A new MAPK13-guided inhibitor for respiratory inflammation and mucus production

Shamus P. Keeler¹, Kangyun Wu¹, Yong Zhang¹, Dailing Mao¹, Ming Li¹, Courtney A. Iberg¹, Stephen R. Austin³, Samuel A. Glaser¹, Jennifer Yantis¹, Stephanie Podgorny¹, Steven L. Brody¹, Joshua R. Chartock¹, Zhenfu Han¹, Derek E. Byers¹, Arthur G. Romero¹, Michael J. Holtzman¹,²,³

¹Drug Discovery Program, Pulmonary and Critical Care Medicine and ²Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 and ³NuPeak Therapeutics Inc., St. Louis, MO 63105

Running title: MAPK-13 guided inhibitor for respiratory disease

Address correspondence to Michael J. Holtzman, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110. Tel. 314-362-8970; Fax: 314-362-9009; E-mail address: mjholtzman@wustl.edu.

Abbreviations used in this article: BAL, bronchoalveolar lavage; BLI, biolayer interferometry; basal-ESC, basal-epithelial stem cell; CLCA1, chloride channel accessory 1; COPD, chronic obstructive pulmonary disease; Covid-19, coronavirus disease of 2019; hTEC, human tracheobronchial epithelial cell; MAPK, mitogen-activated protein kinase; MUC5AC, mucin 5AC; MUC5B, mucin 5B; PVLD, post-viral lung disease; SeV, Sendai virus.

Keywords: asthma, chronic obstructive pulmonary disease (COPD), drug discovery, mitogen-activated protein kinase (MAPK), respiratory viral infection.
ABSTRACT

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Our previous work identified a mitogen-activated protein kinase (MAPK) known as MAPK13 that is activated in airway disease and is required for mucus production in human cell-culture models. However, only weak first-generation MAPK13 inhibitors were made to confirm gene-knockdown function, and there was no extension to effectiveness in vivo. Here we report the discovery of a first-in-class MAPK13 inhibitor (designated NuP-3) that down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment effectively attenuates respiratory inflammation and mucus production in new minipig models of airway disease after type-2 cytokine challenge or respiratory viral infection. Treatment also down-regulates biomarkers linked to basal-epithelial stem cell activation as an upstream site for target engagement. The results thereby provide proof-of-concept for a novel small-molecule kinase inhibitor to modify as yet uncorrected features of respiratory airway disease including stem cell reprogramming towards inflammation and mucus production.
INTRODUCTION

Respiratory diseases, commonly in the form of asthma and COPD, remain leading causes of morbidity and mortality in the U.S. and worldwide despite current therapeutic approaches (1, 2). Moreover, there is growing recognition that these diseases are linked to obstruction of the airways with inflammatory cells and mucus (3-9). Therefore, attenuation of airway inflammation and mucus production would likely improve airflow, mucociliary clearance, and host defense (10, 11) and thereby meet a target endpoint of decreasing exacerbation and progression in airway diseases. However, these concepts cannot be fully validated until there are specific and effective therapies to normalize airway inflammation and associated mucus production. In that context, we used human epithelial cell models and kinase arrays to identify a stress kinase known as mitogen-activated protein kinase 13 (MAPK13) as a requirement for basal-epithelial stem cell (basal-ESC) transition to mucous cells during type-2 immune stimulation in cell models and patients with COPD (12, 13). These findings stand in some contrast to the role of closely-related MAPK14 as part of the type 1 immune response that is conventionally linked to inflammatory phenotypes, including respiratory inflammation (14-18) and mucus production (19-24). However, even highly potent MAPK14 inhibitors have been ineffective in clinical trials of COPD patients (25).

Together, this work suggested a therapeutic advantage of a MAPK13 inhibitor for treatment of respiratory disease. However, to our knowledge, no potent MAPK13 inhibitors were yet available (26, 27). Here we report the use of structure-based drug design to arrive at a new MAPK13 inhibitor designated NuP-3 with favorable target-binding, potent inhibition of mucus production in human airway epithelial cell culture, and effective attenuation of airway inflammation and mucus production in type-2 cytokine-challenge and viral-infection models of airway disease in minipigs.

MATERIALS AND METHODS

MAPK inhibitor generation and assay

MAPK inhibitors were developed as a chemical analog series using structure-based drug design as introduced previously (12). The entire series was subjected to a screening funnel that began with assessments of chemical properties and MAPK13 and MAPK14 enzyme inhibition assays. Enzyme inhibition assays were performed using the HotSpot assay platform as described previously (28). Compounds were reconstituted in DMSO vehicle (at least 1:1000 vol/vol) for cell-culture model experiments and were dissolved in Ensure® nutritional supplement for minipig model experiments. For each preparation, compound purity was verified using LC-MS and NMR.

Epithelial cell culture

Human tracheal and bronchial epithelial cells (hTECs) were isolated by enzymatic digestion, seeded onto
permeable filter supports, and grown as described previously (12, 13). For the present experiments, cells were
cultured in 24-well Transwell plates (6.5-mm diameter inserts, 0.4 µm pore size) from Corning (Corning,
NY) with 2% NuSerum medium (29) supplemented with Primocin (50 µg/ml, InvivoGen, San Diego, CA),
and retinoic acid (1 x 10^-8 M, Sigma, St. Louis, MO) with or without human IL-13 (50 ng/ml, Peprotech,
Rocky Hill, NJ) under submerged conditions for 7 d and then air-liquid interface conditions for 21 d. Cells
were cultured in the presence of test compound or vehicle that was added 2 d before addition of IL-13 and
was re-added with each medium change/IL-13 treatment (twice per week). For each condition, the numbers
of viable cells were determined using a resazurin-based CellTiter-Blue Cell Viability Assay (#G8080,
Promega, Madison, WI). In addition, hTECs were cultured under 3D-Matrigel conditions to permit organoid
formation as described previously (13). In these experiments, the IL-13 concentration was set at 1 ng/ml that
was optimal for well-differentiated organoid formation and preservation. Test compound or vehicle was
added as described above for air-liquid interface conditions. Compound effect on mucus production was
based on target protein and mRNA levels that were determined as described below.

ELISA

To assess mucus production at the protein level, the levels of mucin 5AC (MUC5AC) and chloride channel
accessory 1 (CLCA1) were determined in samples that were assayed in triplicate on 96-well white half-area
flat-bottom ELISA plates (Greiner Bio-One North America) after incubation at 37 °C overnight. The assay
for MUC5AC was performed using biotin-conjugated mouse anti-MUC5AC mAb (45M1, Invitrogen,
#MA5-12175) as described previously (12). The assay for CLCA1 was performed using rabbit anti-human
CLCA1 (amino acid 33-63) and HRP-conjugated goat anti-rabbit IgG antibody (Santa Cruz Biotechnology)
as described previously (12). Assay reactions were developed using the GLO substrate kit (R&D Company)
and quantified by comparison to a standard curve with recombinant proteins.

RNA analysis

To assess mucus production at the RNA level, RNA was purified from cell cultures using the RNeasy mini
kit (Qiagen) and corresponding cDNA was generated using the High-Capacity cDNA Archive kit (Life
Technologies). We quantified target mRNA levels using real-time qPCR assay with specific fluorogenic
probe-primer combinations and Fast Universal PCR Master Mix systems (Applied Biosystems) with human-
specific forward and reverse primers and probes as defined in Supplemental Table 1. All samples were
assayed using the 7300HT or QuantStudio 6 Fast Real-Time PCR System and analyzed using Fast System
Software (Applied Biosystems). All real-time PCR data was normalized to the level of GAPDH mRNA.
Values were expressed as fold-change based on the delta-delta Ct method as described previously (30). For
subsequent experiments in minipigs, mRNA targets and viral titer were monitored using the same approach.
For those experiments, RNA was purified from homogenized lung tissue using Trizol (Invitrogen) and
processed and analyzed as described above, and viral RNA was quantified by copy number using an SeV-
NP-expressing plasmid as an internal standard. The minipig-specific and virus-specific primers and probes
are also defined in Supplemental Table 1.
X-ray crystallography

X-ray crystallography to determine the structure of MAPK-compound co-complexes was performed as described previously (12) with slight modification. In particular, due to the slow association rate of NuP-3 binding to MAPK13, a distinct co-crystallization strategy was applied to prepare a complex crystal. In brief, non-phosphorylated MAPK13 was separated by a MonoQ column as described previously (12) and incubated with NuP-3 at final 1 mM suspension overnight at 4 °C. Then, the complex protein solution was concentrated to 20 mg/ml in 20 mM Hepes, pH 7.4, 150 mM NaCl, and 5% glycerol. Crystals were grown by hanging drop vapor diffusion with the reservoir containing 8–12 % PEG 4K or 6K, 0.15 M ammonium sulfate and 0.1 M sodium citrate. Diffractable crystals were further optimized by micro-seeding. Data were collected from Advanced Light Source beamline 4.2.2 and processed by XDS/Aimless at 3.2 Å resolution with space group in P2. Final structure was solved by molecular replacement with Rfree/R of 0.32/0.264. The analysis showed four MAPK13–NuP-3 molecules in one asymmetric unit, wherein each active site presented slightly different interactions around its ligand. Molecular graphics figures were produced using PyMOL version 2.5.2 software.

Biolayer interferometry (BLI) analysis

For BLI analysis, MAPK-compound binding was performed as described previously (12) using MAPK proteins that were C-terminal biotin tagged. For this approach, codon optimized DNA fragments corresponding to protein sequences of MAPK13 (Uniprot ID, O15264) and MAPK14 (Uniprot ID, Q16539) were synthesized by Integrated DNA Technologies (IDT) and cloned into modified pET28a vectors to introduce the biotin acceptor tag on the C-terminus. Each construct was co-expressed with pBirAcm plasmid (Avidity LLC) in BL21 gold (DE3) E. coli cells supplied with 50 µM D-biotin. All biotinylated proteins were purified to >90% purity by chromatography and stored at -80 °C. Kinetic assays were performed on the Octet Red384 (ForteBio) system at 25 °C with the running buffer containing 20 mM Hepes, pH 7.4, 140 mM NaCl, 0.02% Tween20, 1 mg/ml BSA, and 2% DMSO. Data were collected in a kinetic titration approach rather than a traditional parallel method. Thus, one Super streptavidin biosensor immobilized with biotinylated MAPK proteins was sequentially dipped into a series of wells having increasing concentration of compound along with short dissociation after each association step. In addition, double subtraction was applied by using an empty sensor quenched by biocytin and buffer wells dipped by ligand captured biosensor as reference sensor and well, respectively. Data were processed with the Octet data analysis 9 package and exported for curve fitting in the BiaEvaluation software (Biacore).

Pharmacokinetic (PK) analysis

Compound levels were determined in plasma samples obtained from minipigs (Bama strain) after a single dose at 2 mg/kg in Ensure nutritional supplement administered orally by gavage. Compound levels were determined using a Prominence Degasser DGU-20A5T(C) HPLC and an AB Sciex Triple Quad 5500 LC/MS/MS instrument. For NuP-3, limit of detection was 1.1 nM. For these PK experiments and subsequent testing in vivo, NuP-3 was prepared and administered as the free base form of the compound.
Minipig models

Male and female Yucatan minipigs (21-25 kg and 7-8 weeks of age) were obtained from Sinclair Research and housed in environmentally controlled animal care facilities. Minipigs were acclimated for 2 weeks before experiments. Animal husbandry and experimental procedures were approved by the Animal Studies Committees of Washington University School of Medicine in accordance with the guidelines from the National Institutes of Health. Minipigs were anesthetized using tiletamine/zolasepam (Telazol, 4.4 mg/kg), ketamine (2.2 mg/kg), and xylazine (2.2 mg/kg) administered intramuscularly, intubated with a 6.5-7.0-mm ID endotracheal tube, and maintained under 2-3% isoflurane anesthesia. Minipigs were mechanically ventilated using a Drager anesthesia workstation for each challenge procedure. Segmental cytokine challenge was performed on Study Days 0 and 14 using recombinant porcine IL-13 (0.25 mg in 6 ml of PBS) with 2 ml delivered to each of three subsegments (right caudal and accessory lobes) via a fiber-optic bronchoscope (Olympus Model LF-2, 3.8-mm OD). Minipigs were maintained with reverse Trendelenburg position for 30 min to prevent drainage from the right lung before anesthesia was discontinued. The subsequent response to IL-13 challenge was monitored in bronchoalveolar lavage (BAL) fluid and cells at Study Days 2, 4, 7, 14, 16, and 18. Controls included samples from three unchallenged subsegments (left caudal lobes) on Study Day 0 and each of the other Study Day sampling times. BAL was performed by instillation and aspiration of 6-ml aliquots of PBS into left and right anterior lung segments. In some experiments, lungs were removed for tissue analysis on Study Day 16. For treatment, minipigs were dosed orally using syringe-feeding with NuP-3 (2 mg/kg twice per day) in 10 ml of Ensure nutrition shake or with an equivalent amount of Ensure alone on Study Days 12-17. BAL and tissue samples were processed for ELISA and RNA analysis as described above. In addition, BAL samples were analyzed for total and differential cell counts, and tissue samples were processed for immunostaining as described below. For respiratory virus infection, Sendai virus (SeV) was prepared as described previously (31) and delivered in the same manner as IL-13 via bronchoscopy using 1.3 x 10^7 pfu in 1 ml of PBS with 1 ml delivered to each of three subsegments on Study Day 0. For analysis, BAL was performed with 6-ml aliquots of PBS in each segment on Study Days 0, 2, 4, 7, 14, and 21, and tissue analysis was obtained on Study Day 7.

Tissue staining and microscopy

Lung tissue was fixed with 10% formalin, embedded in paraffin, cut into 5-μm thick sections, and adhered to charged slides. Sections were deparaffinized in Fisherbrand CitriSolv (Fisher Scientific), hydrated, and heat-treated with antigen unmasking solution (Vector Laboratories). Immunostaining was performed with MUC5AC mAb and anti-CLCA1 antibody as described above and rabbit anti-MUC5B antibody (Abcam ab87276). Primary antibodies were detected with secondary antibodies labeled with Alexa Fluor 488 (ThermoFisher Scientific) or Alexa Fluor 555 (ThermoFisher Scientific) followed by DAPI counterstaining. Slides were imaged by immunofluorescent microscopy using an Olympus BX51, and staining was quantified using a NanoZoomer S60 slide scanner (Hamamatsu) and ImageJ software version 1.53v (NIH, Bethesda, MD; https://imagej.net/ij/index.html) as described previously (32-34).
Statistical analysis

All data are presented as mean and S.E.M. and are representative of at least three experiments with at least 5 data points per experimental condition. For cell and molecular data, unpaired t-test with Bonferroni correction as well as mixed-model repeated measures analysis of variance with Tukey correction for multiple comparisons were used to assess statistical significance between means. In all cases, significance threshold was set at \(P < 0.05 \).

RESULTS

MAPK13 inhibitor generation

To develop a small-molecule inhibitor of MAPK13, we pursued a drug-design strategy to modify a MAPK14 inhibitor parent compound (BIRB-796; NuP-43 in our chemical library) (35) based on NuP-43 chemical structure and predicted binding interactions with MAPK13 and MAPK14 (Fig. 1a). In earlier work, we replaced the naphthalene moiety with smaller aromatic rings and halogen substitution to improve fit into the ATP-binding site and decrease reactive metabolite formation and associated toxicity found with the parent compound (36-39). These changes achieved a modest increase in MAPK13 inhibitory activity (12). Here we also modified additional sites that were predicted to interact at the left-hand hinge region key to MAPK specificity (40, 41) and the right-hand allosteric pocket linked to a favorable DFG-out conformation (42) to generate a library of chemical analogs (\(n=428 \)). These analogs entered a screening funnel that started with a check for physical chemical characteristics based on molecular weight, Lipinski’s Rule of 5, and Veber criteria (43), partition coefficient (logP), and topological polar surface area (tPSA) (Fig. 1b). Acceptable analogs (\(n=205 \)) were assessed in MAPK13 and MAPK14 enzyme assays that identified potent inhibitors of MAPK13 and MAPK14 (Fig. 1c). Favorable inhibitors from this group (\(n=28 \)) underwent a cell-based screen for blocking IL-13-stimulated mucus production from human tracheobronchial epithelial cells (hTECs) under air-liquid interface primary-culture conditions. Results showed that mucus inhibition (marked by MUC5AC level) correlated with MAPK13 but not MAPK14 blocking activity (Fig. 1d). These combined screening tests led to selection of NuP-3 as a candidate for a combined MAPK13-14 inhibitor. Analysis of X-ray co-crystal structure for the NuP-3–MAPK13 complex showed a DFG-out binding mode (Fig. 1e and Supplemental Table 2) that provides favorable slow dissociation kinetics and consequent high potency and long duration of action of a Type II kinase inhibitor (12, 35, 44). Indeed, bio-layer interferometry (BLI) analysis of NuP-3–MAPK interaction confirmed extremely slow on- and off-rates (hours) for NuP-3 (Fig. 1f). This characteristic is similar to NuP-3 (Fig. 1e,f) and NuP-43 (44) binding to MAPK14 that is also based on DFG-out binding mode. Consistent with these findings,
enzyme-based assays of NuP-3 activity showed potent inhibition of MAPK13 (IC$_{50}$ = 7 nM) and retained activity against MAPK14 (IC$_{50}$ = 14 nM) (Fig. 1g).

NuP-3 effects in human cell models

Based on favorable characteristics of NuP-3, further analysis was performed to validate and define utility. To evaluate functional effect, NuP-3 was first tested in hTECs cultured under air-liquid interface conditions with IL-13 stimulation that promotes mucinous differentiation with mucus production marked by expression and secretion of MUC5AC and its mucin granule companion CLCA1 (12, 45). This protocol requires ALI culture conditions for 21 d to achieve maximal mucus production and thereby necessitates serial media changes with repeated additions of IL-13 and compound (Fig. 2a). Thus, NuP-3 was delivered at 10 nM x 8 doses to achieve significant effects guided by enzyme-based assays (Fig. 1g) and was compared to NuP-43 to check for any improvement from the starting chemical scaffold. Under these conditions, NuP-3 treatment markedly inhibited MUC5AC and CLCA1 induction compared to vehicle control and same-dosing with NuP-43 (Fig. 2b). These treatments caused no significant effects on the number of viable cells (Fig. 2c) consistent with a lack of cell toxicity. We also found a consistent effect of NuP-3 across hTEC cultures established from a series of otherwise healthy subjects (n=7) when tested at 100 nM as a fully effective and still non-toxic concentration (Fig. 2d,e). We also tested NuP-3 in 3D cultures when delivered at 10 nM x 4 doses in a protocol optimized for lung organoid formation and mucus production (Fig. 2f). Under these conditions, NuP-3 demonstrated similarly effective blockade of IL-13-stimulated MUC5AC and CLCA1 mRNA expression (Fig. 2g), again without evidence of cell toxicity based on stable spheroid number and size during treatment (Fig. 2h). Together, these results established an effective and nontoxic effect for NuP-3 blockade of mucus production, likely consistent with a role for MAPK13 in controlling mucinous differentiation and mucus production/secretion detected in lung epithelial cell lines and hTECs subjected to shRNA-mediated knockdown of MAPK13 (but not MAPK14) gene expression (12).

NuP-3 efficacy in minipig models

We next advanced NuP-3 to testing in vivo, selecting a minipig model based on relevance to humans given our previous concern over genomic comparisons among mouse, pig, and human loci controlling mucus production (46-48). This in vivo approach was also bolstered by PK analysis showing that oral dosing of NuP-3 at 2 mg/kg achieved effective plasma concentrations for at least 8 h in minipigs (Fig. 3a). We next needed to establish a pig model of inflammatory lung disease that manifests airway inflammation and mucus production. We arrived at a protocol whereby Yucatan minipigs undergo cytokine challenge using recombinant porcine IL-13 delivered to
specific right lung segments (in caudal and accessory lobes) via flexible fiber-optic bronchoscopy on two separate occasions (Study Days 0 and 14) with response monitored in BAL samples (Fig. 3b). This approach demonstrated that IL-13-challenge caused reproducible increases in MUC5AC and CLCA1 with no differences between the first and second challenge and therefore no effect of vehicle treatment on the second challenge (Fig. 3c, left column). In contrast, these markers of mucus production were significantly decreased by treatment with NuP-3 at 2 mg/kg given orally twice per day for the second challenge (Fig. 3c, right column). In addition, treatment with NuP-3 also significantly decreased the influx of immune cells into the airspace (Fig. 3d), consistent with blockade of IL-13 induction of chemokine production (12, 31, 34, 49). We also observed attenuation of IL-13-induced MUC5AC, CLCA1, and MUC5B immunostaining in the airway mucosal epithelium without a significant decrease in these same readouts in submucosal glands (Fig. 4a). These effects translated to quantitative inhibition of post-challenge MUC5AC, CLCA1, and MUC5B staining in mucosal but not submucosal areas using image analysis (Fig. 4b). These findings were consistent with CLCA1 control of MUC5AC expression in mucosal epithelium under homeostatic conditions (48).

We next engaged the minipig model to determine whether NuP-3 might also block post-viral lung disease. For these experiments, we delivered a natural respiratory pathogen in minipigs (SeV) (50) to the same right lung segments as for cytokine challenge (Fig. 5a). This approach achieved high viral RNA levels for 2-7 d that were unaffected by treatment with NuP-3 (Fig. 5b). In addition, we found that SeV infection caused a significant increase in MUC5AC and CLCA1 levels in BAL samples selectively from the infected site in the right lung, and these increases were markedly attenuated by treatment with NuP-3 at 2 mg/kg given orally twice per day for Study Days 2 to 21 (Fig. 5c). Treatment with NuP-3 also significantly inhibited the influx of immune cells into the airspace (Fig. 5d), including accumulation of eosinophils as a sign of a type-2 immune response. We also observed attenuation of post-viral increases in MUC5AC, CLCA1, and MUC5B immunostaining in the airway mucosal epithelium without a significant change in these same readouts in submucosal glands (Fig. 6a). These effects translated to quantitative blockade of post-viral MUC5AC, CLCA1, and MUC5B staining in mucosal but not submucosal areas (Fig. 6b).

To better define mechanism for NuP-3 blockade, we first recognized that SeV infection caused increases in MUC5AC and CLCA1 mRNA at the tissue site of infection in the right lung along with increases in IL13, ARG1, and TREM2 mRNA markers of a type-2 immune response (49, 51) (Fig. 7a). Moreover, each of these increases was markedly down-regulated by treatment with NuP-3 (Fig
7a), consistent with NuP-3 control of MAPK-dependent control of gene expression perhaps in basal epithelial cells in the airway. To further address this possibility, we examined markers of immune activation linked selectively to basal-epithelial cells after SeV infection in mice (31). Here we also detected SeV-induced increases in SERPINB2 and LTF mRNA at the tissue site of infection (Fig. 7a) and corresponding increases in SERPINB2 and lactoferrin proteins in BAL fluid (Fig. 7b). Further, we found that each of these increases was also blocked by NuP-3 treatment (Fig. 7a,b). Together, these findings suggested that NuP-3 might offer therapeutic correction of basal-epithelial cell immune activation and mucinous differentiation found as key features of post-viral lung disease (31, 34).

DISCUSSION

In this study, we use structural biology and structure-based drug-design technologies to target MAPK13 activation as a correctable endpoint for respiratory disease. The strategy resulted in the development of a potent MAPK13 inhibitor (designated NuP-3) that exhibits favorable drug characteristics and attenuates type-2 cytokine-stimulated mucus production in human airway epithelial cells in culture. In addition, this compound safely prevents airway inflammation and mucus production in new minipig models driven by type-2 cytokine-challenge (using IL-13) or respiratory viral infection (using SeV). Further, NuP-3 treatment attenuates biomarkers of basal-epithelial stem cell (basal-ESC) activation as an upstream site for target engagement in the pathway to airway disease. The present data thereby implicate a distinct clinical benefit of a MAPK13-guided inhibitor (as diagrammed in Fig. 8). To our knowledge, the findings provide the first report of any MAPK13 inhibitor that is highly effective in vitro and in vivo. Here we discuss the impact of our findings in four areas related to respiratory disease and inflammatory conditions in general.

The first area relates to the proposed role for MAPK14 as a key component of inflammatory disease and a frequent target for therapeutic intervention based on the canonical role of MAPK14 in type-1 cytokine signaling and consequent inflammatory disease (14-25). In the models of inflammatory disease, MAPK14-specific inhibitors are highly effective in blocking type-1 cytokine (e.g., TNF-α and IL-1β) signaling (52). This mechanism predicted therapeutic benefit in type-1 inflammatory conditions including respiratory disease (53); however, even the most advanced versions of these compounds have not proved effective in clinical trials of patients with lung disease, e.g., COPD (18). The data here suggest a basis for this failure by implicating the additional action of MAPK13 in the disease process. As predicted from our earlier work (12), MAPK13 activation again appears required for type-2 cytokine (particularly IL-13 and IL-4) signaling as an key driver of inflammation and mucus production. Our models were not designed to specifically test MAPK14-
dependent events but blockade of type-1 cytokine signaling remains a target for inflammatory lung disease, including Covid-19 (54). In that context, we recognize that NuP-3 maintains potent MAPK14-blocking activity. Indeed, this compound was designed to gain MAPK13 not yet eliminate MAPK14 inhibition. Thus, the present data suggest that attacking MAPK13-14 together might achieve an unprecedented therapeutic benefit for the host response to a broader range of cytokine-signaling and viral-infection conditions. However, NuP-3 was more effective than NuP-43 despite similar potencies for MAPK14 inhibition, and our earlier MAPK gene knockdown work showed no significant effect of MAPK14 blockade on mucus production (12). Additional studies of targeted gene knockout and highly selective inhibitors will be needed to fully define MAPK13 function alone and in combination with MAPK14.

In that regard, a second area of impact for the present data relates to role of the type-2 immune response for host defense and inflammatory disease. In our previous work, we identified basal-ESC growth, immune activation, and mucinous differentiation as requirements for lung remodeling disease after SeV infection in mice (31). In that case, however, we observed basal-ESC hyperplasia and metaplasia at bronchiolar-alveolar sites in the setting of a more severe and widespread infection. Here we find the same markers of basal cell activation (SERPINB2 and lactoferrin) but remodeling is limited to an airway site for mucinous differentiation as part of a milder and likely more localized infection. Additional work in animal models and humans is needed to define whether more severe viral infection can also drive more pronounced remodeling disease in large animals and humans, but this already seems to be the case in Covid-19 patients (34).

Relevant to this point, a third area of interest relates to the timing of events in the development of inflammatory disease. In particular, respiratory viral infection often progresses as a top-down infection that starts in the upper and lower airways and extends distally to the bronchiolar-alveolar sites. Similarly, acute inflammation due to type-1 and type-2 cytokine action might be followed by progressive and prolonged type-2 cytokine production. This paradigm is consistent with our observations in mouse models and Covid-19 patients (34), but here again further work will be needed to establish this pattern and define functional consequences. The present data suggests that combined blockade that includes MAPK13 inhibition is of unexpected benefit even for relatively short-term airway inflammation and mucus production and thereby adds to our earlier work in longer-term lung remodeling disease.

Relevant to this issue, a fourth area of interest relates to the practical need for more successful therapy of post-viral lung disease and related inflammatory conditions. Respiratory viruses are perhaps the most common cause of medical attention for infectious illness, particularly during
pandemic conditions such as the outbreaks of influenza virus or coronavirus infections (55, 56). Further, even after clearance of infectious virus, the acute illness can progress to respiratory failure in the intermediate-term and chronic respiratory disease in the long-term (32, 57). Despite the magnitude of these public health problems, there is still a need for a precisely designed small-molecule drug to attenuate post-viral lung disease. Thus, correcting a renewable stem-progenitor cell population might be expected to more permanently modify the downstream type-1 immune response that is conventionally featured as a therapeutic strategy (54) and the alternative type-2 response that is responsible for engaging innate myeloid and lymphoid cells as a requirement for progressive and often longer-term post-viral lung disease (31, 51, 58, 59), perhaps including Covid-19 (60). Here we attack MAPK13 function in vitro and in vivo with a suitable MAPK13-guided inhibitor to achieve a remarkable benefit for the host response to viral infection. We thereby provide a practical and precise (biomarker-guided) means to correct post-viral lung disease. This insight provides the next useful step in developing a safe and effective drug for this type of disease and other diseases that feature similar MAPK activation (61).

ACKNOWLEDGMENTS

We thank the Pulmonary Morphology Core, Division of Comparative Medicine, and Eugene Agapov, Yael Alevy, Rowena Grainger, Olga Korkovsky, and Michael Talcott for research support.

GRANTS

This work was supported by grants from the National Institutes of Health (National Heart, Lung, and Blood Institute UH2-HL123429, R35-HL145242, and STTR R41-HL149523, National Institute of Allergy and Infectious Diseases R01 AI130591, Department of Defense TTDA W81XWH2010603 and W81XWH2210281, Harrington Discovery Institute, and the Bebermeyer, Hardy, and Schaeffer Research Funds.

DISCLOSURES

M.J.H. is Founder of NuPeak Therapeutics Inc. None of the other authors have any potential conflicts of interest, financial or otherwise, to disclose.

REFERENCES

Figure 1. MAPK13-guided development of a small-molecule kinase inhibitor. a, Structure for parent compound NuP-43 (BIRB-796) docking to MAPK13 and MAPK14 that illustrates functional targets, hydrogen-bond (solid red lines) and hydrophobic (dashed lines) interactions, and DFG-out binding mode (yellow structure). b, Screening funnel of tests for compound library (n=428) to identify candidate compound. c, Primary screen of chemically favorable compounds for enzyme IC\textsubscript{50} for MAPK13 and MAPK14. d, Secondary screen for MAPK13 and MAPK14 IC\textsubscript{50} versus MUC5AC inhibition in IL-13-treated hTECs for selected compounds at 100 nM. e, Structure for NuP-3 bound to MAPK13 based on X-ray crystallography and comparable docking to MAPK14 with features labeled as in (a) for potential hydrogen bonds between amide-NH and M110 in the hinge region and urea-O and L167, urea-NH and D168, and bidentate urea-NH and E72 carboxylate in the DFG region as well as seven sets of hydrophobic interactions. f, Biolayer interferometry (BLI) analysis for NuP-3 binding to MAPK13 and MAPK14. g, Dose-response for MAPK13 and MAPK14 inhibition for MAPK13-14 inhibitor NuP-3.
Figure 2. Effect of NuP-3 on mucus production in human airway epithelial cell culture. a, Protocol scheme for MUC5AC inhibition for vehicle versus compound: NuP-43 (BIRB-796) or NuP-3 in human tracheobronchial epithelial cells (hTECs) cultured under air-liquid interface (ALI) conditions without or with IL-13 (50 ng/ml). b, MUC5AC levels for vehicle versus NuP-43 or NuP-3 (each at 10 nM x 8 doses) for conditions from (a) from one subject representative of three subjects. c, Corresponding values for live cell numbers based on resazurin assay for vehicle versus NuP-43 or NuP-3 (each at 100 nM x 9 doses) for conditions in (a) from 1 subject representative of three subjects. d, Corresponding values for conditions in (b) derived from 6 subjects. e, Corresponding values for conditions in (c) derived from 6 subjects. f, Protocol scheme for inhibition of MUC5AC and CLCA1 mRNA for vehicle versus NuP-3 (10 nM x 4 doses) in hTECs cultured under organoid conditions without or with IL-13 (1 ng/ml). FC, fold-change. g, Corresponding levels of MUC5AC and CLCA1 mRNA for conditions in (f). Values derived from an individual subject representative of 5 subjects. FC, fold-change. h, Corresponding levels of organoid size and number for conditions in (f). Values derived from an individual subject representative of 3 subjects. All bar graphs depict mean ± S.E.M.; box and whisker plots depict upper and lower quartile, range, and median. *P <0.05 by ANOVA with Dunnett’s or Tukey correction; ns, not significant. Each sample condition included 4-8 technical replicates per subject.
Figure 3. Effect of NuP-3 on IL-13 challenge in minipigs using mucus production and immune cell infiltration readouts. *a*, Pharmacokinetic analysis of NuP-3 in minipigs with plasma concentrations determined after a single oral dose of 2 mg/kg (n=2 minipigs). *b*, Protocol scheme for IL-13 challenge of right lung segments on Study Days 0 and 14 with BAL sample of right and left lung on indicated study days and either vehicle or NuP-3 treatment (2 mg/kg twice per day) on Study Days 12-17. *c*, Levels of MUC5AC and CLCA1 in BAL fluid for protocol scheme in (b) using treatment with vehicle control (left column) or NuP-3 (right column). *d*, Corresponding levels of eosinophil (Eos), neutrophil (Neu), lymphocyte (Lymph), and macrophage (Mac) counts in BAL for conditions in (a). For (c), each plot represents mean ± S.E.M. for 3 minipigs per condition with 3 lung segments and 2 technical replicates per segment per minipig; for (d), values represent 3 minipigs with 3 lung segments and a single assay per segment per minipig. *P* <0.05 by one-way ANOVA with Tukey correction.
Figure 4. Effect of NuP-3 on lung disease after IL-13 challenge in minipigs using histology readouts.

a, Immunostaining for MUC5AC plus CLCA1 and MUC5AC plus MUC5B with DAPI counterstaining in lung sections from the protocol scheme in Fig. 3b. Images are representative of 3 minipigs per condition.

b, Quantitation of mucosal and submucosal immunostaining for conditions in (a). Values represent mean ± S.E.M. for 3 minipigs per condition with 2 technical replicates per minipig. *P < 0.05 by one-way ANOVA with Tukey correction.
Figure 1: Study design and results.

(a) Flowchart illustrating the study design. SeV and BAL samples were collected from mice in the Vehicle and NuP-3 treatment groups.

(b) Graph showing SeV RNA levels over time. Left and right lung tissues were analyzed for SeV RNA levels.

(c) Graphs showing MUC5AC and CLCA1 levels over time. Significant differences are indicated by asterisks.

(d) Graphs showing end count, neutrophil count, lymphocyte count, and macrophage count over time. Significant differences are indicated by asterisks.

(Figure legend on next page)
Figure 5. Effect of NuP-3 on lung disease after SeV infection in minipigs using mucus production and immune cell infiltration readouts. a, Protocol scheme for SeV delivery into right lung segments on Study Day 0 with tissue and BAL samples of right and left lung on indicated days and either vehicle or NuP-3 treatment at 2 mg/kg orally twice per day on Study Days -2 to 20. b, Levels of SeV-NP RNA in BAL fluid for scheme in (a) using treatment with vehicle control (left column) or NuP-3 (right column). c, Corresponding levels of MUC5AC and CLCA1 in BAL fluid for conditions in (b). d, Corresponding levels of eosinophil (Eos), neutrophil (Neu), lymphocyte (Lymph), and macrophage (Mac) counts in BAL for conditions in (b). For (b), each plot represents mean ± S.E.M. for 3 minipigs per condition with 3 lung segments per minipig; for (c), each plot represents 2 minipigs per condition with 3 lung segments and 2 technical replicates per segment per minipig; for (d), values represent 2 minipigs with 3 lung segments and a single assay per minipig. *P<0.05 by one-way ANOVA with Tukey correction.
Figure 6. Effect of NuP-3 on lung disease after SeV infection in minipigs using histology readouts.

(a) Immunostaining for MUC5AC plus CLCA1 and MUC5AC plus MUC5B with DAPI counterstaining in lung sections at 7 d after SeV infection from the protocol scheme in Fig. 5a. Images are representative of 3 minipigs per condition.

(b) Quantitation of mucosal and submucosal immunostaining for conditions in (a). Values represent mean ± S.E.M. for 3 minipigs per condition with 2 technical replicates per minipig. *P <0.05 by ANOVA with Tukey correction.
Figure 7. Effect of NuP-3 on lung disease after SeV infection in minipigs using basal epithelial cell-linked readouts.

a. Levels of mRNA markers for mucus production, type-2 inflammation, and immune activation in lung tissue at 7 d after SeV infection from the protocol scheme in Fig. 5a.

b. Corresponding levels of SERPINB2 and lactoferrin proteins in BAL fluid at 0-7 d after SeV infection from the scheme in Fig. 5a. For (a), each plot represents mean ± S.E.M. for 3 minipigs per condition with 2 technical replicates per minipig; for (b), values represent 2 minipigs with 3 lung segments and a single assay per segment per minipig. *P <0.05 by ANOVA with Tukey correction.
Figure 8. Scheme for MAPK13-guided control of mucus production and inflammation in lung disease. The scheme depicts key events leading from initial respiratory viral infection to IL-13 generation and IL-13R activation to basal-ESC immune activation (marked by SERPINB2 and LTF expression in the present study and cytokine and chemokine production from previous work) (31, 34) and mucus production (marked by CLCA1, MUC5AC, and MUC5B expression). These cell reprogramming events are sensitive to blockade by a small-molecule kinase inhibitor (SMKI) such as NuP-3 that is targeted to MAPK13.