atlantic which indicated 

that L. digitata is composed of two different clusters (Neiva et al. 2020). The southern Europe cluster 

extends from southern Brittany, along the Channel and North Sea to its northern limit located in 

Helgoland (HLG), while the northern Europe cluster, spread from Ireland to Iceland and north Norway 

regions (Leisner et al., 2020; Neiva et al., 2020). Two different refugia likely contributed independently 

to the post-glacial colonization of the Brittany/North Sea and northern Europe regions, with one 

located along the Armorican coastlines and the other in Northern UK (Neiva et al., 2020). The clear 

genetic discontinuity suggests that genetic structuring across the older Brittany region dates back to 

the back to Last Glacial Maximum. This evolutionary pattern has been found in many different 

seaweeds of the North Eastern Atlantic, as reviewed by Neiva et al. (2016), indicating that genetic 

structure in seaweeds, characterized by low dispersal distances, can arise from historical processes 

and be maintained at relatively small spatial scales. Due to this evolutionary pattern, distinguishing the 

effects of selection and demography from population genetic differentiation detected through 

genome scans (Narum & Hess, 2011; Bierne et al., 2013; Bank et al., 2014) can be challenging. However, 

temporal genomics, which involves studying changes in genetic variation over time, and the ability to 

perform outlier tests to detect unexpected patterns of allele frequency changes, provide additional 

support for ongoing selection at the species' warm edge. Although temporal resolution may not be 

sufficient to fully test whether climate warming is the primary driver of temporal differentiation, the 

detection of temporal outliers in the southernmost population highlights its uniqueness and ongoing 

adaptive response to rapid environmental changes. 

 

4.2 When genetic drift overwhelms local selection 

The study of the population from the island of Helgoland in the North Sea (HLG) gave contrasting 

results compared to Quiberon. We had expected to find similar signals of adaptive differentiation 

between Quiberon and Helgoland given that both populations experience high and comparable 
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summer SST (Derrien-Courtel et al., 2013) and exhibit slightly higher thermal tolerance than 

populations from the cool margins (Liesner et al., 2020). However, the population from Helgoland has 

the lowest levels of genome-wide genetic diversity among those analysed here, and this diversity 

tended to decrease over time. In addition, candidate loci with elevated temporal differentiation were 

rare in Helgoland, even absent after considering those detected by at least two methods of genome 

scans. Together, these findings support that genetic drift relative to selection is an important 

component of the contemporary evolution of this population. This is in line with earlier reports, 

indicating low levels of genetic diversity at microsatellites in Helgoland (Liesner et al., 2020; Fouqueau, 

2021) and signals of local adaptation to temperature that became less clear when comparisons have 

been made with gametophytes from Helgoland rather than Quiberon (Schimpf et al., 2022). Several 

factors linked to the geographical isolation of the population and frequent high summer temperatures 

that both reduced or even inhibited the reproduction of individuals and cause severe bottlenecks 

(Bartsch et al., 2013) are likely to be involved in its genetic impoverishment. The prevalence of genetic 

drift in this last population is concordant with the considerable biomass loss of L. digitata that was 

reported between 1970 and 2005 by Pehlke and Bartsch (2008). Interestingly, genetic erosion in 

Helgoland seems to be not specific to L. digitata, as the kelp Saccharina latissima exhibited here its 

lowest level of genetic diversity as well (at both microsatellites and SNPs, Guzinski et al., 2020). The 

eco-evolutionary dynamics of kelp populations from Helgoland may be used more broadly for a better 

understanding of the adaptive responses of small and fragmented populations experiencing high rates 

of genetic drift (e.g., Arizmendi-Mejía et al., 2015; Crisci et al., 2017).  

 

4.3 Technical considerations 

As the present study was based on the genome sequencing of samples that had been stored for several 

years before DNA extraction and library preparation, the subsequent decreases in both the number of 

reads and SNPs among the oldest relative to the most recent samples were not surprising. This 

decrease is mainly attributable to a decline in DNA quality, which may introduce various genotyping 

errors (Dehasque et al., 2020). However, the strict quality control measures that we implemented, 

along with the high genotype correspondence between replicate samples, allowed us to select a subset 

of loci with high accuracy. This highlights the benefit of replicate samples in inferring evolutionary 

processes from genomic data sets (Reynes et al., 2021), especially those based on multiple time points 

(Therkildsen et al., 2013a, 2013b). Moreover, if DNA quality has indeed contributed to temporal 

genetic changes, we expected that most of the candidate loci would be detected at Helgoland, where 

the oldest samples of the study come from, rather than in populations from Roscoff and Quiberon. 
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4.4 Considering other factors than selection for temporal genetic changes   

As with kelp species, L. digitata is characterized by haplo-diplontic life history, with macroscopic diploid 

sporophytes alternating with microscopic haploid gametophytes. By investigating genetic variation in 

the macroscopic stage, our study captures half of the biphasic life cycle of the species. Although the 

importance of gametophytes in the contemporary evolution of the species in response to climate 

change is poorly understood (see for review Veenhof et al., 2022), their potential to persist as a bank 

of microscopic forms (e.g., Edwards, 2000; Bartsch et al., 2013) when temperatures exceed the upper 

thermal thresholds of sporophytes could mitigate the negative effects of genetic drift. However, our 

results emphasized that despite the full replenishment of the Helgoland population from its 

microscopic forms (Bartsch et al., 2013), genomic variation was low and decreasing over time. In 

addition to the unknown gametophyte's role in shaping evolutionary processes, we discuss below the 

robustness of our results concerning the assumptions we made to estimate effective population size 

and simulate genetic change over time from the sporophyte stage. Firstly, we assumed a two-

generation sampling, whereas the observation of sporophytes with shortened life spans on the warm 

edges relative to cool margins, although not published for this species, has been reported for the sister 

species L. hyperborea (Bartsch et al., 2008). Consequently, the impact of genetic drift may have been 

previously overestimated in populations inhabiting warmer climates, resulting in a lower upper limit 

of neutral expectation derived from simulations of temporal genetic change. While reducing the 

detection threshold would increase the proportion of identified candidate loci, it would not affect 

those exhibiting high temporal differentiation, as there was a large discontinuity in the distribution of 

FST values between the latter and putatively neutral loci. Moreover, candite loci displaying elevated 

temporal differentiation were detected with high consistency across two different scenarios of 

effective population size, highlighting the persistence of the signal across various simulation 

parameters. Secondly, we assumed no gene flow in temporal methods for estimating effective 

population size (Waples, 1989; Wang, 2001; Hui & Burt, 2015) and detecting outlier loci while gene 

flow should be carefully evaluated in patterns of temporal genetic change (e.g., Therkildsen et al., 

2013a, 2013b). However, due to the notably limited levels of gene flow and population connectivity 

observed in kelps (Fouqueau et al., 2023), it appears that gene flow is not a significant factor in 

explaining substantial allelic changes over a few generations. This was supported by the absence of 

significant genetic changes over time when considering the full set of SNPs and the lack of detectable 

first-generation migrants, which would have been readily identified through admixture proportions 

and PCA revealing strong spatial genetic structuring. The rarity of outlier loci relative to neutral ones 

strengthens the hypothesis that they undergo evolutionary processes distinct from the background 

genomic variation. Hence, ongoing selection was considered the most plausible explanation for the 

identification of candidate loci exhibiting higher temporal differentiation than expected under genetic 
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drift alone. Further studies should now clarify how strong local selection acting on both the 

gametophyte and sporophyte stages can lead to pronounced temporal FST within a few generations.  
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Table 1. Geographical coordinates and genetic diversity of populations at two different time points. 

Population Year Lat.   Lon. n P (± SE) He (± SE) 

Helgoland (HLG) 
2005 

54.178 N 7.893 E 
18 0.11 (0.001) 0.015 (0.001)  

2018 22 0.08 (0.001) 0.013 (0.001) 

Clachan (CLA_1) 2008 56.454 N 5.444 W 25 0.42 (0.001) 0.103 (0.003) 

Clachan (CLA_2) 2018 56.318 N 5.592 W 25 0.42 (0.001) 0.109 (0.003) 

Perharidy (ROS) 
2011 

 48.727 N  4.005 W 
27 0.36 (0.001) 0.065 (0.002) 

2018 25 0.36 (0.001) 0.069 (0.002) 

Quiberon (QUI) 
2009 

47.470 N 3.091 W 
24 0.21 (0.001) 0.038 (0.001) 

2018 24 0.20 (0.001) 0.040 (0.002) 

Year: the specific year when the samples were collected; Lat: latitude coordinate of the sampling location; Lon: 

longitude coordinate of the sampling location; n: the number of individuals that were genotyped; P (± SE): the 

proportion of polymorphic loci using a minor allele frequency threshold of 0.01 (mean and ± SE); He (± SE): 

expected heterozygosity, represented as the mean value with standard error (SE) 

 

 

Table 2. The filtering steps applied to the raw sets of 77 193 SNPs and 644 794 SNPs for the first and 

second time points, respectively. 

Filtering steps SNP Individual 

SNPs present in both the first and second time points 36 293 213 

Shared SNPs among populations with less than 10% of missingness per SNP 

within a population 
4 151 - 

Individual missingness rate ≤ 0.2 4 151 190 

Mean read depth (DP); SNPs between 10x and twice the mean. For the first 

time point, the mean read depth was 34x, and for the second time point, it 

was 45x 

3 995 - 

SNPs deviating from HWE (P < 0.001) in at least 25% of the populations 3 995 - 

Minimum allele count of three 3 609 - 

SNPs pruned at an LD threshold of r2 = 0.20 within and among populations 
 

2 854 - 
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Table 3. Contemporary effective population size (Ne) based on temporal genetic changes using two F-

statistics: Fc (Nei & Tajima, 1981), Fs (Jorde & Ryman, 2007), and the likelihood estimator implemented 

in MLNe (Wang & Whitlock, 2003).  
 

HLG ROS QUI 
 

Ne [IC] Ne [IC] Ne [IC] 

Fc  59 [26 - 469] 451 [157 - Inf] 165 [77 - 3412] 

Fs  45 [23 - 1403] 247 [111 - Inf] 104 [56 - 738] 

likelihood  104 [70 - 195] 43 063 [935- Inf] 227 [134 - 667] 

 

 

Table 4. Analyses of molecular variance (AMOVA) using the complete SNPs dataset 

Source of variation  D.  Var. components Variation (%) P-value 

Among populations 4  16.07 20.71 0.00188 

Between time points 3  -0.47 -0.61 0.70832 

Within populations 182  -0.88 -1.14 0.91881 

Within individuals 190  62.93 81.04 < 0.00001 

 

 

 

Table 5. Summary of GLM models for eight outlier SNPs, where the model including PCs of SNP 

variation and SST-based PCs (ENV2 for the PC2) provided a better fit to the distribution of genotypes 

compared to the null model.  

  

Outlier ID Model Predictor AIC Pseudo R2 LL ratio test 

144563:157:- NULL SNP ~ PC1+PC4 40.66 0.608 
<0.001 

144563:157:- ENV SNP ~ PC4+ENV2 39.306 0.623 

174791:33:+ NULL SNP ~ PC1+PC5 66.74 0.607 
0.0027 

174791:33:+ ENV SNP ~ PC3+PC4+PC5+ENV2 58.919 0.684 

181069:233:+ NULL SNP ~ PC1+PC3 84.622 0.559 
<0.001 

181069:233:+ ENV SNP ~ PC2+PC4+ENV2 74.502 0.627 

232251:239:+ NULL SNP ~ PC1+PC2 81.927 0.419 
0.0015 

232251:239:+ ENV SNP ~ PC1+PC2+ENV2 73.877 0.496 

253698:139:- NULL SNP ~ PC1+PC5 64.723 0.69 
<0.001 

253698:139:- ENV SNP ~ PC1+PC4+PC5+ENV2 50.795 0.784 

35776:116:+ NULL SNP ~ PC1+PC3+PC4 60.8 0.715 
<0.001 

35776:116:+ ENV SNP ~ PC1+PC3+ENV2 56.772 0.737 

71212:99:- NULL SNP ~ PC1+PC3+PC4+PC5 68.509 0.719 
<0.001 

71212:99:- ENV SNP ~ PC4+PC5+ENV2 50.852 0.794 

86197:151:+ NULL SNP ~ PC1+PC2 56.849 0.73 
<0.001 

86197:151:+ ENV SNP ~ PC2+PC3+PC5+ENV2 39.61 0.843 
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Figure 1. Sampling sites of the Laminaria digitata populations used in this study. Sea Surface 

Temperature (SST) was represented as a boxplot depicting variation at a focal site during both time 

points (T1 and T2).   
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Figure 2. Outlier SNPs based on temporal differentiation are shown, depicting (A) the unique or shared 

outlier SNPs among methods for HLG, ROS, and QUI. The (B) allele frequency between time points and 

(C) FST values are provided depending on whether the SNPs were detected by none or only one method 

(grey), two methods (2X; purple) and three methods (3X; red). It is worth that the total number of SNPs 

in the Venn diagrams (A) is not equal to 149 SNPs, as two outliers at ROS were also detected at QUI by 

the simulation framework.  
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Figure 3. Temporal FST values of focal SNPs are compared to the upper limit of the neutral expectation 

based on the high Ne scenario. The green line represents the 99% quantile of FST values expected under 

genetic drift alone, determined from 5000 simulations for (A) HLG, (B) ROS, and (C) QUI. Outlier SNPs 

that are significant after correction for multiple comparisons and detected only by the simulation 

framework are represented by grey triangles. Those detected by two or three methods are shown in 

purple and red triangles, respectively. Grey crosses indicate putatively neutral SNPs that were not 

detected by outlier tests.  
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Figure 4. Minor allele frequencies of SNPs across space for both time points (T1 or T2) are displayed. 

The sampling sites are sorted in descending order based on the maximum SST. Outlier SNPs, which 

were identified through spatial differentiation and had genotypes that were best fitted by the ENV2 

model incorporating the PC2 of the SST predictors, are color-coded according to the legend. Putatively 

neutral SNPs and other outliers not explained by the maximum SST are represented in grey. 
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Supplementary section 

Supplementary material S1  

This supplementary section aims to evaluate the impact of choosing low or high Ne scenarios in the 

simulation framework. We performed simulations of SNP frequencies 5000 times, using the same 

parameters described in the “Outlier detection across time” section of the main manuscript but 

considering the lowest Ne estimates obtained from temporal methods (see Table 3). We expected that 

decreasing Ne would strengthen genetic drift, leading to increased levels of temporal neutral genetic 

differentiation and a higher detection threshold for outlier SNPs. However, we found no significant 

differences in mean FST values when comparing simulations based on the low and high Ne scenarios. 

The mean FST values ranged from 0.002 to 0.003 for the high and low Ne scenarios, respectively. 

Additionally, the detection of outlier SNPs was minimally influenced by this parameter. Person's 

correlations between SNP p-values in the low and high Ne scenarios were high, with correlations of r 

= 0.962 at HLG, r = 0.997 at ROS and r = 0.986 at QUI. This indicates that the SNPs detected as outliers 

were almost identical across the two different Ne scenarios. Interestingly, reducing Ne at ROS from 

43 063 to 247 prevented the detection of two outliers that were reported from the high Ne scenario. 

It is noteworthy that major differences were expected at ROS, considering the reduction in Ne from 

thousands to hundreds of individuals, while the range was narrower at HLG and QUI (around two 

times). This suggests that changes in allele frequencies under genetic drift over two generations may 

be buffered at ROS by maintaining Ne in at least two hundred individuals. However, subsequent 

analyses indicated that reducing Ne had a greater impact on simulations and genetic changes when 

genetic drift was simulated over a thousand generations, rather than two (data not shown).  
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Table S1. Individual missingness, and mean read depth (Mean DP) were assessed at both time points. 

Individual missingness refers to the average proportion of missing genotypes for each individual. Mean 

read depth was calculated by averaging the read depth across all sites. The SNP error rate estimated 

using eight replicates is also indicated.  

 

Population    Time point n Ind. missingness Mean DP SNP error rate 

HLG 
   1st 18 0.05 13.218 0.020 

   2nd 22 0.02 11.640 0.012 

CLA 
   1st 25 0.04 12.497 0.036 

   2nd 25 0.02 26.362 0.002 

ROS 
   1st 27 0.03 28.457 0.021 

   2nd 25 0.02 26.177 0.001 

QUI 
  1st 24 0.06 10.570 0.007 

   2nd 24 0.02 24.703 0 

 

 
 
Table S2. Pairwise FST values between populations and the comparisons between time points are 

highlighted in bold in the lower diagonal matrix. The p-values of the genic differentiation tests are 

displayed in the upper diagonal matrix. 

FST HLG (T1) HLG (T2) CLA_1 CLA_2 ROS (T1) ROS (T2) QUI (T1) QUI (T2) 

HLG (T1)  NS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

HLG (T2) 0.008  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CLA_1 0.257 0.285  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CLA_2 0.266 0.297 0.039  < 0.001 < 0.001 < 0.001 < 0.001 

ROS (T1) 0.094 0.113 0.224 0.235  NS < 0.001 < 0.001 

ROS (T2) 0.104 0.125 0.223 0.237 0.000  < 0.001 < 0.001 

QUI (T1) 0.127 0.150 0.251 0.262 0.078 0.083  NS 

QUI (T2) 0.142 0.167 0.249 0.272 0.090 0.095 0.003  
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 Table S3. Functional categorization of eight annotated loci derived from outlier SNPs out of the 53 loci.

Locus Description Length Hits e-value sim mean GO GO Names Enzyme Names 

71212 conserved unknown pro-

tein 

216 2 6.4E-19 92.0 2 P:lipid transport; C:cellular anatomical entity   

100680 ankyrin repeat protein 254 20 4.8E-11 54.24 3 P:protein phosphorylation; F:protein kinase 

activity; F:ATP binding 

Transferring phosphorus-

containing groups 

10940 MutS protein homolog 4 503 1 1.9E-4 85.29 4 P:mismatch repair; F:ATP binding; F:mis-

matched DNA binding; F:ATP-dependent 

DNA damage sensor activity 

  

30235 ankyrin repeat protein 241 20 8.1E-10 54.25 1 C:membrane   

59182 2-hydroxy-3-oxopropio-

nate reductase 

339 2 6.9E-4 96.3 3 F:oxidoreductase activity; F:NADP binding; 

F:NAD binding 

Oxidoreductases 

62443 unnamed protein product 319 5 1.6E-6 60.99 5 P:RNA polyadenylation; F:polynucleotide ad-

enylyltransferase activity; F:metal ion bind-

ing; C:membrane; C:TRAMP complex 

polynucleotide ade-

nylyltransferase 

94321 unnamed protein product 229 1 2.8E-4 95.45 
  

  

95165 methyltransferase 257 19 2.2E-5 71.64       

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.22.541724doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541724
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 
 

Figure S1. SNMF admixture plots for different values of K, including  K = 2, K = 3, and the optimal 

number of clusters K = 5. Each bar in the plots represents one sampled individual, and the colors within 

the bar represent the membership proportions of each cluster. 
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Figure S2.  PCA biplots of SNP variation, including the five principal components: PC1 (46.5%) vs PC2 

(8.3%); PC2 vs PC3 (6.1%), PC3 vs PC4 (4.5%) and PC4 vs PC5 (2.7%). 
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Figure S3. Biplot of the first two PCs derived from the PCA conducted on daily mean SST statistics. The 

positions of samples represent their scores on the first two PCs, indicating their similarity or 

dissimilarity in terms of SST variation. Both PCs were included as explanatory variables in generalized 

linear models (GLMs) to assess the influence of local genetic drift and temperature on the distribution 

of genotypes at focal outlier SNPs. 
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