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Abstract: Injury to adult mammalian central nervous system (CNS) axons results in limited 

regeneration. Rodent studies have revealed a developmental switch in CNS axon regenerative 20 

ability, yet whether this is conserved in humans is unknown. Using human fibroblasts from 8 

gestational-weeks to 72 years-old, we performed direct reprogramming to transdifferentiate 

fibroblasts into induced neurons (Fib-iNs), avoiding pluripotency which restores cells to an 

embryonic state. We found that early gestational Fib-iNs grew longer neurites than all other ages, 

mirroring the developmental switch in regenerative ability in rodents. RNA-sequencing and 25 

screening revealed ARID1A as a developmentally-regulated modifier of neurite growth in human 

neurons. These data suggest that age-specific epigenetic changes may drive the intrinsic loss of 

neurite growth ability in human CNS neurons during development.  

 

One-Sentence Summary: Directly-reprogrammed human neurons demonstrate a developmental 30 

decrease in neurite growth ability.  
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Main text: 

Human spinal cord injury (SCI) leads to life-long disability with high medical, psychological, and 

social costs (1). This injury damages long axonal projections originating from neurons in the brain, 

which extend through the spinal cord to communicate with the periphery. These central nervous 

system (CNS) axons fail to regenerate due to both inhibitory proteins in the injured environment, 5 

and by a lack of intrinsic axon growth ability in the neurons themselves (2). Interestingly, rodent 

studies have revealed a link between age and axon growth and regeneration, such that embryonic 

CNS neurons can extend long axons, while postnatal and adult CNS neurons cannot (3-7). Further, 

many developmentally-regulated genes, when modulated, can drive axon growth (3, 8-13). 

However, it is not known whether human neurons also have a developmental switch in CNS axon 10 

regenerative ability.  

 

Here, we use an in vitro, age-retained, human neuronal model system to identify novel, 

developmentally-regulated, intrinsic factors which regulate neurite growth. To maintain the age of 

the originating fibroblasts, we utilized a validated direct reprogramming protocol which 15 

transdifferentiates human fibroblasts of different ages directly into induced neurons (Fib-iNs), 

avoiding pluripotency, which restores cells to an embryonic age (14, 15). In adult cells, the use of 

direct reprogramming maintains the age of the original cell, and has been shown in many different 

studies to reveal age-associated disease phenotypes (14-20), however whether prenatal age is 

similarly maintained with direct reprogramming is not clear. Additionally, direct reprogramming 20 

produces neurons which are environmentally naïve, allowing us to determine the role of age on 

the intrinsic neurite growth ability of human neurons.  

 

Thus, to address these questions, we transdifferentiated human neurons from 11 fibroblast lines 

ranging from 8 gestational-weeks (GW) through 72 years-old (YO; Table 1) by overexpressing the 25 

transcription factors achaete-scute family bHLH transcription factor 1 (ASCL1) and neurogenin 2 

(NEUROG2), and culturing cells in the presence of small molecules for 4 weeks (Fig. 1A-B, S1A-

B) (14, 15). To first determine the types of neurons being made and the maintenance of age in Fib-

iNs at the transcriptional level, we collected all ages of Fib-iNs for RNA-sequencing (RNA-seq). 

To obtain a pure neuronal population, we transduced Fib-iNs with a lentivirus expressing mScarlet 30 

from a hSynapsin promoter and used fluorescence activated cell sorting (FACS) to collect 

mScarlet+ neurons (Fig. S1C-D) to perform low cell number RNA-seq on all ages of Fib-iNs 
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(Table 1). Samples were corrected for the 5 first genotype principal components (PCs), as 

determined from RNA-seq data (Fig. S1E), and examined for separation using multi-dimensional 

scaling (MDS), demonstrating that age-specific replicates clustered similarly (Fig. 1C, S1F). 

 

To confirm the neuron subtype specificity in all samples, we immunostained Fib-iNs for beta-III 5 

tubulin (TUBB3) together with either vesicular glutamate transporter 1 (VGLUT1; excitatory 

neurons) or gamma-aminobutyric acid (GABA; inhibitory neurons), and found that the neurons 

produced were 70.3% +/- 6.7% VGLUT1+ and 16.5% +/-2.4% GABA+, similar to previously 

published reports (14, 15) (Fig. S1G-H), demonstrating that the neurons are primarily 

glutamatergic. To gain more detailed knowledge about the type of neurons being produced, we 10 

compared our RNA-seq data to the Allen Brain Map single cell RNA-seq data from adult human 

cortex (21, 22). We again confirmed that all ages of Fib-iNs made excitatory neurons, and the same 

neuron identity was conserved across the 11 lines (Fig. 1D, Table 1). Specifically, the Fib-iN 

transcriptional profiles were most similar to excitatory cortical neurons, with the topmost hit being 

excitatory neurons from layer 6, with FEZ family zinc finger 2 (FEZF2) and Tubulin Folding 15 

Cofactor C (TBCC) as their primary subclass markers and cluster-specific markers, respectively 

(Fig. 1D). This expression signature was most similar to cells from the primary visual cortex 

(V1C), middle temporal gyrus (MTG), and cingulate gyrus (CgG). We also identified strong 

similarities between Fib-iNs to cells from layers 3 and 5 (identifiers: THEMIS (subclass), ELOF1 

(cluster-specific) or UBE2F (cluster-specific)), whose expression signature was most similar to 20 

neurons in the M1 lower limb region of primary motor cortex and M1 upper limb region of primary 

motor cortex (Fig. 1D). Thus, these analyses confirm that human Fib-iNs are not only excitatory, 

but resemble human cortical neurons expressing FEZF2, a gene required for corticospinal motor 

neuron identity in rodents (23-25).  

 25 

Use of this model system not only delivers the benefit of producing human neurons, but direct 

reprogramming also maintains the cellular age of the original cell by bypassing pluripotency 

during the transdifferentiation (14, 15, 26). This protocol has primarily been used to produce adult 

neurons from adult fibroblasts for aging studies (27), however there is limited knowledge of the 

ability to maintain prenatal age during direct reprogramming. To confirm general maintenance of 30 

cellular age in the Fib-iNs produced from our fibroblast lines of gestational through adult ages, we 

first immunostained fibroblasts and Fib-iNs for the nuclear envelope marker LaminB1, a protein 
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whose levels decrease with aging (16, 28-31). We found a significant decrease in Lamin B1 with 

increasing age in both fibroblasts and Fib-iNs, confirming maintenance of cellular age with direct 

reprogramming in our fibroblast lines (Fig. S1I-J). To confirm maintenance of prenatal ages in 

Fib-iNs, we used the PsychENCODE region-specific, bulk tissue, RNA-seq data of prenatal and 

postnatal human brain to compare to gestational age Fib-iNs (8GW, 12GW, 20GW#1, 20GW#2, 5 

and Neonatal) (32). First, we compared genes significantly up- or downregulated with age in Fib-

iNs to genes up- or downregulated in human V1C or M1C, and found genes up- and downregulated 

in V1C were significantly similar to those in Fib-iNs (Fig. 1E).  Further, comparison of genes that 

were similarly regulated between the two areas (M1C and V1C) to our Fib-iNs revealed a 

significant similarity between the human tissue data and purified prenatal Fib-iNs (Fig. 1E). 10 

Second, to further confirm the maintenance of prenatal ages using this direct reprogramming 

approach, we trained a machine-learning model using bulk gene expression studies from dissected 

human M1C and V1C, ages 10GW to 24GW (32), to predict developmental age based on gene 

expression patterns. Using this model we were able to predict the age of each of our Fib-iN samples 

from 8GW to neonate, and found, despite comparing purified cultured excitatory neurons (Fib-15 

iNs) to bulk tissue made up of many cell types (PsychENCODE) (32), 8GW to neonatal directly 

reprogrammed Fib-iNs had increasing predicted age, though with a slight upwards shift of 

predicted age in the Fib-iNs (Fig. 1F).  

 

Recent studies on gene expression changes during human brain development revealed that the 20 

largest change in gene expression occurs during the late-fetal transition, a period beginning around 

21GW (32-34). The genes whose expression increases during this late-fetal transition exhibited 

increased expression levels in postnatal to aged Fib-iNs (Neo-72YO, p=0.011), whereas those 

genes whose expression decreases during the late-fetal transition demonstrated decreased 

expression in early fetal Fib-iNs (8GW-12GW, p=0.006; Fig. 1G). Importantly, these data taken 25 

together suggest that prenatal age can be maintained with direct reprogramming, and that 

gestational Fib-iNs may be used to study neuronal function associated with intrinsic changes 

occurring during development.  

 

Use of direct reprogramming also maintained transcriptional age in adult Fib-iNs. We found that 30 

adult Fib-iNs demonstrated changes in gene expression associated with adult aging, as expected, 

with 2,431 genes significantly changed (FDR<5%; Fig. 1H). Additionally, we found an increase 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541995doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541995


5 
 

in transposable element (TE) expression with age (Fig. S1K), confirming previous reports that TEs 

levels increase with age (35). Thus, our RNA-seq results support maintenance of age in Fib-iNs at 

all ages, both during gestation and aging.  

 

Rodent CNS neurons undergo a developmental loss of axon growth ability around the time of birth 5 

(3, 4, 7, 11, 36, 37). Thus, using this validated human, age-specific model system, we asked if 

there were differences in intrinsic neurite growth ability among the 11 ages of Fib-iNs 

(TUBB3+/GABA-/VIM-; Fig. S2A-B). Neurons were dissociated after 4 weeks of 

transdifferentiation and sorted onto a gelatin substrate to remove remaining fibroblasts and enrich 

for neurons (Fib-iNs), before plating at low density (100 cells/mm2) on a laminin-coated substrate 10 

(Fig. S2C) for 2 days in an axon supportive media (ASM; S2D-H). Interestingly, we found that 

8GW and 12GW human neurons grew the longest neurites of all the ages. By 20GW and older, 

neurons grew only short neurites, demonstrating a developmental decline in neurite growth ability 

in human neurons (Fig. 2A-B). Interestingly, when comparing neurodevelopmental benchmarks 

between mouse and human, mouse birth (E21/P0) is equivalent to approximately human 21GW 15 

(38), the timing of the late-fetal transition (33), suggesting the conservation of a developmental 

loss of intrinsic neurite growth ability in our environmentally naïve human neurons (Fig. S2I). 

Previously, it has been suggested that during neurodevelopment there is a transcriptional shift from 

elongation to synaptogenesis and branching which limits axon growth ability in rodents postnatally 

(39, 40). Thus, we measured neurite branching in all ages of Fib-iNs and found that total branching 20 

was increased in adult Fib-iNs (Fig. 2C), but this change did not coincide specifically with the 

time when intrinsic neurite growth ability decreased, nor was there a relationship between the 

number of branches on the longest neurite and Fib-iN age (Fig. S2J). Thus, we found that human 

Fib-iNs demonstrate a developmental loss of intrinsic neurite growth ability even in an in vitro, 

environmentally naïve system (Fig. 2A-B). 25 

 

To confirm that this neurite outgrowth phenotype was specific to the age of the Fib-iNs, we took 

5 of the human fibroblast lines (Table 1), and reprogrammed them to iPSCs (Fig. 1A), thus 

resetting cellular age (Fig. S2K-L) as has been previously shown by others (14-16, 41). We directly 

reprogrammed these iPSCs to iNs (14) (iPSC-iNs; Fig. 1A, S2M-N), and found there was no longer 30 

any difference in the intrinsic neurite growth ability (Fig. 2D-E) of neurons between ages, 
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demonstrating that the developmental decline in neurite growth ability in Fib-iNs is specific to the 

preservation of age.  

 

Developmentally-regulated genes identified in rodents have been targeted to reveal age-dependent 

drivers of CNS axon growth and regeneration (3, 11, 13, 42-44). Thus, we asked which genes were 5 

significantly changed between “long-growing” Fib-iNs (8-12GW) versus “short-growing” Fib-iNs 

(Neo-72YO; Fig. 3A). Due to the neurite growth variability between the 20GW biological 

replicates and the variability in their “predicted” ages (Fig. 1G, 2B), we grouped both 20GW 

samples into a “variable condition,” and did not include them in this direct comparison. We 

identified 3,465 differentially expressed genes (DEGs) between long-growing and short-growing 10 

human Fib-iNs at FDR<1% (Fig. 3A, S3A, Table 2), indicating large transcriptional differences in 

the neurons with different growth phenotypes. Interestingly, using Gene Ontology enrichment 

analysis, we found enrichments for terms such as translational initiation, ribosomes, and 

cytoskeleton in long-growing Fib-iNs, whereas tissue-specific immune responses were enriched 

in short-growing Fib-iNs (Fig. S3A). We next asked how transcripts enriched in long-growing and 15 

short-growing Fib-iNs compare to known axon growth and regeneration datasets in rodent studies. 

Using gene sets from developmentally-regulated rodent CNS neuron studies, we compared the 

similarity of the transcriptional regulation of these genes to long- and short-growing Fib-iNs, 

revealing that human Fib-iNs behaved similarly to multiple developmentally-regulated gene sets 

in rodent retinal ganglion cells, cortical, and callosal neurons (Fig. 3B). However, a similar 20 

analysis using rodent axon regeneration datasets revealed less conservation (Fig. 3C). Finally, we 

curated a list of genes identified in other species to be activators or inhibitors of axon growth and 

regeneration (though not all developmentally-regulated) and assessed their expression levels 

across age in Fib-iNs (33, 42, 43, 45-49). Interestingly, we found only a subset of these genes 

tended to be differentially regulated with age in human Fib-iNs (Fig. S3B). These comparisons 25 

suggest that there are largely conserved developmental programs between species (Fig. 3B, S3B), 

however, regeneration programs have less agreement between rodent neurons and Fib-iNs (Fig. 

3C, S3B). It is unclear whether this is due to the lack of orthologs between species for comparison, 

aspects of the Fib-iN protocol itself, or differences between humans and rodents.     

 30 

We next used a Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules 

of genes that behaved similarly, correlated them to phenotypes (long-growing versus short-
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growing), and identified significant modules (50, 51). Out of the 216 co-expression modules 

generated, 62 were significantly correlated with a neurite growth phenotype in our Fib-iNs (Fig. 

3D, S3C, Table 3-4). We used the top 6 modules with R≥0.89 (2 enriched in short growing, and 4 

enriched in long growing) and analyzed the genes within each of these modules further (Fig. 3D, 

Table 4; https://adsnpheno.shinyapps.io/axonGrowthProject/). In concordance with our 5 

phenotypic characterization, long-growing modules enriched for Metascape (52) terms associated 

with axon development and many cytoskeleton reorganizing pathways, suggesting the 

reorganization of the cellular cytoskeleton structure may be necessary for promoting neurite 

elongation (Fig. 3E). Short-growing modules enriched for terms associated with receptor signaling 

and energy generation pathways suggesting that short-growing Fib-iNs may spend more energy 10 

responding to the environment (Fig. S3D).  

 

To test the hypothesis that developmentally-regulated genes in human neurons could be candidates 

for modulating axon growth, we selected a short list of genes to screen for their ability to modify 

neurite outgrowth in Fib-iNs (Table 5). Using the genes in the selected 6 modules and taking into 15 

account the combination of the Pearson correlation score, the fold-change in DEGs from the Fib-

iN RNA-seq, and whether the genes were also correctly developmentally-regulated in human brain 

(32), we chose 50 genes to attempt to knockdown (KD) or overexpress (OE) using lentivirus in 

the appropriate age of Fib-iNs (Fig. 3F-G, S3E). Of the 50 genes tested, 19 genes successfully 

transduced in our primary screen, and of those 19, 5 genes (26%) significantly modulated neurite 20 

growth in the correct direction in either the long-growing or short-growing Fib-iNs, as determined 

by z-scores (Fig. 3H). In a secondary screen, modulation of 3 of these genes reproducibly 

significantly modulated neurite growth in the direction predicted from their developmental 

regulation, including leucine rich repeat kinase 2 (LRRK2; coral module), mir9_3p (MIR9_3HG 

was enriched in coral module and mir9_3p regulated many genes in the dark green module), and 25 

AT-rich interaction domain 1A (ARID1A; darkolivegreen1 module; Fig. 3I-J). LRRK2 is the most 

commonly mutated gene in familial Parkinson’s Disease (53, 54). Previous studies have found that 

LRKK2 OE leads to shortening of neurites, and LRKK2 knockout leads to increased neurite 

outgrowth (54), similarly confirmed in our results showing that its KD in adult Fib-iNs (36YO) 

leads to increased neurite outgrowth (Fig. 3I-J). MicroRNA-9 (miRNA-9) is one of the most 30 

abundant miRNAs in the brain and has been shown to decrease axon growth in E17 rodent neurons 

and play critical roles in dendritic development, synaptic transmission, and axon branching (55-
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57). We confirmed a similar role for mir9_3p in human Fib-iNs, where it is upregulated in short-

growing neurons, and its overexpression in 8GW neurons leads to reduced neurite growth (Fig. 3I-

J). Thus, these data validate the use of developmentally-regulated genes in humans to identify 

regulators of neurite growth.  

 5 

ARID1A, also known as Brahma-related associated factor 250a (BAF250a), is a DNA-binding 

subunit of the canonical mammalian SWI/SNF complex, otherwise known as the canonical BAF 

complex, which preferentially interacts with enhancers. This ATP-dependent chromatin 

remodeling complex generally functions as an activator of transcription, with critical roles in 

regulating chromatin changes during development and in cancer (58). Loss-of-function mutations 10 

in ARID1A can lead to Coffin-Siris Syndrome, a neurodevelopmental disorder with symptoms 

such as intellectual disability, growth impairment, hypotonia, and structural CNS abnormalities 

(59), but ARID1A is most studied for its role in cancer (60). Interestingly, both loss- or gain-of-

function mutations in ARID1A can lead to a wide-range of cancers depending on cellular context, 

and affects pathways including the WNT, P21, PI3K/AKT, YAP/TAZ, IL-6/STAT3, and IFN 15 

pathways (60). In the human brain, ARID1A mRNA levels decrease during human cortical 

development (Fig. 4A) (32). To determine if ARID1A protein levels were similarly regulated in 

human development in vivo, we assessed the expression of ARID1A and BCL11B, a marker of 

deep cortical layers, in 16GW, 21GW, and 42YO human cortices. At 16GW, ARID1A protein is 

present in most cells of the cortical plate. By 21GW, ARID1A expression becomes more spatially 20 

restricted within the cortical plate and is enriched in a subset of BCL11B+ neurons. In the adult 

brain, ARID1A protein levels are dramatically downregulated in the cortex and are lowly 

expressed across all layers of the cortex (Fig. 4B). These results confirm both published RNA-seq 

results from human cortical development (Fig. 4A; (32)), and our Fib-iN RNA-seq results (Fig. 

4C), demonstrating ARID1A is downregulated across development and aging. 25 

 

Since we found that ARID1A KD in long-growing Fib-iNs decreases neurite outgrowth in our 

screen (Fig. 3I-J, S4A-B), we asked if increasing ARID1A protein levels would be sufficient to 

increase neurite outgrowth in short-growing Fib-iNs. As ARID1A is a large 250kD protein, we 

selected CRISPR activation (CRISPRa) to activate its expression in 36YO neurons (short-30 

growing), where a guide RNA (gRNA) localizes an enzymatically dead CRISPR/Cas9 and three 

transcriptional activators (VP64, HSF1, p65) to the ARID1A promoter (OriGene; Fig. S4C). Fib-
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iNs were transduced with two viruses: one containing a transcriptional enhancer with no reporter, 

and another containing the gRNA, deadCas9, and GFP (Fig. S4C). We found that GFP+ Fib-iNs 

transduced with gRNAs targeting ARID1A had increased levels of ARID1A protein as compared 

to the non-targeting gRNA (Fig. 4D-E). Further, we found increased ARID1A protein led to an 

increase in neurite outgrowth of 36YO Fib-iNs (Fig. 4D, 4F). Thus, taken together, these results 5 

demonstrate that modulation of ARID1A protein levels can drive changes in human neurite 

growth. 

 

As part of the BAF complex, ARID1A primarily targets enhancers thus increasing accessibility 

for transcription factor binding (61, 62). H3K27acetylation (H3K27ac) is a common epigenetic 10 

modification associated with the ARID1A-containing BAF complex (63-66). Rodent dorsal root 

ganglion neurons have increased global H3K27ac levels following enriched environment 

conditions which increased axon regeneration, connecting H3K27ac histone modifications with 

axon growth potential (67-69). KD or loss of ARID1A leads to decreased H3K27ac, resulting in 

changes in the chromatin architecture (61, 63, 65, 66, 70). Thus, we measured the levels of 15 

H3K27ac in 8GW Fib-iNs treated with scrambled or ARID1A-targeting shRNA. We found reduced 

levels of H3K27ac with ARID1A KD compared to a scrambled control (Fig. 4G). Further, 

immunostaining of Fib-iNs across developmental ages revealed 8GW as having the highest 

H3K27ac signal, with a decrease during development and aging (Fig. 4H). These data suggest 

ARID1A, a developmentally-regulated protein in human neurons, may promote neurite growth at 20 

the chromatin level by increasing levels of H3K27ac, thus controlling transcription of downstream 

targets.  

 

To identify how modifications in ARID1A affect downstream genes and drive changes in neurite 

outgrowth in Fib-iNs, we performed RNAseq on 8GW Fib-iNs transduced with ARID1A shRNA 25 

or a scrambled control for 7 days (Fig. S4D-F). We identified 1,408 differentially expressed genes 

between conditions (FDR<1%; Fig. 4I, Table 6). KEGG terms such as Alzheimer’s, Huntington’s, 

and Parkinson’s disease were upregulated upon ARID1A KD in 8GW Fib-iNs, whereas KEGG 

terms for various types of metabolism and phosphatidylinositol signaling were downregulated 

upon ARID1A KD (Fig. 4J). Excitingly, when we compared transcriptomic changes to previously 30 

published rodent studies as in Fig. 3B-C, we found that ARID1A KD shifted the 8GW Fib-iN 

transcriptome to increase the expression of genes upregulated in cortical and callosal rodent 
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neurons during development, and genes downregulated in rodent PNS regenerating neurons (Fig. 

4K-L). Further, when we compared DEGs from ARID1A KD in 8GW Fib-iNs to transcripts 

upregulated in long-growing and short-growing Fib-iNs, we found that ARID1A KD shifted the 

8GW transcriptome to be similar to short-growing Fib-iNs, with significant overlap between genes 

upregulated upon KD and short-growing biased genes, and between genes downregulated upon 5 

KD and long-growing biased genes (Fig. 4M-N). Despite ARID1A mRNA levels being  only ~2 

fold with the KD (Fig. S4F), this limited change resulted in a reduced neurite growth phenotype 

mirrored by a shift of the transcriptomic landscape towards that of short-growing Fib-iNs. 

 

Taken together, here we provide an age-maintained and species-specific model for studying neurite 10 

outgrowth and identify an in vitro developmental switch in human intrinsic neurite growth ability. 

We find that direct reprogramming can be used to maintain prenatal age in the resulting neurons. 

We present a novel transcriptional dataset for human neurons with increased or decreased neurite 

growth abilities. Finally, we identify ARID1A, a DNA-binding subunit of the cBAF nucleosome 

remodeling complex, as a developmentally-regulated target which can be modified to enhance 15 

human neurite outgrowth.  

 

In the embryonic mouse, Arid1a deletion in cortical progenitor cells led to corpus callosum 

agenesis and mistargeting of intracortical axons (71), whereas Arid1a deletion in the neural 

progenitors of subplate neurons, the first neurons made in the cortex which pioneer the first axon 20 

tracts (72), led to decreased growth of descending subplate pioneer axons and loss of subsequent 

co-fasciculation (71). In the adult mouse, Arid1a deletion in retinal ganglion cells prior to optic 

nerve crush had no effect on regeneration (73). Indeed, our findings in human Fib-iNs would 

suggest the opposite strategy in the adult CNS, using Arid1a overexpression to increase 

regeneration. In excitatory human neurons derived from embryonic stem cells, ARID1A knockout 25 

results in decreased dendritic length and reduced synaptic markers (74), though only dendritic 

growth specifically was measured. Taken together, these and other studies have established a role 

for ARID1A in pioneer axon growth, dendritic complexity, and synaptic density.  

 

Importantly, identification of ARID1A as a neurite growth regulator implicates chromatin 30 

modifiers as important for neurite growth and the lifelong reduction in CNS regenerative abilities, 

as previously suggested by other studies (75-79). However, what drives these chromatin 
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modifications during development is yet unknown. As we find that environmentally naïve human 

neurons that have never seen another brain region or brain cell demonstrate a loss of intrinsic 

neurite growth ability similar to what has been seen in rodent CNS neurons, this suggests that an 

intrinsic clock may drive these changes. Whether these changes are initiated in the body through 

systemic signals during specific stages of development or the passage of time itself is yet to be 5 

determined.   
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Figure 1: Fib-iNs transdifferentiated from fetal through adult human fibroblasts preserve 

age. 

A-B) 8GW to 72YO human fibroblasts were reprogrammed to Fib-iNs by overexpressing 
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NEUROG2 and ASCL1 (N2AA) in a doxycycline-dependent manner (LV ETO), followed by 4 

weeks of transdifferentiation in induction media. As an age-reset control, 5 of the original 

fibroblast ages were reprogrammed to iPSCs, then transdifferentiated using the same 

overexpression paradigm to generate iPSC-iNs. B) 36YO fibroblasts were immunostained over 

the 4 weeks of transdifferentiation to Fib-iNs for beta-III tubulin (TUBB3; neurons), vimentin 5 

(VIM; fibroblasts), and Hoechst (nuclei). Scale bar = 100 μm. C) Multi-dimensional scaling 

(MDS) of RNA-seq data for all Fib-iN samples. D) Spearman rank correlation (Rho) of Fib-iN 

RNA-seq to neuronal expression profiles from the Allen Brain Map single cell human data of 

various brain regions (21, 22), revealing that all ages of Fib-iNs are most similar to excitatory 

neurons (Exc.) of primary motor cortex (M1C) and primary visual cortex (V1C). E) Comparison 10 

of Fib-iN DEGs enriched in long-growing (8GW-12GW) vs. short-growing (NEO-72YO) against 

genes up and downregulated in human “M1C only”, “V1C only”, and “M1C and V1C” cortical 

development from PsychENCODE (32) with associated p-values. FDR <0.001 (V1C and 

V1C/M1C), FDR<0.013 (M1C UP), FDR<0.22 (M1C DOWN). F) Using machine-learning, 

RNA-seq from PsychENCODE’s human developmental M1C and V1C brain regions was used to 15 

train a model to predict the age of Fib-iN samples from RNA-seq profiles (32), revealing increasing 

developmental age from gestational age Fib-iNs, irrespective of passage number (p). G) Heatmap 

of significant age-related transcriptional changes in adult Fib-iNs (36YO-72YO; 2,431 genes) with 

an FDR<5%. H) Gene set enrichment analysis using genesets from human dorsolateral prefrontal 

cortex samples (33) showing genes rising during development (left) and genes falling in 20 

development (right) are enriched in short-growing (positive values) and long-growing Fib-iNs 

(negative values), respectively.  
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Figure 2: Conservation of a developmental loss of intrinsic neurite outgrowth in human 

neurons. 

A-B) Fib-iNs of all ages were trypsinized, and plated for 2 days in ASM before fixation, and 

immunostaining for TUBB3. Neurons were imaged and traced for total neurite length. A superplot 5 

shows total neurite length of all Fib-iN ages normalized to their within-batch 36YO sample. One-

way ANOVA with post-hoc Tukey’s test on averages of replicates compared to 36YO; Mean ± 

SEM. C) The number of total branches per neuron were averaged from each age, and normalized 

to the 36YO sample of each experiment. One-way ANOVA with post-hoc Tukey’s test on averages 
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of replicates compared to 36YO; Mean ± SEM. D-E) iPSC-iNs were trypsinized, and plated for 2 

days in ASM before fixation, and immunostaining for TUBB3. A superplot shows total neurite 

length of all iPSC-iN ages normalized to their within-batch 36YO sample. One-way ANOVA with 

post-hoc Tukey’s test on averages of replicates; Mean ± SEM. For all experiments, N ≥ 3 different 

inductions, n ≥ 50 cells per induction. Scale bar (A) 500 μm, (E) 100 μm. ns = not significant, 5 

*p<0.05 **p<0.01 ***p<0.001.  
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Figure 3: Developmentally-regulated genes screened in Fib-iNs reveal multiple drivers of 
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human neurite growth. 

A) RNA-seq of 11 ages of Fib-iNs revealed 3,465 differentially expressed genes (DEGs) with 

FDR <1%. Schematic of RNA-seq analysis strategy, with “long-growing” (8GW & 12GW) vs. 

“short-growing” (Neo to 72YO). 20GW #1 and #2 are only provided for a visual comparison and 

were not included in the differential analysis due to having “variable” growth. B) Gene Set 5 

Enrichment Analysis (GSEA) for curated genes from developmentally-regulated rodent datasets 

(orthologs) in long- and short-growing Fib-iNs. Long= genes upregulated in long-growing iNs; 

short= genes upregulated in short-growing iNs; Up= genes upregulated in rodent developmental 

datasets, down= genes downregulated in rodent developmental datasets. FDR <0.05 and consistent 

(red or blue boxes), FDR >0.05 (white boxes), FDR <0.05 but inconsistent (grey boxes). C) GSEA 10 

for curated gene lists from regenerative rodent datasets (orthologs) in long and short growing Fib-

iNs. Up= genes upregulated in regeneration, down= genes downregulated in regeneration. FDR 

are as in B. D) Pearson correlation values and p-values of 6 most significant eigengenes and traits 

from WGCNA analysis. E) Significant Metascape term enrichment in long-growing modules. F) 

Schematic of screen paradigm for overexpression or knockdown of specific genes in Fib-iNs. G) 15 

Pearson correlation value (r) of genes from the 6 key modules plotted against their respective 

RNA-seq log2foldchange. Positive r value indicates positively correlated with short-growing 

phenotype, negative r value indicates positively correlation with long-growing phenotype. Positive 

log2foldchange indicates gene enrichment in short-growing Fib-iN ages. Negative log2foldchange 

indicates gene enrichment in long-growing Fib-iN ages. Red dots = genes screened, grey dots = 20 

genes not screened. H) Z-score of genes tested in 36YO and 8GW Fib-iNs in primary screen. 

Shaded grey area is 1 standard deviation in each direction. Both red and blue dotted genes were 

tested in secondary screen, with only red dots successfully reproducing primary screen results. I) 

Secondary screen of 5 primary screen hits, showing the significant genes’ total neurite length 

normalized to its appropriate control (ctrl; plasmid overexpression (GFP O/E) or scrambled (Scr) 25 

shRNA (shRNA)). N ≥ 3 different inductions, n ≥ 50 cells per induction. Student T-test. Mean ± 

SEM. J) Table summary showing secondary screen gene hits, expression trend in human cortex 

during development (PsychENCODE), knockdown (KD) or overexpression (O/E), age of Fib-iN 

tested, resulting growth phenotype in the tested Fib-iN age, and WCGNA module. ns = not 

significant *p<0.05, ***p<0.001.  30 
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Figure 4: ARID1A is a developmentally-regulated driver of human neurite growth.  

A) ARID1A transcript levels (Log2(RPKM+1) across development in human M1C 
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(PsychENCODE). Post conception day (PCD). Time is displayed in epochs. B) Immunostaining 

of ARID1A in 16GW (i), 21GW (ii) and 42YO (iii) human prefrontal cortex shows colocalization 

of ARID1A and deep layer neurons (BCL11B). Layer (L) 1-6, CP= cortical plate, WM= white 

matter. Scale bar, 200 μm. C) Average ARID1A transcript expression (DEseq2 VST) across all 

Fib-iN ages. D) Representative images of ARID1A CRISPRa (left) and NT (right) control in 36YO 5 

Fib-iN, stained for neuronal identity (TUBB3), and ARID1A protein. Scale bar, 100 μm (D), 50 

μm (Di, ii). Red circle = nuclei. E-F) Quantification of ARID1A protein levels (E) with CRISPRa 

for 7 days in 36YO Fib-iN, and neurite length (F; normalized to NT control). Student t-test on 

averages of replicates; Mean ± SEM. N ≥ 3 different inductions, n=20 cells per induction. G-H) 

Superplot quantification of immunostained H3K27acetylation (H3K27Ac) protein levels G) 7-10 

days post ARID1A or Scr shRNA transduction in 8GW Fib-iNs (normalized to Scr shRNA of each 

experiment), and H) across development (normalized to the 58YO of each experiment). N=3 

different inductions, n=30 cells per induction. I) 1,408 DEGs (FDR <1%) were identified in RNA-

seq of ARID1A shRNA vs. Scr shRNA 7 days post-transduction in 8GW Fib-iNs. J) Top KEGG 

pathways significantly enriched in ARID1A shRNA KD as compared to Scr ctrl (red: upregulated 15 

with KD, blue: downregulated with KD). K-L) Comparison of transcripts upregulated and 

downregulated in ARID1A KD 8GW Fib-iNs against the same (K) developmental and (L) 

regeneration rodent datasets from Fig. 3C-D reveals a similarity of genes upregulated in ARID1A 

KD and upregulated with development. Up= genes upregulated in rodent datasets; down= genes 

downregulated in rodent datasets. FDR of <0.05. M) Venn diagram revealing the overlap of genes 20 

upregulated with ARID1A KD in 8GW Fib-iNs to genes upregulated in short-growing Fib-iNs 

(Neo-72YO). Fisher’s exact test. N) Genes downregulated with ARID1A KD in 8GW Fib-iNs had 

greater overlap with genes upregulated in long-growing Fib-iNs (8-12GW). Fisher’s exact test. 

Arbitrary units (A.U.). *p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
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Tables: 

Table 1: Original fibroblasts used for experiments.  

Table 2: Fib-iN RNA-seq DEG VSTs across all the ages and experimental replicates. 

Table 3: WGCNA analysis of all the genes from Fib-iN RNA-seq and their eigengenes. 

Table 4: All the genes within the 6 selected eigengenes.  5 

Table 5: Details on genes tested in Fib-iN gene screen. 

Table 6: ARID1A shRNA knockdown vs. scrambled control shRNA DEGs.  
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