Cerebellar granular neuron progenitors exit their germinative niche via Barhl1 mediated silencing of T-Cell Factor transcriptional activity

Johnny Bou-Rouphael ${ }^{1}$, Mohammed Doulazmi², Alexis Eschstruth ${ }^{1}$, Asna Abdou ${ }^{1}$, and Béatrice C. Durand ${ }^{11,2,3, *}$
${ }^{1}$ Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
${ }^{2}$ Sorbonne Université, CNRS UMR8256, Institut de Biologie Paris-Seine (IBPS) - Laboratoire Adaptation Biologique et Vieillissement, 75005 Paris, France
${ }^{3}$ Lead contact
* Correspondence: beatrice.durand@sorbonne-universite.fr (B.C.D)

SUMMARY

T-Cell Factors (TCFs) are the main transcriptional effectors of Wnt / β-catenin signaling. TCF responsiveness is a hallmark of self-renewal in mouse embryonic, and adult, neural stem cells (NSC). However, in vivo contribution(s) of TCF activities in long-lived NSCs are poorly understood. Granule neuron progenitors (GNP) in the upper rhombic lip (URL) are long-lived NSCs which express Atoh1 and generate cerebellar granule neurons. Using functional and transcriptomic approaches in amphibian, we demonstrate that TCFs are active in the URL, and are strictly necessary for the emergence and maintenance of the GNP germinative zone. We identify BarH-like 1 (Barhl1), a direct target of Atoh1, as a gate keeper for GNP exit from the URL, through silencing of TCF transcriptional activity. Our transcriptomic and in silico analysis identifies Barhl1/TCF URL target genes, and confirms our functional data. Our study provides in vivo evidence that inhibition of TCF repressive activity is necessary for maintenance of the URL, a long-lived neural germinative niche.

KEYWORDS

Granule Neuron Progenitors, Cerebellum, Upper Rhombic Lip, Neural Stem Cell, Germinative niche, Wnt signaling, TCF/Lef, BarH-like 1.

INTRODUCTION

The Wnt/ß-catenin cell-to-cell signaling pathway coordinates development and is one of the most conserved in the animal kingdom. The large majority of Wnt/ β-catenin transcriptional targets are regulated by T-Cell Factor/Lymphoid Enhancer-binding Factor (TCF/LEF) transcription factors (TF) ${ }^{1,2, \text { reviewed in } 3}$. Investigation of the developmental fate of Wnt / β-cateninresponsive cells in embryonic and postnatal mouse brains reveals that long-lived NSCs retain neuroepithelial properties, and Wnt / β-catenin responsiveness throughout development ${ }^{4}$. In the adult mouse ventricular-subventricular zone of the lateral ventricles, WNT signaling promotes both NSC self-renewal and neural progenitor cell proliferation, while TCF/LEF activity is detected in deeply quiescent NSC cells ${ }^{4-7}$ reviewed in 8 . Moreover, hippocampal quiescent NSC and progenitors in culture exhibit enhanced TCF/LEF1 driven transcription ${ }^{9}$. Taken together, these observations suggest contribution(s) of Wnt driven TCF transcriptional activity in adult NSC biology. However, currently, our understanding of such activities in longlived NSC remains surprisingly fragmented ${ }^{8, \text { reviewed in } 10-12}$.
A crucial component of the central nervous system (CNS) in all jawed vertebrates is the cerebellum, involved in executing motor functions as well as participating in higher cognitive processes such as decision-making, emotional and social behaviour, and expectation of reward ${ }^{13-15}$. The cerebellum has two major stem cell niches: the ventricular zone (VZ) adjacent to the fourth ventricle, which produces all cerebellar GABAergic inhibitory neurons ${ }^{16-18}$; and the upper rhombic lip (URL) which is the origin of glutamatergic excitatory neurons, derived from Atonal homologue 1 (Atoh1)-expressing progenitors. The URL gives birth first to the deep cerebellar nuclei (DCN), followed by the unipolar brush cells (UBC) and the granular neuron progenitors (GNP) that in turn produce granule neurons, the predominant neuronal population in the entire CNS reviewed in 19-21.
While the VZ appears to be TCF inactive, positive TCF transcriptional activity has been documented in the URL of mice, human and Xenopus species ${ }^{22-25}$. Moreover, in vitro and in vivo studies in mice show that, in contrast to what is observed in NSC and progenitors of the developing CNS, or in the $\mathrm{VZ}^{26,27}$, constitutive activation of β-catenin in Atoh1+ URL cells does not promote their proliferation ${ }^{26,28-30}$. Taken together, these data indicate that TCF-mediated transcription probably contributes to the URL biology, but its role(s) in this germinative area remains undefined. In addition, they highlight the presence of TCF developmental regulators within this germinative area that have not yet been identified.
The GNP developmental path is marked by expression of specific TF, including ATOH1 which is indispensable for maintaining GNP in an immature state ${ }^{31}$. In amniotes, Atoh1 expression initiates in the RL, is maintained in the EGL during GNP proliferation, and is lost in differentiated GN that start expressing the basic Helix Loop Helix (bHLH) neurogenic differentiation factor 1 (Neurod1). In addition, the Paired box protein 6 (Pax6) and BarH-like 1 homeobox protein (Barhl1) expressions are markers of GNP commitment ${ }^{25,32-36}$.
Amphibians show a marked development of the cerebellum that displays morphological features resembling those found in higher vertebrates ${ }^{37,38}$ reviewed in 39,40 . The few studies performed in the amphibian Xenopus pre-metamorphosis reveal the presence of an EGL-like structure that is unique compared with other anamniotes. However, unlike in higher vertebrates, the Xenopus EGL lacks any cells that undergo proliferation ${ }^{41}$. These studies also indicate that the developmental processes that lead to the formation of GN, specifically the presence of an Atoh1-expressing URL and EGL, and the expression of Neurod1 are close to those described in higher vertebrates ${ }^{41,42}$. Of Note, the amphibian URL maintains itself until
post-metamorphic stages ${ }^{38,41}$. However, early developmental events leading to GNP induction and EGL formation have not been described in amphibians.
ATOH1 directly induces its own expression as well as the expression of the two homeodomain (HD)-containing TF, BARHL1 and BARHL2, which are mammalian homologues of the Drosophila Bar-class HD, BarH1 and BarH2 ${ }^{43-46}$ reviewed in 3,47 . In mice, Barh11 cerebellar expression is detected in committed GNP, and persists in the EGL ${ }^{33,48}$. In the developing cerebellum, BARHL1 participates in the generation of the EGL ${ }^{45}$, and is one of the major TF that regulate the radial migration of GNP in a mechanism involving Neurotrophin3 (NT3) ${ }^{49}$. Furthermore, an impairment in GN survival, and an attenuated cerebellar foliation, are observed in Barhl1-/- mice ${ }^{50}$. On the other hand, we established that BARHL2 dramatically enhances the transcriptional repressor activity of TCF, and prevents β-catenin driven activation of TCF target genes ${ }^{51,52}$. Immunoprecipitation assays reveal physical interaction between BARHL2 and the two transcriptional repressors of Wnt target genes TCF7L1 and Groucho/Transducin-like Enhancer of Split (Gro/TLE) ${ }^{52}$. However, the role of BARHL2 in cerebellar development has not been investigated, and whether BARHL1 similarly interacts with, and regulates, TCF transcriptional activity is unknown.
Here, we investigated the role of both Tcf transcriptional activity, and Barhl1, in GNP development using Xenopus as a model system. We establish that markers of GN early progenitors, EGL, commitment, and differentiation, are conserved in Xenopus compared to amniotes. Using gain and loss of function experiments (GOF/LOF), immunoprecipitation, and a X. tropicalis Wnt reporter transgenic line, we demonstrate that Tcf-mediated transcriptional activation is strictly necessary for both the emergence and maintenance of the cerebellar URL, and furthermore demonstrate that, in this germinative area, Barhl1 is the main repressor of Tcf transcriptional activity. Barhl1 LOF, through Morpholino (MO)-mediated depletion or Crispr/Cas9 gene knock-out, dramatically increases Tcf transcriptional activity in the URL, leading to a major enlargement of the URL, and significant delays in GNP differentiation. Using a transcriptomic approach, we confirm our functional assays and identify direct and indirect target genes repressed by Barhl1 in the cerebellar URL. Indeed, Barhl1 depletion induces an upregulation of TF involved in maintenance of neural stem/progenitor properties, an enhancement of both $\mathrm{Wnt} / \mathrm{Tcf}$ and Notch signaling activities, associated with a down regulation of genes involved in inhibiting proliferation, and promoting neural differentiation. Together with in silico analysis of Barhl1 target genes regulatory regions, our study confirms that in the amphibian, Barhl1 drives URL stem/progenitor cells out of their germinative niche, towards commitment and differentiation, by repressing TCF transcriptional activity.

RESULTS

Spatial and temporal expression of key markers of GNP development are conserved in Xenopus compared to higher vertebrate

We performed in situ hybridization (ISH) on X. laevis tadpoles through pre-metamorphic froglets (stages 35 to 50) and assessed the expression patterns of genes known to be involved in the development of Atoh1 lineage in rodents, focusing on GN. By using atoh1 to label the URL and EGL, pax6 and barhl1 to mark GNP commitment, and neurod1 to mark post-mitotic GN, we established a fate map that outlines the developmental progression of atoh1 lineage cells within rhombomere 1 (R1), located caudal to the midbrain-hindbrain boundary (MHB). The proliferation marker n-myc helps define the posterior boundary of R1 (Fig. 1A; Fig. S1B).

We found that pax6 expression begins at stage 38 (Fig. S1C), while barh/1 expression begins at stage 39-40 (Fig. 1F), which we used as a landmark of GNP induction. From stage 38 to stage 48, atoh1 is expressed in the URL and in a layer of 3 to 4 cells bordering the URL, which we consider to be the EGL (Fig. 1B; Fig. S.1A). Although the n-myc expression pattern is similar to that of atoh1 in the URL, n-myc is also strongly detected in the VZ, in agreement with its expression in proliferating cells (Fig. 1C, Fig. S1B).
We investigated the dynamics of pax6, barhl1, and neurod1 expressions within R1 from stage 38 to stage 48 (Fig. 1E-G; Fig. S1C-E). All markers are present in the cerebellar primordium and are first detected in the caudal region of the EGL. During this developmental period, cells expressing barhl1 and neurod1 migrate from an external layer partially covering the cerebellar plate towards the inner cerebellar tissue, where they undergo their final differentiation (Fig. 1F, G, Fig. S1D, E). Furthermore, while Orthodenticle Homeobox 2 (otx2) expression is typically limited to the posterior lobes of the EGL in amniotes, we detected otx2 expression in the caudal EGL at stage 39, which was subsequently restricted to the cerebellar plate (Fig. 1D). At stage 48, Hairy and enhancer of split-4 (hes4), a known marker of Notch-active cells and of stemness in Xenopus ${ }^{53,54}$, strongly labels both the VZ and the EGL at stage 48 (Fig. 1H). hes4 is not expressed in mice, while its expression is found in Xenopus and in Human. Additionally, we did not observe expression of barhl2 in the cerebellar anlage at the analysed developmental stages (Fig. S1F).
These observations indicate striking similarities in GNP development between Xenopus and amniotes. Specifically, the expression pattern of genes involved in induction and specification of GNP, including atoh1, n-myc, pax6, barhl1, otx2, neurod1, is conserved. As previously reported ${ }^{41}$, we detect the presence of an EGL along the R1 antero-posterior axis marked by atoh1 and hes4. Our observations also indicate a gradient in GNP differentiation, initiated in the caudal EGL at stage 38 and progressing to the rostral part up to stage 50 . Starting at stage 50 , we report changes in the shape of the URL. Thus, we focused our analysis on cerebellar anlage development between stage 38 and stage 48.

In the cerebellar primordium, constitutive Tcf inhibition and Barhl1 overexpression produce similar developmental defects in atoh1 expression, URL induction and GNP early commitment/differentiation

We focused our study on the role of Tcf and Barhl1 in URL establishment and maintenance, during the time window where GNP are produced. We used tcf7l1- $\Delta \beta$ cat-GR, a previously described inducible form of $t c f 7 / 1$ which lacks its β-catenin binding domain, and thus acts as a dominant negative and constitutive inhibitor of Tcf transcriptional activity ${ }^{55}$ (Fig. S2). Development of the URL and GNP was investigated using either atoh1, or pax6, barhl1 and neurod1 as respectively URL/EGL, and GNP commitment /differentiation markers.
At a high dose, tcf7/1- $\Delta \beta$ cat-GR overexpression induced a dramatic reduction in the size of the URL, associated with the disappearance of the expression of its key marker atoh1. Of note, this effect is restricted to the R1 (Fig. 2Aa-a", c). At a lower dose, tcf7/1- $\Delta \beta$ cat-GR overexpression induced a decrease in atoh1 expression (Fig. 2Ab, c). This decrease is associated with both an increase of expression, and a rostral shift, observed with the three commitment/differentiation markers pax6, barhl1, and neurod1 within the R1 (Fig.2Ba-c). tcf7l1- $\Delta \beta$ cat-GR effects on atoh1, pax6, barhl1 and neurod1 expression were quantified (Fig.2Ac-Bd).
In amniotes, BARHL1 is a direct target of ATOH1 ${ }^{45,46}$. We next asked whether Barhl1 overexpression impacts early development of the URL and GNP (Fig. S2). We observed that
barh/1 overexpression phenocopies that of Tcf inhibition. We observed a strong decrease in atoh1 transcripts levels within the URL (Fig. 2Ca-a", d). Loss of atoh1 and the URL is associated with an increase of pax6 and neurod1 expression, and a concomitant rostral shift in both markers' expression within R1 (Fig. 2Cb-d).
Our data indicate that Tcf transcriptional activity is strictly necessary for the expression of atoh1 within the URL, and that inhibiting Tcf activity leads to accelerated GNP differentiation. Similarly, overexpression of Barhl1 in the cerebellar primordium results in URL induction defects, associated with premature GNP differentiation.

In the cerebellar URL, inhibition of Barhl1 maintains GNP in an early progenitor state

To decrease Barhl1 activity within the cerebellar anlage, we designed two morpholinos (MO), MObarhl1-1 and MObarhl1-2, specifically targeting Xenopus barhl1 mRNA (Fig. S2; S3; Methods). We investigated whether, andby what mechanism(s), Barhl1 Knock-Down (KD) affects the development of the URL, the EGL, and/or GNP development. At stage 42, 45, and 48, depletion of Barhl1 induced an increase in atoh1 expression. We observed atoh1 expressing cells spreading across the surface of the cerebellar plate (Fig. 3Aa-a", Ba-a"; Fig. S3B, C, D). This ectopic expansion within the URL and to the EGL is associated with a major decrease in pax6 expression (Fig. 3Ab, Bb; Fig. S3B, D). Both MO induced the same phenotype, which was quantified (Fig. 3C). At stage 42, the increase in atoh1 expression in Barhl1-KD embryos is corroborated by a similar increase in n-myc expression (Fig. S3C). We further tested the ability of mbarhl1-GR to rescue the Barhl1-KD phenotype. mbarhl1-GR was co-injected with MObarhl1-1, and neurod1 was used as a marker of GNP differentiation. MObarhl1-1 and MObarhl1-2 induced a strong decrease in neurod1 expression, which was rescued by co-injection of mbarh/1-GR (Fig. 3D).
We next asked whether inhibition of Tcf activity compensates for Barhl1-KD using pax6 as a marker of GNP commitment. As previously observed, Barhl1-KD delayed GNP differentiation process, while tcf7l1- $\Delta \beta$ cat-GR overexpression accelerated it (Fig. 3Ea-c). MObarhl1-1 coinjected with two different doses of tcf7l1- $\Delta \beta$ cat-GR mRNA rescued the phenotype (Fig. 3Edf).

These data provide strong evidence that MObarhl1 acts by specifically inhibiting endogenous Xenopus Barhl1 activity. They also indicate that Barhl1 depletion delays differentiation of GNP. Combined, these observations reveal that Barhl1 and Tcf act in opposing ways within the URL and the EGL, and maintain GNP in an early progenitor state.

Barhl1 limits Tcf transcriptional activity within the cerebellar primordium

We next asked whether Barhl1 directly controls Tcf transcriptional activity within the cerebellar URL. We investigated interactions between Barhl1, Gro4, and Tcf7l1, by performing coimmunoprecipitation (Co-IP) experiments on protein extracts from HEK293T cells transfected with tagged constructs of Tcf711, Gro4, and Barhl1 (Fig. 4A; Fig. S2). In agreement with Barhl1 containing two Engrailed Homology-1 (EH1) motifs known to interact with the WD-repeat domain of Gro, Barhl1 co-immuno-precipitated with Gro4 (Fig. 4Aa). Using Tcf7l1 as bait, we further observed that Tcf711 could immuno-precipitate Barhl1, in the presence and absence of Gro4. The presence of Barhl1 does not affect the interaction of Tcf7l1 with Gro4 (Fig. 4Ab). Concatemers of the consensus Tcf binding motif have been used to generate Wnt/Tcf reporter lines, such as Xenopus tropicalis (X. tropicalis) transgenic pbin7LefdGFP line ${ }^{22,56,57}$, which contains one copy of a wnt reporter gene. We assessed Tcf activity from stage 42 up to stage

50 using this reporter line and observed a positive Tcf activity in the URL. Contrastingly, we did not detect any Tcf activity in the VZ and the EGL at similar developmental stages. Importantly, up to stage 48 we observed that Tcf activity is stronger at the rostral end of the URL. This asymmetry of expression is lost at stage 50 (Fig. 4Ba-d). In addition, we observed a strong correlation between Tcf activity and atoh1 expression (Fig. 4Ba'-d'), which appears to be complementary to that of barhl1 (Fig. 4Bc", c"'-d"). Taken together, these data are consistent with our previous observations indicating that Tcf activity is strictly necessary for the induction of atoh1 expression within the URL.
We next assessed the impact of Barhl1 gain of function (GOF) and loss of function (LOF) on Tcf activity (Fig. 4C). Whereas mBarhl1 overexpression decreased Tcf activity (Fig. 4Ca), we observed a threefold increase in Tcf activity upon Barhl1 downregulation with MObarhl1-1 (Fig. 4 Cb). In contrast, MOct had no effect on Tcf activity (Fig. S4A). The effect was quantified (Fig. 4 Cc). We further inhibited Barhl1 by selective knock-out (KO) of xbarhl1 gene in the pbin7LefdGFP line (F0 generation) using Crispr/Cas9 genome editing technology (Fig. S4B). We observed that Barhl1 KO induced an average twofold increase in Tcf transcriptional activity (Fig. 4Da-c). We assessed phenotypic penetrance in Crispr/Cas9 injected embryos based on gfp expression. We observed different levels of phenotypic severities in $>70 \%$ of injected embryos, ranging from a slight increase in gfp expression observed in $\sim 20 \%$ of injected embryos to $>40 \%$ of injected embryos exhibiting strong to complete penetrance as observed by a significant increase in gfp expression in the R1 (Fig. 4d).
To determine whether Barhl1 effects were mediated through its interaction with Gro, we used and inducible form of m Barhl2-EHsGR, which contains the two EH1 domains of Barhl2 (Fig. S2) and has been previously demonstrated to act as a dominant negative for Tcf repressive activity by competing for Gro binding ${ }^{52}$. Overexpression of mBarhl2EHsGR induced a phenotype similar to that of Barhl1-KD in terms of increasing the URL/EGL size at the expense of GNP commitment/differentiation (Fig. 4Ea, b; S4).
Taken together, our data establish that Barhl1 directly interacts with Tcf7l1 and Gro, limiting their transcriptional activity in the cerebellar URL.

Through its limiting of Tcf transcriptional activity, Barhl1 allows GNP to leave their early progenitor state and exit the proliferating URL

The URL germinative zone is characterized by its proliferative state, and its bordering of the roof plate. We first asked whether the EGL is proliferative in Xenopus, and second whether the enlargement of the URL/EGL territories observed in Barhl1-KD tadpoles was corroborated with an increased proliferation in the URL and/or within the cerebellar plate. Using immunofluorescence staining for Phosphorylated-Histone H3 (PHH3), a marker of cells undergoing mitosis, counterstained with a cell nuclear marker, we measured proliferation in tadpoles injected with either MOct or MObarhl1-1 at stage 45 and 48. In agreement with previously published data ${ }^{41}$, at both stages, $\mathrm{PHH} 3+$ cells were solely detected within the URL (Fig. 5Aa). To investigate the capacity of URL-derived GNP to leave their proliferative state, and to progress along their developmental trajectory, we measured the length of the URL on the injected side compared to the control side in embryos either injected with MOct or MObarhl1-1. At stage 45 and 48, Barhl1-KD embryos exhibited a 1.2-fold lengthening of the URL on the injected side relative to the control side (Fig. 5Ac-e). Because it was morphologically easier to distinguish the URL from the VZ at stage 48, we performed our following analysis at this later developmental stage (Fig. 5Ab). At stage 48, we measured an average 2-fold increase in the number of $\mathrm{PHH} 3+$ cells on the injected side compared to the
control side (Fig. 5Ac, d, f). Moreover, we observed and quantified the presence of proliferating cells in the cerebellar plate, which is normally devoid of PHH3+ cells as observed in tadpoles injected with MOct (Fig. 5Ac, d, g). Taken together, these results confirm that in Xenopus, the EGL is non proliferative, and show that Barhl1-KD cells are compromised in their ability to leave the URL niche and become postmitotic.
We next investigated whether Tcf inhibition could counteract Barhl1-KD effect on URL extension. As previously observed, whereas Barhl1-KD induced an extension of the URL length, tcf7l1- $\Delta \beta$ cat-GR overexpression reduced it (Fig. 5Ba-c), and co-injection of MObarhl11 and tcf7l1- $\Delta \beta$ cat-GR mRNA brought back the URL size to normal (Fig. 5Bd-f).
In conclusion, Barhl1 activity as an inhibitor of Tcf transcription is strictly necessary for URL cells to exit their niche, become postmitotic and enter the EGL.

Transcriptomic analysis of Barhl1 activity in the developing cerebellum

barhl1 starts to be significantly expressed in the developing cerebellum at stage 40. To further document Barhl1 activity, we designed an RNA-sequencing experiment allowing the identification of Barhl1 direct and indirect target genes in the early Xenopus cerebellum.
We isolated and sequenced RNA from R1 of stage 42 tadpoles previously injected at the 4 cells stage in the 2 dorsal blastomeres with MObarhl1-1, MObarhl1-2 or MOct together with gfp. Tadpoles were selected for hindbrain injection and R1 were dissected. Samples were compared through differential expression (DE) analysis. Genes with adjusted p-value (pAdj) inferior to 0.001 were selected as significant DE genes (DEG) (Table S1). Principal component analysis of these R1 samples demonstrated that they clustered by Barhl1-KD status (Fig. 6A), indicating that changes in gene transcription were consistent across different clutches. At stage 41-42 we identified 1622 and 830 genes differentially expressed between respectively MObarhl1-1 and MObarhl1-2 injected R1, compared with MOct injected R1. Amongst these DE genes 575 were common between MOs injected samples (Fig. S6B). A selection of significant upregulated (Log2FC>0.4) and downregulated (Log2FC<-0.4) genes are represented in volcano plots for both MOs (Fig. 6B). Furthermore, we generated a heatmap representing upregulated and downregulated common DEG for both MOs (Fig. 6C).
As a first approach we performed gene ontology analysis (GO) based on pAdj<0.001 DEG using the clusterProfiler algorithm ${ }^{58}$ and compared altered biological functions between both Barhl1-KD conditions (Fig. 6D). Our GO analysis reveals that the most significantly upregulated genes act as transcriptional activators when bound to DNA (Fig. 6Da). In agreement with a delay of GNP differentiation the downregulated DEG were found to be involved in axon development and axonogenesis, in addition to neuronal differentiation (Fig. 6 Db). Indeed, our differential expression dataset reveals that genes that are the most upregulated in the MObarhl1-1 and MObarhl1-2 conditions are involved in adult neural stem cell (NSC) maintenance. For example, dmrta2 that encode for doublesex and mab-3-related transcription factor a2, also known as dmrt5, the orphan nuclear receptor subfamily 2 group E member 1 (nr2e1) commonly known as Tailless, that are upregulated with a Log2FC over 1.5. We also observed a down regulation of the Delta/Notch-like epidermal growth factor (EGF)related receptor (dner) (Log2FC ≤-0.5), which has been suggested to be a neuron-specific Notch ligand ${ }^{59}$. Indeed, dner has been suggested to inhibit neural proliferation and induce neural and glial differentiation ${ }^{60}$. We also identify Basic Helix-Loop-Helix Family Member E22 (bhlhe2), a downstream target of NEUROD1, which is strongly downregulated in Barhl1 depleted R1 (Log2FC $\leq-0.5)^{61}$.

Our functional data argue that Barhl1 mostly act through inhibition of TCF transcriptional activity. We first investigated the presence of Barhl1 Cis Regulatory Motifs (CRM) defined as CAATTAC/G and its mirror motif ${ }^{62}$, within the regulatory sequences - 5 Kb upstream or downstream of the Transcription Start Site (TSS) - of previously identified DEG common to MObarhl1-1 and MObarhl1-2 conditions. We observed that all DEG regulatory regions contain at least 2 Barhl1 CRM, 87.5\% contain 5 or more Barhl1 CRM and $40 \% 10$ or more Barhl1 CRM (Table 1A). Thereby our identified DEG appear to be Barhl1 direct target genes. To investigate which Barhl1 target genes are also regulated by TCF we similarly searched for TCF CRM defined as CTTTGAA/CTTTGAT, within the regulatory sequences of previously identified DEG common to MObarhl1-1 and MObarhl1-2 conditions (Table 1B; Fig. 6E) ${ }^{63,64}$. We observed that 76% of Barhl1 depleted DEG regulatory regions contain at least one Tcf CRM: 26\% contain one CRM, 25% contain two Tcf CRM and 25% contain three and more Tcf CRM (Fig. 6E).
Using ISH, we explored changes in two up-regulated DEG. zic3, a member of the Zinc Finger of the Cerebellum (Zic) family known to be involved in regulation of neuronal progenitor proliferation versus differentiation, and cerebellar patterning reviewed in $65-67$ (Log2FC ≥ 1) and otx2 that is detected in a subset of GNP (Log2FC ≥ 1.2). At stage 41-42 we observed a significant expansion of both otx2, and zic3 expression territories within the cerebellar plate (Fig. 6Fa,b). zic3 transcripts are present in the URL, and zic3 regulatory regions contain at least three Tcf CRM (Table 1B). otx2 regulatory regions contain either no Tcf CRM (otx2.L), either 3 Tcf CRM (otx2.S). Thereby we argue that zic3 is a direct target of Tcf, whereas otx2 genes may be indirect targets of Barhl1 depletion effect on GNP development.
Amongst the DEG, we also observed an upregulation of faithful reporters of Notch pathway activation hes5 family genes (hes5.1, hes5.2, hes5.3, hes5.4), which regulatory regions contain between 1 and 5 Tcf CRM (Log2FC $\geq 0.5 \leq 0.91$) and HES/HEY-Like Transcription Factor (helt) (Log2FC ≥ 2), which regulatory regions lack Tcf CRM. HELT is closely related to Hairy enhancer of split proteins that act as a major downstream effector in the Notch pathway, that is required for the maintenance of NSC, and a proper control of neurogenesis in both embryonic and adult brains ${ }^{68}$.
Finally and importantly amongst the DEG, we identified markers of Wnt pathway activity including one of the bona fide direct target gene of Wnt signalling sp5 (Log2FC ≥ 1.55; 3 Tcf CRM) (Fig.6B,C; Suppl. Table 1), together with lef1 (Log2FC ≥ 1.55; one Tcf CRM) known to be a target of Wnt / β-catenin signalling ${ }^{69}$, two Wnt secreted signals wnt8b (Log2FC ≥ 1; one Tcf CRM) (Fig. 6Fc), and wnt2b (Log2FC ≥ 1.3; one Tcf CRM) (Fig. 6Fd), both of which activate the Wnt canonical pathway, and Wnt Ligand Secretion Mediator (w/s) (Log2FC $\geq 0,5$; one Tcf CRM), which expression in the URL orchestrates cerebellum development in mice ${ }^{70,71}$. Thereby Barhl1 depletion activates Wnt/Tcf activity throughout the cerebellar anlage, specifically within the URL and the cerebellar plate.
Taken together, our transcriptomic analysis identified direct and indirect Barhl1 target genes. Within the R1 territory, when upregulated these genes are involved in i) the maintenance of neural stem/progenitor properties, ii) the enhancement of Notch activity, iii) promoting Wnt/Tcf activity. When down regulated they are mostly involved in inhibiting proliferation and promoting neural differentiation. Our analysis of Barhl1 target genes regulatory regions confirms our functional analysis demonstrating that Barhl1 mostly acts by inhibiting Tcf transcriptional activity.

DISCUSSION

This study conducted in amphibians provides evidence that the development of the Xenopus Atoh1 lineage is similar to that of higher vertebrates. We show that Tcf transcriptional activity is necessary for inducing the cerebellar URL, as well as atoh1 expression. Furthermore, we demonstrate that Barhl1 plays a critical role in promoting the exit of URL cells from their niche, and initiating their differentiation trajectory towards mature GN. Most importantly, Barhl1 acts primarily by inhibiting Tcf transcriptional activity. Transcriptomic analysis of Barhl1 depletion in the cerebellar anlage confirms our functional study.

Xenopus represents a novel model for studying cerebellar development

Our ISH experiments provide a developmental map of GNP development in Xenopus, revealing that the processes leading to the emergence of URL derivatives and maturation of GN are similar to those seen in higher vertebrate ${ }^{37,38}$ reviewed in 39,40 . Amongst the important similarities i) the Xenopus URL expresses atoh1, is proliferative and is Tcf responsive; ii) pax6 and barhl1 are early markers of GNP commitment; iii) GNP migrate out of the URL along the cerebellar surface where they appear as the equivalent of the amniote-like EGL; iv) As in amniotes, postmitotic GN express neurod1, and migrate inwardly to form the IGL. Amongst the differences we observed i) a GNP caudal-to-rostral temporal differentiation gradient, with caudal URL differentiating first; ii) Although the EGL express stem/progenitor markers such as atoh1, the Notch pathway activity marker hes4, and n-myc, our proliferation analysis confirmed the absence of proliferating cells within the EGL from earlier stages ${ }^{41}$; iii) Although Barh/2 is expressed in the amniote EGL ${ }^{72}$, we could not detect this transcription factor in the Xenopus cerebellar anlage. Our observations suggest that the tetrapod vertebrate Xenopus, the only described anamniote displaying an EGL, could be an alternative useful model for some clinical evaluation of cerebellar developmental defects, especially those related to early cerebellar development ${ }^{41}$ reviewed in 39,40 .

Tcf transcriptional activity is strictly necessary for atoh1 expression and URL induction

Our data show that within R1, TCF transcriptional activity is strictly necessary for induction of atoh1 expression and of the URL territory. Moreover, TCF inhibition is associated with an increase and/or an acceleration of GNP commitment/differentiation. Interestingly, studies performed in mouse neuroblastoma, and neural progenitor cells in culture, identified two TCF/LEF binding sites present in the 3' enhancer region of Atoh1 that are required for Atoh1 activation ${ }^{73}$. In these cells, the concomitant inhibition of Notch signaling and activation of WNT/Tcf, appear to be required for atoh1 expression ${ }^{73}$. In mice low levels of Notch activity are necessary to induce a glutamatergic cell fate in Sox2-expressing cerebellar progenitors ${ }^{74}$. Whereas it remains to be demonstrated in amniotes, our data argue that concomitant TCF activation and Notch inhibition are responsible for atoh1 expression in the cerebellar primordium
We did not investigate which Tcf/Lef isoforms are transcriptionally active in the amphibian URL. However, our transcriptomic data reveal that lef1 is one of the most up-regulated DEG in the absence of barhl1, suggesting that it is present in the URL and could mediates Wnt signaling in this germinative niche. Three of the the four Tcf isoforms (Tcf712, Tcf7 and Lef1), mostly act as transcriptional activators, whereas the fourth (Tcf7l1) mostly acts as a transcriptional
repressor reviewed in 2 . Transcriptomic analyses of human cerebellar development reveal that the transcriptional activator TCF7 is active in the human URL ${ }^{32}$, whereas Tcf7l2 is detected in the mouse URL ${ }^{33}$. In both species, Tcf7l1 is associated with differentiated GNs ${ }^{25,32}$.
It is well documented that inhibition of TCF7I1-mediated repression is at the core of mouse embryonic stem cell (ESC) self-renewal and pluripotency. In contrast, enhancement of TCF7I1 repressive activity blocks mESC self-renewal, and allows mESC to differentiate, even in the presence of Wnt signaling ${ }^{75-82}$ reviewed in $3,12,83$. In adult mice, canonical WNTs are produced by both NSCs and astrocytes, and WNT/ß-catenin signalling stimulates both NSC self-renewal and neural progenitor cell proliferation ${ }^{4-7,9}$ reviewed in 8 . At least up to stage 50 , we observed that the entire amphibian URL is Tcf active whereas the VZ is not. Early observation using electronic microscopy reported that during the premetamorphic phase, the cerebellum remains in an immature state and that a well-defined EGL up to 8 cells layers is likely to be established by the end of the prometamorphic phase ${ }^{38}$. Taken together these observations indicate that the cerebellar URL displays features of an adult NSC niche. Our data provide new in vivo evidence that Tcf activity is strictly necessary for NSC niche maintenance and function.

In the URL, barhl1 promotes GNP exit from their germinative niche, towards commitment and differentiation

R1 territory is correctly established in embryos either lacking or overexpressing barhl1, arguing that Barhl1 is not involved in the establishment of the cerebellar anlage. Yet both our functional and transcriptomic data show that Barhl1 activity is strictly necessary for development of URLderived GNPs. Whereas Barhl1 overexpression decreases the size of the URL, and promotes GNP commitment/differentiation, MO-mediated depletion of Barhl1 induces an enlargement of the URL associated with a marked delay in the GNP differentiation process.
Our transcriptomic analysis is consistent with our phenotypic observations. Barhl1-depleted DEG identification reveals that most significant upregulated genes regulate URL cell behavior either by acting on the fine equilibrium between a proliferative state and commitment and / or in maintenance of their stem/progenitor features. Indeed, dmrta2 (dmrt5) expression is specific to neural stem/progenitor cells and has been shown to maintain NSC self-renewing ability ${ }^{84}$. In neural progenitor cells derived from mESC, Dmrta2 maintains proliferation by binding to a target of Notch signaling, Hes1, and upregulates its expression, which will further inhibit neuronal differentiation through repressing the transcription of proneural genes ${ }^{84}$. In the rodent developing and adult brain, the primary function of the orphan nuclear receptor Nr2e1 (also known as $T(x)$ is to maintain NSC pools in an undifferentiated, self-renewing state preventing their premature differentiation ${ }^{85-88}$ reviewed in 89,90 . In mice, otx2 is expressed in GNPs during their massive expansion in the EGL ${ }^{91}$, and its expression is associated with the high proliferation rate of GNP ${ }^{92}$. However, the exact role of otx2 in GNP development has not yet been elucidated. Finally, another upregulated URL target gene is zic3. Although zic3 activity in the URL has not been described in mice, zic3 is involved in maintaining pluripotency in both ESC ${ }^{93,94}$, and neural progenitor cells ${ }^{95}$.
On the other hand, most downregulated DEG are involved in terminal neuronal differentiation, including dendrite development, and axonogenesis. One example is Bhlhe2, which in mice is expressed in the inner EGL, and is a downstream target of Neurod1 in migrating and in differentiated GNs ${ }^{61}$. In vitro KD experiments in primary GN culture indicate that bhlhe 22 is a regulator of post-mitotic GN radial migration towards the IGL ${ }^{96}$.

In the cerebellar primordium Barhl1 acts through repression of Tcf transcriptional activity

Similar to what we previously described for Barhl2 ${ }^{52}$, in mammalian cells Barhl1 physically interacts with both Gro/Tle and Tcf711. In R1, Barhl1 overexpression phenocopies inhibition of Tcf transcriptional activity, and decreases Tcf activity. Conversely, Barhl1 depletion dramatically increases Tcf transcriptional activity in the URL. Both the increase in URL length, and the delay in GNP commitment/differentiation induced by Barhl1 depletion, are compensated by co-expression of a constitutive inhibitory form of Tcf7l1. Finally, Barhl1-KD embryos display a massive increase of Wnt activity throughout the cerebellar anlage.
Over 75\% of Barhl1 depleted DEG regulatory regions contain at least one Tcf CRM; these include markers of the URL and EGL including zic3, hes5 family genes, and wls. In line with our data in the rodent telencephalon, Dmrta2 is transcriptionally activated by a stabilized form of beta-catenin and inhibited by a dominant-negative form of TCF ${ }^{86}$. Tcf7l1 directly represses transcription of Lef1, which is stimulated by Wnt/ß-catenin activity ${ }^{69}$. These data argue that Barhl1 drives GNP out of the URL via Tcf-mediated repression and that Barhl1 LOF and GOF phenotypes are, at least partly, the result of alteration of its inhibitory effect on Tcf transcriptional activity.

Barhl1 activates Notch activity in the cerebellar primordium

Hes4, a marker of Notch activity and stemness in Xenopus ${ }^{53}$, is detected at stage 48 in the VZ, the URL, and the EGL. Our RNA-seq analysis reveals that depletion of Barhl1 leads to a significant upregulation of Notch pathway activity. Among upregulated components of Notch signaling, we identified the bHLH TF helt (also known as Heslike and Megane). In mice Helt is expressed in undifferentiated neural progenitors where it acts as transcriptional repressor of proneural genes ${ }^{97,98}$. Similarly, Barhl1 depletion in R1 leads to upregulation of hes5 genes, which are known to inhibit neuronal differentiation by directly repressing proneural genes. In rodents, levels of Notch activity regulate the early progenitor choice between inhibitory (Notch +) and excitatory GN (Notch -) fate in the VZ ${ }^{74}$. In agreement with its described function in maintaining cells in a primitive state, Notch has been suggested to prevent early GNP differentiation ${ }^{99}$ reviewed in ${ }^{100,101}$, yet its exact function in developing GNP is still debated. Overexpression of a dominant negative form of Barhl2, which binds to Gro/Tle and counters its inhibitory activities, increases the URL/EGL size at the expense of GNP commitment/differentiation. Gro/Tle acts as a corepressor of both TCF and Enhancer of split E(spl), a major transcriptional repressor of Notch target gene activation, including proneural genes ${ }^{102}$ reviewed in 3 . Our findings suggest that there may be as yet unknown crosstalk between Wnt/Tcf and Notch signaling pathways in the maintenance of the cerebellar URL/EGL reviewed in 103

Barhl genes in amphibian versus mammalian cerebellar development

In mice, Barh/1 and Barh/2 transcripts are detected in the outer URL and the posterior EGL from E11.5 onwards ${ }^{32,45,48,50,72,104,105}$. scRNA-sequencing analysis of mouse cerebellar cells reveals that Barhl1 is associated with early GNP differentiation, whereas Barh/2 expression is uniquely associated with early fate commitment in the Atoh1 lineage ${ }^{33}$. Barhl1 and Barhl2 are highly conserved through evolution reviewed in 3 , and their functional conservation is evidenced
through studies in various species, including mouse, C. elegans and the acorn worm Saccoglossus kowalevskii ${ }^{106,107}$. Our data demonstrate that in the amphibian URL, Barhl1 mostly acts through inhibiting TCF activity. It remains to be investigated which of the Barhl TF inhibits TCF activity in mammals.

Biological significance of our findings

Our study reveals previously undescribed roles for TCF and Barhl1 in the early development of URL-derived GNPs. We show that Barhl1 is the main repressor of Wnt/TCF activity in this germinative area. Our analysis reveals a set of Barhl1 target genes and opens the way for further characterization of relevant targets in order to create a global picture of GNP development and for further investigations of their relevance in adult NSC niche biology.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge M. Perron, D. Turner, P. Kreig, J. Christian, R. Vignali and G. Schlosser for gifts of materials and S. Authier and M. Abdelkrim for animal care. We thank the IBPS Aquatic platform supported by Sorbonne Université, CNRS, IBISA and the Conseil Régional Ile-de-France, specifically S. Authier and M. Abdelkrim, for Xenopus care. We thank C. Antoniewski (ArtBio platform, FR3631 IBPS) for tutoring in RNAseq data analysis and the team of G. Almouzni (Institut Curie) for providing high sensitivity RNA screentape system. We acknowledge Ann Lohof and Rachel Sherrard for editing work on the manuscript. This work was supported by the Centre National de la Recherche Scientifique (CNRS - UMR7622), donors to B Durand project, Sorbonne-Université, the Ligue Nationale contre le Cancer Comité lle de France (RS19/75-52 and RS23/75-68). The CNRS supports Beatrice Durand and Mohamed Doulazmi. Alexis Eschstruth is supported by Sorbonne Université, and Johnny BouRouphael by a fellowship from the "Ministère de la Recherche".

AUTHOR CONTRIBUTIONS

Conceptualization, J.BR., and B.C.D.; Methodology, J.BR., M.D., A.E., and B.D., Software, M.D.; Investigation, J.BR., M.D., A.E., A.A., and B.C.D.; Data curation, J.BR., and M.D., Writing - Original Draft, J.BR., and B.C.D.; Writing — Review \& Editing, J.BR., M.D., A.E., and B.C.D.; Visualisation, J.BR., and B.C.D.; Funding Acquisition, B.C.D.; Resources, J.BR., M.D., A.E., and B.C.D.; Supervision, B.C.D.;

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR METHODS

EXPERIMENTAL MODEL

Xenopus embryos care and husbandry
X. laevis embryos were obtained by conventional methods of hormone-induced egg laying and in vitro fertilization and were staged according to ${ }^{108}$. X. tropicalis transgenic Wnt reporter pbin7LefdGFP has been generated as previously described ${ }^{22,56,57}$. Briefly, the synthetic Wntresponsive promoter consists of 7 copies of TCF/LEF1 binding sites and a TATA box driving destabilized green fluorescent protein (eGFP) and a polyA sequence. gfp expression reveals Wnt/TCF activity. X. tropicalis embryos were obtained by in vitro fertilization. Experimental procedures were specifically approved by the ethics committee of the Institut de Biologie Paris Seine (IBPS) (Authorization 2020-22727 given by CEEA \#005) and have been carried out in strict accordance with the European community directive guidelines (2010/63/UE). B.D. carries the authorization for vertebrates' experimental use $\mathrm{N}^{\circ} 75-1548$.

METHOD DETAILS

Plasmids design and preparation

mbarhl1-HA-GR contains the full-length mbarhl1 sequence (two Engrailed-Homology (EH1) motifs, Nuclear Localization Signal (NLS); Homeodomain HD); and the C-terminal part), followed by an HA tag at the C-terminal part. This construct is inducible as it contains a glucocorticoid receptor which can be activated by dexamethasone (10uM). Dexamethasoneinducible mbarh/2-EHs-GR contains the first 182 amino acids (a.a) of mouse Barhl2 full-length cDNA, which correspond to the N-terminal EHs Gro-binding domains, and has been shown to act as a dominant negative ${ }^{52}$. The full-length mbarhl1-HA-GR and truncated mbarhl2-EHs-GR constructs were generated in pCS2+ by Vector Builder. Non-inducible mbarhl1-Myc and xbarhl1-Flag were generated by GeneScript. Peptide sequences of the tags used are the following: HA (YPYDVPDYA); FLAG (DYKDDDDK) and MYC (EQKLISEEDL). The constitutive repressor pCS2-Tcf7l1- $\Delta \beta$ cat-GR was a gift from H. Clevers ${ }^{55}$, and consists of the full-length Tcf7l1 lacking the β-catenin-binding domain (BCBD), which reinforces its repressive activity. Constructs used for immunoprecipitation assay are pCS2+ mbarhl1-3xFlag-HA which was generated by Vector Builder. It contains the full-length mbarhl1 sequence followed by three Flag tags and one HA tag at the C-terminal part. pCS2+ Myc-Tcf711, pCS2+ Flag-Gro4 and $p C S 2+G r o H A$ have been previously described ${ }^{52}$. All necessary sequences were obtained from NCBI database. Constructs were validated by western blot on extracts from injected embryos or cell lysates.

mRNA synthesis, morpholino oligonucleotides (MOs) and Xenopus injection

Capped messenger RNAs (mRNAs) were synthesized using the mMessage mMachine kit (Invitrogen) and resuspended in RNAse-free $\mathrm{H}_{2} \mathrm{O}$. Antisense morpholino oligonucleotides (MOs) were generated by Gene Tools. ATG start-site MObarhl1-1 and MObarhl1-2 were designed to block initiation of xBarhl1 protein translation. The MO were designed in a region overlapping the translation initiation site, so that they do not recognize mouse Barhl1 or xbarhl2 mRNA (Fig. S3). To establish the specificity of the MO effect, we tested the ability of MObarhl11 and MObarhl1-2 to specifically inhibit translation of xbarhl1 mRNA. Flag-tagged xbarhl1 (xbarhl1-flag) or myc-tagged mBarhl1 (mBarhl1-myc) were co-injected with MObarhl1-1, or MObarhl1-2, or a control MO (MOct) (Fig. S2). Western blot analysis on extracts from injected embryos confirmed a MObarhl1-mediated dramatic decrease in Xenopus Barhl1 protein levels, while MOct had no effect. We also observed that MObarhl1-1 did not decrease mBarhl1-myc protein levels (Fig. S2; S3). MObarhl1-1 was used for both X. laevis and X. tropicalis as the
mRNA sequence of barhl1 is highly conserved between both species, more specifically in the region on which MObarhl1 is hybridized. Standard control MO from gene tools was used in this study. MO sequences and doses are summarized in table 2.

Xenopus embryos were injected unilaterally in one dorsal blastomere at the four and eight-cell stage together with gfp as a tracer for phenotype analysis by in situ hybridizations (ISH), except for CRISPR/Cas9 genome editing and RNAseq analysis (see corresponding sections in material and methods). MOs were heated for 10 min at $65^{\circ} \mathrm{C}$ before usage. Injected embryos were transferred into 3\% Ficoll in 0.3X Marc's Modified Ringer's (MMR) buffer (stock solution: $1 \mathrm{M} \mathrm{NaCl}, 20 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM} \mathrm{CaCl} 2,10 \mathrm{mM} \mathrm{MgCl}, 50 \mathrm{mM}$ HEPES pH 7.4). 10nl of mRNA or MO solution was injected together with a tracer in X. laevis while 5 nl were injected in X. tropicalis. In X. laevis, MOs or mRNAs were co-injected with gfp mRNA (100 pg). MOs or mRNAs were co-injected with mcherry (100 pg) in X. tropicalis. Concentration of injected mRNA and MOs per embryo have been optimized in preliminary experiments. The minimal mRNA or MO quantity that induced the specific phenotype without showing toxicity effects was used. For embryos injected with inducible constructs, half of the injected embryos were treated with $10 \mu \mathrm{M}$ dexamethasone at stage 35 , while the other half were left untreated and served as control. All necessary Xenopus sequences were obtained from https://www.xenbase.org/entry/.

in situ hybridization

Embryos were staged according to ${ }^{108}$, and collected at the desired stage, then fixed in PFA4\% for $1-2$ hours at room temperature and dehydrated in $100 \% \mathrm{MeOH}$. ISH were performed using digoxigenin (DIG)-labeled probes. Antisense RNA probes were generated for the following transcripts: atoh1, barhl1, hes4, neurod1, pax6, n-myc, otx2, zic3, wnt2b, wnt8b and gfp according to the manufacturer's instructions (RNA Labeling Mix, Roche). pCS2-Gfp is a gift from David Turner (University of Michigan, Ann Arbor, MI, USA). pBSK+xBarhl1 is a gift from Roberto Vignali (Unità di Biologia Cellulare e dello Sviluppo, Pisa Italy). pCS2-Atoh1 is a gift from G. Schlosser (University of Galway, Ireland). pBSK+Wnt2b was a gift from S. Sokol (Icahn School of Medicine at Mount Sinai, NY, USA). pBSK+Wnt8b was a gift from J Christian (University of Utah, USA). ISH was processed following the protocol described by (El Yakoubi et al., 2012; Sena et al., 2019). DISH was processed as described by ${ }^{109}$. For X. laevis embryos, following rehydration, the eyes and ectoderm overlying the anterior neural tube were removed, which allows to skip the further Proteinase K (PK) treatment. Dissections weren't performed on X. tropicalis embryos which were treated with PK. In both cases, bleaching was carried out, and samples were incubated with the probes overnight. Alkaline phosphatase-conjugated antiDIG or anti-FLUO antibodies (Roche) were incubated 3 hours at room temperature. Enzymatic activity was revealed using NBT/BCIP (blue staining) and INT/BCIP (red staining) substrates (Roche). Following ISH, post-fixation was carried out in PFA 4\% and the neural tubes of control and injected X. laevis embryos were dissected in PBS-0.1\% Tween and stored in 90% glycerol. X. tropicalis embryos were stored in PFA 4\%. Dissected neural tubes or embryos were photographed on a Leica M165 FC microscope equipped with Leica DFC320 camera using the same settings to allow direct comparison. Dorsal and lateral views of the dissected neural tubes were photographed.

Immunofluorescence

Immunofluorescence was carried out as previously described ${ }^{51}$. The entire brains of wild-type (WT) and MO-injected X. laevis embryos were carefully dissected and transferred into a tube containing PBS-0.1\% Tween, where they were progressively permeabilized. Samples were incubated with primary antibody (anti-Phospho-Histone H3; Upstate Biotechnology Cat\#06570 ; d1:500) at $4^{\circ} \mathrm{C}$ overnight. Cellular nuclei were stained with bisBenzimide (BB) (Sigma) which was added to the solution containing diluted secondary antibody (Alexa Fluor 488 donkey anti-rabbit IgG; Invitrogen; d1:500) and incubated at $4^{\circ} \mathrm{C}$ overnight. Neural tubes were captured on a Zeiss Axio Observer. $Z 1$ microscope equipped with apotome. Acquisitions were taken using the Z stack tool from the most superficial layer to deeper layers.

Immunoprecipitation in transfected HEK293T cells

HEK293T cells were cultured in supplemented Dulbecco's modified Eagle's medium (DMEM) (Gibco). Cells were transfected with expression vectors for pCS2-mbarhl1-3xFlag-HA; pCS2-mbarhl1-Myc; pCS2-Tcf7l1-Myc; pCS2-Gro-Flag and pCS2-Gro-HA encoding tagged proteins using the Phosphate Calcium method. Plasmids coding for pCS2+ or pSK+ were used as a supplement to ensure that cells in different dishes were transfected with the same quantity of expression vectors and plasmids (a total of $2 \mu \mathrm{~g}$). Thirty-six hours post-transfection, cells were harvested and lysed in ice-cold lysis buffer (20 mM Tris pH7.6, $150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton, 1 mM EDTA) supplemented with completeTM protease inhibitor (Roche). Cell lysates were centrifuged 15 min at $14,000 \mathrm{rpm}$. Protein complexes were precipitated from the cell lysates with anti-c-Myc antibody (clone 9E10). Protein complexes were then precipitated with protein A-Sepharose beads (Sigma) pre-washed with lysis buffer. Immunoprecipitated proteins were eluted from protein A beads by heating beads in Laemmli sample loading buffer (BioRad).

Western blot

Western blot (WB) analysis was performed on protein extracts from injected/WT Xenopus embryos, and on extracts from transfected HEK923T cells. Xenopus embryos were injected with mbarhl1HAGR, xbarhl1Flag, mBarhl1Myc, mBarhl2EHsGR mRNA at the two-cells stage, targeting both blastomeres. Proteins were extracted at stage 10 with lysis buffer (10 mM Tris$\mathrm{HCl} \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{NaCl}, 0.5 \% \mathrm{NP} 40,5 \mathrm{mM}$ EDTA supplemented with a cocktail of protein inhibitors). WB was carried out using the conventional methods. Proteins were separated by 10% SDS-polyacrylamide gel and transferred to nitrocellulose membrane. Membranes were blocked using 5% milk and incubated with the corresponding primary and secondary antibodies diluted in 5\% milk (summarized in tables 3 and 4). Proteins were detected with Western Lightning Plus-ECL (Perkin Elmer Life Sciences). Membrane stripping was carried out between two staining steps using stripping buffer (Thermo Scientific) for the removal of primary and secondary antibodies from the membranes. ChemiDoc MP Imaging System (BioRad) was used for imaging the blots.

CRISPR/Cas9

Three CRISPR target sites (barhl1-1: GAGTCGGACGAGGCCATGGAAGG), barhl1-2: ACCAGCTCTGTGCGACAGAATGG, barhl1-3 : AGAGTTGGACTCCGGGCTGGAGG) cutting respectively at 2,37 and 230 bp from the beginning of the coding sequence were selected for their high predicted specificity and efficiency using CRISPOR online tool (http://crispor.tefor.net/). Alt-R crRNA and tracrRNA were purchased from Integrated DNA

Technologies (IDT, Coralville, IA, USA) and dissolved in duplex buffer (IDT) at $100 \mu \mathrm{M}$ each. cr:tracrRNA duplexes were obtained by mixing equal amount of crRNA and tracrRNA, heating at $95^{\circ} \mathrm{C}$ for five minutes and letting cool down to room temperature. gRNA:Cas9 RNP complex was obtained by incubating $1 \mu \mathrm{~L} 30 \mu \mathrm{M}$ Cas9 protein (kindly provided by TACGENE, Paris, France) with $2 \mu \mathrm{~L}$ cr:tracrRNA duplex in a final volume of $10 \mu \mathrm{~L}$ of 20 mM Hepes-NaOH ph 7.5 , 150 mM KCl for 10 min at $28^{\circ} \mathrm{C}$. X. tropicalis one-cell stage embryos were injected with 2 nL of gRNA:Cas9 RNP complex solution and were cultured to the desired stage. For coinjection, the three complexes were mixed at equal quantity.
Single embryo genomic DNA was obtained by digesting for 1 h at $55^{\circ} \mathrm{C}$ in $100 \mu \mathrm{~L}$ lysis buffer (100 mM Tris-Hcl pH 7.5, 1 mM EDTA, $250 \mathrm{mM} \mathrm{NaCl}, 0.2 \%$ SDS, $0.1 \mu \mathrm{~g} / \mu \mathrm{L}$ Proteinase K), precipitating with 1 volume of isopropanol and resuspended in 100 μ L PCR-grade water. The region surrounding the sgRNA binding sites was amplified by PCR using X. tropicalis Xt_barhl1_F (CAGCTCCTCCGACTTTTGTG) as forward primer and Xt_barhl1_R (GTTGCCCGTTGCTGGAATAA) as reverse primer. CRISPR efficiency was assessed by T7E1 test ${ }^{110}$ on mono-injected embryos and by detecting deleted fragments on coinjected embryos.

RNA-sequencing and data analysis

X. laevis embryos were injected with three different conditions: MObarhl1-1; MObarhl1-2 and MOct in the two dorsal blastomeres at four cells stage. At stage 42, neural tubes were extracted in RNAse-free conditions, and the rhombomere 1 which includes the URL was carefully dissected. For each condition, three biological replicates were collected. Each replicate contains three rhombomeres, which was the optimal number to get the minimal RNA concentration required for this experiment (Total RNA concentration was $\sim 30 \mathrm{ng}$ per sample). Briefly, total RNA was extracted using the TRIzol reagent (ambion) according to the manufacturer's instructions. The overall RNA quality was assessed using Agilent High Sensitivity RNA ScreenTape System. Samples with an RNA Integrity Number (RIN) > 9 were used for subsequent analysis.

Sequencing was performed using Illumina NovaSeq (paired-end sequencing) by Next Generation Sequencing Platform (NGS) (Institut Curie). RNAseq data processing was performed using Galaxy server of ARTBio platform (IBPS).

Data sets were aligned against the X. laevis v10.1 genome assembly downloaded with its corresponding annotation file from Xenbase ${ }^{111}$. Alignment was made using two read mapping programs, STAR v2.7.8a ${ }^{112}$ and HISAT2 v2.2.1 ${ }^{113}$. Quality control checks were assessed using FastQC v0.73 ${ }^{114}$ and summarized in a single report generated by MultiQC v1.9 ${ }^{115}$. As both alignment programs provided comparable results, we proceeded with STAR alignment tool. The number of aligned reads was counted by featurecounts tool v2.0.1 ${ }^{116}$. Finally, we used the DESeq2 v2.11.40.6 package ${ }^{117}$ to determine differentially expressed genes (DEG) from count tables. In the present study, genes with adjusted p value $\mathrm{pAdj}<0.001$ were selected as significant DEG. Venn diagrams were produced with JVenn v2021.05.12 ${ }^{118}$. Volcano Plots v0.0.5 were generated to show significant upregulated and downregulated genes, only a selection of DEG names were represented.

Further analysis and data visualization were performed using R v4.2.1 package. A heatmap was generated to visualize gene expression across the samples. To overcome the lack of

Xenopus gene ontology (GO) annotation, we replaced X. laevis gene symbols with the Human orthologs. Functional enrichment analysis was performed using the compareCluster function of ClusterProfiler v4.8.1 ${ }^{56}$ to identify GO-term enrichment amongst DEG with pAdj<0.001 as threshold. It provides the biological processes, cellular components, and molecular functions of DEG and compares each of the three subgroups between both knockdown conditions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing and analysis

For ISH performed on embryos injected unilaterally, comparison of the expression levels between injected and control sides was assessed using a specific macro from ImageJ v2.1.0/1.53c ${ }^{119,120}$. The macro functions based on the RGB color mode. RGB images are split into three channels (red, green, and blue) and pixel values corresponding only to the blue channel are recorded, excluding the red and green channels, since the signal recorded on the blue channel represents the expression levels. For each image, the region of interest (ROI) was specified, and its dimensions were fixed, such that the same ROI is placed on the control and injected side of the embryo which prevents any subjectivity in ROI determination. Measured are the area corresponding to the blue signal; the mean or average value of signal within the selected ROI; and the integrated density which is the equivalent of the product of area and mean, as it sums the values of pixels in the selection. In this study, ratio of integrated density measured in the injected versus control side was assessed. The macro is available from the authors upon request and will be available as a plug-in in ImageJ.

The same macro was used for the analysis of CRISPR/Cas9-injected embryos, except that ROI was placed in all the rhombomere 1 as the entire embryo was targeted. The mean of int. density values of control embryos was compared to each individual int. density value of control and injected embryo. Phenotype penetrance was evaluated by counting and classifying embryos based on the intensity of gfp expression increase.

For immunofluorescence, Z-stack images were reconstructed and processed using ImageJ v2.1.0/1.53c. PHH3-positive cells were counted, and the length of the RL was measured on the control and injected side. Ratio of PHH3-positive cells and RL length in the injected versus control side was measured.

For the same experiment, all images were acquired using the same magnification and camera settings. In this way, all images were processed in a standardized manner, such that results are objectively analyzed. Final images were processed with Adobe Photoshop (v24.00).

Statistical analysis

Three independent experiments were performed for each condition analyzed. Dissected neural tubes and embryos were analyzed individually, and the results were pooled for data representation. Statistical analyses were implemented with R. Normality in the variable distributions was assessed by the Shapiro-Wilk test. Furthermore, the Levene test was performed to probe homogeneity of variances across groups. Variables that failed the ShapiroWilk or the Levene test were analyzed with non-parametric statistics using the one-way Kruskal-Wallis analysis of variance on ranks followed by Nemenyi test post hoc and Mann-

Whitney rank sum tests for pairwise multiple comparisons. Variables that passed the normality test were analyzed by means of one-way ANOVA followed by Tukey post hoc test for multiple comparisons or by Student's t test for comparing two groups. A p-value of <0.05 was used as a cutoff for statistical significance. Results are presented as the means \pm SEM. The statistical tests are described in each figure legend.

	MO sequence	Dose	Reference
MObarhl1-1	CCCAAATCCGTTAGACCCTTCCATG	15 ng	This study
MObarhl1-2	AAAGCCTTGTTCGACTCTCACAATG	20 ng	This study
MOct	CCTCTTACCTCAGTTACAATTTATA	20 ng	GeneTools

Table 2: Morpholino (MO) oligonucleotide sequences used in this study

Primary Ab	Source	Host	Dilution	Use
Barhl2	Covalab	Rabbit	$1: 500$	Western Blot
HA epitope	Roche Affinity High Rat clone 3F10	$1: 1000$	Western Blot	
c-Myc epitope	Santa Cruz Biotechnology clone 9E10	Mouse	$1: 5000$	Western Blot
Flag epitope	Sigma-Aldrich F7425	Rabbit	$1: 1000$	Western Blot (Extracts from HEK293T)
Flag epitope	Sigma-Aldrich F3165	Mouse	$1: 1000$	Western Blot (Extracts from Xenopus embryos)
Actin epitope	Sigma-Aldrich A2066	Rabbit	$1: 2000$	Western Blot

Table 3: Primary antibodies (Ab) used in this study

Secondary Ab	Source	Host	Dilution	Use
HRP anti-mouse IgG	Jackson ImmunoResearch 115-035-003	Goat	$1: 10000$	Western Blot
HRP anti-rabbit IgG	Jackson ImmunoResearch 111-035-003	Goat	$1: 10000$	Western Blot
HRP anti-rat IgG light chain specific	Jackson ImmunoResearch $112-035-175$	Goat	$1: 10000$	Western Blot

Table 4: Secondary antibodies (Ab) used in this study

REFERENCES

1. Hoppler S, Waterman ML. Evolutionary Diversification of Vertebrate TCF/LEF Structure, Function, and Regulation. In: Hoppler S, Moon RT, éditeurs. Wnt Signaling in Development and Disease [Internet]. Hoboken, NJ, USA: John Wiley \& Sons, Inc; 2014 [cité 24 sept 2021]. p. 225-37. Disponible sur: https://onlinelibrary.wiley.com/doi/10.1002/9781118444122.ch17
2. Torres-Aguila NP, Salonna M, Hoppler S, Ferrier DE. Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Development, Growth \& Differentiation. 2022;64(3):120.
3. Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Frontiers in Cell and Developmental Biology [Internet]. 2021;9. Disponible sur: https://www.frontiersin.org/article/10.3389/fcell.2021.784998
4. Bowman AN, van Amerongen R, Palmer TD, Nusse R. Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/ -catenin-responsive neural stem cells. Proceedings of the National Academy of Sciences. 30 avr 2013;110(18):7324-9.
5. Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176(6):1407-19.
6. Qu Q, Sun G, Murai K, Ye P, Li W, Asuelime G, et al. Wnt7a regulates multiple steps of neurogenesis. Molecular and cellular biology. 2013;33(13):2551-9.
7. Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370-5.
8. Urbán N, Blomfield IM, Guillemot F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron. 2019;104(5):834-48.
9. García-Corzo L, Calatayud-Baselga I, Casares-Crespo L, Mora-Martínez C, Julián Escribano-Saiz J, Hortigüela R, et al. The transcription factor LEF1 interacts with NFIX and switches isoforms during adult hippocampal neural stem cell quiescence. Frontiers in Cell and Developmental Biology. 2022;1480.
10. Nusse R. Wnt signaling and stem cell control. Cell research. 2008;18(5):523-7.
11. Ding WY, Huang J, Wang H. Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS genetics. 2020;16(4):e1008653.
12. Sokol SY. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development. 15 oct 2011;138(20):4341-50.
13. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424):eaav0581.
14. Deverett B, Koay SA, Oostland M, Wang SS. Cerebellar involvement in an evidenceaccumulation decision-making task. elife. 2018;7.
15. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nature. 2017;544(7648):96-100.
16. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201-13.
17. Pascual M, Abasolo I, Mingorance-Le Meur A, Martínez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proceedings of the National Academy of Sciences. 2007;104(12):5193-8.
18. Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. Journal of Neuroscience. 2014;34(14):4786-800.
19. Wingate RJT. The rhombic lip and early cerebellar development. Current Opinion in Neurobiology. 1 févr 2001;11(1):82-8.
20. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31-43.
21. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1 nov 1997;390(6656):169-72.
22. Borday C, Parain K, Thi Tran H, Vleminckx K, Perron M, Monsoro-Burq AH. An atlas of Wnt activity during embryogenesis in Xenopus tropicalis. Schubert M, éditeur. PLoS ONE. 19 avr 2018;13(4):e0193606.
23. Garbe DS, Ring RH. Investigating Tonic Wnt Signaling Throughout the Adult CNS and in the Hippocampal Neurogenic Niche of BatGal and Ins-TopGal Mice. Cell Mol Neurobiol. oct 2012;32(7):1159-74.
24. Selvadurai HJ, Mason JO. Wnt/ß-catenin Signalling Is Active in a Highly Dynamic Pattern during Development of the Mouse Cerebellum. Gottardi C, éditeur. PLoS ONE. 8 août 2011;6(8):e23012.
25. Wizeman JW, Guo Q, Wilion EM, Li JY. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. eLife [Internet]. 8 févr 2019 [cité 8 mars 2021];8:e42388. Disponible sur: https://elifesciences.org/articles/42388
26. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 1 déc 2010;468(7327):1095-9.
27. Xing L, Anbarchian T, Tsai JM, Plant GW, Nusse R. Wnt/ β-catenin signaling regulates ependymal cell development and adult homeostasis. Proceedings of the National Academy of Sciences. 2018;115(26):E5954-62.
28. Lorenz A, Deutschmann M, Ahlfeld J, Prix C, Koch A, Smits R, et al. Severe alterations of cerebellar cortical development after constitutive activation of Wnt signaling in granule neuron precursors. Molecular and cellular biology. 2011;31(16):3326-38.
29. Pei Y, Brun SN, Markant SL, Lento W, Gibson P, Taketo MM, et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development. 2012;139(10):1724-33.
30. Selvadurai HJ, Mason JO. Activation of Wnt/ β-catenin signalling affects differentiation of cells arising from the cerebellar ventricular zone. 2012;
31. Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science [Internet]. 4 déc 2009 [cité 17 juin 2021];326(5958):1424-7. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638077/
32. Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, et al. Spatial and cell type transcriptional landscape of human cerebellar development. Nature Neuroscience. 1 août 2021;24(8):1163-75.
33. Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, et al. A SingleCell Transcriptional Atlas of the Developing Murine Cerebellum. Current Biology. sept 2018;28(18):2910-2920.e2.
34. Hanzel M, Rook V, Wingate RJ. Mitotic granule cell precursors undergo highly dynamic morphological transitions throughout the external germinal layer of the chick cerebellum. Scientific reports. 2019;9(1):1-13.
35. Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17-24.
36. Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes \& development. 1999;13(13):1647-52.
37. Herrick CJ. The cerebellum of Necturus and other urodele Amphibia. Journal of Comparative Neurology. 1914;24(1):1-29.
38. Gona AG. Morphogenesis of the cerebellum of the frog tadpole during spontaneous metamorphosis. Journal of Comparative Neurology. 1972;146(2):133-42.
39. Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Development, growth \& differentiation. 2017;59(4):228-43.
40. Miyashita S, Hoshino M. Transit Amplifying Progenitors in the Cerebellum: Similarities to and Differences from Transit Amplifying Cells in Other Brain Regions and between Species. Cells. 2022;11(4):726.
41. Butts T, Hanzel M, Wingate RJ. Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. Development. 2014;141(14):2791-5.
42. D'Amico LA, Boujard D, Coumailleau P. The Neurogenic Factor NeuroD1 Is Expressed in Post-Mitotic Cells during Juvenile and Adult Xenopus Neurogenesis and Not in Progenitor or Radial Glial Cells. PLOS ONE. 14 juin 2013;8(6):e66487.
43. Kojima T, Ishimaru S, Higashijima S ichi, Takayama E, Akimaru H, Sone M, et al. Identification of a different-type homeobox gene, BarH1, possibly causing Bar (B) and Om (1D) mutations in Drosophila. Proceedings of the National Academy of Sciences. 1991;88(10):4343-7.
44. Higashijima S ichi, Kojima T, Michiue T, Ishimaru S, Emori Y, Saigo K. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes \& Development. 1992;6(1):50-60.
45. Kawauchi D, Saito T. Transcriptional cascade from Math1 to Mbh1 and Mbh2 is required for cerebellar granule cell differentiation. Developmental Biology. oct 2008;322(2):345-54.
46. Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY. In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proceedings of the National Academy of Sciences. 2011;108(8):3288-93.
47. Reig G, Cabrejos ME, Concha ML. Functions of BarH transcription factors during embryonic development. Developmental Biology. févr 2007;302(2):367-75.
48. Bulfone A. Barhl1, a gene belonging to a new subfamily of mammalian homeobox genes, is expressed in migrating neurons of the CNS. Human Molecular Genetics. 22 mai 2000;9(9):1443-52.
49. Li S, Qiu F, Xu A, Price SM, Xiang M. Barhl1 Regulates Migration and Survival of Cerebellar Granule Cells by Controlling Expression of the Neurotrophin-3 Gene. Journal of Neuroscience. 2004;24(12):3104-14.
50. Li S. Barhl1 Regulates Migration and Survival of Cerebellar Granule Cells by Controlling Expression of the Neurotrophin-3 Gene. Journal of Neuroscience. 24 mars 2004;24(12):3104-14.
51. Juraver-Geslin HA, Ausseil JJ, Wassef M, Durand BC. Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of -catenin activation. Proceedings of the National Academy of Sciences. 8 févr 2011;108(6):2288-93.
52. Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, et al. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/ β-Catenin response driving Spemann organizer formation. Development. 1 janv 2019;dev. 173112.
53. El Yakoubi W, Borday C, Hamdache J, Parain K, Tran HT, Vleminckx K, et al. Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells. 2012;30(12):2784-95.
54. Grbavec D, Lo R, Liu Y, Stifani S. Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. Eur J Biochem. déc 1998;258(2):339-49.
55. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, et al. XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos. Cell. 9 août 1996;86(3):391-9.
56. Tran HT, Sekkali B, Van Imschoot G, Janssens S, Vleminckx K. Wnt/ β-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. Proceedings of the National Academy of Sciences. 2010;107(37):16160-5.
57. Tran HT, Vleminckx K. Design and use of transgenic reporter strains for detecting activity of signaling pathways in Xenopus. Methods. 2014;66(3):422-32.
58. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 28 août 2021;2(3):100141.
59. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nature neuroscience. 2005;8(7):873-80.
60. Hsieh FY, Ma TL, Shih HY, Lin SJ, Huang CW, Wang HY, et al. Dner inhibits neural progenitor proliferation and induces neuronal and glial differentiation in zebrafish. Developmental biology. 2013;375(1):1-12.
61. Ma N, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-toneuron conversion. Developmental Neurobiology. 2022;82(5):375-91.
62. Chellappa R, Li S, Pauley S, Jahan I, Jin K, Xiang M. Barhl1 Regulatory Sequences Required for Cell-Specific Gene Expression and Autoregulation in the Inner Ear and Central Nervous System. Mol Cell Biol. 15 mars 2008;28(6):1905-14.
63. Kjolby RA, Truchado-Garcia M, Iruvanti S, Harland RM. Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone. Development. 2019;146(15):dev179580.
64. Nakamura Y, de Paiva Alves E, Veenstra GJ, Hoppler S. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment. Development. 1 janv 2016;dev. 131664.
65. Aruga J. The role of Zic genes in neural development. Molecular and Cellular Neuroscience. 1 juin 2004;26(2):205-21.
66. Aruga J, Millen KJ. ZIC1 function in normal cerebellar development and human developmental pathology. Zic family. 2018;249-68.
67. Houtmeyers R, Souopgui J, Tejpar S, Arkell R. The ZIC gene family encodes multifunctional proteins essential for patterning and morphogenesis. Cellular and Molecular Life Sciences. 2013;70:3791-811.
68. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. Journal of Neuroscience. 2010;30(9):3489-98.
69. Wu CI, Hoffman JA, Shy BR, Ford EM, Fuchs E, Nguyen H, et al. Function of Wnt/ßcatenin in counteracting Tcf3 repression through the Tcf3- β-catenin interaction. Development. 2012;139(12):2118-29.
70. Yeung J, Ha TJ, Swanson DJ, Choi K, Tong Y, Goldowitz D. Wls Provides a New Compartmental View of the Rhombic Lip in Mouse Cerebellar Development. J Neurosci. 10 sept 2014;34(37):12527.
71. Yeung J, Goldowitz D. Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience. 2017;354:30-42.
72. Mo Z, Li S, Yang X, Xiang M. Role of the Barh/2 homeobox gene in the specification of glycinergic amacrine cells. Development. 1 avr 2004;131(7):1607-18.
73. Shi F, Cheng Y fu, Wang XL, Edge AS. β-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3' enhancer. Journal of Biological Chemistry. 2010;285(1):392-400.
74. Zhang T, Liu T, Mora N, Guegan J, Bertrand M, Contreras X, et al. Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Reports. 2021;35(10):109208.
75. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes \& Development. 15 mars 2008;22(6):746-55.
76. Moreira S, Polena E, Gordon V, Abdulla S, Mahendram S, Cao J, et al. A Single TCF Transcription Factor, Regardless of Its Activation Capacity, Is Sufficient for Effective Trilineage Differentiation of ESCs. Cell Reports. sept 2017;20(10):2424-38.
77. Park MS, Kausar R, Kim MW, Cho SY, Lee YS, Lee MA. Tcf711-mediated transcriptional regulation of Krüppel-like factor 4 gene. Animal Cells and Systems. 2 janv 2015;19(1):16-29.
78. Pereira L, Yi F, Merrill BJ. Repression of Nanog Gene Transcription by Tcf3 Limits Embryonic Stem Cell Self-Renewal. Mol Cell Biol. 15 oct 2006;26(20):7479-91.
79. Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC, et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proceedings of the National Academy of Sciences. 8 juin 2010;107(23):10514-9.
80. Tam WL, Lim CY, Han J, Zhang J, Ang YS, Ng HH, et al. T-Cell Factor 3 Regulates Embryonic Stem Cell Pluripotency and Self-Renewal by the Transcriptional Control of Multiple Lineage Pathways. Stem Cells. août 2008;26(8):2019-31.
81. Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol. juill 2011;13(7):838-45.
82. Atlasi Y, Noori R, Gaspar C, Franken P, Sacchetti A, Rafati H, et al. Wnt Signaling Regulates the Lineage Differentiation Potential of Mouse Embryonic Stem Cells through Tcf3 Down-Regulation. Cadigan K, éditeur. PLoS Genet. 2 mai 2013;9(5):e1003424.
83. Wray J, Hartmann C. WNTing embryonic stem cells. Trends in Cell Biology. 1 mars 2012;22(3):159-68.
84. Young FI, Keruzore M, Nan X, Gennet N, Bellefroid EJ, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proceedings of the National Academy of Sciences. 2017;114(28):E5599-607.
85. Kandel P, Semerci F, Mishra R, Choi W, Bajic A, Baluya D, et al. Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proceedings of the National Academy of Sciences. 29 mars 2022;119(13):e2023784119.
86. Konno D, Iwashita M, Satoh Y, Momiyama A, Abe T, Kiyonari H, et al. The mammalian DM domain transcription factor Dmrta2 is required for early embryonic development of the cerebral cortex. 2012;
87. Saulnier A, Keruzore M, De Clercq S, Bar I, Moers V, Magnani D, et al. The doublesex homolog Dmrt5 is required for the development of the caudomedial cerebral cortex in mammals. Cerebral Cortex. 2013;23(11):2552-67.
88. Urquhart J, Beaman G, Byers H, Roberts N, Chervinsky E, O'Sullivan J, et al. DMRTA2 (DMRT5) is mutated in a novel cortical brain malformation. Clinical Genetics. 2016;89(6):724-7.
89. Islam MM, Zhang CL. TLX: A master regulator for neural stem cell maintenance and neurogenesis. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2015;1849(2):210-6.
90. Wang Y, Liu HK, Schütz G. Role of the nuclear receptor Tailless in adult neural stem cells. Mechanisms of Development. 1 juin 2013;130(6):388-90.
91. Fossat N, Chatelain G, Brun G, Lamonerie T. Temporal and spatial delineation of mouse Otx2 functions by conditional self-knockout. EMBO reports. 2006;7(8):824-30.
92. El Nagar S, Chakroun A, Le Greneur C, Figarella-Branger D, Di Meglio T, Lamonerie T, et al. Otx2 promotes granule cell precursor proliferation and Shh-dependent medulloblastoma maintenance in vivo. Oncogenesis. 13 août 2018;7(8):60.
93. Lim LS, Hong FH, Kunarso G, Stanton LW. The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem cells. 2010;28(11):1961-9.
94. Lim LS, Loh YH, Zhang W, Li Y, Chen X, Wang Y, et al. Zic3 is required for maintenance of pluripotency in embryonic stem cells. Molecular biology of the cell. 2007;18(4):1348-58.
95. Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. Journal of Neuroscience. 2007;27(20):5461-73.
96. Ramirez M, Badayeva Y, Yeung J, Wu J, Yang E, Trost B, et al. Temporal analysis of enhancers during mouse brain development reveals dynamic regulatory function and identifies novel regulators of cerebellar development. bioRxiv. 2021;
97. Nakatani T, Mizuhara E, Minaki Y, Sakamoto Y, Ono Y. Helt, a novel basic-helix-loophelix transcriptional repressor expressed in the developing central nervous system. Journal of Biological Chemistry. 2004;279(16):16356-67.
98. Nakatani T, Minaki Y, Kumai M, Ono Y. Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. 2007;
99. Solecki DJ, Liu X, Tomoda T, Fang Y, Hatten ME. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron. 2001;31(4):557-68.
100. Cavallucci V, Fidaleo M, Pani G. Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends in Endocrinology \& Metabolism. 2016;27(11):756-69.
101. Hu N, Zou L. Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells. Annals of Anatomy-Anatomischer Anzeiger. 2022;239:151848.
102. Cinnamon E, Helman A, Ben-Haroush Schyr R, Orian A, Jiménez G, Paroush Z. Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis. Development. 1 mars 2008;135(5):829-37.
103. Muñoz Descalzo S, RuÉ P, Garcia-Ojalvo J, Arias AM. Correlations between the levels of Oct4 and Nanog as a signature for naïve pluripotency in mouse embryonic stem cells. Stem cells. 2012;30(12):2683-91.
104. Pöschl J, Lorenz A, Hartmann W, von Bueren AO, Kool M, Li S, et al. Expression of BARHL1 in medulloblastoma is associated with prolonged survival in mice and humans. Oncogene. nov 2011;30(47):4721-30.
105. Rachidi M, Lopes C. Differential transcription of Barhl1 homeobox gene in restricted functional domains of the central nervous system suggests a role in brain patterning. International journal of developmental neuroscience. 2006;24(1):35-44.
106. Schwartz HT, Horvitz HR. The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes \& Development. 1 déc 2007;21(23):3181-94.
107. Yao Y, Minor PJ, Zhao YT, Jeong Y, Pani AM, King AN, et al. Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nat Genet. mai 2016;48(5):575-80.
108. Nieuwkoop P, Faber J. Normal table of Xenopus laevis (Daudin) garland publishing. New York. 1994;252.
109. Juraver-Geslin HA, Gómez-Skarmeta JL, Durand BC. The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog. Developmental Biology. 1 déc 2014;396(1):107-20.
110. Mashal RD, Koontz J, Sklar J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature genetics. 1995;9(2):177-83.
111. Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, et al. Xenbase: deep integration of GEO \& SRA RNA-seq and ChIP-seq data in a model organism database. Nucleic Acids Research. 2020;48(D1):D776-82.
112. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
113. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature methods. 2015;12(4):357-60.
114. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. 2017;
115. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8.
116. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30.
117. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):1-21.
118. Bardou J. An interactive Venn diagram viewer. BMC Bioinformatics. (15).
119. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics international. 2004;11(7):36-42.
120. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 1 juill 2012;9(7):671-5.

MAIN FIGURES

Figure 1: Temporal and spatial expression pattern of genes involved in granule neuron progenitors' (GNP) development
(A) Neural tube dissection and analysis. Shown on the left is a representation of stage (st.) 45 X. laevis embryo. Following ISH, neural tubes are dissected as shown on the middle (entire neural tube) and right (a focus on the rhombomere $1(\mathrm{R} 1)$) panels. The proliferation marker nmyc is expressed in the upper rhombic lip (URL) (blue arrow), the ventricular zone VZ (white arrow). Red dotted lines delineate rhombomere 1 (R1) located caudal to the midbrain-hindbrain boundary (MHB). nmyc marks proliferating progenitors at the boundary between R1 and R2 and is used as a marker of cerebellar primordium's caudal limit. (B) ISH analysis of GNP markers in X. laevis embryos at the indicated Nieuwkoop and Faber stages. Shown are dorsal and lateral views of the R1. From st. 41 to st. 48 stem/progenitor markers atoh1 (Ba-b'), nmyc (Ca-b'), and hes4 (Ha, a') display a strong expression in the URL and in the EGL. hes4 and nmyc are also detected in the VZ. (Da, a') otx2 expression is first detected in caudal EGL and becomes restricted to the cerebellar plate (CP) (green arrow) at st. 48 (Db, b'). At st. 41 committed GNP markers pax6 (Ea, a') and barhl1 (Fa, a'), together with the differentiation marker neurod1 (Ga, a ') are detected in the caudal EGL and the cerebellar plate. As development proceeds, transcripts for these markers are detected in the CP and their expression significantly increases in this area (E-G, b, b'). Fully differentiated GNs settling in the internal granule layer (IGL) are stained with neurod1 as observed in lateral views of st. 48 X. laevis embryos. The CP is devoid of atoh1, hes4, and nmyc expressions. CP: cerebellar plate; VZ: ventricular zone; URL: upper rhombic lip; EGL: external granule layer; R: rhombomere; MHB: midbrain-hindbrain boundary. Scale bar 150 $\mu \mathrm{m}$.

Figure 2: Tcf activity is required for the induction of the URL and its inhibition by Barhl1 is necessary for the proper progression of GNPs development
(A) Overexpression of tcf7/1 inhibits/abolishes atoh1 expression in a dose dependent manner. ISH analysis of atoh1 expression in the rhombomere 1 (R1) showing dorsal views (a, b) and lateral views of control sides (a^{\prime}, b') and injected sides ($a^{\prime \prime}, b^{\prime \prime}$) of stage 45 X. laevis embryos unilaterally injected with 200pg (a, a', a") and 100pg (b, b', b") of inducible tcf7/1- $\Delta \beta$ cat-GR. The non-injected side is an internal control. (B) Forced expression of $t c f 7 / 1$ increased GNP differentiation. ISH analysis of the commitment/differentiation markers barhl1, pax6 and neurod1 (a-c) in stage 45 X. laevis embryos. (C) barhl1 overexpression phenocopies defects of tcf711 overexpression. Dorsal views showing atoh1, barhl1 and neurod1 (a, b, and c respectively) expressions in the R1 primordium of stage $45 X$. laevis embryos injected with $m B a r h l 1 G R(200 \mathrm{pg})$. Lateral views of atoh1 expression in control side (a') and injected side (a") are shown. Integrated densities (IntDen) of markers' expressions were measured. Ratio of markers expression in injected side over control side is represented (Ac; Bd; Cd) and indicated as mean \pm s.e.m. Dotted lines separate injected and control sides. Scale bar $150 \mu \mathrm{~m}$. Square brackets delineate R1. Dex: dexamethasone; inj: injected side. Statistical analysis C: One-way ANOVAone way anova ($\mathrm{F}_{(2,31)}=437.5 ; \mathrm{p}<0.001$) followed by post hoc Tukey test. Bd Cd: student's t-test. Data are presented as means \pm SEM.** $p \leq 0.01 ;{ }^{* * *} p \leq 0.001$; **** $p \leq 0.0001$.

Figure 3: In the cerebellar URL, antagonistic activities of Barhl1 and Tcf are required for the proper development of GNPs
(A-D) Morpholino (MO)-mediated inhibition of Barhl1 induces an ectopic expansion of atoh1 in the upper rhombic lip (URL) and cerebellar plate and delays GNPs differentiation. in situ hybridization (ISH) of stage (st.) 45 X. laevis embryos unilaterally injected with (A) MObarhl11 (15ng) and (B) MObarhl1-2 (20ng). The non-injected side is an internal control. Shown are dorsal views of atoh1 (Aa ; Ba), pax6 (Ab ; Bb), and neurod1 (Da ; Db) expressions in the cerebellar anlage. Lateral views of atoh1 expression in control sides (Aa', Ba') and injected sides (Aa", Ba") are shown. (C) Quantification of (A) and (B). (Da-c) MObarhl1 phenotype is rescued by mBarhl1 overexpression. ISH analysis showing rescue of neurod1 expression in embryos co-injected with MObarhl1-1 and mBarhl1 mRNA. (Dd) Quantification of (D). (E) Inhibition of Tcf activity compensates for Barhl1 depletion. ISH analysis of pax6 expression in the cerebellar anlage of stage 48 X. laevis embryos unilaterally injected with (Ea) MObarhl1-1 (15ng), (Eb) tcf7l1- $\Delta \beta$ cat-GR at 100pg and (Ec) tcf7/1- $\Delta \beta$ cat-GR at 200pg. pax6 expression was rescued when MObarhl1-1 (15ng) was co-injected with tcf7/1- $\Delta \beta$ cat-GR at 100 pg (Ed) and at 200pg (Ee). (f) Quantification of (E). Ratio of markers expression in injected side over control side is indicated as mean \pm s.e.m. Dotted lines separate injected and control sides. Scale bar $150 \mu \mathrm{~m}$. inj: injected side. Statistical analysis was carried out using student's t -test. C:atoh1:One-way ANOVA $\left(\mathrm{F}_{(2,21)}=19.9 ; \mathrm{p}<0.001\right)$ followed by post hoc Tukey test. pax6: Oneway ANOVA $\left(F_{(2,14)}=8.63 ; p=0.004\right)$ followed by post hoc Tukey test. Dd:Kruskal-Wallis test (Chi square=35.6 $p<0.001$, df=3) followed by Nemenyi test post hoc. Ef:One-way ANOVA $\left(\mathrm{F}_{(4,31)}=32.9 ; \mathrm{p}<0.001\right)$ followed by post hoc Tukey test.Data are presented as means \pm SEM $^{*} p \leq 0.05$; ** $p \leq 0.01$; ${ }^{* * *} p \leq 0.001$; **** $p \leq 0.0001$.

Figure 4: Barhl1 physically interacts with Tcf7I1 and Gro and limits Tcf transcriptional activity
(A) HEK293T cells were transfected with plasmids encoding indicated tagged proteins. Cell lysates were immunoprecipitated (IP) by anti-cMyc antibody. Input and IP samples were subjected to western blot analysis using indicated antibodies. Equal amounts of protein lysates were loaded on SDS-gel. (Aa) Barhl1 interacts with Groucho 4 (Gro4) and Tcf711. The interaction between Barhl1 and Tcf7l1 is detected in the presence and in the absence of Gro. (B) Tcf activity is detected in the URL in an area overlapping with that of atoh1, and complementary to that of barhl1. ISH in X. tropicalis pbin7LefdGFP line at indicated stages (st.) showing gfp (Tcf activity) (Ba, b, c, d), atoh1 (Ba', b', c', d') and barhl1 (Bc", d") expression patterns. (Bc'") DISH showing expression of barhl1 (blue) and gfp (red). Dorsal views of one side of the embryos are shown. (C, D) Barhl1 limits Tcf transcriptional activity in vivo. ISH analysis of gfp expression in X. tropicalis pbin7LefdGFP embryos injected either unilaterally with (Ca) mBarhl1GR (200pg) and (Cb) MObarhl1-1 or before division with (Db) Crispr-barhl1. Embryos injected with Crispr-barhl1 were compared to their wild-type (WT) siblings. (E) Interaction between Barhl1 and Gro is required for Barhl1 function. mBarh/2EHsGR only contains the two EH1 motifs of Barhl2 and acts as a dominant negative by capturing Gro. (Ea) ISH showing atoh1 expression in injected versus control side. Integrated densities (IntDen) of markers' expressions are measured. Ratio of markers expression in injected side over control side is represented (Cc; Dc; Eb) and indicated as mean \pm s.e.m. Percentage of phenotype penetrance is quantified in embryos injected with Crispr/barh/1 versus WT embryos based on indicated criteria. Dotted lines separate injected and control sides. Scale bar $150 \mu \mathrm{~m}$. inj: injected side. Statistical analysis Cc: One-way $\operatorname{ANOVA}\left(\mathrm{F}_{(2,35)}=111,3 ; \mathrm{p}<0.001\right)$ followed by post hoc Tukey test.was carried out using Eb: student's t-test. Data are presented as means \pm SEM * $p \leq 0.05 ;{ }^{* * *} p \leq 0.001 ;{ }^{* * * *} p \leq 0.0001$.

Figure 5: In the URL, Barhl1 activity as an inhibitor of Tcf transcription is required for GNPs to exit their germinative zone and become post-mitotic
(A) Barhl1-KD induces an increase in the URL length associated with increased proliferation within this compartment. (a-d) Imaging of cerebellar anlage of stage 48 X . laevis tadpoles unilaterally injected with MOct and MObarhl1-1 (15 ng). Collected neural tubes were stained for the mitotic marker PhosphoHistone-H3 (PHH3) (green) merged with bisbenzimide (BB) (red). In Xenopus, the EGL is devoid of proliferating cells. (e-g) Quantifications of (A). The ratio of (e) measured URL length and (f) PHH3+ cells in injected side over control side are represented. (Ac, d) PHH3 positive cells are ectopically detected in the cerebellar plate (Ac, d white arrow heads) of injected embryos. (g) Percentage of PHH3+ cells located inside the URL compared to that located outside the URL were quantified on the injected side and on the control side. (E) The abnormal increase in URL length is rescued upon co-inhibiting Tcf and Barhl1 activities. ISH analysis of n-myc expression in the cerebellar anlage of stage $48 \times$. laevis embryos unilaterally injected with (Ba) MObarhl1-1 (15ng), (Bb) tcf7l1- $\Delta \beta$ cat-GR at 100 pg and (Bc) tcf7l1- $\Delta \beta$ cat-GR at 200pg. n-myc marks the boundaries between different rhombomeres which allows the exact measurement of URL length. URL length was rescued when MObarhl1-1 (15ng) was co-injected with tcf7/1- $\Delta \beta$ cat-GR at 100 pg (Bd) or at 200pg (Be). Ratio of URL length in injected side over control side is represented (Bf) and indicated as mean \pm s.e.m. Dotted lines separate injected and control sides. Scale bar 150 mm. inj: injected side; cp: choroid plexus; URL: Upper Rhombic Lip; VZ: Ventricular Zone; R1-R2: Rhombomere 1 and 2; MHB: Midbrain-Hindbrain Boundary. Statistical analysis Ae, Af: was carried out using student's t-test. Bf: One-way $\operatorname{ANOVA}\left(F_{(4,49)}=65.1\right.$; $\left.\mathrm{p}<0.001\right)$ followed by post hoc Tukey test.Data are presented as means \pm SEM ${ }^{* *} p \leq 0.01$; ${ }^{* * *} p \leq 0.001$; ${ }^{* * * *} p \leq 0.0001$.

Figure 6: RNA-sequencing data processing and analysis
(A) Principal Component Analysis (PCA) plots were obtained based on RNAseq data aligned with STAR and reads counted using feature-counts. Three samples have been generated for each condition. Sample groups are represented by different colors as indicated. Each dot refers to a sample. Samples showing similar gene expression profiles are clustered together.
(B) Volcano plots showing a selection of significant DEGs with pAdj < 0.001 in (a) MObarhl11 vs MOct and (b) MObarhl1-2 vs MOct. Upregulated genes with Log2FC>0.4, and downregulated genes with Log2FC<-0.4 are shown. Red and blue dots indicate significant DEGs that are upregulated and downregulated, respectively. Grey dots denote RNAs with nonsignificant difference. PCA and volcano plots were generated using Galaxy. (C) Differentially expressed genes (DEGs) visualization Heatmap displaying expression profiles of most significantly upregulated and downregulated DEGs for each condition (MObarhl1-1 vs MOct and MObarhl1-2 vs MOct). Each row represents a gene, and each column represents a sample. Results are shown as a gradient from blue (downregulated) to dark orange (upregulated). Heatmap is generated using R package. (D) Gene ontology enrichment comparison. Shown on Y axis are the altered molecular functions (a) and biological processes (b) for selected (A) upregulated (Log2FC ≥ 0.4, PAdj <0.001), and (b) downregulated (Log2FC $\leq-$ 0.4, PAdj<0.001) DEGs respectively. Enrichment analysis comparing functional profiles among MObarhl1-1 and MObarhl1-2 was performed on the DEGs in common between both conditions. Results are visualized as a dot plot based on indicated gene counts and adjusted p-values for enrichment. Dot size corresponds to the count of differentially expressed genes associated with the molecular function or the biological pathway, and dot color refers to the adjusted P -value for enrichment. (E) TCF Cis Regulatory Motifs (CRM) in regulatory regions of MOBarhl1 DEGs: pie chart of \% of MObarhl1 DEGs containing either no TCF CRM
(orange), one TCF CRM (grey), two TCF CRM (yellow) and three or more TCF CRM (blue) located 5 Kb upstream or downstream of their TSS. (F) ISH analysis of 4 DEGs: Dorsal views R1 territory of st. 42 X . laevis embryos unilaterally injected with MObarhl1-1 using wnt8b, wnt2b, zic3, otx2 as ISH probes as indicated. inj: injected side.

Table 1: Barhl1 and TCF Cis Regulatory Motif (CRM) on regulatory regions of Barhl1 depleted DEGs. We explore the putative transcription factor-target relationships of Barhl1 (A) and Tcf (B) on Barhl1 depleted DEGs (PAdj<0.001, Log2FC ≥ 0.45 or Log2FC ≤-0.45). We applied R packages Biostrings (v 2.64) and GenomicFeatures (v 1.48) and determine potential (A) Barhl1 binding sites ($5^{\prime}-\mathrm{C}-\mathrm{A}-\mathrm{A}-\mathrm{T}-\mathrm{T}-\mathrm{A}-\mathrm{C} / \mathrm{G}-3^{\prime}$) (and the mirror sequence ($5^{\prime}-\mathrm{G} / \mathrm{C}-\mathrm{T}-\mathrm{A}-\mathrm{A}-\mathrm{T}-\mathrm{T}-$ G-3')) ${ }^{60}$, or (B) TCF binding sites ($5^{\prime}-\mathrm{C}-\mathrm{T}-\mathrm{T}-\mathrm{T}-\mathrm{G}-\mathrm{A} / \mathrm{T}-\mathrm{A}-3^{\prime}$) (and the mirror sequence (5^{\prime} '-T-A/T-C-A-A-A-G-3')) ${ }^{61,62} 5 \mathrm{~Kb}$ upstream and downstream of the Transcription Start Site (TSS) of DEGs using X. laevis v10.1 genome assembly downloaded with its corresponding annotation file from Xenbase. For each gene identified through its EntrezID and its symbol, is indicated the sequence of the detected putative CRM and its position within the gene locus.

A tcf7l1- $\Delta \beta c a t-G R(200 p g)$
tcf7l1- $\Delta \beta$ cat-GR

- - dex
- + + dex
tcf7/1- $\Delta \beta$ cat-GR (100pg)

B

tcf7/1- Δ ßcat-GR (100pg)

Figure 2

Bd tcf7l1- $\Delta \beta$ cat-GR (100pg)

Cd

A
MObarhl1-1

I
$\frac{0}{\circ}$
©
E

inj tcf711- $\Delta \beta$ cat-GR (100pg)
 tcf711- $\Delta \beta$ cat-GR (200pg) pax6

MObarhl1-1 + tcf7l1- $\Delta \beta$ cat-GR (100pg)
d
MObarhl1-2

Ratio of neurod1 expression

MObarhl1-1 + mbarhl1-GR

MObarhl1-2

Dd
MOct
MObarhl1-1
Obarhi-2
MObarhl1-1 + mbarhl1-GR

Figure 5

ENTREZID	SYMBOL	Start	End	length	strand	Sequenc	Position1	Sequence	Position2	Sequence	Position 3	Sequence	Position4	Sequence	n	Sequence	Position5
108717882	acss1.5	30631415	30683070	51656 .		CAATTAG	13714:1372	CAATTAC	27330:27	CAATTAG	29291:2	CAATTAG	57936:5794:				
503669	ahcy. 1	43014140	43030456	16317		GTAATG	1336:1342	GTAATTG	11023:1102	GTAATTG	30161:3016	GTAATTG	30213:3021	CtaAt	4:30	AT	41612
710331	ank1.L	139543765	139560010	16246		CAATT	197:203	CAAT	3190:3196	CAATtAC	13	CAATTAC	14119:14	CAATTAC	24962:24961	CAATtAC	35066:35072
0036926	ank1.5	22497428	22627635	$130208+$		GTAATTG	3984:3990	GtaAttg	15472:154	GtaAtt	27277:27	CTAATTG	37819:3782	GTAATTG	43474:4348	GTAATTG	54999:50
447402	apcdd1	1119313	111231649	38517		CAAtTAC	18010:180	CAATTAG	32939	CAATtAC	1920:5						
8695251	apcdd1. 5	90867467	90898266	30800		GTAATTG	14220:142	ctaAttg	17674:17	ctaAtt	18069:1807	CTAATTG	9051:19	ctaatt	19187:1919	GTAATT	0012:300
1869788	applp1.5	96777	109638526	30748 +		Aattg	3271:3277	GTAATTG	8467:8473	CtaAttG	18382:18382	CTAATTG	34384:34	CTAATTG	51174:5118	CtaAtT	54165
39823	app.L	17761661	17906707	$145047+$		ctattg	3013:3019	ctaattg	4506:4512	GTAATTG	6378:6384	GTAATTG	9332:9338	GTAATTG	13294:13300	CtaAttg	25928:25
379251	app. 5	16800553	16933427	132875 -		CAAtTAC	7832:7838	CaAttag	9571:9577	CaAttag	11331:1133	CaAtTAC	2622	CAATTAG	43737:4374:	caAttac	45770
8716978	atp13a51.2.	112349351	112395883	46533 -		CAATTAG	944:950	CAATTAC	6229:6235	CaAttac	16154:1616	CAATTAG	24346:2435	CaAtTAC	38876:3888.	caattac	38894:3
399285	atplaa.L	716832	733112	16281		CAATTAC	7548:7554	CaAttac	646:8652	CaAttag	17326:17	CAATTAG	19491:1949	caAttac	21911:2191	caAttac	34864
0878208	atp1b1.L	83806655	83819946	13292		CAATTAC	17936:1794.	CAATTAC	23136:2314	CAATTAC	34031:3403	CAATTAG	39829:3983	CAAtTAG	40891:4089		
444626	atp1b2.s	131833350	131838868	5519		CAATTAG	8941:8947	CAATTAC	45003:45								
446855	atp2b4.L	122988077	123169977	$179901+$		GTAATTG	9633:9639	ctaattg	9715:9721	GTAATTG	04:981	GTAATT	2466:12	ctaAtt	181:13	ctaAtt	崖94:1760
8715812	atp2b4. 5	103816801	104014544	$197744+$		GTAATTG	10205:1021	CTAATTG	11586:1159	GTAATTG	16128:16	CTAATTG	18197:1820	GTAATTG	19838:1984	GTAATTG	261:2026
734627	atp6v1a.L	2599141	2644208	45068 +		GTAATG	4750:4756	ctaattg	49001:4900								
0301951	barkl2.L	101225765	101230203	$4439+$		CtaAtTG	9252:9258	Gtaattg	13202:1320:	GTAATTG	176:20	CtaAttg	9:21	GTaAttg	2410:24611	ctaatt	049:49055
398182	barkl2.s	84616978	84621442	4465		ctattg	12168:1217	GTAATTG	22691:2269	GTAATTG	23320:23	GtaAttg	25807:25	GTAATTG	26362:26364	ctaAttg	983:5
8719273	bhlhe22.L	126287814	126298806	$2993+$		GTAATTG	6234:6240	GTAATtG	21660:216	GTAATTG	21995:22	GTAATTG	29890:2989	CtaAttg	33680:3368	GTAATT	36345:36
108697000	bsx.L	79604595	79608039	3445 -		CAAtTAC	5266:5272	CaAttac	6168:6174	CaAttac	9491:9497	CaAttac	13646:1365:	caAttac	13670:1367	caattac	14781:14
8697964	bsx. 5	68824825	68828862	$4038+$		GTAATTG	10464:1047	GtaAttG	13658:1366	GtaAtt	15828:1583	GTAATTG	24023:2402	CtaAttg	28330:2833	CtaAttg	41723:41
108714103	ca7.L	60958000	60982049	$24050+$		ctaattg	9102:9108	CtaAttg	16190:1619	GTAATTG	17535:1754:	ctaattg	17897:1790	GTAATTG	18586:1859:	gTaAttg	21285:22
108715529	cachd1.5	65179606	65266838	87233 -		CAATTAG	3135:3141	CAATTAG	14514:1452	caattac	40898:40900	CAATTAC	49823:4982	caattac	50899:5090:	caattac	58639:586
373828	cacma1a.	125362502	125539424	$176923+$		GtaAtG	4495:4501	GTAATTG	26464:2647	ctaAttg	35644:35	CTAATTG	39710:3971	GTAATTG	47422:4742	GTAATTG	49247:49
8707217	camk4.5	161438128	161537363	99236.		CAATTAG	2638:2644	CAATTAG	10826:1083:	CAATtAC	21652:2165	CAATTAC	23565:2357	CAATTAG	5423:2542	caAttac	35891
8704358	chrm2.L	5237056	531886	$81811+$		CtaAtTG	15581:1558	CtaAttG	20646:2065	ctaAtt	22593:22	CTAATTG	205.	CtaAttG	7:3388:	CtaAttG	
108696042	cistn3.L	6324066	6349999	$25934+$		GTAATTG	1824:1830	GTAATTG	25965:2597	ctaAttg	35825:3583						
444580	cistn3.5	4392785	4420685	$27901+$		StaAtG	21613:2161	CtaAtt	26938:26	gtaatt	47765:4777:						
88701021	cntnap1.L	33971993	34025896	$53904+$		GTAATTG	1347:1353	GTAATTG	10741:1074	gtaatt	12736:1274:	GTAATTG	16633:1663:	taATt		ATT	
108713331	col5a3.s	122174819	12228565	$110834+$		CTAATTG	15095:1510	ctaattg	24111:241	CtaAtT	29077:29	CTAATTG	45203:4520	CTAATTG	49512:4951	GTAATTG	
379593	cox4iz.L	19030637	19035071	4435 -		CAATTAC	961:967	CAATTAC	16832:16	CAATtAG	17728:1773	CaAtTAC	39973:3997				
8718496	cpne4.L	54675311	874125	98815 -		CAATTAC	11447:114	CAATTAC	16555:1	CAATTAC	23196:2320:	CAATTAC	28276:2828:	tTAC	140:3214	CAATTAC	
734422	crmp1.L	26676228	26724958	$48731+$		ctattg	26859:2686	GtaAttg	43623:4362								
8706537	crmp1.s	16514921	16550190	$35270+$		ctaAttg	2057:2063	gtaattg	3576:3582	CtaAtt	483:5489	GTAATTG	6118:6124	GTAATTG	9469:9475	CtaAttg	9510:9516
398118	cr.L	70907385	70911313	3929 -		CAATTAG	4400:4406	CAATTAG	4902:4908	CaAttag	8840:8846	CaAtTAC	12153:1215	CAATTAG	17423:1742	CaAttac	20595
373653	cr. 5	85300054	85305321	5268 -		CAATTAG	10147:1015	caattag	12037:1204	caattag	13186:1319	caattac	21963:21	CaAtTAC	506	CaAttag	468
444710	ctnna2.L	15276253	16316751	$1040499+$		GTAATTG	20981:2098	CTAATTG	32986:329	GtaAttG	41281:412	CtaAttG	44166:4417	CtaAttg	51657:5166:	CtaAttG	1776
735141	cyp27c1.5	51031782	51046442	$14661+$		ctaAttg	1492:1498	ctaattg	15777:1578	gtaatt	16182:1618	GTAATTG	29826:2983	GTAATTG	42196:4220:	ctaattg	45188:45192
779068	dach1.S	118521901	118753480	$231580+$		ctaAttG	3064:3070	CTAATTG	5075:5081	GtaAttG	9593:9599	GTAATTG	10210:102	GTAATTG	885:1389.	ctaattg	15167:191
444888	dher24.L	93054708	93073865	19158		caAttac	10207:1021	CAATTAC	13039:130	CaATtAG	13580:13	CAATTAG	634.15	CAATTAC	42:2094	CaAttag	26469:26475
444269	dhrs3.L	99627471	99645567	$18097+$		GTAATTG	10880:1088	ctaattg	24359:243	CtaAtt	41426:4143	GtaAtt	41893:41899	GTAATTG	43934:4394	GTAATTG	52337:5234
495093	dhx32.L	19715507	19768878	$52372+$		AATTG	9136:9142	GTAATTG	17145:1715	GtaAtt	26989:26	GTAATTG	47526:4753.	GTAATTG	48634:4864	G	487:5
108719909	dix5.s	26933539	26939186	5648 -		CAAtTAC	40047:4005	CAATTAC	43788:4379	CaAttag	56370:5637						
108714311	dmria2.L	91058234	91062116	3883 -		CAATTAG	2377:2383	CAATTAC	3372:3378	CaAttac	7255:7261	CAATTAC	22450:2245	ttac	7:5058:		
734181	dmrita 2.5	75902854	7590665	3812 -		CAATTAG	2881:2887	CaAttag	3962:3968	CaAttag	43182:43184	CAATTAG	46604:4661	CAATTAC	47391:4739	CAATTAC	9757:4976:
447353	dner.L	138821407	138940168	118762 -		CAATTAG	5728:5734	CaAtTAC	10764:107	CaAttac	16632:1663	CAATTAG	21751:2175	CaAtTAC	32168:32	caAttac	32180:32186
733218	dner.S	116522613	116640582	117970		CAATTAC	8775:8781	CAATTAC	23734:2374	CaAttac	24685:2469	caattac	34061:3406	CaAtTAC	41496:4150:	CaAtTAG	47732:477
108698468	ednrb2.L	57360733	57373837	$13105+$		GTAATTG	12292:1229	GtaAtt	16288:1629	gtaatt	22217:2222	GTAATTG	23329:2333	ctaAttg	28068:2807.	CtaAttg	32474:32
108706841	efna2.S	90276200	90399478	123279 -		CAATTAC	5315:5321	CAATTAG	7998:8004	CaAttag	9786:9792	CaAttac	10236:1024-	caAttac	28541:2854		
378621	efnb3.L	155585401	155629439	44039 -		CAATTAG	199:205	CAATTAC	19570:195	caattac	55239:5524	CAATTAG	56253:5625	CaAtTAC	58376:5838:		
108717253	efr3b.L	164941521	165043032	$101512+$		GTAATTG	5615:5621	GTAATtG	15139:1514	GtaAtt	19949:1995	ctaattg	28890:2889	GTaAttg	36806:3681:	GTAATTG	9787
108704605	emilin3.L	38678349	38691669	$13321+$		GTAATTG	401:407	GtaAttg	6670:6676	GtaAttg	14807:1481	ctaAttg	17408:1741	GTAATTG	20671:2067	CtaAttg	43707:437
444481	emx2.L	4320493	4329940	$9448+$		GTAATTG	10286:1029	ctaattG	13660:1366	ctaAttg	17852:1785	GTAATTG	31618:3162	GTAATTG	32450:3245	GTAATTG	34808:348
108708233	epha10.L	87446557	87510675	$64119+$		GTAATTG	3523:3529	GTAATTG	5583:5589	CTAATTG	6359:6365	CtaAtTG	10903:1090	GTAATTG	43116:4312,	ctaattg	5403:55
108699987	fgd1.S	36747935	36824003	$76069+$		ctaAttg	34785:3479	GtaAttg	35823:3582	GTAATTG	40503:405	CTAATTG	58284:5829	gtaatio	3:59		
88720079	foxq1.5	73108957	73111235	2279		CAATTAC	20426:2043	CAATTAG	59596:5960								
108713389	frmpd1.L	118550047	118570960	20914 -		CAATTAC	856:862	CAATTAG	2022:2028	CaAttag	9189:9195	CAATtAG	21893:2189	caAttac	41276:4128:	CAATTAG	4456:54462
0126659	fry.L	162284915	162444492	159578.		CAATTAG	12024:120	CAATTAG	13791:1379	CAATTAC	22866:228	CAATTAG	40110:4011	CaAttac	43481:4348	CAATTAG	50149:501
399282	fst.L	209704890	209714376	9487 -		CAATTAG	155:161	CaAtTAC	3879:3885	CAATtAG	8622:8628	CaAtTAC	17329:1733:				
108717677	galnt14.5	11145575	11356092	210518.		CAATTAC	6356:6362	CAATTAG	14699:147	CAATTAG	19903:1990	CAATTAG	23977:2398:	CAATTAG	31808:3181	CAATTAG	32520:325
08698511	gipr.L	62450334	62473936	23603 .		CAATTAG	16479:1648.	CAATTAG	19707:1971	CaAtTAC	23267:2327:	CAATTAG	37397:3740	CAATTAG	45010:4501	caAttac	52275:522
495415	glipr2.S	26853023	26874068	21046 +		GTAATTG	10802:1080	GtaAtt	15525:1553	GTAATTG	15756:1576:	GTAATTG	18472:1847	ctaattg	22107:2211	ctaattg	34133:34135
88712269	gra1.5	11677189	11780001	102813.		CAATTAC	184:190	CAATTAC	10657:1066	CaAttag	10932:10938	CAATTAC	11507:1151	CAATTAG	19954:1996	CAATTAG	20550:2055t
444823	gnat2.	61023130	61046451	23322 -		CAAtTAC	5417:5423	CaAtTAG	9560:9566	CaAttag	12386:1239:	CaAtTAC	18312:1831	CaAtTAC	23265:2327	CAATTAG	24143:24144
108717114	gpc1.L	13677655	136825339	48788.		CAATTAC	1555:1561	CaAttag	5562:5568	CaAttac	8853:8859	CaAtTAC	14580:1458	CAATTAG	20261:2026	CAATTAG	31558:31562
108717115	gpos.l	136896405	136999158	102754.		CAATTAG	1892:1898	CAATTAG	23606:23	CAATtAG	41111:41	caAttag	44789:4479	caattac	53183:5318	CAATTAC	54818:548

373694	ntn1.L	44922889	44973436	50548 -		CAATTAG	1670:1676	CAATTAG	2877:2883	attac	7476	CaAttag	21909:2191	attac	39030:3	CAATTAG	42154:42166
8703174	ntn3.S	99754837	99826023	$71187+$		CtaAttG	4879:4885	CTAATTG	7776:7782	CtaAttg	14952:1495	CtaAtt	26159:2616	CTAATTG	36667:3667	GtaAtt	38345:38351
10012730	ntn5.L	11079703	11086928	72254		CAATtAG	76:27	CaAttag	40887:4	CaAttac	45871:45	CaAttac	46629:4663				
108717966	otp.L	201728385	201738028	9644		caattag	2570:2576	caattag	21151:2115	caattac	22413:2241	caattac	26326:2633:	CaAttag	32718:3272	CAATTAG	44950:4
870727	otp. 5	1735696	173578934	9274		CAATTAG	731:737	CAATTAG	4469:4475	CAATTAG	10972:10	CAATtAC	21706:21	CAATtAG	32533:3253	CaAttac	41824:4183C
394326	otx1.L	31685746	31692153	6408 -		CAATtAC	14505:1451	caattac	23833:2383	CAATtAG	36199:3620	CaAttac	42664:4267	CaAttag	43782:43788	caAttac	52832:52838
432013	otx2	95776	957836	$6869+$		CtaAt	994:1000	GTAA	3224:3230	CtaAt	6228:6234	CTAAT	517:1352:	GTAA	15978:1598	CTAA	17295:17301
3993	otx2.s	6466178	6474324	8147		CAATTAG	20308:203	CAATtAG	26756:26	CAATTAG	32493:3249	CAATtAG	34524:3453	CAATTA	42169:421	CAATT	45009:45015
73444	paqr6.L	131311650	13132993	18287		CAATTAG	6457:6463	CAATtAG	9290:9296	CAATTAC	36365:36	CAATtAG	37465:3747-	CAATTA	49334:4934	caAttac	57136:57142
447230	parr6.	101050289	101078138	27850		caAttag	4674:4680	CaAttac	18507:185	CaAttac	45965:459	CaAttag	59599:5960:				
39881	pc.1.L	3095439	31113591	159199		GtaAtTG	7242:72	CtaAt	30671:3067	CtaAttg	44671:44	CtaAtt	53548:5355	G	7		
869974	pcah10.L	6688083	6694950	68673		CAAtTAG	4755:4761	CAATtag	8576:8582	CAATTAC	12680:12	CAATTAG	22095:2210	CAATT	2957:2	CAATTAC	9432:39438
8704222	pcdh7. ${ }^{\text {S }}$	23255963	23831275	575313		CtaAttG	302:308	GTAATTG	793:799	CTAATTG	19631:19	CTAATTG	23145:23	CtaAtt	29035:29	AAT	
447238	phyhipl.	7878133	794923	71107		CtaAtt	8287:8293	GtaAtTG	31141:311	gtaatt	40296:40	CtaAt	58577:585	CtaAt	59924:599		
444658	pitpnc1.5	54192135	54249643	57509		CTAATTG	7460:7466	CTAATTG	19171:191	CtaAttg	23704:23	GtaAttG	25462:25	GTAATI	37249:37	GTAA	43394:43400
373586	pitx2.5	5664776	56666204	18440		CtaAttg	1602:1608	CTAATTG	14059:140	CtaAtTG	22755:32	GTAATT	38455:38	CtaAt	54638:54	GTAA	56451:56457
398183	pitx3.L	41587535	41635262	47728		CAATTAC	2525:2531	CaAttac	4634:4640	CAATTAC	9693:9699	CaAttac	9740:9746	CaAttag	19670:19	CAATTAG	21145:21151
373824	pitx3.5	3281724	32831254	14012		CAATTAC	12767:127	CAATtAC	20656:206	CAATTAC	25778:2578	CAATtAC	47706:4771	CAATTA	52118:52	CAATTAC	52199
445848	plcb4.s	26892020	27052040	$160021+$		GTAATTG	2917:2923	CTAATTG	22083:220	CTAATTG	33761:3376	GtaAtt	34344:3435	GTAATTG	36711:3671	GTAATTG	38721:38727
39780	plxna1.L	133875694	134130925	255232		CAAtTAG	11699:1170	CaAttac	15806:15	CAATtAG	20165:20	CAATtag	20371:20	CAATTA	683	CAATTA	2185
447098	pmp2.S	109853538	10986278	925		GtaAtt	4616:4622	GtaAtt	15830:158	ctaAtt	28000:2800	CTAATTG	33146:3315:	ctaAtt	33582:33	ctaAttg	33882:33888
669867	pouf4.L	7171968	5717471	275		TAATT	55:91	ctaat	269:42	TAATI	15666:1567	CTAATI	22:1962	GtaAt	23829:238	CtaAt	29732:29738
373807	pouaf4.5	74055954	74057472	151		taAttg	1661:1667	CtaAtt	4296:4302	CtaAttg	17742:17	CtaAtt	21856:218	GtaAtt	22251:22	CtaATT	29643:29
379544	rdm12.L	8877245	8885268	8024		AAtTAG	17799:1780	CaAttag	28982:289	CaAttag	29506:295	caattag	29927:2993	CaAttag	33231:33	CAATTA	38930:38936
703933	prrt2.L	1351950	13521	24009		caAttac	1093:1099	CAATT	312	caattag	515	caatta	8172:8178	CAATtAC	11329:113	CAATTA	3802:23808
108717211	tchd4.L	157887809	15795359	65790		GtaAtt	20596:2060	CtaAtt	28993:28	gtattg	32566:3257	GT	335				
44472	ptgds. 5	27277189	27280672	3484		ctaAtTG	15519:155	CtaAtt	21767:217	GtaAttG	45687:4569:						
379862	pygm.L	37406515	37450030	$43516+$		GtaAtG	10833:1083	GTAATTG	11824:1183	GTAATTG	11898:1900	CTAATTG	5466:15	GTAATTG	29168:29	GTAATT	5701:3570]
431959	rab11fip5.L	9885324	9916083	30760		caAttac	718:724	CaAttac	1437:1434	CaAttag	182:35	CaAttac	42022:42	CAATTAC	52972:5297	CAATTA	5992
108717144	rab6b.	139929362	139954012	24651		caattag	2465:2471	caattac	6249:6255	caattac	15427:1543	caattac	17018:1702	CaAttag	19296:193	caattag	22125:22131
108718191	rbp1.S	115965914	115980872	14959		caAttag	3020:3026	caattac	5998:6004	CAATtAC	13808:1381	CaAttac	17333:17,	CaAttac	18905:18	CAATTA	19699:19
444623	rdh5.L	143860108	143871386	11279		CTAATTG	794:800	CTAATTG	1038:1044	CTAATTG	6311:6317	GTAATTG	7543:7549	CTAATTG	24006:24	GTAATTG	39034:3904C
444753	rgr.L	52560896	52597415	36520		ctaAttg	10052:1005	gTaAttg	18186:1819	ctaattg	28912:8891	GtaAttg	47211:4721	GTAATTG	47745:47	ctaAttg	49625:49631
49472	rgr. ${ }^{\text {S }}$	43030908	43045862	14955		GtaAtTG	1740:1746	GTAATTG	8508:8514	GTAATTG	10075:1008	CtaAtTG	14724:1473	GTAATTG	16885:1	GTAATTG	27516:27522
108712845	rlpp1.S	44829028	44843412	14385		CAAtTAC	3726:3732	CAATTAC	6696:6702	CAATTAC	7585:7591	CaAttag	14103:14109	CAATtAC	6.	CAATTA	24458:24
399383	mgtt.s	73324344	734815	$157255+$		CTAATTG	16471:1647	GTAATTG	24194:24	CtaAti	24595:2	GtaAttg	30629:3063:	CtaAtT	50765:50	CtaAt	548:5155
108711313	rora. 1	99083952	9913245	48502		caAttag	32188:3219	caattac	36087:3609	CaAttag	37665:3767.						
13	rpe65.L	77973831	77985824	11994		GtaAtTG	360:366	GTAAT	17:4183	CTAA	8314:8320	GtaAttG	14655:1466	CTAATTG	31649:3165	CTA	36293:36299
938	rpl27a. 5	69071921	69081562	9642		CAAtTAC	8655:8661	CAATtAG	22444:2245	CAATtAG	26895:2690:	CAATtag	32236:3224:	CAATtAC	99:32	CAAttag	33468:3347/
010	rpi28.S	93487155	93494448	7294		CAATtAC	1:1917	caattac	4878:4884	CAATT	13895:139	CaAttac	1700:176	CAATT	24111:2411	caAttag	26762:26768
496383	rspo2.L	144263290	144347989	84700		CAATTAC	7038:7044	CAATTAG	15665:1567	CAATTAG	18278:1828	CAATtAG	26125:2613	CAATTAC	29396:294	caAttac	55852:55858
871975	rspo2.s	20015407	120113213	97807		CAAtTAC	3376:3382	CAATTAC	3696:3702	CAATTAC	5074:5080	CAATTAC	12764:12	CAATTAG	16938:16	CAATt	23302:23308
108696901	scnib.	133368758	133397341	28584		GTAATTG	266:272	GTAATTG	2121:2127	GTAATTG	3347:3353	CtaAttG	41053:410	GtaAtTG	42914:42	CtaAttG	44742:44748
695492	scrt2.S	137254708	137271763	$17056+$		GTAATTG	5812:5818	CTAATTG	9966:9972	CtaAttg	15577:1558	GtaAttG	20397:2040	CtaAtt	58313:58	CTAAT	58941:58947
100505449	sfxn5.L	977322	9863167	89943		CAATTAC	56:62	CAATtAC	7011:7017	CAATTAG	12422:12	CAATTAC	28870:2887	CAATTAC	34877:34	caattac	36138:3614
108711341	sh. L	101318640	101434109	115470		ctastig	8436:8442	GTAATTG	16457:164	CTAATTG	26197:262	GTAATTG	39990:3999	ctaatt	42836:42	GTAAT	571
108717957	sim1.5	68698440	68762369	63930		GTAATTG	3974:3980	CTAATTG	4428:4434	GTAATTG	11737:11	GtaAttG	27364:2737	GTAATT	28747:28	CTAATT	34999:3500
373634	sim2.5	21371380	21424282	52903		GTAATTG	9952:9958	GTAATTG	11269:1127	GTAATTG	22190:22199	CTAATTG	29149:2915	CTAATTG	40917:409	CtaAt	51334:5134C
8711507	skor1.L	124253950	124280009	26060		сtaAttg	1294:1300	CTAATTG	1946:1952	CtaAttg	4479:4485	CtaAtt	8707:8713	CTAATTG	9941:9947	CTAATTG	11787:11795
108712800	skor1.5	36508318	36528035	19718		CAATTAC	12734:127	CAATtAG	21759:217	CAATTAC	27222:27	CAATtAG	27596:27	CAATtAC	32319:323	CAATt	6728:3673
100380948	slc12a5.L	35641539	35693170	51632		CAATTAC	15190:1519	CAATTAC	17858:178	CAATTAC	25709:25	CAATtAC	27511:2751	CAATTAC	30950:30	CAATTAG	3895:3390]
494763	slcza1.L	139293680	139354264	60585		GtaAtt	1822:1823	GtaAtt	20512:205	GTAATTG	23410:2	GTAATTG	40932:4093				
108697841	slcza1.5	112562130	112613201	$51072+$		GTAATTG	1541:1547	CTAATTG	17545:1755	GTAATTG	54166:5417.						
108719869	slc39a12.S	21235717	21263894	28178		CaAttac	1978:1984	CaAttag	5323:5329	CaATtaC	5863:5869	CaAttac	6818:6824	CaAttag	17184:171	CAATTAG	1736
446661	slc40a1.5	82213415	82229157	15743		CAATtAC	7805:7811	CaAttag	8203:8209	CAATtAG	13567:1357	CaAttag	14052:140	CAATtAG	14730:1473	CAATTA	14960:14966
108719439	slc45a4.L	158368034	158431635	$63602+$		сtaAtt	1960:1966	CtaAtt	6625:6631	GtaAttg	13992:1399	CTAATTG	21471:2147	GTAATTG	24501:2450	CTAATTG	32620:3262t
108695461	slc45a4.5	132742338	132812415	70078		CtaAtt	5781:5787	CtaAtt	10159:1016	gtattg	15559:1556	CtaAtt	17713:1771	CtaAttg	29469:2947	GTAATTG	30828:308
108711128	slcaa4.L	86532823	86621277	88455		CAATtAG	1181:1187	CaAttag	5485:5491	CaAttac	13847:1385	CAATtAC	15361:1536	CaAttag	18342:1834	CAATTAC	20711:2071
108706771	slca4a.S	70481573	7053388	52311		caAttag	10562:105	CaAttac	14421:144	CAATTAC	15296:1530	CAATTAC	21439:2144	CAAtTAG	31456:3146,	CAAtTAG	39475:3948
108720038	slc6a3.5	63839322	63876812	$37491+$	+	GtaAtG	9426:9432	CtaAtt	11173:111	GtaAttg	13245:1325	GtaAttg	31097:3110	ctaAtt	31872:318	GTAATT	36368:3637
108709176	slc6a4.5	5573782	5647981	$74200+$		Ctattg	6487:6493	GtaAtG	11419:114	CtaAtt	15034:1504	CTAATTG	17518:1752	GTAATTG	17648:17654	ctasti	2265
108704092	slc7a10.5	50688467	50733293	$44827+$	+	GtaAtG	14074:1408	GtaAtG	18917:189	CtaAtt	32523:325	CtaAtt	33748:33	GTAATTG	36147:361	GTAATT	44698:4470
380270	slit1.S	21612366	21845457	233092		CAATtAG	4350:4356	CaAttag	15049:150	CAATtAC	16859:1686	CAATtAC	20950:2095	CaAttac	29012:2901	caAttag	32963:32965
779307	snrpg. 5	31620636	31630323	9688 +		CtaAttg	17722:1772	CtaAttG	22355:223	ctaattg	26175:2618	CtaAtt	31860:318	GTAATTG	37185:371	GTAATT	43089:4309
108719398	sntb1.L	149457904	149565163	107260		CAATtAG	13742:1374	CaAttag	13955:1396	CaAttag	24118:2412	CaAttag	46224:4623	CaAttac	48403:4840	caAttac	49312:49318
735180	sp5.L	75610256	75613281	$3026+$		GTAATTG	1994:2000	GTAATTG	11724:1173	GTAATTG	15351:1535	CtaAtt	35109:3511	GTAATTG	36945:369	GTAATTG	54091:54097
378650	sp5.S	662025	662075	5027 +		CTAATTG	12028:1203	CtaAt	12190:1219	GTAAT	17413:17419	Gtaitig	21787:2179	CtaAtt	29601:2960	CtaAtt	37819:378

ENTREZID	SYMBOL	Start	End	length	strand	Sequence1	Position1	Sequence	Position2	Sequence	Position 3	Sequence	Position4	Sequence1	Position4
108717782	acss1.5	30631415	30683070	51656		TTCAAAG	63:69	TTCAAAG	1186:1192	TTCAAAG	1606:1612				
503669	ahcy.L	43014140	43030456	16317	+	CTTTGAA	770:776	CTTTGAT	6231:6237	CTTTGAA	8258:8264				
108710331	ank1.L	139543765	139560010	16246		ATCAAAG	3997:4003	ATCAAAG	8676:8682						
100036926	ank1.5	22497428	22627635	130208	+	CTTTGAA	5813:5819	CTTTGAT	9569:9575						
447402	apcdd1.L	111193133	111231649	38517	-										
108695251	apcdd1.S	90867467	90898266	30800	+	CTTTGAA	2902:2908	CTTTGAA	5695:5701	CTTTGAA	6521:6527	CTTTGAT	8657:8663	CTTTGAA	8687:8693
108697887	aplp1.S	109607779	109638526	30748	+	CTTTGAT	2785:2791	CTTTGAT	9243:9249	CTTTGAT	9901:9907				
398223	app.L	17761661	17906707	145047	+	CTTTGAT	2775:2781	CTTTGAT	7018:7024	CTTTGAA	8653:8659				
379251	app.S	16800553	16933427	132875	-	ATCAAAG	9607:9613								
108716978	atp13a51.2.L	112349351	112395883	46533	-	ATCAAAG	2621:2627								
399285	atp1a1.L	716832	733112	16281	-	ttcaAag	3072:3078								
108708208	atp1b1.L	83806655	83819946	13292	-										
444626	atp1b2.S	131833350	131838868	5519	-										
446855	atp2b4.L	122988077	123167977	179901	+										
108715812	atp2b4.s	103816801	104014544	197744	+										
734627	atp6via.L	2599141	2644208	45068	+										
100301951	barhl2.L	101225765	101230203	4439	+	CTTTGAA	4756:4762								
398182	barhl2. ${ }^{\text {a }}$	84616978	84621442	4465	+	CTTTGAA	8359:8365								
108719273	bhlhe22.L	126287814	126290806	2993	+	CTTTGAT	4429:4435	CTTTGAT	4712:4718						
108697000	bsx.L	79604595	79608039	3445	-	ATCAAAG	6332:6338								
108697964	bsx. 5	68824825	68828862	4038	+	CTTTGAT	237:243	CTTTGAA	6767:6773	CTTTGAA	8515:8521				
108714103	ca7.L	60958000	60982049	24050	+										
108715529	cachd1.S	65179606	65266838	87233		tTCAAAG	501:507	tTCAAAG	1965:1971	tTCAAAG	9925:9931				
373828	cacna1a.S	125362502	125539424	176923	+										
108707217	camk4.5	161438128	161537363	99236	-	ATCAAAG	286:292								
108704358	chrm2.L	5237056	5318866	81811	+										
108696042	clstn3.L	6324066	6349999	25934	+	CTTTGAT	3912:3918	CTTTGAA	9792:9798						
444580	clstn3.5	4392785	4420685	27901	+										
108701021	cntnap1.L	33971993	34025896	53904	+	CTTTGAT	6269:6275	CTTTGAA	7214:7220						
108713331	col5a3.s	122174819	122285652	110834	+	CTTTGAA	2426:2432								
379593	cox4i2.L	19030637	19035071	4435	-	ATCAAAG	317:323	TTCAAAG	1052:1058	tTCAAAG	3876:3882				
108718496	cpne4.L	54675311	54874125	198815	-										
734422	crmp1.L	26676228	26724958	48731	+	CTTTGAT	8310:8316								
108706537	crmp1.s	16514921	16550190	35270	+										
398118	crx.L	70907385	70911313	3929	-										
373653	crx. 5	85300054	85305321	5268	-	TTCAAAG	413:419								
444710	ctnna2.L	15276253	16316751	1040499	+										
735141	cyp27c1.5	51031782	51046442	14661	+	CTTTGAT	314:320								
779068	dach1.5	118521901	118753480	231580	+	CTTTGAA	4004:4010	CTTTGAT	5254:5260						
444688	dhcr24.L	93054708	93073865	19158		ATCAAAG	1834:1840								
444269	dhrs3.L	99627471	99645567	18097	+	CTTTGAT	3795:3801	CTTTGAA	7339:7345	CTTTGAA	7505:7511	CTTTGAA	7595:7601		
495093	dhx32.L	19715507	19767878	52372	+	CTTTGAT	6972:6978	CTTTGAT	7608:7614	CTTTGAT	7681:7687				
108719909	dix5.S	26933539	26939186	5648		TTCAAAG	2908:2914	ttcanag	7319:7325	tTCAAAG	9802:9808				
108714311	dmrta2.L	91058234	91062116	3883		ATCAAAG	4436:4442	TTCAAAG	7362:7368						
734181	dmrta2.S	75902854	75906665	3812		ATCAAAG	4443:4449	TTCAAAG	7295:7301						

447353	dner.L	138821407	138940168	118762		TTCAAAG	9915:9921								
733218	dner.S	116522613	116640582	117970		TTCAAAG	358:364	TTCAAAG	9527:9533						
108698468	ednrb2.L	57360733	57373837	13105	+	CTTTGAA	4181:4187	CTTTGAA	6838:6844	CTTTGAA	7634:7640				
108706841	efna2.S	90276200	90399478	123279	-	ATCAAAG	9459:9465								
378621	efnb3.L	155585401	155629439	44039	-										
108717253	efr3b.L	164941521	165043032	101512	+	CTTTGAA	1057:1063	CTTTGAA	1171:1177	CTTTGAA	5284:5290				
108704605	emilin3.L	38678349	38691669	13321	+	CTTTGAT	7840:7846								
444481	emx2.L	4320493	4329940	9448	+	CTTTGAT	5881:5887	CTTTGAA	6426:6432						
108708233	epha10.L	87446557	87510675	64119	+	CTTTGAT	5621:5627	CTTTGAA	7140:7146						
108699987	fgd1.S	36747935	36824003	76069	+										
108720079	foxq1.5	73108957	73111235	2279		TTCAAAG	1501:1507	ATCAAAG	2334:2340	ATCAAAG	4121:4127	TTCAAAG	9267:9273		
108713389	frmpd1.L	118550047	118570960	20914	-	TTCAAAG	3454:3460	ATCAAAG	4281:4287	TTCAAAG	9070:9076				
100126659	fry.L	162284915	162444492	159578	-	TTCAAAG	414:420	TTCAAAG	9489:9495						
399282	fst.L	209704890	209714376	9487											
108717677	galnt14.S	11145575	11356092	210518	-	ATCAAAG	2703:2709								
108698511	gipr.L	62450334	62473936	23603		TTCAAAG	7311:7317								
495415	glipr2.S	26853023	26874068	21046	+										
108712269	glra1.S	11677189	11780001	102813		ATCAAAG	2785:2791	ATCAAAG	6999:7005	TTCAAAG	7171:7177	ATCAAAG	8088:8094		
444823	gnat2.S	61023130	61046451	23322	-	TTCAAAG	5306:5312	ATCAAAG	5403:5409	ATCAAAG	8521:8527	TTCAAAG	8528:8534		
108717114	gpc1.L	136776552	136825339	48788	-	TTCAAAG	139:145	TTCAAAG	2078:2084	TTCAAAG	6501:6507				
108717115	gpc5.L	136896405	136999158	102754	-	TTCAAAG	2969:2975								
108695476	gpt.S	135846150	135861967	15818											
108701652	grid2ip.L	118202355	118258423	56069	+	CTTTGAT	494:500	CTTTGAT	5228:5234						
108711755	gucy2d.L	153510630	153526575	15946	-	ATCAAAG	9985:9991								
108703527	gucy2d.S	127984005	127996522	12518	-	TTCAAAG	2118:2124	ATCAAAG	9973:9979						
108698720	helt.L	46917331	46920714	3384	-										
379151	hes5.1.L	92316570	92318615	2046	+	CTTTGAA	655:661	CTTTGAA	804:810	CTTTGAT	4201:4207	CTTTGAT	8407:8413		
733287	hes5.1.S	78361349	78363377	2029	+	CTTTGAT	2259:2265	CTTTGAT	2764:2770	CTTTGAT	8428:8434				
398151	hes5.2.L	92291532	92293643	2112											
398259	hes5.3.L	104019671	104020997	1327	-	ATCAAAG	1396:1402	ATCAAAG	5980:5986	ATCAAAG	8601:8607				
108697692	hes5.3.S	86958724	86961101	2378	-	ATCAAAG	3534:3540	TTCAAAG	4454:4460	ATCAAAG	5786:5792	ATCAAAG	6555:6561	TTCAAAG	8624:8630
108696612	hes5.4.L	104032250	104033947	1698	-	ATCAAAG	4133:4139	ATCAAAG	5475:5481	TTCAAAG	6640:6646	TTCAAAG	6719:6725		
379263	hmgb2.L	51569743	51573394	3652	+	CTTTGAA	6331:6337	CTTTGAT	9975:9981						
108697314	hspa12a.S	2830005	2861381	31377	+	CTTTGAA	9318:9324								
100381086	igfbpl1.L	124097963	124116005	18043		TTCAAAG	3630:3636	TTCAAAG	3766:3772	TTCAAAG	5163:5169				
100462905	igfbpl1.S	104474201	104490867	16667	-	TTCAAAG	818:824	ATCAAAG	3988:3994	TTCAAAG	8863:8869				
108699602	itga10.L	131472471	131504382	31912	+										
373613	kcnc1.S	97547785	97617039	69255	+	CTTTGAA	4775:4781								
398416	kcne3.S	166907139	166913769	6631	-										
108700749	kcnh4.L	617937	672416	54480	+	CTTTGAA	924:930	CTTTGAA	1984:1990	CTTTGAT	3461:3467				
108702461	kcnh4.S	570729	634401	63673	+										
494778	kcnj10.L	135145634	135166358	20725	+	CTTTGAT	6370:6376	CTTTGAT	7069:7075						
446822	kctd15.L	61810114	61840321	30208	-	ATCAAAG	7304:7310								
108713804	kiaa15491.L	13010925	13105330	94406	-										
108717100	kif1a.L	135554109	135657461	103353	+										
398121	Idha.L	224749	231221	6473	+										

398238	lef1.L	70706069	70792436	86368	-	TTCAAAG	6798:6804								
779101	lef1.5	55345186	55429491	84306	-										
378634	Ihx2.L	17087827	17124057	36231	+	CTTTGAA	1317:1323	CTTTGAA	4207:4213	CTTTGAT	9665:9671				
100380955	Ihx2.S	41849729	41877741	28013	-	ATCAAAG	6253:6259	ATCAAAG	6547:6553						
373755	Ihx9.L	107874706	107905480	30775	+	CTTTGAA	1122:1128	CTTTGAT	4779:4785						
447351	Ihx9.S	90416787	90447639	30853	+	CTTTGAA	708:714								
108711319	Iman1l.L	99501154	99508436	7283	-	TTCAAAG	486:492	TTCAAAG	2188:2194	TTCAAAG	4157:4163	TTCAAAG	6808:6814	TTCAAAG	9641:9647
108710691	Imo3.L	307694	325262	17569	-										
399311	Imo3.S	138913	150082	11170	-	ATCAAAG	7837:7843	TTCAAAG	9075:9081						
108714420	Imx1a.L	104912882	104959848	46967	-	TTCAAAG	7019:7025								
108703384	Irit1.S	43001864	43014552	12689	-	ATCAAAG	1979:1985	ATCAAAG	6306:6312	TTCAAAG	8100:8106				
108698608	Itbp4.L	69393389	69457788	64400	-	TTCAAAG	6735:6741								
108709944	mab2111.S	144346950	144349210	2261	+	CTTTGAA	7015:7021								
108714040	maf.L	46101682	46147388	45707	+	CTTTGAA	464:470	CTTTGAA	7036:7042						
108719460	mafa.L	161343265	161346421	3157	-										
108709330	map7d2.S	34420012	34497405	77394	-	ATCAAAG	9760:9766								
108713013	mapk8ip2.S	62540559	62577753	37195	+	CTTTGAA	1605:1611	CTTTGAT	4852:4858	CTTTGAT	8607:8613				
108696626	megf6.L	106230730	106514219	283490	+	CTTTGAA	6392:6398								
398167	meis2.L	29958890	30092317	133428	-										
735083	MGC115323	131025083	131039814	14732	-										
398780	MGC68699	224354489	224377024	22536	-										
443562	mmp16.L	135400541	135591302	190762	-	TTCAAAG	186:192								
108719861	msrb2.S	19413641	19429215	15575	-										
108714102	mvd.L	60919996	60932881	12886	-	ATCAAAG	2088:2094	ATCAAAG	2989:2995	TTCAAAG	6902:6908	TTCAAAG	8138:8144		
108715402	nefh.L	156803064	156817718	14655	+	CTTTGAA	7610:7616								
108707066	nefh. ${ }^{\text {S }}$	134004724	134014174	9451	-	TTCAAAG	1787:1793	TTCAAAG	7096:7102						
397822	nefl.L	135762766	135767849	5084	-										
108712714	nefl.S	25211951	25217300	5350	+	CTTTGAA	8893:8899								
397995	nefm. 5	25242002	25248409	6408	-	ATCAAAG	6514:6520								
734209	nfib.L	134499170	134657429	158260	+	CTTTGAA	1452:1458	CTTTGAA	8750:8756	CTTTGAA	9400:9406				
379168	nif.L	129324417	129331449	7033	+	CTTTGAA	1096:1102								
446639	nif.S	31688974	31698581	9608	-	ATCAAAG	4529:4535								
108716603	nkx2-2.L	35362873	35368295	5423	+										
734920	nkx2-4.S	28474907	28476746	1840	+	CTTTGAA	4841:4847	CTTTGAA	9556:9562						
100101340	nkx6-1.L	92791501	92796476	4976	+	CTTTGAA	1970:1976	CTTTGAA	9812:9818						
108703576	nlgn2.S	131238436	131286903	48468	-										
106557440	nmu. ${ }^{\text {S }}$	29587392	29623946	36555	-	ATCAAAG	8420:8426	ATCAAAG	9636:9642	TTCAAAG	9745:9751				
397703	not.L	9997719	10000659	2941	+	CTTTGAT	5162:5168	CTTTGAT	7607:7613						
397961	not.S	2837785	2840015	2231	+	CTTTGAT	4769:4775	CTTTGAA	9338:9344	CTTTGAT	9460:9466				
780752	npy.L	41510042	41524079	14038	+	CTTTGAT	6956:6962	CTTTGAT	7431:7437						
108716841	nr2e1.L	81993681	82021072	27392	-	TTCAAAG	5927:5933								
378567	nr2e1.S	65089118	65114502	25385	-	ATCAAAG	5716:5722	ATCAAAG	6772:6778						
373694	ntn1.L	44922889	44973436	50548	-	TTCAAAG	2656:2662								
108703174	ntn3.S	99754837	99826023	71187	+	CTTTGAT	9166:9172								
100127305	ntn5.L	110797030	110869283	72254	-	ATCAAAG	391:397	ATCAAAG	7168:7174						
108717966	otp.L	201728385	201738028	9644	-										

108707273	otp.S	173569661	173578934	9274		ATCAAAG	3910:3916								
394326	otx1.L	31685746	31692153	6408											
432013	otx2.L	95776826	95783694	6869	+										
399342	otx2.5	6466178	6474324	8147	-	TTCAAAG	457:463	ATCAAAG	552:558	TTCAAAG	1561:1567				
734441	paqr6.L	131311650	131329936	18287	-										
447230	paqr6.S	101050289	101078138	27850											
398811	pc.1.L	30954393	31113591	159199	+										
108699674	pcdh10.L	66880836	66949508	68673	-	ATCAAAG	2590:2596	ATCAAAG	6222:6228						
108704222	pcdh7.S	23255963	23831275	575313	+										
447238	phyhipl. 5	7878133	7949239	71107	+	CTTTGAA	9742:9748								
444658	pitpnc1.S	54192135	54249643	57509	+	CTTTGAA	2029:2035	CTTTGAT	6451:6457						
373586	pitx2.S	56647765	56666204	18440	+	CTTTGAA	3204:3210	CTTTGAA	8321:8327						
398183	pitx3.L	41587535	41635262	47728	-	ATCAAAG	3292:3298								
373824	pitx3.5	32817243	32831254	14012	-	TTCAAAG	945:951	TTCAAAG	9337:9343						
445848	plcb4.5	26892020	27052040	160021	+	CTTTGAT	6759:6765								
397805	plxna1.L	133875694	134130925	255232	-	TTCAAAG	166:172	TTCAAAG	726:732	TTCAAAG	917:923				
447098	pmp2.S	109853538	109862789	9252	+	CTTTGAA	6722:6728	CTTTGAA	7070:7076						
108698467	pou4f4.L	57171968	57174719	2752	+	CTTTGAA	3160:3166	CTTTGAT	5808:5814	CTTTGAT	8566:8572	CTTTGAA	9233:9239		
373807	pou4f4.S	74055954	74057472	1519	+	CTTTGAT	3757:3763								
379544	prdm12.L	8877245	8885268	8024	-	ATCAAAG	4467:4473	ATCAAAG	7365:7371						
108703933	prrt2.L	135195041	135219049	24009	-	TTCAAAG	7944:7950								
108717211	ptchd4.L	157887809	157953598	65790	+	CTTTGAA	9699:9705								
444723	ptgds. 5	27277189	27280672	3484	+										
379862	pygm.L	37406515	37450030	43516	+	CTTTGAA	2322:2328								
431959	rab11fip5.L	9885324	9916083	30760	-	ATCAAAG	6341:6347								
108717144	rab6b.L	139929362	139954012	24651		TTCAAAG	8536:8542								
108718191	rbp1.S	115965914	115980872	14959	-										
444623	rdh5.L	143860108	143871386	11279	+	CTTTGAA	3453:3459	CTTTGAA	6886:6892						
444753	rgr.L	52560896	52597415	36520	+	CTTTGAT	2167:2173								
494721	rgr. ${ }^{\text {S }}$	43030908	43045862	14955	+	CTTTGAT	594:600	CTTTGAT	2385:2391	CTTTGAA	7434:7440				
108712845	rlbp1.S	44829028	44843412	14385		TTCAAAG	3226:3232								
399383	rngtt. ${ }^{\text {d }}$	73324344	73481598	157255	+	CTTTGAA	7251:7257								
108711313	rora.L	99083952	99132453	48502	-	TTCAAAG	1866:1872	ATCAAAG	5690:5696	ATCAAAG	9980:9986				
447613	rpe65.L	77973831	77985824	11994	+	CTTTGAT	2548:2554	CTTTGAT	3214:3220	CTTTGAA	5353:5359	CTTTGAT	5561:5567	CTTTGAA	6999:7005
397938	rpl27a.S	69071921	69081562	9642	-	TTCAAAG	98:104								
100101273	rpl28.S	93487155	93494448	7294	-	TTCAAAG	7005:7011	TTCAAAG	7372:7378	ATCAAAG	9647:9653				
496383	rspo2.L	144263290	144347989	84700		TTCAAAG	789:795	ATCAAAG	4759:4765						
108719754	rspo2.S	120015407	120113213	97807	-	TTCAAAG	1233:1239	TTCAAAG	2740:2746	ATCAAAG	7327:7333	TTCAAAG	7521:7527		
108696901	scn1b.L	133368758	133397341	28584	+	CTTTGAT	8354:8360								
108695492	scrt2.S	137254708	137271763	17056	+										
100505449	sfxn5.L	9773225	9863167	89943	-	TTCAAAG	3750:3756	ATCAAAG	8851:8857						
108711341	shf.L	101318640	101434109	115470	+	CTTTGAA	2508:2514	CTTTGAA	3424:3430	CTTTGAT	7366:7372				
108717957	sim1.S	68698440	68762369	63930	+	CTTTGAT	4241:4247	CTTTGAT	4386:4392	CTTTGAA	4826:4832	CTTTGAT	6381:6387		
373634	sim2.S	21371380	21424282	52903	+	CTTTGAT	455:461								
108711507	skor1.L	124253950	124280009	26060	+										
108712800	skor1.S	36508318	36528035	19718	-	ATCAAAG	2946:2952	ATCAAAG	7572:7578						

100380948	slc12a5.L	35641539	35693170	51632	-	ATCAAAG	306:312	TTCAAAG	2663:2669						
494763	slc2a1.L	139293680	139354264	60585	+										
108697841	slc2a1.S	112562130	112613201	51072	+										
108719869	slc39a12.S	21235717	21263894	28178	-	ATCAAAG	5719:5725	TTCAAAG	5728:5734	TTCAAAG	9454:9460				
446661	slc40a1.5	82213415	82229157	15743	-	TTCAAAG	3968:3974	TTCAAAG	9147:9153						
108719439	slc45a4.L	158368034	158431635	63602	+	CTTTGAT	740:746								
108695461	slc45a4.S	132742338	132812415	70078	+										
108711128	slc4a4.L	86532823	86621277	88455	-	ATCAAAG	6989:6995								
108706771	slc4a4.S	70481573	70533883	52311	-	TTCAAAG	8418:8424	TTCAAAG	8450:8456						
108720038	slc6a3.S	63839322	63876812	37491	+	CTTTGAA	926:932	CTTTGAT	1481:1487						
108709176	slc6a4.S	5573782	5647981	74200	+	CTTTGAT	1519:1525	CTTTGAT	1580:1586	CTTTGAA	4072:4078	CTTTGAA	4104:4110		
108704092	slc7a10.S	50688467	50733293	44827	+	CTTTGAA	3294:3300	CTTTGAT	9938:9944						
380270	slit1.S	21612366	21845457	233092	-	TTCAAAG	3089:3095	TTCAAAG	4084:4090						
779307	snrpg.S	31620636	31630323	9688	+	CTTTGAA	2204:2210	CTTTGAT	7786:7792						
108719398	sntb1.L	149457904	149565163	107260	-	ATCAAAG	5715:5721								
735180	sp5.L	75610256	75613281	3026	+	CTTTGAA	56:62	CTTTGAT	4661:4667	CTTTGAT	4857:4863	CTTTGAT	5895:5901	CTTTGAT	8042:8048
378650	sp5.S	66202552	66207578	5027	+	CTTTGAT	3643:3649	CTTTGAT	5451:5457	CTTTGAT	5647:5653	CTTTGAT	9358:9364		
108719921	sp8.S	31765303	31770097	4795	-	TTCAAAG	4487:4493								
108702173	stac2.S	2200107	2219302	19196	+	CTTTGAT	7506:7512								
108698026	stk32b.L	26913633	27021267	107635		TTCAAAG	430:436	ATCAAAG	8938:8944						
108711302	stra6.L	98290744	98325559	34816	+	CTTTGAA	2400:2406	CTTTGAT	4634:4640	CTTTGAT	8180:8186	CTTTGAT	8412:8418		
108712985	stra6.S	60370714	60391574	20861	-	TTCAAAG	2542:2548	TTCAAAG	4492:4498	TTCAAAG	4550:4556	ATCAAAG	4680:4686	TTCAAAG	5259:5265
399128	stxbp1.S	37814169	37852485	38317		ATCAAAG	251:257	TTCAAAG	3011:3017	TTCAAAG	7732:7738				
108695332	sulf1.S	105510768	105600014	89247	+	CTTTGAA	1007:1013	CTTTGAT	1602:1608	CTTTGAT	6947:6953				
108707265	sv2c.S	172712415	172811520	99106	+	CTTTGAA	3401:3407	CTTTGAA	7965:7971	CTTTGAA	9504:9510				
399153	syn1.L	1103444	1130181	26738	-	ATCAAAG	9241:9247								
447574	syn1.S	26392849	26419082	26234	+										
734421	syn2.S	131990000	132073108	83109	+	CTTTGAA	2634:2640	CTTTGAA	7431:7437						
108706352	tal2.S	109849414	109852485	3072	+	CTTTGAA	2416:2422	CTTTGAA	8395:8401						
398723	tf.L	139885473	139908189	22717	+	CTTTGAA	953:959	CTTTGAA	1447:1453						
735028	tfap2e.L	84926644	84955152	28509	-	TTCAAAG	1024:1030	TTCAAAG	3141:3147	TTCAAAG	4266:4272				
108709553	tfap2e.S	73303372	73331065	27694	-	TTCAAAG	3810:3816	ATCAAAG	6177:6183						
446285	tlcd3b.L	135292067	135303961	11895	-	TTCAAAG	202:208	ATCAAAG	9748:9754						
108697767	tmem145.S	94735298	94796405	61108	+	CTTTGAA	1088:1094	CTTTGAT	3735:3741						
447630	tmem255a.L	36704943	36733163	28221	-										
108717212	tnfrsf21.L	158227220	158287816	60597	-	ATCAAAG	3437:3443								
734865	txndc17.S	40413056	40423919	10864	-	TTCAAAG	8323:8329	TTCAAAG	9874:9880						
108698670	vsx2.L	73205871	73225354	19484	+	CTTTGAA	2841:2847	CTTTGAT	4101:4107						
443849	vwa5a.2.L	229002038	229020083	18046	-										
108716834	wasf1.L	80885973	80948210	62238	+	CTTTGAA	974:980	CTTTGAT	1461:1467	CTTTGAT	2936:2942				
444059	wdr7.L	219997784	220241100	243317	-										
735023	wls.L	78023374	78051373	28000	+	CTTTGAA	2400:2406	CTTTGAA	3362:3368	CTTTGAT	4675:4681	CTTTGAA	8975:8981		
378566	wnt2b.L	77464633	77507277	42645		TTCAAAG	2381:2387	ATCAAAG	9625:9631						
399098	wnt8b.S	31487371	31513813	26443	+	CTTTGAT	552:558	CTTTGAT	7700:7706	CTTTGAA	9219:9225				
108707089	XB5848002.	137458090	137460566	2477		TTCAAAG	5373:5379	ATCAAAG	9122:9128						
108706749	XB5957215. 4	65462924	65509161	46238	-	TTCAAAG	98:104	TTCAAAG	2371:2377						

