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Abstract 30 

 31 

Despite large omics datasets, the establishment of a reliable gene annotation is still challenging for 32 

eukaryotic genomes. Here, we used the reference genome of the major fungal wheat pathogen 33 

Zymoseptoria tritici (isolate IPO323) as a case study to develop methods to improve eukaryotic gene 34 

prediction. Four previous IPO323 annotations identified 10,933 to 13,260 gene models, but only one 35 

third of these coding sequences (CDS) have identical structures. To resolve these discrepancies and 36 

improve gene models, we generated full-length transcripts using long-read sequencing. This dataset 37 

was used together with other evidence (RNA-Seq transcripts and protein sequences) to generate 38 

novel ab initio gene models. The selection of the best structure among novel and existing gene 39 

models was performed according to transcript and protein evidence using InGenAnnot, a novel 40 

bioinformatics suite. Overall, 13,414 re-annotated gene models (RGMs) were predicted, including 41 

671 new genes among which 53 encoded effector candidates. This process corrected many of the 42 

errors (15%) observed in previous gene models (coding sequence fusions, false introns, missing 43 

exons). While fungal genomes have poor annotations of untranslated regions (UTRs), our Iso-Seq 44 

long-read sequences outlined 5’ and 3’UTRs for 73% of the RGMs. Alternative transcripts were 45 

identified for 13% of RGMs, mostly due to intron retention (75%), likely corresponding to 46 

unprocessed pre-mRNAs. A total of 353 genes displayed alternative transcripts with combinations of 47 

previously predicted or novel exons. Long non-coding transcripts (lncRNAs) and double-stranded 48 

RNAs from two fungal viruses were also identified. Most lncRNAs corresponded to antisense 49 

transcripts of genes (52%). lncRNAs that were up or down regulated during infection were enriched 50 

in antisense transcripts (70%), suggesting their involvement in the control of gene expression. Our 51 

results showed that combining different ab initio gene predictions and evidence-driven curation 52 

using InGenAnnot improved the quality of gene annotations of a compact eukaryotic genome. Our 53 

analysis also provided new insights into the transcriptional landscape of Z. tritici, helping develop an 54 

increasingly complex picture of its biology.  55 

 56 
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Introduction 58 

 59 

Predicting genes in eukaryotic genomes is a challenging process [1], particularly for fungi with 60 

compact genomes. The quality of a genome annotation depends on supporting evidence for coding 61 

regions, splice junctions and on the algorithms used to derive patterns for predictions [2]. Several 62 

drawbacks for gene annotation were identified in eukaryotic genomes such as the complexity of their 63 

gene structure, with introns difficult to predict without experimental transcript evidence, as well as 64 

the quality of genome assembly when fragmented in contigs. In fungi, genes are generally close to 65 

each other, and frequent overlaps between adjacent transcripts have been observed [3]–[5]. In 66 

addition, fungi have shorter introns (averaging 70-100 bp depending on the species, [6]) compared to 67 

other eukaryotes. These particularities of fungal genomes require specific training of ab-initio 68 

prediction software and development of fungal-specific pipelines [7]–[15]. Long-read sequencing is 69 

now used to provide full genome assemblies, reducing drawbacks due to genome fragmentation into 70 

contigs. Experimental transcript evidence has also been improved using transcripts assembled from 71 

RNA-seq short reads, providing large transcript datasets for gene annotation/curation. Iso-Seq long-72 

read sequencing now provides full-length transcript sequences that bypass problems observed with 73 

the assembly of RNA-Seq short reads such as chimeric transcripts covering adjacent genes [16]. Iso-74 

Seq also provides transcript isoforms allowing the identification of alternative start, stop and splicing 75 

events. Nevertheless, RNA-Seq reads are still required to quantify the relative abundance of Iso-Seq 76 

transcript isoforms, since Iso-Seq is not quantitative and could reveal rare transcripts likely resulting 77 

from errors of the transcriptional machinery [17]. Combining these two types of transcript 78 

sequencing is needed to avoid drawbacks from each technique [18]. Other omics methods such as 79 

transcription start site sequencing (TSS-seq) or cap-analysis gene expression sequencing (CAGE-seq) 80 

are now available for precise definition of transcript start sites, but these applications are still limited 81 

to model organisms [19], [20]. 82 

 83 

We have chosen the reference genome of the major fungal wheat pathogen Zymoseptoria tritici 84 

(isolate IPO323) as a case study to improve methods for eukaryotic gene prediction and curation. Z. 85 

tritici is an ascomycete (class Dothideomycetes, [21]) that causes a major foliar disease of bread and 86 

durum wheat (Septoria tritici blotch [22]). The first Z. tritici genome sequence was obtained in 2011 87 

for the bread wheat-infecting European reference isolate IPO323 using Sanger sequencing [23]. This 88 

complete genome sequence from telomere to telomere has a size of 39.7 megabases (Mb) and is 89 

composed of 13 core chromosomes (CCs) and 8 accessory chromosomes (ACs). Chromosome-scale 90 

genome assemblies of 22 additional Z. tritici isolates from different geographic origins were obtained 91 

using long-read sequencing [24], [25], [26], as well as the genome sequences of four related species 92 

of Zymoseptoria (Z. ardibilae, Z. brevis, Z. passerinii, Z. pseudotritici) [25]. A large proportion of the 93 

IPO323 Z. tritici genome is composed of transposable elements (TEs, 17% to 20%, [27][28]), while the 94 

TE content of other isolates varied between 14% and 21.5% [24], [29], [30].  95 

 96 

Currently, four annotations of the IPO323 Z. tritici genome are available. The first was generated by 97 

the Joint Genome Institute in 2011 (JGI, [23]). The second annotation was performed at the Max 98 

Planck Institute for Evolutionary Biology in 2015 (MPI, Germany, [28]). Two other annotations were 99 

generated in 2015 at Rothamsted Research Experimental Station (RRES,[31]) and the Centre for Crop 100 

& Disease Management of Curtin University. Large discrepancies were observed across annotations, 101 

both in gene numbers (10,933 to 13,260) and gene structures (30% of coding sequences (CDS) with 102 

identical structures). In addition, some genes that are important for the infection process of Z. tritici 103 

were not predicted. For example, the effector-encoding gene Avr-Stb6 was located near the telomere 104 

of chromosome 5 by quantitative trait locus (QTL) mapping and genome-wide association study 105 

(GWAS), but it was not predicted in existing IPO323 annotations [32]. Indeed, it was identified by 106 

translating all possible ORFs from the region, and its overall structure (start, stop, two introns) was 107 

only predicted using infection-related RNA-seq data. Clearly, the complete coding potential of this 108 

genome still has not been identified despite the four thorough annotations that have been 109 

developed over the past dozen years. 110 
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 111 

To address this problem, we established a novel strategy to annotate a compact eukaryotic genome 112 

using Z. tritici as a case study. For this process we generated a large set of full-length cDNA 113 

sequences using PacBio Iso-Seq long reads [33], [34]. We also developed a novel suite of tools, 114 

InGenAnnot, to compare genes models predicted by different ab initio software and to select the 115 

best gene model according to transcript (RNA-Seq, Iso-Seq) and protein evidence. A novel set of 116 

13,414 improved gene models was generated. Comparing this annotation to other annotations 117 

revealed systematic errors in previous gene models. Full-length cDNA sequences were also used to 118 

identify alternative transcripts and long, non-coding RNA (lncRNA), improving our understanding of 119 

the transcriptional landscape of Z. tritici. 120 

 121 

  122 
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Materials and Method 123 

 124 

Available Z. tritici IPO323 gene annotations 125 

Currently, four annotations of the Z. tritici IPO323 genome are available. The first , with 10,933 gene 126 

models, was developed in 2011 by the Joint Genome Institute with ab initio tools FGENESH and 127 

Genewise [8] using EST (expressed sequence tag) and proteome evidence (JGI, [23]). The second 128 

annotation was performed in 2015 by the Max Planck Institute, resulting in 11,839 gene models 129 

(MPI, Germany, [28]) identified with the Fungal Genome Annotation pipeline [35]. This pipeline uses 130 

ab initio tools GeneMark-ES, GeneMark-HMM [13] and Augustus [12] combined by EVidenceModeler 131 

[36] with RNA-Seq evidence and keeping as much as possible of the first annotation provided by JGI. 132 

The third annotation was generated in 2015 by the Rothamsted Research Experimental Station (UK) 133 

with 13,862 gene models (RRES, [31]) obtained with the ab initio tool MAKER-HMM [11] and RNA-134 

Seq evidence. The fourth annotation published in 2015 by the Centre for Crop & Disease 135 

Management, Curtin University. (CURTIN, Australia) with 13,260 gene models, was obtained with ab 136 

initio tool CodingQuarry [37] and RNA-Seq evidence. All gene files used in the annotations by JGI, 137 

MPI, RRES and CURTIN have been made easily accessible (https://doi.org/10.57745/CVIRIB) and can 138 

be displayed with a dedicated genome browser (https://bioinfo.bioger.inrae.fr/portal/genome-139 

portal/12) or on the new IPO323 genome web portal at JGI 140 

(https://mycocosm.jgi.doe.gov/Zymtr1/Zymtr1.home.html). 141 

 142 

Fungal Isolate, RNA extraction, PacBio Iso-Seq and Illumina RNA-Seq libraries 143 

The reference isolate of Z. tritici IPO323 [23] was stored at -80°C as a yeast-like cell suspension (10
7
 144 

cells/mL in 30% glycerol). Z. tritici was grown at 18°C in the dark on solid (Yeast extract Peptone 145 

Dextrose (YPD) agar) or liquid (Potato Dextrose Broth (PDB)) media. For RNA production, Z. tritici 146 

isolate IPO323 (4-day-old yeast-like cells diluted to 105 cells/mL final) was cultivated in 75-mL 147 

agitated liquid cultures (500 mL Erlen flasks, 150 rpm) at 18°C in the dark for 4 days. Different media 148 

were used (Table S3) including Glucose-NO3 synthetic medium defined as MM-Zt [38]. MM-Zt was 149 

modified by replacing glucose (10 g/L) by different carbon sources (Xylose, Mannitol, Galactose, 150 

Sucrose at 10 g/L)). Histone Deacetylase inhibitors such as trichostatin ((TSA, Sigma T8552, 1 µM 151 

final) and SAHA (SAHA, Sigma SML0061, 1 mM final) were added to MM-Zt to express genes located 152 

in genomic regions with repressive chromatin marks [39]. The composition of complex media (Yeast-153 

Peptone-Dextrose: YPD, Potato-Dextrose-Both: PDB, Glycerol-Nitrate: AE) was already described 154 

[40]. Cultures of IPO323 in YPD and PDB were performed at 18°C and 25°C, while AE cultures were 155 

performed only at 18°C. A total of 14 culture conditions was used for RNA production (Table S3). All 156 

cultures for RNA-Seq were performed in triplicate. Cultures were centrifuged at 3000 rpm for 10 157 

minutes and mycelium pellets were washed with water and frozen with liquid nitrogen. Frozen 158 

mycelium was lyophilized and kept at -80°C until extraction. RNAs were extracted using the Qiagen 159 

Plant RNeasy Kit according to the manufacturer’s protocol (Ref. 74904, Qiagen France SAS, 160 

Courtaboeuf, France). Preparation and sequencing of PacBio Iso-Seq libraries were performed by the 161 

INRAE platform Gentyane (http://gentyane.clermont.inrae.fr). The SMARTer PCR cDNA Synthesis Kit 162 

(ref 634926, Clontech, Mountain View, CA, USA) was used for polyA-primed first-strand cDNA 163 

synthesis followed by optimized PCR amplification and library preparation using the SMRTbell 164 

Template Prep Kit (ref 101-357-000, Pacific Bioscience, Menlo Park, CA, USA) according to 165 

manufacturer protocols. The cDNA libraries were prepared without size selection and bar coded for 166 

multiplexing. Sequencing was performed on a PacBio SEQUEL (version 1). Illumina RNA-seq single-167 

stranded libraries were prepared using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB 168 

#E7490, New England BioLabs, Ipswich, Massachusetts, USA) and the NEBNext Ultra II Directional 169 

RNA Library Prep Kit for Illumina (NEB #E7765, New England BioLabs, Ipswich, Massachusetts, USA). 170 

Custom 8-bp barcodes were added to each library during the preparation process. Pooled samples 171 

were cleaned with magnetic beads included in the library preparation kit. Each pool was run on a 172 

lane of Illumina HiSeqX (Illumina, San Diego, California, USA) using a 150-cycle paired-end run 173 

 174 

Processing of RNA-seq sequences  175 
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RNA-Seq data were cleaned and trimmed with Trimmomatic (v 0.36) [41]. The cleaned sequences 176 

were then mapped to the Z.tritici IPO323 genome using STAR (v 2.5.1b, --alignIntronMin 4 --177 

alignIntronMax 5000 -- alignMatesGapMax 5000) [42]. Wig files of uniquely mapped reads were 178 

converted to BigWig files with wigToBigWig (v4). StringTie (v2.1.1) [43] was then used to assemble 179 

the mapped RNA-Seq reads into transcripts with different parameters depending on the depth of 180 

sequencing of libraries and their type (-m 150 --rf --g 0 -f 0.1 -a 10 -j 2 or -j 4). The Trinity script 181 

inchworm_transcript_splitter.pl (version 2.8.5) [44] was used to split the transcripts with non-182 

uniform coverage based on the Jaccard clip method. Clipped transcripts were extracted with home-183 

made scripts and clustered with Stringtie and associated bam files to obtain transcripts per million 184 

(TPM) counts. All libraries were concatenated into one gff file without merge to avoid loss of 185 

information by fusion of small transcripts into larger ones due to the large number of genes in the Z. 186 

tritici genome with overlapping untranslated regions (UTRs). 187 

 188 

Processing of Iso-Seq sequences 189 

Iso-Seq raw data were processed with the Iso-Seq V3.2 pipeline from PacBio generating polished 190 

Circular Consensus Sequences (CCS). CCS were then mapped to the Z. tritici IPO323 genome with 191 

Gmap (2019-01- 31) [45] and unmapped, low-mapping-quality (≤0) or multi-mapped CCS were 192 

filtered out. The CupCake package (v10.0.0, https://github.com/Magdoll/cDNA_Cupcake) filtered the 193 

isoforms, removing the less-expressed and degraded transcripts using the following tools: 194 

collapse_isoforms_by_sam.py, get_abundance_post_collapse.py, filter_by_count.py, 195 

filter_away_subset.py. Readthrough transcripts were removed using the previous annotations (MPI, 196 

JGI, CURTIN, RRES) with BEDTools intersect [46] with an an overlap of 100% for full coding sequences 197 

(CDS) (-F 1.0) and the same strand (-s)) of at least 2 CDS. Transcripts mapped on the mitochondrial 198 

genome were filtered out as well. Subsequently, all libraries were processed with chain_samples.py 199 

from CupCake and clustered for stringent selection. Splicing junctions obtained by STAR (SJ.out.tab 200 

files) from Illumina RNA-Seq libraries were used to filter out isoform transcripts with unsupported 201 

junctions. Finally, long-read transcripts fully spanning transposable elements were removed with 202 

BEDTools, giving the final set of transcript evidence. 203 

 204 

Gene prediction and selection of the best gene models 205 

Two gene predictors, Eugene v1.6.1 [10], and LoReAn v2.0 [47], handling long-read transcript 206 

sequences as evidence, were used to perform new annotations. Eugene was launched with the 207 

provided fungal parameters (WAM fungi matrix) and trained with a dataset of proteins from four 208 

genomes of species phylogenetically related to Z. tritici: Cercospora beticola 209 

(GCF_002742065.1_CB0940_V2); Ramullaria collo-cygni (GCF_900074925.1_version_1); Zasmidium 210 

cellare (GCF_010093935.1_Zasce1); and Sphaerulina musiva 211 

(GCF_000320565.1_Septoria_musiva_SO2202_v1.0). Gene structures were predicted with assembled 212 

transcripts from RNA-Seq and a dataset of Dothideomycetes proteins obtained from Uniprot without 213 

Zymoseptoria sequences to avoid inference with gene models to be improved. Filtered Iso-Seq 214 

transcripts were used as strongly weighted evidence in model prediction with the parameter 215 

“est_priority=2”. LoReAn was launched in fungus mode with the Augustus retraining mode using 216 

the same Dothideomycetes Uniprot dataset without Zymoseptoria sequences and the same Iso-Seq 217 

transcript dataset used for Eugene. RNA-Seq data were used as a merged mapping file (BAM) by the 218 

pipeline to assemble transcripts and detect splicing sites. The new and previous gene datasets 219 

cleaned for TEs with ingenannot filter were annotated for annotation edit distance (AED) [48] scores 220 

using ingenannot aed with a fungal protein dataset without any Zymoseptoria species, selected Iso-221 

Seq and RNA-Seq transcripts. AED were computed on gene models only with “--222 

aed_tr_cds_only” to avoid bias between datasets with or without UTR annotations and with “--223 

penalty_overflow 0.25” to penalize gene models with splicing junctions that lacked support 224 

evidence. The best gene models were selected with ingenannot select based on a AED of ≤0.3 for 225 

transcript or an AED of ≤0.1 for protein evidence. Gene models failing the AED threshold, but 226 

contained in clusters with at least 4 predictions from independent annotations were retained, but 227 

partial gene models (no ATG nor stop codon) were removed. The high number of annotation sources 228 
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(6) and selection of loci detected by 4 independent annotations, allow us to use stringent AED 229 

thresholds, limiting selection of annotation-specific gene models to well supported structures.  230 

 231 

Potential new gene effectors predicted with ingenannot rescue_effector, were added to the final set. 232 

Transcripts not co-localizing with a selected gene model were tested in 3 frames to analyse the 233 

predicted peptides with the same criteria used to detect small, secreted proteins (SSP) as described 234 

below. UTRs were inferred in two passes with the ingenannot utr_refine. First, after deleting all 235 

previously annotated UTRs and inferring new coordinates from a filtered set of Iso-Seq transcripts. 236 

Second, by inferring UTRs with a filtered set of RNA-seq assembled transcripts, considering only 237 

transcripts with no UTRs from the first step. Both sets were established with the ingenannot 238 

isoform_ranking for filtering and ranking UTR isoforms based on RNA-Seq evidence. 239 

Gene models from each annotation were compared using their AED scores with ingenannot 240 

aed_compare and specific/shared gene models were identified using ingenannot compare. BUSCO 241 

[49] analyses with ascomycota_odb10 were performed to evaluate the completeness of datasets.  242 

 243 

Functional annotation and prediction of secreted proteins 244 

Functional annotations of genes obtained using Interproscan 5.0 [50] and Blastp [51] (e-value <1e-5 ) 245 

against the NCBI nr databank were then used to perform Gene Ontology annotation [52] with 246 

Blast2GO [53]. Secretomes and effectors were annotated as described in [54]. The secretome was 247 

predicted by a combination of TMHMM (v.2.0) [55], SignalP (v4.1) [56] and TargetP (v1.1b) [57] 248 

results with the following criteria: no more than one transmembrane domain and either a signal 249 

peptide or an extracellular localization prediction. The SSP repertoire was predicted by applying a 250 

size cut-off of 300 amino acids to the predicted secretome and keeping only proteins predicted as 251 

effectors by EffectorP (v2.0). 252 

 253 

Analysis of Iso-Seq transcript isoforms  254 

The annotation of transcript isoforms was performed with sqanti3 [58] using Iso-Seq transcripts, 255 

previously established to infer UTRs, filtered for UTR length isoforms and low expression levels (less 256 

than 10% of total RNA-Seq reads), using the ingenannot isoform_ranking tool. RNA-Seq reads were 257 

mapped to Iso-Seq transcripts with RSEM v1.3.3 [59] and Differential Isoform Usage (DIU) performed 258 

with tappAS [60] with annotations obtained from sqanti3. 259 

 260 

Detection of antisense and lncRNA Iso-Seq transcripts  261 

Iso-Seq transcripts annotated as antisense and intergenic with sqanti3 were selected as Putative  262 

long non-coding (lnc) RNAs. Then transcripts shorter than 1 Kb in length [61], overlapping with TEs 263 

and containing an open reading frame (ORF) longer than 100 amino acids predicted with getorf by 264 

EMBOSS [62] were discarded. The resulting “non-coding“ transcripts were annotated with CPC2 [63], 265 

and only transcripts without an ORF with a PFAM domain were kept as lncRNAs. featureCounts 266 

(v1.5.1) [64] was used to count reads per transcript, followed by differential expression analysis by 267 

edgeR [65] with the SARTools package (v1.6) [66]. 268 

 269 

Detection of polycistronic Iso-Seq transcripts 270 

For detecting polycistronic mRNAs,, read-through Iso-Seq transcripts that were previously filtered 271 

out were merged to obtain the global counts of genes that were potentially co-transcribed. To 272 

establish a robust list of co-transcribed multi-gene loci, readthrough transcripts were filtered with 273 

the gene reannotation dataset and their Iso-Seq transcripts used as evidence. Only polycistronic 274 

mRNAs supported by independent long-read single transcripts for each gene were conserved and 275 

considered as reliable. Detection of overlaps between transcripts and annotations was performed 276 

with intersect using BEDTools [46]. 277 

 278 

Identification and annotation of mycoviruses 279 

Iso-Seq transcripts not mapping to the Z. tritici IPO323 reference genome were clustered with 280 

blastclust. Similarities with known sequences were analysed by blastn search against the NCBI nr 281 
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database. Reconstruction of the full-length sequences of viruses was performed by de-novo assembly 282 

with SPAdes (v3.15.4) [67]. RNA-dependent RNA polymerase sequences from narnaviruses related to 283 

Zt-NV1 were retrieved from NCBI and analyzed using Phylogeny.fr [68]. Alignment of protein 284 

sequences was performed with Muscle 3.8.31 and curated by G-blocks. The phylogenetic analysis 285 

was performed using PhyML 3.1 and the phylogenetic tree was drawn with TreeDyn 198.3.  286 
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Results 287 

 288 

Comparison of existing Z. tritici IPO323 genome annotations 289 

The four Z. tritici IP0323 genome annotations (MPI, JGI, RRES, and CURTIN), filtered out for TE-290 

encoding genes, were clustered into 13,225 metagenes corresponding to 26,224 distinct gene 291 

models using only their CDS as reference. Metagenes of InGenAnnot are clusters of overlapping 292 

genes transcribed from the same strand and corresponding to the “gene locus” defined in ParsEval 293 

[69]. To compare the structure of gene models from different annotations, we defined three 294 

categories: a) identical gene models (exactly the same CDS); b) dissimilar gene models (same 295 

metagene but different CDS); and c) specific gene models (CDS found only by one annotation at a 296 

given locus). Only 3,618 identical gene models were shared along the four annotations. When 297 

omitting the JGI annotation, the number of identical gene models among the MPI, RRES, and CURTIN 298 

annotations increased to 6,816 (Figure 1a). The highest numbers of identical gene models between 299 

two annotations were observed for MPI-RRES (8,442), RRES-CURTIN (8,289), and MPI-Curtin (7,981), 300 

while the lowest numbers of identical gene models were observed between JGI and the three other 301 

annotations (4,495, 4,621 and 5,276 for JGI-Curtin, JGI-MPI and JGI-RRES respectively). The RRES and 302 

CURTIN annotations displayed the highest numbers of specific gene models (593 and 436, 303 

respectively), while the MPI annotation displayed the lowest number of specific gene models (12). 304 

The JGI and CURTIN annotations displayed a higher number of dissimilar gene models (4,752 and 305 

3,844, respectively) compared to the other annotations (2,367 and 1,871 for RRES and MPI, 306 

respectively; Figure 1).  307 

 308 

Despite the low numbers of identical gene models across annotations, basic genomic statistics were 309 

similar (Table S1). Still, the number of mono-exonic gene models was higher (1.4 to 1.8 fold) in the 310 

RRES and CURTIN annotations compared to those by the JGI and MPI. Most of these mono-exonic 311 

gene models were only predicted ab initio (without transcript or protein evidence) and they were 312 

often specific to a given annotation. The average size of gene models also differed between MPI and 313 

the other annotations (1465 bp compared to 1300 bp). We suspected that this difference could result 314 

from longer gene models corresponding to the fusion of two or more distinct adjacent gene models 315 

that were predicted as single genes by other annotations. Indeed, 533 and 801 gene fusions were 316 

detected in the MPI annotation, corresponding to at least two distinct adjacent gene models in the 317 

RRES and CURTIN annotations, respectively.  318 

 319 

The chromosomal localization of gene models was compared across the four annotations (Table S2). 320 

The JGI, MPI and CURTIN gene models exhibited a similar distribution across chromosomes, while the 321 

RRES annotation displayed twice as many gene models on accessory chromosomes compared to 322 

other annotations. Overall, the low number of identical gene models across annotations (27% of 323 

metagenes) likely resulted from drawbacks of each annotation pipeline. For example, we identified 324 

many gene fusions in the MPI and JGI annotations. We also detected annotation-specific mono-325 

exonic genes in the CURTIN and RRES annotations. These drawbacks resulted in the accumulation of 326 

both wrong and specific gene models in each annotation.  327 

 328 

To circumvent these problems, we generated a novel annotation of the IPO323 genome relying on 329 

broad transcriptional evidence. This strategy required the construction of an expression dataset 330 

using both publicly available single-stranded RNA-Seq datasets, including wheat leaf infection 331 

kinetics, and newly generated datasets using both long-read sequencing (PacBio Iso-Seq: Iso-Seq) and 332 

short-read sequencing (single-stranded Illumina RNA-Seq: RNA-Seq) (Table S3).  333 

 334 

Iso-Seq based annotation of the IPO323 genome sequence and gene model selection  335 

Z. tritici mRNAs used for this study corresponded to a wide array of in vitro mycelial growth 336 

conditions (Table S3). These mRNAs were used for the construction of either single-stranded Iso-Seq 337 

cDNA libraries or single-stranded Illumina cDNA libraries. The Iso-Seq sequences from each library 338 

were processed individually (cleaning, assembly) and pooled into a single dataset. Non-redundant 339 
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Iso-Seq transcripts were selected at each locus using the CupCake chaining tool, giving 22,659 Iso-Seq 340 

transcripts. Some Iso-Seq transcripts corresponded to alternative transcripts differing in their intron 341 

splicing or TSS/TTS (TSS: transcriptional starting site, TTS: transcriptional termination site). The 342 

alternative Iso-Seq transcripts that were either not supported by RNA-Seq or with a relative 343 

abundance lower than 10% according to RNA-Seq in all conditions, were filtered out. This filtering 344 

kept isoforms differentially expressed in a least one condition with a relative abundance over 10%, 345 

providing 21,052 transcripts corresponding to 8,927 loci. Most loci displayed only one isoform (50%), 346 

while other loci had either 2 to 5 isoforms (42%), or at least 6 isoforms (8%).  347 

 348 

Each single-stranded RNA-Seq library generated in the framework of this study and publicly available 349 

datasets (Table S3) were assembled separately and transcripts with weak expression levels (TPM<1) 350 

were removed. Between 8,600 and 13,000 filtered transcripts were obtained depending on the 351 

library and kept as a separate dataset providing 498,010 single-stranded assembled RNA-Seq 352 

transcripts as evidence. Most existing ab initio gene prediction tools use RNA-Seq assembled 353 

transcripts as evidence to infer the structure of gene models. However, currently only a few gene 354 

prediction tools (Eugene [10], LoReAn [47]) can use Iso-Seq transcripts as evidence. These two 355 

softwares were used to annotate the IPO323 genome sequence with Iso-Seq transcripts, RNA-Seq 356 

transcripts and reference fungal protein sequences as evidence. Eugene identified 15,810 gene 357 

models in the Z. tritici genome in a two-pass mode and strand-specific prediction allowing 358 

overlapping gene models on opposite strands. This number was reduced to 15,245 gene models after 359 

filtering out genes corresponding to TEs. LoReAn identified 11,537 gene models in the Z. tritici 360 

genome without overlapping gene models on the opposite strand, which were reduced to 11,497 361 

after filtering out genes corresponding to TEs. Selection of the best gene model was performed with 362 

InGenAnnot using the novel Eugene and LoReAn gene predictions and the four existing ones (JGI, 363 

MPI, RRES, CURTIN). All these gene models were clustered into 17,147 metagenes.  364 

 365 

For each comparison InGenAnnot computes an Annotation Edit Distance (AED) [48] that is a distance 366 

either between two gene models or between a gene model and an evidence. AED computing takes 367 

into account the number of overlapping bases, as previously described [48]. Two additional options 368 

were implemented in AED computation, such as a comparison limited to the CDS to avoid bias 369 

between annotations without or with UTRs (provided only by Eugene), and a penalty score of 0.25 on 370 

transcript AED scores in case of incongruence in splicing sites between transcript evidence and the 371 

gene model. Since it is difficult to compare AED values derived from protein evidence to those from 372 

transcript evidence, different AED scores were computed for each type of evidence. The gene models 373 

with the best AED scores with either transcript or protein evidence, or both types of evidence, were 374 

selected based on CDS comparisons. Gene models with an AED of 0.3 for transcript and/or an AED of 375 

0.1 for protein evidence were selected (Figure 2). Gene models failing to pass the AED threshold, but 376 

predicted by at least four independent annotations, were retained to avoid the loss of gene models 377 

with low support from transcript or protein evidence (upper right square in Figure 2 corresponding to 378 

1,846 gene models). These rescued genes models were mostly not conserved across fungi (upper 379 

right red bar in Figure 2) and frequently had low transcriptional support (upper green bar in Figure 2). 380 

For gene models overlapping on opposite strands, only the gene model with the best AED score was 381 

selected. Finally, 97 additional effector-encoding genes were predicted with the rescue_effector tool 382 

of InGenAnnot. 383 

 384 

Overall, we obtained a final set of 13,414 re-annotated Gene Models (RGMs; File S1, Table S4). In 385 

addition, UTRs were inferred from Iso-Seq transcripts for 7,713 genes, and for 9,856 genes (73%) 386 

when combined with RNA-Seq assembled transcripts. The average and median sizes of 5’UTRs were 387 

315 bp and 156 bp, while they were 389 bp and 220 bp for 3’UTRs (Table S4), close to the values 388 

(mean 5’UTR 275 bp and mean 3’ UTR 303 bp) reported recently for the Pezizomycotina P. anserina 389 

[70]. A small proportion of genes displayed long 5’UTRs (1 Kbp to 7 Kbp, 6%), and/or long 3’UTRs (1 390 

Kbp to 8.6 kbp, 8.6%). 391 

 392 
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Comparison of the reannotated IPO323 gene models with available genome annotations 393 

The 13,414 IPO323 RGMs were compared to gene models predicted by the four previous annotations 394 

(JGI, MPI, RRES, CURTIN). This comparison was first performed using BUSCO and the 395 

ascomycota_odb as reference genes [49]. Higher BUSCO scores (99.4 % identical) were obtained with 396 

RGMs compared to the JGI, MPI and CURTIN annotations (95.7-98.5% identical), while scores 397 

obtained with RRES gene models were similar (99.1 % identical; Table S5). In particular, the JGI 398 

annotation had a high number of fragmented and missing BUSCO genes compared to other 399 

annotations, while the CURTIN annotation had a higher level of duplicated BUSCO genes compared 400 

to other annotations (Table S5). The eight missing BUSCOs in RGMs were reduced to six after manual 401 

inspection. These six RGMs that were missing in BUSCO encoded a Leucyl-tRNA synthetase, a WD40-402 

repeat-containing domain protein, a Zinc finger protein, a Heavy metal-associated domain protein, a 403 

protein with an HMA domain, a PHD-type protein and a GTP binding domain protein. Their 404 

conservation across fungi is questionable, since a blastp search showed that they are missing from 405 

numerous genomes.  406 

 407 

The comparison between annotations was then performed using AED scores (Figure 2, S1 and S2). Of 408 

the 13,414 RGMs, 11,568 (86%) passed the AED threshold of 0.3 and 0.1 for transcript and protein 409 

evidence, respectively (Figure 2). In comparison, these numbers decrease to 7,730, 8,936, 9,518 and 410 

10,716 for the JGI, MPI, RRES and CURTIN annotations, respectively (Figure S1). This comparison 411 

showed that RGMs had a higher level of evidence support, followed by the CURTIN annotation, while 412 

JGI was the least-supported annotation. Among the 1,846 RGMs failing to pass the AED threshold, 413 

but rescued as predicted by at least four annotations, 574 have no AED score. This implied that they 414 

were only predicted by ab-initio software (see genes with no evidence in Table S6). 224 of these 574 415 

fully ab-initio RGMs (40%) were located on the 3’ arm of chromosome 7 between positions 1,900,000 416 

and 2,500,000 (Table S6). Almost none of these RGMs was expressed, even during infection. This 417 

region was previously described as carrying a high level of histone H3K27me3 and H3K9me3 418 

modifications mediating transcriptional silencing, similar to those found in accessory chromosomes 419 

[71]. These marks could explain the lack of expression of genes from this region of chromosome 7. In 420 

addition, none of these genes was conserved across fungi, suggesting either a recent origin or an 421 

artefact from annotation pipelines. The other fully ab-initio RGMs were more frequently localized on 422 

accessory chromosomes (32-53%) than on core chromosomes (12-16%, Table S6).  423 

 424 

Among the 13,414 RGMs, 7,888 were identical to at least one gene model from another annotation 425 

(Figure 3), while 3,479 RGMs were identical to all the gene models from the four previous 426 

annotations (Figure 3). Since 3,618 gene models were identical among the four previous annotations 427 

(see above), 139 of these genes were not identical to RGMs. Most of the corresponding 139 RGMs 428 

had a novel start codon that did not change the coding phase of the first open reading frame, leading 429 

to a shorter or longer version of the same protein compared to other annotations. However, these 430 

novel start codons were not necessarily more supported by transcript evidence than those from 431 

previous annotations. Ribosome profiling could help in solving this problem by identifying the real 432 

start codon [72]. 2,047 RGMs either differed from all gene models of other annotations (1,376, Table 433 

S6) or were not predicted by any other annotation (671, specific RGMs, Table S6). Most of the 1,376 434 

RGMs differing from all other annotations had either alternative ATGs (see above) or intron splice 435 

sites supported by transcript evidence. RGMs also included novel gene models resulting from 436 

resolving the structure of incorrectly fused collinear gene models (see below). 437 

 438 

The 671 specific RGMs were distributed evenly on all chromosomes (Table S6). 117 of these specific 439 

RGMs displayed more than 40% similarity to proteins from other fungi, including 63 with more than 440 

80% similarity. A tblastn search against the 31 existing Zymoseptoria spp. genome sequences was 441 

performed. Most RGM specific genes were found in other Z. tritici strains (File S1), in particular in the 442 

genome of strain ST99CH_1A5 (571 hits with a at least 75 % identity and 75% coverage), while only a 443 

few hits were found in the most distant species Z. passerinii SP63 (22 hits). Overall, 654 of the 671 444 

RGM specific genes (97%) matched at least one Zymoseptoria spp. sequence. These new genes were 445 
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often located in regions with complex patterns of expression. A manual curation of these gene 446 

models will be required to confirm their accuracy. 447 

 448 

One major improvement of RGMs was in resolving the structure of genes that were incorrectly fused 449 

in previous annotations (split RGMs). These genes were identified by detecting overlaps between 450 

gene models from different annotations. This survey revealed a high number of RGMs resulting from 451 

the splitting of fused genes from the MPI and JGI annotations (1,507 and 1,258, respectively, Table 452 

S7), and to a lesser extent from the RRES annotation (701), while these genes were in low number in 453 

the CURTIN annotation (176). The average AED score of split RGMs was better (median AED score: 454 

0.17) than that of the fused gene models (median AED score: 0.34). In addition, most MPI fused 455 

genes (87%) were not supported by transcript evidence, since their AED scores were higher than the 456 

cutoff value (>0.3, Figure S3). On the reverse, most transcript AED scores of split RGMs (65 %) were 457 

supported by transcript evidence, since their AED scores were lower than the cutoff value (0.3<, 458 

Figure S3). Still, a significant number of split RGMs (494, 35%) had low support from both transcript 459 

and protein evidence (upper right square in Figure S3). These split RGMs were rescued since they 460 

were also identified in other annotations than MPI.  461 

 462 

Overall, these results showed that the split RGMs were better supported by transcript and protein 463 

evidence than the MPI fused genes. The transcript evidence of two randomly chosen MPI fused 464 

genes and their corresponding split RGMs is shown in Figures S4 and S5. Both MPI fused genes had 465 

no Iso-Seq transcript support, while Iso-Seq transcripts supported the corresponding split RGMs. 466 

Assembled RNA-Seq transcripts supporting split RGMs were also observed for RGM-1 and RGM-2 467 

from Figure S4. However, large assembled RNA-Seq transcripts were supporting the fused MPI gene 468 

model from Figure 5. Still, some of these assembled transcripts included alternative introns that were 469 

not supported quantitatively by RNA-seq. We hypothesise that these long, chimeric transcripts were 470 

artefacts of the assembly of RNA-Seq reads from individual genes with overlapping transcripts. The 471 

final proof supporting these split RGMs was obtained by identifying specific expression conditions (13 472 

days post-inoculation, wheat infection, Figure S5) in which RGM-2 was strongly expressed, but not 473 

RGM-1.  474 

 475 

Functional annotation of the reannotated IPO323 gene models  476 

Functional annotation of predicted proteins deduced from RGMs was performed using both Blast2Go 477 

and InterProScan. 5,593 RGMs exhibited a GO term or an IPR and 2,838 were annotated with at least 478 

one Enzyme Code (EC). As in previous annotations of IPO323 genome sequence [28], [73], several 479 

tools were launched to identify genes encoding putative secreted proteins, including effectors (File 480 

S1). We identified 1,895 genes corresponding to secreted proteins with less stringent criteria than 481 

those used in a previous study that identified 970 secreted proteins using the JGI annotation [43]. All 482 

these 970 genes were identified as RGMs. However, they increased to 1,046 mainly due to the 483 

splitting of fused gene models from the JGI annotation. The RGM secretome included 234 small, 484 

secreted proteins (SSP) according to EffectorP and additional criteria defined in the Materials and 485 

Methods section. Among the 100 SSPs studied previously by Gohari et al. using the JGI annotation 486 

[74], 93 were identified as encoded by RGMs. Still, many structural differences between these RGMs 487 

and the JGI gene models were observed. The effector rescue software of InGeAnnot identified 53 488 

SSPs among which 43 were not found in any previous annotations. Four of these 53 novel SSPs 489 

displayed a significant upregulation during infection compared to in vitro culture conditions 490 

(ZtIPO323_001210, ZtIPO323_072700, ZtIPO323_105940 and ZtIPO323_123970), suggesting a 491 

possible role in infection. In addition, genes encoding effectors missing in previous annotations, such 492 

as Avr-Stb6, were now predicted correctly. The new annotation also predicted two additional Avr-493 

Stb6 paralogs located on chromosome 10 (Figure S6a), while the original Avr-Stb6 is located at the 494 

end of chromosome 5 (Figure S6b, [32]).  495 

 496 

Identification of alternative transcripts using combined Iso-Seq and RNA-Seq evidence 497 
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The initial set of 21,052 Iso-Seq transcripts used for gene reannotation was filtered to exclude UTR 498 

length isoforms, yielding 11,690 Iso-Seq transcripts corresponding to coding and non-coding loci. 499 

Sqanti3 allocated 10,938 Iso-Seq transcripts to 8,199 RGMs (Table 1). 7,872 of these RGMs had the 500 

same structure as their matching Iso-seq transcripts (full_splice_match). The other 327 RGMs, 501 

classified as “ISM” or “genic” by Sqanti3 displayed a structure differing from their matching Iso-seq 502 

transcripts. These gene models were supported either by other evidences (RNA-Seq, protein) or 503 

rescued (ab initio only). In most cases, these Iso-Seq transcripts were only partly covering the RGMs, 504 

suggesting that they were partial cDNAs likely due to the early termination of reverse transcription. 505 

2,716 Iso-Seq transcripts were identified as alternative splice variants (25 % of coding transcripts). 506 

They were classified by Squanti3 into the following events: combination of known splicing sites (NIC); 507 

new splicing sites (NNC); intron retention (IR); and genic (Table 1). Most alternative transcripts 508 

corresponded to intron retention events (IR, 75%). Since transcripts could carry a premature 509 

termination codon (PTC) recognized by the non-sense mediated decay (NMD) pathway, they were 510 

screened for potential NMD signals [75], leaving 2,372 alternative transcripts corresponding to 1,742 511 

RGMs. The numbers of RGMs with 2, 3, 4 and at least 5 isoforms were 1,342, 274, 77 and 49, 512 

respectively (Table S8). A total of 337 alternative transcripts corresponded to a novel assembly of 513 

coding exons, 271 to a novel assembly of UTR exons, and 16 to a novel assembly of both (included in 514 

NIC, NNC and Genic events, Table 1). For example, RGM ZtIPO323_030030, predicted to encode a 515 

putative SSP in a previous study (SSP10, [76]), had an alternative splicing site providing a new exon 516 

and a shorter protein that was reduced by 34% in length at its C-terminus (Figure 4a). The 1,753 517 

remaining isoforms with intron-retention events could correspond to un-spliced transcripts not 518 

detected by our NMD screen. Some alternative transcripts were detected in high amounts by RNA-519 

Seq, as observed for RGM ZtIPO323_013330 (Figure 4b) with two intron-retention events. This RGM 520 

has 4 transcript isoforms. The canonical transcript (Iso-Seq 2), corresponding to the structure of the 521 

selected RGM, had 4 splicing sites, one being located in the 5’ UTR. Two alternative Iso-Seq 522 

transcripts (Iso-Seq 1 and 2) with one or two intron-retention events were also supported by RNA-523 

Seq. The last Iso-Seq transcript (n°4) had an alternative splicing of the fourth intron that was not 524 

supported by RNA-Seq data. Some alternative transcript isoforms were used as a major evidence for 525 

selecting the RGM as shown for ZtIPO323_030030 (Figure 4a) or ZtIPO323_013090 (Figure S7). These 526 

examples illustrated the difficulty for gene predictors to choose between gene models with complex 527 

alternative splicing events or co-existing isoforms with similar expression levels (Figure 4a). 528 

 529 

Differential expression of Iso-Seq transcript isoforms 530 

RNA-Seq data were used to detect differential isoform usage (DIU) for coding genes. RGMs with 531 

significant DIU between different in vitro culture conditions or between infection and in vitro culture 532 

conditions were identified using tappAS [29] with a minimal p-value of 0.01. Only 22 RGMs had a DIU 533 

between different culture conditions, in particular between Galactose/Sucrose and Mannose/Xylose 534 

growth media (File S1). Ten of them were associated with GO terms (GTPase activity, ATP and GTP 535 

binding). A total of 163 RGMs displayed a DIU between at least one infection time point and one 536 

culture condition, and 88 (54%) encoded proteins with GO terms (File S1), including 23 secreted 537 

proteins. The number of these genes was too small to perform a GO enrichment test. 30 of these 163 538 

RGMs were specifically up or down regulated during infection compared to all culture conditions 539 

including ZtIPO323_042160 and ZtIPO323_042360, encoding proteins without known function, and 540 

ZtIPO323_043800, encoding a PHD and RING finger domains-containing protein. Two of these 30 DIU 541 

genes (ZtIPO323_016670 and ZtIPO323_043500) encoded secreted proteins that were significantly 542 

upregulated at late infection stages (13, 21 dpi). ZtIPO323_016670 encoded a carbohydrate esterase 543 

from family 8 involved in cell wall modifications and ZtIPO323_043500 encoded a SSP. Manual 544 

inspection of the RNA-Seq data associated with these DIU RGMs confirmed their differential 545 

expression, but not a different usage of isoforms. Indeed, the isoforms detected during infection 546 

corresponded to a low number of reads compared to in vitro culture conditions. This could lead to a 547 

bias in DIU analyses. 548 

 549 

Identification of long non-coding RNAs and survey of their expression 550 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.04.26.537486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.537486
http://creativecommons.org/licenses/by/4.0/


14 

 

Sqanti3 allocated 752 Iso-Seq transcripts to non-coding loci (Table 1). Among these transcripts, we 551 

identified 395 antisense and 357 intergenic non-coding transcripts. These 752 Iso-seq transcripts 552 

were analyzed for the presence of long non-coding RNAs (lncRNAs). Most previous analyses of fungal 553 

lncRNAs were performed using RNA-Seq data with a 200 bp minimal size cutoff. A single study of 554 

fungal lncRNAs was performed using Iso-seq in F. graminearum [77]. This study showed that lncRNAs 555 

were generally larger in size than 1 kb. Therefore, we chose a cutoff value of 1 kb in length for 556 

selecting candidate lncRNAs. Z. tritici Iso-seq transcripts overlapping with TEs, smaller than 1 kb in 557 

length and containing an ORF longer than 300 bp (100 amino acids) were discarded. Changing the 1-558 

kb length threshold to 200 bp only removed 72 lncRNAs. This selection left 398 candidate lncRNAs 559 

(288 antisense and 110 intergenic). As previously observed [77], intergenic lncRNAs are generally 560 

smaller than antisense lncRNAs, explaining the strong impact of size selection on this category. 561 

Filtering ORFs longer than 300 bp removed 343 lncRNAs, representing a large proportion of the 398 562 

candidate lncRNAs (86%). We decided to keep this stringent criterion to select only reliable lncRNAs. 563 

This criterion avoided selecting lncRNAs encoding coding genes not retained by InGenAnnot. For 564 

example, the Iso-Seq PB.5809.X located on chromosome 7 (position 688635 to 690776 bp), for which 565 

Eugene predicted a gene model not retained as an RGM, was removed from candidate lncRNAs using 566 

this criterion. This process selected 55 lncRNAs, among which 3 were labelled as “coding” based on 567 

their coding potential and 1 contained an ORF with a pfam domain. Finally, 51 transcripts were 568 

classified as lncRNAs according to our stringent criteria and 35 of these lncRNAs (68%) were 569 

differentially expressed in at least one pairwise comparison (p-value 0.05). Half of these lncRNAs 570 

were differentially expressed between infection and in vitro growth conditions, including 5 that were 571 

up-regulated and 12 down-regulated during infection (log2FC > 2). Most lncRNAs that were down-572 

regulated during infection were antisense transcripts (83%). The lncRNA PB1188.1 was down-573 

regulated during infection compared to all culture conditions (Table S9). This lncRNA was an 574 

antisense transcript of ZtIPO323_016330, encoding a secreted Subtilisin-like protein, that was up 575 

regulated during infection but down regulated during in vitro culture conditions. Another RGM 576 

(ZtIPO323_037670) encoding a TTL protein (Tubulin tyrosine ligase involved in the posttranslational 577 

modification of tubulin) and its antisense lncRNA PB.2709.1 displayed a negative correlation with 578 

their expression pattern during infection (Table S9). In this case, the antisense lncRNA PB.2709.1 was 579 

up regulated during infection, while the corresponding coding gene ZtIPO323_037670 was down 580 

regulated.  581 

 582 

Iso-Seq transcripts revealed polycistronic mRNAs  583 

Alignment of Iso-Seq transcripts with RGMs identified 2,625 potential polycistronic transcripts. 584 

Among them, 224 corresponded to polycistronic transcripts containing two to three RGMs on the 585 

same strand supported by independent long-read single-transcript molecules. For example, adjacent 586 

RGMs ZtIPO323_010430 and ZtIPO323_010440 were transcribed on the same strand with 587 

overlapping 3’UTR and 5’UTR (Figure 5, red rectangle). Iso-Seq polycistronic single-transcript 588 

molecules covering the two RGMs were detected, as well as single RGM Iso-Seq transcripts (Figure 5, 589 

Iso-Seq track and Iso-Seq polycistronic track). Assembled RNA-Seq reads at this locus mostly 590 

predicted a transcript covering the two RGMs (Figure 5, RNA-Seq transcripts tracks). This long 591 

transcript likely resulted from the wrong assembly of reads from overlapping transcripts. Indeed, 592 

RNA-Seq coverage strongly decreased in the region of the overlap between the two RGMs, 593 

suggesting two independent transcripts (Figure 5, RNA-seq coverage track). This RNA-seq coverage 594 

analysis also suggested that the abundance of the polycistronic transcript was low compared to 595 

single-gene transcripts. Multiple stop codons were present in these polycistronic transcripts, 596 

excluding the possibility of errors in annotated genes for a larger single ORF, as observed for 597 

polycistronic transcripts described in Agaricomycetes [78], and F. graminearum [77] or Cordyceps 598 

militaris [79].  599 

 600 

Iso-Seq transcripts encoding fungal mycoviruses 601 

A total of 2,203 Iso-Seq transcripts did not map to the Z. tritici IPO323 genome and were discarded 602 

for annotation. These transcripts were clustered and analysed for their similarity with known 603 
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sequences. The larger cluster of independent Iso-Seq transcripts (1919 sequences) was identical to 604 

Fusarivirus 1 (ZtFV1), already identified by a large-scale fungal transcript analysis [80]. The second 605 

cluster gathered 17 independent Iso-Seq transcripts that were closely related to narnavirus 4 of 606 

Sclerotinia sclerotiorum (SsNV4) [81]. As these viral Iso-Seq transcripts were probably obtained by 607 

internal polyA priming, they did not cover the full sequence of the viruses. To rescue the full-length 608 

viral RNA, de novo-assembly was performed using RNA-Seq data mapping to the viral Iso-Seq 609 

consensus sequences. RNA-Seq reads corresponding to these two fungal viruses were detected in all 610 

our cDNA libraries. These analyses showed that the ZtFV1 Iso-seq transcript was a full-length viral 611 

sequence. However, the second viral Iso-Seq transcript related to SsNV4 was shorter than the viral 612 

RNA assembled from RNA-Seq reads. This allowed the reconstruction of a full sequence of 3091 613 

nucleotides encoding a protein of 986 amino acids corresponding to a RNA-dependent RNA 614 

polymerase. This new virus, ZtNV1 (Zymoseptoria tritici NarnaVirus 1), is as long as SsNV4 (3105bp). 615 

ZtNV1 displayed 71% identity at the nucleotide level and 67% identity (79% similarity) at the protein 616 

level with SsNV4. The phylogenetic tree of viral RNA-dependent RNA polymerases showed that the 617 

ZtNV1 was highly related to narnaviruses from S. sclerotiorum, Plasmopara viticola, and Fusarium 618 

asiaticum (Figure S8). IPO323 ZtNV1 sequence was used to screen publicly available Z. tritici RNA-seq 619 

datasets. ZtNV1 was identified in all these datasets, but only with very few reads, validating the 620 

ubiquitous presence of the virus in Z. tritici. ZtFV1 was also detected in these RNA-seq data in higher 621 

amounts compared to ZtNV1 (70,000 fold).   622 
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Discussion 623 

 624 

Improvement of the Z. tritici IPO323 gene models 625 

We developed a new strategy to generate high-quality genome annotations using the fungus Z. tritici 626 

as a case study. The major requirement for improving the Z. tritici IPO323 genome annotation was 627 

the production of a set of full-length transcript sequences. Gene annotation strongly relies on 628 

transcriptomic data to support the structure of a predicted gene and define its boundaries. The 629 

assembly of RNA-Seq short reads frequently leads to artefacts such as chimeras corresponding to 630 

adjacent genes with overlapping transcripts [16], especially in genomes with a high gene density [37]. 631 

Iso-Seq long-read by-pass these artefacts, as it produces sequences from single cDNA molecules 632 

without assembly. Iso-Seq also provides transcript isoforms corresponding to alternative start, stop 633 

and splicing events. Still, Iso-seq has potential pitfalls since this technic is not quantitative. Indeed, 634 

we identified rare Iso-seq transcripts likely corresponding to errors of the transcriptional machinery 635 

(intron retention, polycistronic transcripts). We minimized this error by filtering out low-abundance 636 

Iso-Seq transcripts based on their quantification using short-read RNA-seq. Overall, filtered Iso-seq 637 

transcripts were highly reliable in determining the genome-aligned exon structure of transcripts, 638 

while RNA-Seq offered a quantification of Iso-Seq transcript structures and isoforms.  639 

 640 

The newly established transcriptomic dataset was used to select the best gene models among those 641 

predicted by different ab initio software according to their AED transcript scores (transcript 642 

evidence), using InGenAnnot. Protein evidence also helped select the best gene model for genes not 643 

expressed under the conditions used for producing mRNAs. The combination of six ab initio software 644 

was needed at two levels. First, a diversity of software was needed to produce a sufficient number of 645 

gene models at each locus to be selected by InGenAnnot. Indeed, none of the ab initio software was 646 

able to independently predict all the RGMs (Table S10). The best ab initio software, Eugene, only 647 

predicted correctly 76% of the RGMs. Second, the use of different ab initio software allowed the 648 

rescue of gene models without evidence (1,846 RGMs predicted by at least 4 different ab initio 649 

software). Most rescued RGMs were not conserved across fungi and they had a low transcriptional 650 

support or they were not expressed under the available conditions (upper green bar in Figure 2). 651 

They typically included candidate fungal effectors that could be important for plant-fungal 652 

interactions (File 1). Yet, these rescued RGMs may be artefacts of ab initio software, and they need 653 

to be validated manually.  654 

 655 

Overall, our strategy significantly improved the annotation of the Z. tritici IPO323 genome, and 656 

missing genes encoding effectors such as Avr-Stb6 were now predicted correctly. In addition, it 657 

revealed different bias in previous annotations. Among the 13,414 RGMs, 2,047 were either different 658 

from all previous gene models (1,376, Table S6) or not predicted in previous annotations (671 RGM-659 

specific, Table S6). We are confident that changing/adding these RGMs is an improvement in the 660 

prediction as both transcripts and protein evidence supported these changes. The most frequent 661 

discrepancy was the occurrence of fused genes in previous annotations that were split into distinct 662 

RGMs. Most of these fused genes corresponded to RGMs with overlapping transcripts (Figures S4, 663 

S5). Indeed, the assembly of RNA-Seq reads corresponding to such transcripts could have generated 664 

chimeric transcripts, providing erroneous evidence to the software used in these annotations. 665 

Changes in parameters used for RNA-Seq read assembly could reduce the number of chimeric 666 

transcripts. However, Iso-Seq long-read sequencing clearly avoided this artefact and its use as 667 

transcript evidence likely explains the observed improvement in the RGMs. To our knowledge, only 668 

two previous studies improved fungal gene prediction using Iso-Seq transcript long-read sequences 669 

(C. militaris, [79]; F. graminearum, [77]). We further improved the method used in these papers by 670 

filtering Iso-Seq transcripts according to their abundance, and by creating a method to select the best 671 

gene model according to different ab initio annotations and evidence. 672 

 673 

Iso-Seq long reads reveals the complexity of transcripts in Z.tritici  674 
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Identifying transcript isoforms is a major challenge when relying on the assembly of short RNA-seq 675 

reads, as alternative splicing sites could not be easily distinguished. Here, we took advantage of the 676 

full-length cDNAs produced by Iso-Seq long-read sequencing to identify novel exon combinations. 677 

Indeed, the assembly of RNA-Seq reads could be misleading for transcripts with more than one. 678 

However, Iso-Seq sequencing is not a quantitative method and minor transcripts were sequenced. 679 

For example, Iso-Seq transcript isoforms with long UTRs or IR without strong support from RNA-Seq 680 

data were identified in our initial dataset (Figure 4, Figure 5, Figure S5). These low-abundance 681 

transcript isoforms could be produced by the transcriptional machinery either as by-products or to 682 

regulate gene expression. As observed for gene annotation (see before), the best strategy is to filter 683 

Iso-Seq sequences with RNA-Seq data to withdraw transcript isoforms with weak quantitative 684 

support, with the caveat that some transcripts might be excluded. As observed in other fungal 685 

genomes ([77], [82], and references quoted within), most alternative splicing events were intron 686 

retention (IR). Indeed, we identified 58% of alternative transcripts with IR after NMD filtering (Table 687 

1). IR events could generate premature termination codons (PTCs) likely degraded by the NMD 688 

pathway. However, NMD signals are difficult to predict with current bioinformatics tools in 689 

filamentous fungi. DIU analysis revealed a few RGMs with differential expressed transcript isoforms 690 

during infection compared to in vitro growth conditions. As discussed before, the small amounts of 691 

RNA-Seq reads available in these conditions makes such comparisons difficult using the available 692 

statistical tools. In fact, manual inspection of several detected loci did not reveal clear patterns of 693 

DIU for alternative transcripts. 694 

 695 

Additionally, dense genomes, such as Z.tritici genome, are suitable for polycistronic transcription, i.e. 696 

the production of mRNA that encode several proteins. Indeed, we identified polycistronic mRNAs in 697 

Z. tritic among Iso-Seq long-read transcripts, as already observed in Agaromycotina [78] and F. 698 

graminearum [77] or C. militaris [79] using Iso-Seq. However, polycistronic-specific RNA-Seq reads 699 

were always detected in low abundance compared to single-gene transcripts. These RNA-seq data 700 

also showed that polycistronic transcripts mostly corresponded to genes with transcripts overlapping 701 

those from adjacent genes. As Iso-Seq is sensitive enough to detect rare transcripts, it is possible that 702 

these polycistronic transcripts are rare read-through transcripts. This hypothesis is supported by the 703 

fact that in vitro culture conditions of yeast known to be associated with increased transcriptional 704 

read-through led to more polycistronic transcripts [83]. Alternatively, these polycistronic transcripts 705 

could be an additional level of transcriptional control.  706 

 707 

lncRNAs are differentially expressed during wheat infection 708 

LncRNAs are important components of transcriptional and translational regulation [84]. They can act 709 

in cis or trans of target genes, and modulate their expression by different mechanisms, leading to 710 

either the up-regulation or down-regulation of target genes [84]. Most of studies on fungal lncRNAs 711 

used assembled RNA-Seq reads [85]. This approach could lead to assembly artefacts. Iso-Seq long 712 

reads bypass this problem as entire cDNA molecules were independently sequenced. This process 713 

facilitated the identification of full length, non-chimeric lncRNAs. Using stringent criteria (size > 1000 714 

bp, no ORF > 100 aa, no overlap with TEs), we identified 51 lncRNAs in Z. tritici. This number is far 715 

lower than those identified in other fungi (939 in N. crassa [86], 352 in Verticillium dahliae [87], and 716 

427-819 in F. graminearum [77]). This difference could be due to the stringent criteria used for this 717 

study. In fact, when using similar criteria to previous studies, such as keeping all ORFs with no coding 718 

potential independently of their size, we identified 398 lncRNAs. In addition, many lncRNAs identified 719 

in these fungi were detected in specific conditions corresponding to stress [86], [88], and sexual 720 

development which we did not sample [77].  721 

 722 

We investigated the role of lncRNAs in the wheat leaf infection by Z.tritici, and identified that 17 of 723 

the 51 lncRNAs were differentially expressed during plant infection, mostly as antisense transcripts 724 

(Table S9). Among them, two displayed expression patterns opposed to their corresponding coding 725 

genes. The lncRNA PB1188.1 was down-regulated during infection compared to in vitro culture 726 

conditions. This lncRNA is an antisense transcript of ZtIPO323_016330 encoding a secreted Subtilisin-727 
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like protein, that is up-regulated during infection. Subtilisin-like proteins are known to be secreted 728 

proteases playing an important role in plant infection [89], [90] and in plant–pathogen interactions 729 

[91], [92]. This negative correlation suggested that the down regulation of lncRNA PB1188.1 during 730 

infection allowed the full expression of ZtIPO323_016330 in infected leaves. The second lncRNA 731 

(lncRNA PB.2709.1) was up-regulated during infection compared to in vitro culture conditions (Table 732 

S8), while its corresponding transcript (ZtIPO323_037670) was down-regulated during infection. This 733 

transcript encodes a tubulin tyrosin ligase (TTL), a protein involved in the post-translational 734 

modification of tubulin. Thus, reduced expression of a TTL protein could alter tubulin turnover during 735 

infectious growth. The negative correlation observed between the gene expression and the 736 

expression of the corresponding antisense lncRNA suggests that antisense lncRNAs could be involved 737 

in the control of fungal gene expression during infection. Our observation hints at the existence of 738 

co-regulation networks between coding and non-coding transcripts in Z. tritici and suggest that this 739 

mode of regulation could be important during infection, as already observed during the infection of 740 

rice leaves by M. oryzae, [93]. These examples stress the importance of including lncRNAs in future 741 

studies to gather a comprehensive picture of the expression regulation landscape in Z.tritici. 742 

 743 

RNA mycoviruses are widespread in Z.tritici 744 

In addition to the genes belonging to the Z.tritici genome, we revealed the presence of two RNA 745 

mycoviruses in IPO323. The first one Fusarivirus 1 (Zt-FV1) had been previously identified in Z. tritici 746 

by the screening of unmapped fungal RNA-seq reads [80]. We also identified a novel mycovirus, Zt-747 

NV1 (Figure S8), related to the narnavirus 4 of Sclerotinia sclerotiorum (SsNV4) [81]. Using the Isoseq 748 

Zt-FV1 and Zt-NV1 sequences as templates, we retrieved RNA-seq reads corresponding to these 749 

mycoviruses in all of the IPO323 RNA-seq conditions tested, as well as from publicly available Z. tritici 750 

RNA-seq data, showing that these mycoviruses are widespread in Z. tritici. Zt-FV1 was the most 751 

abundant mycovirus, while Zt-NV1 was only detected as very few reads compared to Zt-FV1 752 

(1/70,000), suggesting that it is a minor virus. Mycovirus are known to induce strong phenotypic 753 

defects in other fungi, so additional studies are needed to evaluate the role of these widespread 754 

mycoviruses in the life cycle of Z. tritici, in particular its growth, sporulation and pathogenicity [94]. 755 

 756 

InGenAnot a novel tool for improving gene structure prediction 757 

Many tools [8], [10]–[13], [95] and protocols [96] were established to predict gene models in 758 

eukaryotic genomes. Some were dedicated to fungal genome annotation [15], [35], [37] and were 759 

incorporated in bioinformatics workflows [14]. Evaluation of the reliability of an annotation is not an 760 

easy task. One of the most frequently used tools is the BUSCO software for identification of 761 

conserved proteins to evaluate the completeness and fragmentation of the predicted genes at the 762 

protein level [49]. More recently, new datasets and methods were proposed to test the reliability of 763 

gene annotations, looking deeper into the prediction of intron and exon structures [7]. However, this 764 

evaluation was still based on selected datasets, representing a conserved and partial view of gene 765 

content of a genome. In the case of a genome reannotation, ParsEval could give clues on overlaps of 766 

different versions of annotations with sensitivity and specificity metrics [69]. The most descriptive 767 

tool to evaluate the reliability of an annotation with associated evidence is GAEVAL (available 768 

through AEGeAn [97]), which computes an integrity score weighted by such features as confirmed 769 

introns, annotation coverage and UTR identifications.  770 

 771 

In our new software, we implemented the AED metrics [48], to evaluate the ability of a gene 772 

structure to match with transcript evidence or other gene sets. We improved on previous 773 

implementation of the AED[11] by computing the AED metrics for each type of evidence (transcript 774 

and protein) and using a distinct score for Iso-Seq transcripts when available. Moreover, we allow 775 

penalized scores in case of discrepancy between the predicted structure and evidence, for example, 776 

when predicted splice sites were not supported. This evidence-driven annotation strategy required 777 

an in-depth analysis of data provided as evidence to eliminate potential artefacts. As each tool 778 

implements specific ML models, with different specificity/sensibility for each data source, their 779 

implementation and training parameters are more or less tolerant to particularities such as short CDS 780 
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length or non-canonical splicing site. The combination of different gene prediction software with 781 

distinct intrinsic characteristics, could be a good way to avoid drawbacks from each software, in 782 

particular when ab-initio gene predictors fail to find a consensus gene model. In the same way as 783 

EvidenceModeler [36] or TSERBA [98], InGenAnnot is able to select the best gene model based on 784 

AED scores with defined evidence thresholds. We used additional criteria to select the best gene 785 

model when evidence was lacking (gene model predicted by all or a minimal number of software). 786 

Since each gene model had AED metrics, it could be compared to other gene sets, allowing post-787 

filtering or prioritization in the manual curation process.  788 

 789 

Conclusion 790 

In the era of the massive sequencing of compact fungal genomes, inferring gene models by evidence 791 

is essential and complementary to ab-initio gene prediction methods. In this paper, we used the 792 

recent Iso-seq technology and developed a novel software, InGenAnnot, to drastically improve the 793 

gene annotation of Z.tritici, an important fungal plant pathogen. We additionally identify lncRNA and 794 

mycoviruses as being expressed during plant infection. We expect that both the improved 795 

sequencing technology and our new software will be used widely to improve the gene prediction of 796 

many species of importance, in particular in plant pathogens with dense genomes, and reveal new 797 

insights into the role of transcriptome complexity in plant-pathogen interactions. 798 

 799 

  800 
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Availability of data and materials availability 801 

All raw sequencing data generated in this study have been submitted to the NCBI Gene Expression 802 

Omnibus (GEO) under accession GSE218898 with data accessions: GSM6758342 to GSM6758379. 803 

Processed data files of assembled RNA-Seq transcripts and filtered Iso-Seq reads were associated to 804 

the submission. Sequence of the new mycovirus ZtNV1 was deposited to NCBI under accession 805 

OP903463. Previous Z. tritici IP0323 gene annotations, new annotations (RGMs, Isoforms, LncRNAs) 806 

and annotation file, denoted file S1 (z.tritici.IP0323.annotations.txt ), are available at: 807 

https://doi.org/10.57745/CVIRIB. 808 

 809 

A genome browser with all annotations and evidence was set up at:  810 

https://bioinfo.bioger.inrae.fr/portal/genome-portal/12/ 811 

A new IPO323 genome web site at (https://mycocosm.jgi.doe.gov/Zymtr1/Zymtr1.home.html) was 812 

released with new genome annotations. 813 

 814 

The InGenAnnot code and project is available at: https://forgemia.inra.fr/bioger/ingenannot 815 

Licensed under GNU GPL v3. InGenAnnot documentation is available at  816 

https://bioger.pages.mia.inra.fr/ingenannot  817 
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RRES 5276 8442 13583  

CURTIN 4495 7981 8289 13922 

Unique: 4903 1883 2960 4280 

      Dissimilar CDS 4752 1871 2367 3844 

      Specific CDS   151    12   593   436 

 

 

Figure 1. Comparison of Zymoseptoria tritici reference isolate IPO323 genome annotations. a) Upset 

plot of the gene models from the four annotations of IPO323 (JGI, MPI, RRES and CURTIN). Number 

of gene models with identical coding sequences (CDS). b) Comparison of IPO323 gene annotations. 

Number of CDS in each annotation. Identical CDS: identical CDS at a given locus. Unique Dissimilar 

CDS: at a given locus, a CDS is predicted by at least one other annotation, but they differ in their 

structure. Unique Specific CDS: at a given locus, a single CDS is predicted by a single annotation. 

a  
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Figure 2. Selection of the best Re-annotated Gene Models (RGMs) according to their Annotation Edit 

Distance (AED) scores.  

Plot of RGM AED scores. AED scores (0-1) describe how a given gene model fits to transcript and 

protein evidence (best fit = 0). Transcript evidence was computed from RNA-Seq or Iso-Seq data (X 

axis). Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species 

(Y axis). The red, dashed lines represent the AED thresholds to filter out genes (0.3 for transcripts, 0.1 

for proteins), except if they are supported by at least four different annotations (1846 RGMs, upper 

right area of the graph). The numbers of genes in the four areas are displayed in white text boxes. 

Numbers of transcripts with transcript evidence were plotted on cumulative histograms above the 

scatter plot (green). Numbers of transcripts with protein evidence were plotted on cumulative 

histograms on the right of the scatter plot (red). 
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Figure 3. Comparison of the novel IPO323 genome annotation (Re-annotated Gene Models, RGM) 

with the four available annotations 

a) Upsetplot of RGMs with gene models from the four available annotations (JGI, MPI, RRES and 

CURTIN).  Number of shared (identical) gene models for coding sequences (CDS).  

b) Number of identical CDS between RGMs and each available annotation. 
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Figure 4. Transcript isoforms of Re-annotated Gene Models (RGMs) ZtIPO323_030030 (a) and 

ZtIPO323_013330 (b) supported by Iso-Seq and RNA-Seq evidence. 

a) Gene ZtIPO323_030030 (chr2: 777930…1778675, 747 b). This RGM has two transcript isoforms 

(alternative 3’ acceptor site). Both encoded Small Secreted Proteins (SSP 10, File S1). Previous 

annotations selected the second acceptor site leading to the longest CDS. A single Iso-Seq transcript 

corresponding to the longest CDS was detected (Iso-Seq track), while both isoforms were detected 

using RNA-Seq data (RNA-Seq assembled transcript). RNA-seq coverage identified both isoforms in 

equal amounts (RNA-Seq coverage Xyl). Based on read coverage from different RNA-Seq libraries, the 

isoform corresponding to the shortest CDS was the most frequent. This isoform was likely the 

canonical form and encoded a protein with a C-terminus that was reduced in length by 34% 

compared to the other isoform. RGMs with isoforms track: different isoforms. Iso-Seq track: filtered 

Iso-Seq transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq 

assembled transcript track: assembly of strand-specific RNA-Seq reads. 

b) ZtIPO323_013330 (chr_1:3420115..3424093, 3.98 Kb). This RGM had four transcript isoforms. The 

selected RGM had four splicing sites, one of which in the 5’ UTR was supported by Iso-Seq transcript 

(Iso-Seq n°2) and RNA-Seq (RNA-Seq coverage Xyl). Two Iso-Seq transcripts with one or two intron 

retention events were detected as Iso-Seq transcripts (Iso-Seq n°1 and 3) and confirmed by RNA-Seq 

(RNA-Seq coverage Xyl). One Iso-Seq transcript had an alternative 5’ donor splicing site in the 5’ UTR 

(Iso-Seq n°4). This isoform was likely weakly expressed, as it was not supported by RNA-Seq (RNA-Seq 

coverage Xyl). RGMs with isoforms track: different RGM isoforms. Iso-seq track: filtered Iso-seq 

transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq 

assembled transcript track: assembly of strand-specific RNA-Seq reads.  
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Figure 5. Examples of polycistronic transcripts shown for Re-annotated Gene Models (RGMs) 

ZtIPO323_010430 and ZtIPO323_010440 

RGMs ZtIPO323_010430 and ZtIPO323_010440, located at chr_1:2692858...2697168 and 

chr_1:2692858...2697168, respectively, were transcribed on the same strand with overlapping 3’UTR 

and 5’UTR (red rectangle). Iso-Seq polycistronic track: evidence of transcripts covering the two 

RGMs. A strong decrease in RNA-Seq coverage was observed in the region of the overlap (red dashed 

rectangle), suggesting two singles, overlapping transcripts. The assembly of RNA-Seq reads led to a 

polycistronic transcript involving the two RGMs, likely resulting from the wrong assembly of reads 

from these overlapping transcripts. Iso-seq track: filtered Iso-seq transcripts mapping at this locus. 

Iso-Seq polycistronic track: polycistronic transcripts identified in the Iso-Seq database. RNA-seq 

transcript track: assembly of strand-specific RNA-Seq reads mapping at this locus. RNA-seq coverage 

Xyl track: coverage of strand-specific RNA-Seq reads mapping at this locus. 
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Categories Counts 

Full-splice_match (FSM) 
1
 7872 

Incomplete-splice_match (ISM)
2
 305 

Fusion 45 

Genic
3
 664 

Intron retention (IR) 1571 

novel_in_catalog (NIC)
4
 7 

novel_not_in_catalog (NNC)
5
 474 

Antisense 395 

Intergenic 357 

 

1 Whole transcripts with possible alternative 3’ and 5’ ends 
2
 Partial overlaps of transcripts fitting with intron coordinates 
3
 Partial overlaps of introns and exons not compliant with intron/exon coordinates 
4 Use combination_of_known_splice sites 
5 At_least_one_novel_splice site detected 

 

 

Table 1. Classification of Iso-Seq transcript isoforms from Zymoseptoria tritici isolate IPO323 

Filtered Iso-Seq transcripts from different growth conditions were analysed and classified with 

Sqanti3. 
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