Structural evidence for MADS-box type I family expansion seen in new assemblies of *A. arenosa* and *A. lyrata*

Jonathan Bramsiepe\(^a\,b\,\$\), Anders K. Krabberød\(^a\,\$\), Katrine N. Bjerkan\(^a\,b\), Renate M. Alling\(^a\,b\), Ida M. Johannessen\(^a\), Karina S. Hornslien\(^a\), Jason R. Miller\(^c\), Anne K. Brysting\(^a\,b\) and Paul E. Grini\(^a\,*\)

\(^a\) Section for Genetics and Evolutionary Biology and \(^b\) CEES, Department of Biosciences, University of Oslo, 0316 Oslo, Norway\(^c\) College of STEM, Shepherd University, Shepherdstown, West Virginia 25443-5000. \(^\$\) Joint 1st authors. \(^*\) Author for correspondence, paul.grini@ibv.uio.no

Author Contributions: PEG, JB, AKK, KNB & AKB designed the research; JB, AKK, KNB, IMJ, RMA & KSH performed the experiments; JB, AKK, KNB, RMA, KSH, JRM, AKB & PEG analyzed and discussed the data; JB, AKK, KNB, AKB & PEG wrote the article; All authors revised and approved the article.

Conflict of interest statement: The authors state no conflict of interest.
Summary

Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago and are identified by genome-wide polymorphisms or morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based in the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors are specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for a high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression between A. arenosa and A. lyrata ssp. petraea in the endosperm, suggesting a genetic cause for the endosperm-based hybridization barrier in A. arenosa and A. lyrata ssp. petraea hybrid seeds.

Keywords: MADS-box, Arabidopsis genome assembly, A. lyrata, A. arenosa, endosperm
Introduction

Arabidopsis thaliana diverged from its closest relative, *A. arenosa* and *A. lyrata*, at least 6 million years ago (mya) (Hohmann et al., 2015), corresponding with the basal chromosome number reduction from eight to five in *A. thaliana* (Lysak et al., 2006). The species are identified by genome-wide polymorphisms or morphological traits, but only the monophyly of *A. thaliana* is convincingly described as being supported 100% at the level of individual gene trees (Novikova et al., 2016). The species are to a high degree reproductively isolated, but natural field studies (Schmickl and Koch, 2011; Marburger et al., 2019; Schmickl and Yant, 2021) and interspecific hybridization in controlled conditions (Chen et al., 1998; Comai et al., 2000; Nasrallah et al., 2000; Josefsson et al., 2006; Walia et al., 2009; Burkart-Waco et al., 2012; Burkart-Waco et al., 2013; Burkart-Waco et al., 2015; Bjerkann et al., 2020) show that hybridization barriers are incomplete.

A special type of hybridization barrier is based in the triploid endosperm of the seed, where a syncytial growth phase accumulating storage components followed by cellularization switches the endosperm from nutrition sink to the primary nutrition source of the embryo (Henericke et al., 2012). Embryo lethality is frequently observed in hybrid seeds and contrasted by embryo survival when cultivated in *vitro* after microdissection, suggesting that the endosperm fails to support and transfer nutrition to the embryo (Rebernig et al., 2015; Florez-Rueda et al., 2016; Tonosaki et al., 2017; Lafon-Placette et al., 2017).

The MADS-box type I family of transcription factors are specifically expressed in the endosperm at the time of transition to cellularization (Shirzadi et al., 2011; Masiero et al., 2011; Bjerkann et al., 2020; Bemer et al., 2010; Zhang et al., 2018), and several lines of evidence has suggested a role of type I genes in endosperm based hybridization barriers (Joseffson et al., 2006; Walia et al., 2009; Bjerkann et al., 2020; Burkart-Waco et al., 2015). The gene family is well known for its high duplication rate, and is contrasted by its sister lineage, the MADS-box type II family, which consists of highly conserved single-copy genes (Parenicová et al., 2003; Gramzow and Theissen, 2010; Qiu and Köhler, 2022). Members of the MADS-box type I family are also well known for being regulated by genomic imprinting, parent of origin dependent allelic expression in the endosperm (Köhler et al., 2003; Shirzadi et al., 2011; Bjerkann et al., 2020; Zhang et al., 2018; Masiero et al., 2011).

Whether gene duplication in the MADS-box type I family is favored or sensed by genomic imprinting is disputed (Nam et al., 2004; Yoshida and Kawabe, 2013; Erilova et al., 2009). One of the first
discovered imprinted genes, MEDEA (MEA), is crucial for endosperm cellularization (Grossniklaus et al., 1998; Kinoshita et al., 1999), and a primary target of MEA is PHERES1 (PHE1), a paternally expressed MADS-box type I transcription factor. A reduction of PHE1 expression rescues the mea mutant phenotype in seeds, and in hybrid crosses, parental imprinting of PHE1 is altered to the opposite parent (Köhler et al., 2003; Joseffson et al., 2006; Walia et al., 2009). Recently, a propagation of PHERES1 target sites by transposon events was described and indicated a powerful and recent evolutionary effect (Batista et al., 2019; Qiu and Köhler, 2020). Addressing the involvement of MADS-box type I genes and genomic imprinting in the context of hybridization, and especially in crosses between outcrossing species, is important since the occurrence of the phenomenon in selfing species may be considered an evolutionary remnant from outcrossing species.

Such analyses require well-assembled genomes to allow for correct ortholog prediction and identification of paralogs, and the ability to address structural variation in the DNA sequences. The Arabidopsis thaliana genome caused an explosion in plant genome research, supporting questions in many fields (The Arabidopsis Genome Initiative, 2000). The small genome size and the strong homozygosity of A. thaliana made this effort successful but is not archetypical for the majority of plants, not even the genus Arabidopsis. The complexity of whole-genome duplications, ancient and recent polyploidization events, and also high transposon activity creating abundant pseudogenes, make the assembly of plant genomes especially challenging (Kress et al., 2022). Thus, for many sequenced plant genomes, the assembly of repeats such as centromeres, telomeres, and ribosomal DNA has become feasible only after considerable methodological improvements implemented by long-read sequencing technology and Hi-C scaffolding (Naish et al., 2021; Kovaka et al., 2023).

Using assembled Arabidopsis genomes and new assemblies of the genomes of the European A. arenosa and A. lyrata ssp. petraea, we have analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number and structural genomic variation related to the type I loci. The analysis is compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm based hybridization barriers.
Results and Discussion

Assembly and annotation of A. arenosa and A. lyrata ssp. petraea genomes

To identify MADS-box type I family orthologs between species, allowing interspecies gene expression studies of orthologs between Arabidopsis species, and comparative analysis of orthologous and paralogous genes including their genomic neighborhood, we sequenced and assembled the genomes of one individual of A. arenosa from Pusté Pole in Slovakia and one individual of A. lyrata ssp. petraea from Pernitz in Austria (see Figure S1 and Data S1 for a summary of assembly methods and statistics).

The genome sizes were estimated as 201 Mbp for A. lyrata ssp. petraea and 179 Mbp for A. arenosa Pusté Pole (see K-mer analysis in Figure S2), which were confirmed by flow-cytometric data (Data S2) and previous reports (Johnston et al., 2005; Lysak et al., 2009; Dart et al., 2004), and by the assembled sequence lengths of 188 Mbp and 153 Mbp. Whole-genome alignments between scaffolded assemblies were analyzed for breaks and inconsistencies (Figure S3-6 (Robinson et al., 2011; Durand et al., 2016; Dudchenko et al., 2018), revealing chromosome-length scaffolds comparable in quality to other published genomes of Arabidopsis (Data S1).

Localization of rDNA, telomeric and centromeric repeats indicate complete assemblies and the remaining gaps clustered close to the centromeres (Figures 1A and B). Repeats and transposable elements (TE) were classified and compared to their occurrence in A. lyrata ssp. lyrata and A. thaliana genomes, revealing a higher percentage of repeat sequences in A. arenosa and A. lyrata compared to A. thaliana (Figure 1C). Comparison of the predicted proteomes of A. arenosa Pusté Pole, A. lyrata ssp. petraea, and A. thaliana detected more than 21 thousand shared orthogroups and a few (<2%) species-specific orthogroups (Figure 1D). Orthogroups shared by the A. arenosa and A. lyrata ssp. petraea species only were two to three times more frequent, reflecting the recent split of the two species.

Analysis of local structural variants of A. arenosa Pusté Pole and A. lyrata ssp. petraea to A. thaliana and A. lyrata ssp. lyrata revealed a high syntenic relationship and limited chromosomal rearrangement (Figure 1E, Figure S7).
Figure 1. Comparison of Arabidopsis genome assemblies. Repeats and genes were predicted using RepeatModeler and Braker. (A-B) Idiograms of A. lyrata ssp. petraea (A) and A. arenosa Pusté Pole (B). The repeat density is shown as a heat map. Gaps (red), rDNA (green), and telomeric sequences (blue) are indicated as bars next to the chromosomes. Hi-C scaffolding gives a continuous genome assembly, and the few remaining gaps cluster in centromeric regions. (C) Abundance of repeat classes in A. lyrata ssp. petraea and A. arenosa Pusté Pole compared to A. thaliana and A. lyrata ssp. lyrata. The A. thaliana genome has the lowest number of repeats relative to genome size. The increased number of repetitive elements in A. lyrata ssp. petraea compared to A. lyrata ssp. lyrata is probably due to the technical advantage of using long read sequencing technology (Pucker et al., 2022). (D) Venn diagram showing overlap of predicted orthologs between A. lyrata ssp. petraea, A. arenosa Pusté Pole, and A. thaliana. Orthogroups were predicted using OrthoFinder. A majority of orthologs are common for all three species, while few species-specific genes were identified. (E) Synteny of A. lyrata ssp. petraea and A. arenosa Pusté Pole assemblies to A. lyrata ssp. lyrata and A. thaliana references. Known rearrangements can be found in the comparison to the n=5 based karyotype in A. thaliana. The karyotypes between A. arenosa and A. lyrata overlap, with one large inversion on the end of scaffold 7. The A. lyrata ssp. petraea assembly was corrected for a previously reported misassembly on scaffold 1 (Slotte et al., 2013).

MADS-box gene family characterization identifies diagnostic motifs

To identify MADS-box type I family orthologs between species, gene sequences from A. thaliana were used to identify the MADS-box genes in four currently available Arabidopsis genomes of sufficient quality (A. thaliana, A. lyrata ssp. lyrata, A. halleri, and A. arenosa Strecno) in addition to the two
newly assembled genomes (see Data S3.1 for all sequences). In a phylogenetic tree using two *Capsella*
species as outgroups (*C. rubella* and *C. grandiflora*), the MADS-box genes were categorized into types
and subgroups according to phylogenetic placement (Figure 2, Figure S8, Figure S9).

Figure 2. Phylogenetic analysis of MADS-box type I genes in *Arabidopsis*. The tree was derived by a maximum likelihood
analysis of 362 identified MADS-box type I sequences from *A. thaliana, A. lyrata ssp. petraea, A. arenosa Strecno, A. arenosa*
Pasté Pole, and *A. halleri* with two species of *Capsella* (100 sequences; not shown in the figure) used as outgroup. Solid
branches represent bootstrap support > 85%, while branches with support values < 85% are dashed. The root of the tree is
placed between type I and type II genes (the corresponding tree and heatmap for type II genes can be found in Figure S9).
Triangles represent clades where branches are collapsed at the most recent gene duplication event in the last common ancestor
of the genus *Arabidopsis*. The length of the triangles corresponds to the overall branch length of the collapsed clade. The
groups are colored with Mα in red, Mβ in blue, and Mγ in green (see the main text for naming schemes of clades). The heatmap
shows the number of gene copies for each clade in the five genomes. The column next to the heatmap indicates canonical
MADS-box names of the genes in *A. thaliana* found in the corresponding clade; “none” means that a gene representing the
clade is not found in the *A. thaliana* genome, while “new” indicates that the gene does not have a given MADS-box name in
A. thaliana. The corresponding A. thaliana gene locus code (AGI) and commonly used synonymous names for MADS-box genes can be found in Data S3. The last column shows a simplified representation of the MEME motifs. The insert in the lower right corner shows PCA on the occurrence of MEME motifs (Full PCA in Figure S10). A fully expanded phylogenetic tree with individual tip labels, support values for all branches, and the outgroup Capsella can be found in Figure S8. Results from the full MEME analysis can be found in Figure S8.

As expected, the resulting tree separates type I from type II, as well as the 3 subgroups of type I (Mα, Mβ, Mγ) and the 2 subgroups of type II (MIKC and MIKC* [also referred to as Mδ]) (Henschel et al., 2002; Parenicová et al., 2003; Arora et al., 2007; Thangavel and Nayar, 2018; Gramzow and Theißen, 2013; Qiu and Köhler, 2022). Monophyletic groups of Arabidopsis MADS-box genes, sharing a common ancestor with genes from the outgroup Capsella, are numbered starting from the top of the tree. Additional gene duplications that occurred in the common ancestor of Arabidopsis, but after Arabidopsis and Capsella separated, are marked with an additional letter. For instance, “Mγ-1a” and “Mγ-1b” indicate that these two clades share a last common ancestor with C. rubella (i.e. “Mγ-1”), but have a gene duplication specific for Arabidopsis that occurred after the separation of Arabidopsis from the rest of the Brassicales (Figure 2; for a fully expanded tree with names of all groups and sequences, see Figure S8, Data S3).

A principal component analysis of MEME motifs showed that the distribution of sequence motifs follows the same patterns as the phylogenetic tree (Figure 2, Figure S10). This allowed the identification of motifs that are diagnostic for clades or even larger groups, as exemplified by Mγ motif 3 or Mα motifs 7 and 8 (Figure 2). The protein motifs in MADS-box genes were generally found to be more similar inside clades than between clades. Some motifs were distributed in all clades except one, as exemplified by motif 46 (not in MIKC) and motif 17 (not in Mα). Motifs that classified MADS-box type I gene sequences into one of the Mα, Mβ, and Mγ clades are shown in Figure 2, Figures S8 and S9.

Variance in MADS-box type I gene copy number

The gene copy number was determined for each Arabidopsis species in each clade of the phylogenetic tree (Figure 2). The gene copy number varies for the MADS-box type I gene clades. The number of copies is low for all clades in type II MIKC (Figure S9) except the type II clade FLOWERING LOCUS C (FLC), which spans MIKC28 to MIKC32, including MAF1-MAF5 and FLC (Figure S9), and which is arranged as a tandem array on chromosome 5 in A. thaliana (Ratcliffe et al., 2003). The FLC
duplication in *A. lyrata* ssp. *petraea* and its effect on flowering were previously studied (Kemi et al., 2013).

Members of the Mβ group were highly duplicated. The Mβ-1, Mβ-3, and Mβ-5 clades have three to four copies in *A. arenosa* and *A. lyrata*. *A. thaliana* has seven copies in the Mβ-1 and Mβ-3 clades and two copies in the Mβ-5 clade (Figure 2). The Ma group is separated into two monophyletic groups (Parenicová et al., 2003). In order to investigate the biological roles of the two groups, we compared the newly assembled versions of those genes to previously published interaction maps between MADS-box proteins (Folter et al., 2005; Qiu and Köhler, 2022). The first group (Ma-1 to Ma-11) contains clades with proteins for which only interaction with Mγ proteins has been found. Ma-5 and Ma-9 are the exceptions for which protein interaction with the Mβ group was also found in a yeast two-hybrid screen (Folter et al., 2005; Qiu and Köhler, 2022). In strong contrast, for the second group (Ma-12 to Ma-18), all *A. thaliana* proteins could interact with proteins of the Mβ class, while Ma-13, Ma-14, Ma-17, and Ma-19 could also interact with Mγ in the same yeast two-hybrid studies (Qiu and Köhler, 2022; Folter et al., 2005).

The groups are also distinguished by gene copy number, with the second group having higher numbers comparable to the Mβ class. The Ma-1 (*AGL23/28*) and Ma-4 (*DIANA*) clades, which are involved in female gametophyte development in *A. thaliana* (Colombo et al., 2008; Bemer et al., 2008; Steffen et al., 2008), are each duplicated once in *A. lyrata* and *A. arenosa* Pusté Pole. The Ma-2 (*AGL40*) and the Ma-3 clade containing *AGL62* in *A. thaliana* are single-copy genes in *A. thaliana*, *A. lyrata*, and *A. arenosa*. A possible explanation for the lack of expansion in Ma-2 and Ma-3 is their functional requirement in endosperm development. Mutations in *AGL62* cause early endosperm cellularization in *A. thaliana*, and it is suggested that *AGL40* may have functions in the same pathway since *agl40* mutant plants produce smaller seeds (Kang et al., 2008; Roszak and Köhler, 2011; Kirkbride et al., 2019). Like Mβ-1 and Mβ-3, the Ma-7a clade is notable for its high duplication rate in *A. thaliana*: four duplicate genes (*AGL58, AGL59, AGL64* and *AGL85*) were found in the Ma-7a clade, while only single orthologs were detected in *A. lyrata* and *A. arenosa*. The opposite is found for the Ma-9 clade, which contains three loci in *A. lyrata* and *A. arenosa* but only one single gene in *A. thaliana* (*AGL102*). In the second Mβ-binding group, the Ma-12 stands out with high duplication rates in *A. lyrata* and *A. arenosa*, represented by *AGL73, AGL83*, and *AGL84* in *A. thaliana*. The other Mβ-binding Ma clades have, except for Ma-15, single-gene duplications or losses depending on the *Arabidopsis* species.

In the Mγ class, the Mγ-1 and Mγ-3 clades have variable MADS-box type I gene copy numbers. Mγ-1a, known as *PHERES1* (*PHE1*) in *A. thaliana*, shows six copies in *A. lyrata* ssp. *petraea* but only three
in *A. lyrata* ssp. *lyrata*. The homolog *PHE2* in *A. thaliana* is grouped in the distinct Mγ-1b clade and duplicated in both *A. lyrata* subspecies. The Mγ-3 clade has three copies, *AGL34, AGL36*, and *AGL90* in *A. thaliana*, and a triplication can also be found in *A. arenosa* Pusté Pole contrasted by single-copy loci in the other species studied (Figure 2).

Distribution and clustering of MADS-box type I genes differ in Arabidopsis

We compared gene family distributions on chromosomes between *A. thaliana* and other species in the genus. Whereas *A. thaliana*, MADS-box type II genes are highly conserved but distributed across all chromosomes (Parenicová et al., 2003; Gramzow and Theissen, 2010; Qiu and Köhler, 2022), the type I genes are primarily localized on chromosomes 1 and 5, hypothesized to be a result of recent and local duplications (Parenicová et al., 2003). In *A. lyrata* and *A. arenosa*, however, we find that the MADS-box type I genes are distributed across all eight chromosomes (Figure 3). The highly variable type I clades cluster in the vicinity of centromeric repeats.

Chromosomal localisation may explain the high duplication rate of type I clades in *A. lyrata* and *A. arenosa* compared to *A. thaliana*. For example, the variable Mγ-2 group is found close to centromeric repeats in *A. thaliana*, *A. lyrata*, and *A. arenosa*. There are three Mγ-2 in *A. thaliana*, four in *A. lyrata* ssp. *petraea*, and two in *A. arenosa* Pusté Pole - all on chromosome 1 (Figure 3). On the other hand, the Mγ-1 clades with *PHE1* and *PHE2* are located distantly from the centromere on the lower arm of chromosome 1 in *A. thaliana* and contain only these two genes. In *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole, the local duplications in these Mγ-1 clades are clustered close to the centromere of chromosome 2.
Figure 3. Genome-wide distribution of MADS-box type I genes in *Arabidopsis arenosa* and *A. lyrata* ssp. *petraea*.

Localization of MADS-box type I Mα (red), Mβ (blue), and Mγ (green) are shown on top of the predicted syntenic sequence context. The naming corresponds to clades in the MADS-box phylogeny in Figure 2. While the MADS-box type I genes are mainly located on chromosomes 1 and 5 in *A. thaliana*, they are broadly distributed across all chromosomes of *A. arenosa* Pusté Pole and *A. lyrata* ssp. *petraea*. Local duplication and clusters of paralogs can be found in all three species. The heatmap covering the idiogram indicates gene density. Scaffolds are not in scale comparing species but show the proportion of the individual genomes (for scale, see Figure 1E and Figure S7).
A similar pattern can be seen in regard to *A. thaliana* chromosome 5. The highly variable Mβ-3 cluster is located close to the centromeric repeats on chromosome 5 of *A. thaliana* and on chromosome 6 of *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole. In contrast, the Ma-12 loci are centrally located on the lower arm of chromosome 5 of *A. thaliana*, distant from the centromere, yet have a syntenic relationship to a region close to the centromeric repeats on chromosome 8 of *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole (Figure 3).

AGL23 and *AGL28* of the Ma-1 clade are located on alternate chromosome arms of chromosome 1 of *A. thaliana*. The distant localization is maintained in syntenic regions in *A. lyrata* and *A. arenosa*, transferred to chromosomes 1 and 2 (Figure 3). The separate localization of these genes is consistent with their distinct expression (Figure 4). Likewise, *DIANA* (*AGL61*/Ma-4) is a single-copy gene on chromosome 2 of *A. thaliana*. However, the Ma-4 clade has a local duplication on chromosome 4 of *A. lyrata* and *A. arenosa* (Figure 3). Also, these genes show distinct expression during seed development (Figure 4).

Differential expression of MADS-box orthologs in *Arabidopsis* seeds

In order to further investigate the relationship between MADS-box type I expansion, their genomic neighborhood and gene expression in the seed, we generated seed transcript profiles of *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole. Several MADS-box type I genes regulate early seed development in *A. thaliana* and are expressed in an imprinted or biparental manner at the transition to endosperm cellularization (Bemer et al., 2010; Zhang et al., 2018; Bjerkan et al., 2020; Shirzadi et al., 2011; Masiero et al., 2011). In *A. thaliana*, a steep decline in MADS-box type I gene expression can be seen between 6 DAP and 9 DAP (days after pollination), coinciding with developmental stages before and after cellularization (Bjerkan et al., 2020) (Figure 4). Seed development in *A. lyrata* and *A. arenosa* progresses slower, and the comparable developmental phenotypes can be staged to 9 and 15 DAP (Lafon-Placette et al., 2017). We therefore compared MADS-box type I RNA-Seq profiles from 9 and 15 DAP *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole seeds to *A. thaliana* 6 to 9 DAP seed transcriptomes. While individual MADS-box type II genes were either never expressed or constantly expressed at both sampled stages in *A. thaliana* (Figure S11), their expression levels differed in *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole (Figure 4). In all species, high expression of the majority of My
genes was observed before cellularization, whereas Mβ expression is low or absent, and undergoes only minor changes during later stage endosperm development.

Figure 4. MADS-box type I expression during Arabidopsis seed development. Gene expression profiles are displayed for all identified MADS-box type I genes and compared between *A. lyrata* ssp. *petraea* (left column), *A. arenosa* Pusté Pole (middle column), and *A. thaliana* (right column). The *A. thaliana* development time series serves as a reference (Bjerkan et al., 2020). The endosperm cellularization in *A. thaliana* occurs between 6 and 9 days after pollination (DAP), indicated by the gray boxed area. To adjust for the relatively slower development in *A. arenosa* and *A. lyrata*, corresponding stages before and after endosperm cellularization were sampled at 9 and 15 DAP, respectively. Orthologous genes are grouped and ordered and follow the MADS-box phylogeny described in Figure 2. Counts normalized for each sample are shown on a base-2 logarithmic scale. Most My and half of the Ma genes show a high expression before cellularization and a substantial decline post cellularization in *A. thaliana* and *A. arenosa*. In *A. lyrata* ssp. *petraea*, however, this decline of expression can not be found; instead, most of the expressed My and Ma genes even increase in expression at the later (15 DAP) stage.
The Mα group expression pattern reflects its phylogeny and splits into two groups (Figure 2), as only the Mα-1 to Mα-11 clades are significantly expressed during early seed development. The weakly expressed Mα genes and the whole group of Mβ were characterized by high duplication levels. Although not significant for comparing all type-I MADS genes (R = -0.15 p = 0.077) we suggest that recent gene duplication in MADS-box type I genes correlates negatively with the observed seed-specific expression of these loci.

The Mα and Mγ expression patterns also reveal differences between A. lyrata ssp. petraea and A. arenosa Pusté Pole. In A. arenosa, the expression patterns are similar to A. thaliana with an up and down-regulation before and after endosperm cellularization, respectively. Surprisingly this pattern can not be found in A. lyrata ssp. petraea, where the expression of most MADS-box type I genes continues to increase at the later time point, sampled after endosperm cellularization. Mα-3 (AGL62), of which mutation leads to precocious cellularization in A. thaliana (Kang et al., 2008), is down-regulated at cellularization in A. thaliana and A. arenosa but its expression remains unchanged in A. lyrata ssp. petraea. Likewise, Mγ-1a (PHE1) expression declines in A. thaliana with the onset of endosperm cellularization, and Mγ-1a is also higher expressed during early seed development in A. arenosa and declines at cellularization. In A. lyrata ssp. petraea, however the Mγ-1a duplications show a higher level of expression at the 15 DAP time point compared to 9 DAP (Figure 4). In summary, the observed down-regulation of type I class Mα and Mγ in A. thaliana and A. arenosa is absent, weakened, or strongly delayed in A. lyrata ssp. petraea, or that endosperm cellularization occurs independent of MADS-box type I expression.

Recent duplication in Mγ 1 (PHERES1)

The complete A. lyrata ssp. petraea and A. arenosa Pusté Pole genomes allow interspecies comparisons of gene family expansion. We investigated the observed lack of Mγ-1a down-regulation and extensive expansion of this clade in A. lyrata ssp. petraea. In A. thaliana, Mγ-1a (PHE1) is paternally expressed while the maternal allele is repressed by the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2). It is proposed that PRC2 repression is circumvented in the paternal allele of PHE1 by DNA-methylation of a repeat-rich region in the three-prime regulatory region of PHE1 (Makarevich et al., 2008). We therefore used the whole-genome assemblies of A. lyrata ssp. petraea and A. arenosa Pusté Pole to address and compare the Mγ-1 duplications in their genomic landscape (Figure 5).
To exclude artifacts, we compared the *A. lyrata* ssp. *petraea* *Mγ*-1a genomic loci with *A. lyrata* ssp. *lyrata*, and our primary and scaffolded assemblies supported this area well. Both genome assemblies aligned well through this region. We addressed this area's syntenic relation, the origin, and the underlying nature of these gene duplications. *Mγ*-1a is represented by 3, 6, and 2 orthologs in *A. lyrata* ssp. *lyrata*, *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole, respectively (Figure 5).

Figure 5. *Mγ*-1 duplications in *Arabidopsis lyrata* ssp. *lyrata*, *A. lyrata* ssp. *petraea*, and *A. arenosa*. Localization and transpositions of *Mγ*-1 genes (red) on segments of chromosome 2 in *A. lyrata* ssp. *lyrata*, *A. lyrata* ssp. *petraea* and *A. arenosa* Pusté Pole, with genes marked in blue, repeats in gray and assembly gaps in black. Syntenic sequences between assemblies are indicated by light gray connections. Inversions (orange), duplications (blue), translocations (green), inverted duplications (light purple), and inverted translocations (orange-red) were classified by SyRI. Scale bar and nucleotide positions refer to the *A. lyrata* ssp. *petraea* assembly.

We used SyRI synteny analysis to investigate the structural variants and the genomic context surrounding these orthologs close to the centromeric region of chromosome 2. The analysis show that the *A. lyrata* ssp. *lyrata* *Mγ*-1a_01 is quadrupled in *A. lyrata* ssp. *petraea*, creating *A. lyrata* ssp. *petraea* *Mγ*-1a_01, *Mγ*-1a_02, *Mγ*-1a_03 and *Mγ*-1a_04. The *A. lyrata* ssp. *lyrata* *Mγ*-1a_03 is duplicated generating *Mγ*-1a_05 and *Mγ*-1a_06 in *A. lyrata* ssp. *petraea*. The *A. lyrata* ssp. *lyrata* *Mγ*-1a_02 is structurally related to its paralog *Mγ*-1a_01 in *A. lyrata* ssp. *lyrata*, but exhibits no syntenic relation to *A. lyrata* ssp. *petraea*. The two *Mγ*-1a paralogs in *A. arenosa* Pusté Pole, *Mγ*-1a_01 and *Mγ*-1a_02 have a syntenic relation to *Mγ*-1a_03 and *Mγ*-1a_06 of *A. lyrata* ssp. *petraea*, respectively (Figure 5). Alignments of genomic sequences surrounding *Mγ*-1 loci were generated using MAFFT, showing that the downstream repeat-rich area responsible for imprinting of *A. thaliana* *Mγ*-1a ([Makarevich et al., 2008](https://www.journals.elsevier.com/plant-molecular-biology)) can be found in one *A. arenosa* Pusté Pole (*Mγ*-1a_01) and four *A. lyrata* ssp. *petraea* loci (*Mγ*-
1a_01, My-1a_02, My-1a_04 and My-1a_06) (Figure S12). The presence of the repeat-rich area, and thereby duplication of the regulatory region, indicates that these genes may be imprinted in a similar manner as PHE1 (Makarevich et al., 2008). However, imprinting studies in A. lyrata ssp. petraea is required to demonstrate this, since a repeat-rich region is also detected in one A. lyrata ssp. lyrata paralog, but no My-1a imprinting was identified in a previous study searching for imprinting in A. lyrata ssp. lyrata (Klosinska et al., 2016).

To further analyze the functional regulation of the My-1 group, we used A. arenosa and A. lyrata ssp. petraea genome resources to identify the orthologous genes of previously described My-1a (PHE1) transcription factor targets in A. thaliana (Batista et al., 2019). These PHE1 targets were previously clustered into three groups in A. thaliana depending on their expression in the seed. Characteristic for cluster 1 is the down-regulation in A. thaliana during endosperm cellularization, whereas the two other clusters show only minor differential expression changes (Batista et al., 2019). Our differential expression analysis of A. arenosa and A. lyrata ssp. petraea orthologous My-1a (PHE1) targets before and after endosperm cellularization demonstrated a strong down-regulation of cluster 1 My-1a targets in A. arenosa Pusté Pole seeds (Figure 6A). In contrast, this drop of expression could not be detected in A. lyrata ssp. petraea cluster 1 My-1a targets, where the expression level was relatively constant (Figure 6A). In summary, cluster 1 My-1a targets are differentially regulated in A. thaliana and A. arenosa versus A. lyrata ssp. petraea during endosperm cellularization.

Figure 6. Differential expression of orthologs of My-1a PHE1-targets and MADS-box genes before and after endosperm cellularization. (A) My-1a PHE1-targets in A. thaliana were clustered depending on their expression during seed development (Batista et al., 2019). Characteristic for cluster 1 is the down-regulation in A. thaliana during endosperm cellularization (green). Differential expression of orthologs of My-1a PHE1-targets in A. arenosa Pusté Pole and A. lyrata ssp. petraea are plotted in red and blue, respectively. Note that repression in cluster 1 is also seen in A. arenosa (red) but not in A. lyrata ssp. petraea (blue). (B) Differential gene expression of MADS-box genes before and after endosperm cellularization in A. thaliana, A.
lyrata ssp. petraea and A. arenosa Pusté Pole. Similar to potential orthologs of Mγ-1a PHE1-targets, Mα and Mγ MADS-box type I gene expression declines around endosperm cellularization in A. thaliana (green) and A. arenosa (red) while increases in A. lyrata ssp. petraea (blue). DAP, days after pollination. Significance, ** p<0.01; *** p<0.001; n.s. not significant (Wilcoxon signed-rank test).

Focusing on the MADS-box type I genes, Mα and Mγ genes are down-regulated in A. arenosa Pusté Pole and A. thaliana, whereas in A. lyrata ssp. petraea seeds the orthologous Mα and Mγ genes are upregulated (Figure 6B).

The Mβ genes do not show significant differences. The substantial differences in Mα and Mγ expression between A. arenosa and A. lyrata ssp. petraea before and after cellularization indicate that these species differ in the regulation of the developmental timing of endosperm development. A. thaliana Mα and Mγ expression is regulated similarly to A. arenosa. In hybrid seeds between the species, endosperm developmental failure plays an important role in the establishment of species barriers (Lafon-Placette et al., 2017; Bjerkan et al., 2020), and the observed expression difference between the species may be part of the genetic mechanism leading to the species barrier in hybrid seeds.

Conclusion

Here we have investigated and compared MADS-box type-I gene evolution in the genus Arabidopsis to gene expression in seed stages before and after endosperm cellularization. To do so we generated chromosome-scale assemblies of A. lyrata ssp. petraea and A. arenosa.

The quality of the reference genomes is essential for knowledge transfer from model species such as A. thaliana to their relatives, and research in the genus Arabidopsis has been supported by recent genome sequencing (Rawat et al., 2015; Hu et al., 2011) and improved annotation of the North American A. lyrata ssp. lyrata. This genome has served as reference for functional, ecological, and evolutionary experiments in A. lyrata and also A. arenosa (Klosinska et al., 2016; Yant et al., 2013; Arnold et al., 2016; Lafon-Placette et al., 2017; Bjerkan et al., 2020). Arabidopsis lyrata has also been used as the reference for Arabidopsis reference-guided assemblies (Paape et al., 2018; Burns, Mandáková, Gunis, et al., 2021; Kolesnikova et al., 2023; Jaegle et al., 2023). The genus Arabidopsis has been extensively sequenced, e.g. A. lyrata ssp. petraea (Akama et al., 2014; Paape et al., 2018), A. halleri (Briskine et al., 2016; Legrand et al., 2019), A. kamchatka (Paape et al., 2018), A. suecica (Novikova et al., 2017; Burns, Mandáková, Jagoda, et al., 2021; Jiang et al., 2021), and A. arenosa (Liu et al., 2020; Bohutínská et al., 2021; Burns, Mandáková, Jagoda, et al., 2021; Barragan et al., 2021). The assembly presented is
the only fully \textit{de novo} assembly of \textit{A. arenosa} long reads, and only the fourth chromosome-level genome of any \textit{Arabidopsis} species, to be published and released.

The genome assemblies allowed interspecies comparisons of MADS-box type-I orthologs, gene family expansion analysis and gene expression studies comparing orthologs. We demonstrate using MEME analysis identified motifs that are diagnostic for MADS-box type I clades, an additional guide for MADS-box type I classification but also allowing for future studies of the roles of these motifs. Our analysis suggests that chromosomal localisation may explain the high duplication rate of MADS-box type I clades in \textit{A. lyrata} and \textit{A. arenosa} compared to \textit{A. thaliana}. Gene expansion is observed in orthologs located in centromeric regions whereas the same orthologs in a different species do not expand when located on chromosome arms. A negative correlation between gene duplication in MADS-box type I genes and seed-specific expression of these loci was observed, i.e. highly duplicated genes were associated with low expression values. Furthermore, the duplication rate was linked to previously identified MADS-box interaction (Parenicová \textit{et al.}, 2003; Qiu and Köhler, 2022), where highly duplicated genes were associated with less interactions. We also observed substantial differences in type-I Mα and Mγ expression between \textit{A. arenosa} and \textit{A. lyrata ssp. petraea} before and after endosperm cellularization indicating major differences in developmental regulation in the endosperm between the two species, suggesting a genetic cause for the endosperm based hybridization barrier developmental failure in \textit{A. arenosa} and \textit{A. lyrata ssp. petraea} hybrid seeds.
Experimental procedures

Plant lines and growth conditions

Arabidopsis thaliana accessions were obtained from the Nottingham Arabidopsis Stock Centre (NASC). The *A. arenosa* population MJ09-4 originates from Nízke Tatry Mts.; Pusté Pole (N 48.8855, E 20.2408) and *A. lyrata* ssp. petraea population MJ09-11 originates from lower Austria; street from Pernitz to Pottenstein (N 47.9190, E 15.9755) (Jørgensen *et al.*, 2011; Lafon-Placette *et al.*, 2017; Bjerkan *et al.*, 2020). Seed sterilization was performed by washing in three steps with 70% ethanol, bleach solution (20% Klorin (Lilleborg Industrier), 0.1% Tween20), and wash solution (0.001% Tween20) or by over-night chlorine gas sterilization (Lindsey *et al.*, 2017). Sterile seeds were planted on 0.5 Murashige and Skoog (MS) plates (Murashige and Skoog, 1962) supplemented with 2% sucrose. Seeds were stratified for 1 to 3 weeks at 4°C before transfer to growth chambers at 18°C long-day conditions (16 h light, 160 lmol/m2/sec, relative humidity 60–65%). Seedlings were transferred to soil for vegetative growth and vernalized at 9°C for 3 weeks to induce flowering.

DNA isolation

DNA was isolated from one individual of *A. arenosa* Pusté Pole and one individual of *A. lyrata* ssp. petraea. All available flowers were harvested as input tissue, which resulted in approximately 1-1.5 g of tissue for each plant. Two different protocols were used: one protocol tailored for Illumina short reads, the other for PacBio Sequel I long reads. In both cases, the extraction protocols were the same for both species. For Illumina sequencing, DNA was isolated with the Ezna Plant DNA isolation kit (Omega Bio-tek). To extract high-molecular-weight (HMW) genomic DNA suitable for long-read sequencing, we first performed nuclei isolation (Rachael Workman *et al.*, 2021), followed by the Nanobind Plant Nuclei Big DNA kit from Circulomics to isolate high molecular-weight DNA. For the isolation of nuclei the centrifuge speed used was 3800 g and the DNA isolation was performed using twice the amount of proteinase K and PL1 buffer, two nanodisks for DNA binding, and three washing steps using PW1. DNA purity and concentrations were checked with a NanoDrop ND-1000 and a Qubit 3 fluorometer (ThermoFisher). Fragment length was verified by running 2-5 µl of the isolate on a 0.5% agarose gel overnight at 30V. Four samples with 2 g of plant tissue including stem, flowers, and leaves were flash-frozen for Hi-C sequencing.

Library preparation and sequencing

For both species, 5 µg of HMW DNA was used to generate a 20 kb library according to the manufacturer’s instructions (Pacific Biosciences, USA). The libraries were sequenced on PacBio
Sequel I using Sequel Polymerase v3.0 and Sequencing Chemistry v3.0. Two SMRT-cells were sequenced for A. arenosa Pusté Pole and three SMRT-cells for A. lyrata ssp. petraea. Loading was performed by diffusion and the movie time was 600 min. Sequencing yielded 1,236,862 reads for A. arenosa (estimated coverage 86x), and 1,468,776 reads for A. lyrata (estimated coverage 72x). Sequencing on Illumina HiSeq 4000 resulted in 101,609,762 pair-end reads for A. arenosa (estimated coverage 169x) and 80,006,646 pair-end reads for A. lyrata (estimated coverage 120x). Crosslinked Hi-C DNA sequenced on Illumina HiSeq 4000 resulted in 308,885,555 paired reads (estimated coverage 515x) (Data S1.1). All sequencing was performed at the Norwegian Sequencing Center (NSC; https://www.sequencing.uio.no/).

Genome size estimation

Mercury v1.0 (Rhie et al., 2020) was used to create a k-mer frequency spectrum of the Illumina reads with a k-mer length of 19. High-coverage (≥1000) k-mers were observed to be enriched in ribosomal, mitochondrial, and chloroplast DNA. GenomeScope 2.0 (Ranallo-Benavidez et al., 2020) was used to predict genome size and heterozygosity based on the k-mer spectra. Following the vertebrate genome project (Rhie et al., 2021), all k-mers were included. Relative fluorescence intensities were estimated by flow cytometry (FCM) using fresh plant tissue (Dolezel et al., 2007). Solanum pseudocapsicum L. (2C = 2.59 pg) was used as an internal standard. Relative fluorescence intensity of at least 3000 nuclei was recorded using a Partec Space flow cytometer (Partec GmbH, Münster, Germany) equipped with the UV-LED chip (365 nm). FCM results were expressed as fluorescence intensities relative to unit fluorescence intensity of the internal reference. The estimated haploid genome sizes are comparable to our flow cytometric measurements (Data S2) and estimates in previous studies (Pellicer and Leitch, 2020). The genome size estimates were used to estimate sequencing read coverage.

De novo genome assembly

Six strategies were used to generate a variety of assemblies. One assembly per species was selected for further analysis. Long reads were repeatedly assembled with either Canu v2.1 (Koren et al., 2017), FALCON-unzip v1.3.7 (Chin et al., 2016), or Flye v2.6 (Kolmogorov et al., 2019). Long and short reads were assembled with MaSuRCA v3.3.5 (Zimin et al., 2013). Long reads were also polished with short reads using LoRDEC (Salmela and Rivals, 2014), then repeatedly assembled with Canu or Flye. All assemblies were computed on the Saga supercomputer (https://documentation.sigma2.no/hpc_machines/saga.html). Assemblies were compared by total length, N50-type statistics, longest contig, and gene content (BUSCO versions 3.0.2 and 4.14 (Manni et al., 2021; Simão et al., 2015; Waterhouse et al., 2018) using embryophyta_odb9 with 1440 genes.
from OrthoDB (https://www.orthodb.org/)). For both species, the Canu long-read contig assembly was selected for further processing.

Polishing and haplotig phasing

The contig assemblies were polished using Illumina short reads from the same individual plants with 9 to 12 iterations of Pilon v1.23 (Walker et al., 2014). BUSCO (Manni et al., 2021; Simão et al., 2015; Waterhouse et al., 2018) found high inclusion rates but also high duplication rates for genes expected to be single copy (Figure S1 and Figure S3, indicating that the assembly might have separated both haplotypes of portions of the diploid genomes. Following the documentation on https://github.com/broadinstitute/pilon/wiki, the Purge Haplotigs v1.1.1 (Roach et al., 2018) and Purge_Dups v1.2.3 (Guan et al., 2020) pipelines were run to remove alternate haplotigs. For quality assessment, see Figure S1 to S5, and Data S1.

Reference-guided scaffolding

The *A. lyrata* ssp. *petraea* assembly was scaffolded using RaGOO v1.11 (Alonge et al., 2019) guided by the published *A. lyrata* ssp. *lyrata* assembly (Hu et al., 2011). Manual curation of the computational results revealed the perpetuation of a chloroplast insertion on scaffold 2 and a misassembly on scaffold 1 of the reference (Slotte et al., 2013; Henry et al., 2014; Burns, Mandáková, Jagoda, et al., 2021). The computation had inserted a chloroplast-like contig in the first case, and broken several contigs in the second. The contigs and scaffolds were repaired manually in both cases.

Hi-C scaffolding

Hi-C data for *A. arenosa* were generated with Arima kits and Illumina sequencing. The Hi-C reads were mapped to the draft assemblies with BWA-mem v0.7.17 (Li, 2013; Li and Durbin, 2009) and filtered with matlock (https://github.com/phasegenomics/matlock, commit 9fe3fdd). Scaffold candidates were generated by three algorithms: SALSA2 (Ghurye et al., 2019) https://github.com/marbl/SALSA (Ghurye et al., 2019)commit ed76685(Ghurye et al., 2019), FALCON-Phase vBeta Update 1 (Kronenberg et al., 2021), and ALLHiC (Zhang et al., 2019)https://github.com/tangerzhang/ALLHiC(Zhang et al., 2019)commit ffaa10e(Zhang et al., 2019) (Data S1). The FALCON-Phase scaffolding did not increase genome contiguity significantly and was excluded from further analysis (see Data S1). Scaffolded assemblies were compared to each other by constructing whole genome alignments between the newly scaffolded genomes, as well as to the *A. lyrata* ssp. *lyrata* reference genome (Figures S4 and S5). Scaffolds created by SALSA2 and ALLHiC were visualized in Juicebox (Durand et al., 2016) and curated with the Juicebox Assembly Tools (JBAT, https://github.com/aidenlab/Juicebox, commit
The JBAT version of the ALLHiC scaffolds was selected for further processing. The scaffolds representing both species were processed in the PBJelly gap-filling pipeline v15.8.24 (English et al., 2012).

Repeat classification and masking

One of the largest influences on the quality of the gene prediction and the number of predicted genes was the initial RepeatModeler repeat masking step, which was carefully tuned to known repeat and genome models in *Arabidopsis*. The RepeatModeler v2.0.1 pipeline was run for de novo identification of transposable elements (TEs) (Flynn et al., 2020). This included TRF, RepeatScout, RECON TE detection, LTRharvest and LTR_retriever. Results were merged, clustered, and deduplicated. Repeats were classified by comparison to Dfam v3.1 (Storer et al., 2021). False positives were removed based on sequence homology (blastn ≤1e-10) to an *A. thaliana* cds database (Araport11_cds_20160703) (Cheng et al., 2017), which was beforehand cleaned for sequences with high sequence homology to known TEs in Brassicales (Dfam_3.1 database, (Storer et al., 2021)). The de novo predicted TE families were combined with the Dfam_3.1 and RepBase-20170127 databases and used in RepeatMasker v4.0.9 to annotate and soft mask the assemblies before gene annotation (Smit et al., 2015). Centromeric, ribosomal and telomeric repeats were identified and labeled using previously described sequences (Kawabe and Charlesworth, 2006; Maheshwari et al., 2017; Jin et al., 2020; Rhie et al., 2021).

Genome annotation

The gene prediction was based on the BRAKER v2.1.5 pipeline, which trains GeneMark-EX and AUGUSTUS, including extrinsic evidence from RNA-seq and protein homology (Hoff et al., 2016; Hoff et al., 2019; Brůna et al., 2021). We used available RNA-seq for *A. arenosa* Pusté Pole and *A. lyrata ssp. petraea* from the Sequence Read Archive (Leinonen et al., 2011) and complemented this with seed transcriptomes (see below). In addition, the *A. thaliana* proteome was aligned by GenomeThreader (Gremme et al., 2005) to improve our species-specific training further and guide the gene prediction.

Genome quality assessment

After each assembly processing step, quality control was used to assess our results and change or choose software and parameters. Primary genome statistics were determined by QUAST v5.0.2 (Gurevich et al., 2013). Feature Response Curve (FRC) was used to compare sequence quality (https://github.com/vezzi/FRC_align). Merqury v1.3 gave a k-mer based approach to sequence quality, sequence completes, and duplication rate (Rhie et al., 2020). BUSCO v4.14 (embryophyta_odb9) was
used to monitor gene completeness and duplication rate (Manni et al., 2021). The structural variation
was addressed using minimap2 (Li, 2018) alignments between assemblies and also the A. lyrata ssp.
lyrata reference genome (Li, 2018). The alignments were further inspected with Assemblytics
(Nattestad and Schatz, 2016) and dotPlotly (https://github.com/tpoorten/dotPlotly, commit 1174484)
for visualization.

Orthology prediction and synteny analysis
Orthogroups were inferred between A. arenosa Pusté Pole, A. lyrata ssp. petraea, and A. thaliana
following the OrthoFinder v2.5.2 tutorials (Emms and Kelly, 2019). For synteny and collinearity
assignment of homologous regions, MCScanX (Wang et al., 2012) was used with default parameters.
Syntenic relations were further plotted with the RIDEogram package v0.2.2 (Hao et al., 2020). In
addition, sequence differences were compared by whole-genome comparisons, and structural
rearrangements were classified by SyRI vV1.5 (Goel et al., 2019).

Identification of MADS-box genes
In addition to the two genomes produced in this study, we downloaded publicly available high-quality
genome assemblies from the genus Arabidopsis from the National Center for Biotechnology
next.jgi.doe.gov/). The minimum requirement for the assemblies was a BUSCO completeness score
above 95% and high contig continuity (i.e. near chromosome length assemblies). As an outgroup to
Arabidopsis, we added genomes of Capsella rubella and C. grandiflora (Data S1) with a similar
requirement for BUSCO-score and contig continuity. For genome assemblies without previously
predicted genes, we used AUGUSTUS with the -arabidopsis gene model.

We then constructed a database consisting of the known AGLs (AGAMOUS-like genes) from A.
thaliana (108 in total) retrieved from the Arabidopsis Information Resource (TAIR,
https://www.arabidopsis.org/). AGL26 (At5g26880) was excluded from the database since this is a gene
coding for an RNA methyltransferase and does not have a MADS-box. In addition, we identified five
MADS-box genes from the PlantTFDB website (http://planttfdb.cbi.pku.edu.cn/) which do not
currently have an AGL designation in A. thaliana. For the list of the genes with their corresponding
AGL names as well as commonly used names and abbreviations in A. thaliana, see Data 4.1. Previously
identified MADS-box genes from *A. thaliana* were added as a basic local alignment search tool (BLAST) database in Geneious 2020.2.4 (https://www.geneious.com).

The database of MADS box genes from *A. thaliana* was used in blastp searches (BLAST+ v2.12.0 (Altschul et al., 1990)) against the predicted genes of *A. lyrata ssp. petraea*, *A. arenosa* Pusté Pole, and three published *Arabidopsis* genomes that met our criteria: *A. lyrata ssp. lyrata* (https://phytozome-next.jgi.doe.gov/info/Alyrata_v2_1), *A. arenosa* Strecno (https://www.ncbi.nlm.nih.gov/assembly/GCA_902996965.1), and *A. halleri* halleri (https://www.ncbi.nlm.nih.gov/assembly/GCA_900078215.1), (Data S1.5). In addition, we blasted the predicted genes of two species of *Capsella* against the same database (*Capsella grandiflora*, https://phytozome-next.jgi.doe.gov/info/Cgrandiflora_v1_1 and *Capsella rubella*, https://www.ncbi.nlm.nih.gov/assembly/GCF_000375325.1/). The top five hits for each known AGL were kept for each of the species, with any duplicates removed. All sequences were then annotated with InterProscan (http://www.ebi.ac.uk/interpro implemented in Geneious Prime 2021) to verify the presence of the MADS-box region, and sequences with no MADS-box domain were removed. The results from the InterProscan v5.47 analysis were also used to identify potential mistakes in the predicted gene sequences which were manually corrected (Data S3.2).

Phylogenetic analysis

A multiple sequence alignment was constructed from the blast results together with the canonical *A. thaliana* MADS-box genes from TAIR (https://www.arabidopsis.org) and PlantTFDB (http://plantfdb.cbi.pku.edu.cn/) with MUSCLE version 3.8.425 (Edgar, 2004). A phylogenetic tree was constructed based on the alignment with FastTree2 v2.1.11 (Price et al., 2010) and visualized in Geneious Prime 2021. The resulting tree was manually inspected for any outliers and long branches. Long-branched clades and sequences without any clear homologs to known MADS-box genes were pruned from the tree and removed from the alignment, the remaining sequences realigned, and a new tree was constructed with FastTree2. We repeated the process of tree building, pruning, and realignment until no more spurious clades remained in the tree. The resulting alignment with 841 amino acid sequences was refined with MUSCLE, trimmed with trimAl, and a final phylogenetic tree was constructed with IQ-tree v1.6.12 with ultrafast bootstrap approximation and SH-like approximate likelihood ratio test (Minh et al., 2020). The trees in Figure 2 and Supplemental Figure S8 were visualized in FigTree 1.4.4 (Rambaut 2016).
Motif analysis with MEME

To identify conserved motifs between the MADS-box genes of the Arabidopsis genus, MEME version 5.1.1 (Multiple Expectation Maximization for Motif Elicitation, http://meme-suite.org/) was used. We scanned for the 50 most common motifs with lengths above 20 AA; a graphical representation for the relative position of the motifs on the sequences can be found in Figure S8. The full results, motif sequences and a html version can be found on https://github.com/PaulGrini/Arabidopsis_assemblies. The full-length sequences of the proteins were grouped based on the phylogenetic analysis and commonly occurring MEME motifs into Mα, Mβ, Mγ, MIKC*, and MIKC. A principal component analysis was performed on the occurrence of MEME motifs using the PCAtools package in R (Blighe K, 2022).

Analysis of syntenic regions surrounding Mγ-1

Genomic sequences of My-I and their surrounding upstream and downstream regions from A. thaliana, A. lyrata ssp. petraea and A. arenosa Pusté Pole were aligned with MAFFT v7.470 (Katoh and Standley, 2013) to identify syntenic regions and localize transpositions. SyRI (Synteny and Rearrangement Identifier, https://github.com/swbak/SyRI commit 29a9272 (Goel et al., 2019)) was used to detect and classify structural differences between genomes, i.e inversions, duplications, translocations, inverted duplications, and inverted translocations.

Expression analysis of MADS-box genes in A. arenosa and A. lyrata compared to A. thaliana

Seeds of A. lyrata ssp. petraea and A. arenosa Pusté Pole were dissected from siliques at 9 and 15 DAP and shock frozen in liquid nitrogen. Around 20 seeds were pooled into one tube, and RNA was extracted from three to four replicates per plant and stage using the Spectrum Plant Total RNA kit (SIGMA). MagNA Lyser Green Beads (Roche) was used for the initial lysis step as described in Shirzadi et al. (Shirzadi et al., 2011). RNA concentration and quality were measured with a NanoDrop ND-1000, Bioanalyzer 2100 Agilent RNA 6000 Nano kit, and a Qubit 3 fluorometer (ThermoFisher) using the Qubit RNA BR Assay kit (Invitrogen). All kits were used according to the manufacturers' instructions. Whole cDNA libraries were prepared by the NSC from total RNA using the Illumina TruSeq Standard mRNA Library Prep kit. The samples were sequenced on an Illumina (HiSeq 4000) sequencer creating 150 bp pair-end reads with 350 bp inserts. TrimGalore v0.4.4, a wrapper script around Cutadapt and FastQC (Krueger, 2016), was used for adapter and quality trimming. The reads were mapped using HISAT2 v2.2.1 (Kim et al., 2019) and default parameters and quantified by featureCounts (Liao et al., 2014) and DESeq2 library normalization (Love et al., 2014). MADS-box type I genes were selected,
grouped, and ordered following the MADS-box phylogeny (Figure 2). The log2-transformed reads were displayed in a heat map drawn with the iheatmapr v0.5.2.9000 package (in Figure 4 and Figure 11) (N Schep and K Kummerfeld, 2017) including as a reference previously published *A. thaliana* seed expression samples (Bjerkan *et al.*, 2020). The reads were reanalyzed using the same (described above) processing steps.

Data availability

All sequences generated in this study have been deposited in the National Center for Biotechnology Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with project number PRJNA844220. The *A. lyrata* ssp. *petraea* genome is deposited at NCBI with the reference number GCA_026151145.1 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_026151145.1/), the *A. arenosa* Pusté Pole genome has reference number GCA_026151155.1 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_026151155.1/). An accompanying GitHub repository can be found at https://github.com/PaulGrini/Arabidopsis_assemblies. The repository contains predicted genes, scripts, and additional information for the analyses in this paper.

Acknowledgements

The sequencing service was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and supported by the "Functional Genomics" and "Infrastructure" programs of the Research Council of Norway and the Southeastern Regional Health Authorities. We thank the Laboratory of Flow Cytometry, Institute of Botany, Academy of Sciences (Czech Republic) for assistance.
Short Legends for Supporting Information

Figure S1: Pipeline for genome assembly
Figure S2: GenomeScope profiles
Figure S3: Copy number spectrum plots
Figure S4: *A. lyrata* ssp. *petraea*-ssp. *lyrata* alignments
Figure S5: *A. arenosa* Pusté Pole-*A. lyrata* ssp. *lyrata* alignments
Figure S6: *A. arenosa* Pusté Pole Hi-C contact maps
Figure S7: Genome alignments indicate genomic rearrangements
Figure S8: Extended MADS-box phylogeny
Figure S9: Phylogenetic analysis of MADS-box type II genes in *Arabidopsis*
Figure S10: PCA of the distribution of MEME motifs on MADS-box genes
Figure S11: MADS-box type II expression during seed development
Figure S12: MAFFT alignments of genomic sequences containing and surrounding *Mγ*-I
Data S1: An overview of the sequencing effort for *A. arenosa* and *A. lyrata petraea*
Data S2: Flow cytometry and k-mer estimation of genome size
Data S3: Sequence names for all MADS-genes included in the phylogeny
References

Bohutínská, M., Handrick, V., Yant, L., Schmickl, R., Kolář, F., Bomblies, K. and Paajanen, P.

control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science, 280, 446–450.

variants from an assembly. Bioinformatics, 32, 3021–3023.

BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.

Bioinformatics, 31, 3210–3212.

Supplemental Figures

Figure S1: Pipeline for genome assembly. *A. lyrata* ssp. *petraea* (blue) and *A. arenosa* Pusté Pole (red). *A. arenosa* was assembled *de novo* from Pacbio long-read data and scaffolded using Hi-C data. For *A. lyrata* ssp. *petraea* a draft assembly was made *de novo* from PacBio long-reads, which were subsequently scaffolded against the published genome of *A. lyrata* ssp. *lyrata* (Hu et al., 2011). (A) Pipeline indicating each step in the assembly process. For each step additional programs or methods were tested; details of these analyses can be found in Data S1. (B) Statistics used in quality control and software decisions. Sequence contiguity is shown in NG50, using the calculated genome size of 201,144,702 bp for *A. lyrata* ssp. *petraea*, and 179,232,250 bp for *A. arenosa* Pusté Pole. (C) BUSCO scores using the gene set for Embryophyta odb9 with 1440 single-copy genes. For the assembly steps, completeness and duplication can be seen in light and dark blue, respectively. The combination of PacBio long reads with Canu created near-complete assemblies. Allelic duplications were identified and removed using Purge_Dups. (D) Phred Quality Score (QV) was calculated with Merqury (Rhie et al., 2020). A QV of 30 corresponds to 99.9% accuracy and QV 40 to 99.99%. The quality of both long read assemblies was improved by the Pilon polishing step using Illumina reads. While the *A. lyrata* ssp. *petraea* assembly shows a consistently lower error rate, both assemblies have high quality during all assembly steps. For more assemblies and detailed statistics see Data S1.

Figure S2: GenomeScope profiles. Mercury produced the k-mer frequency spectra of Illumina reads (blue) for a k-mer length of 19 nt. To this spectrum, the GenomeScope model (black line) was fitted, and genome length, repetitiveness, and heterozygosity rates were predicted. (A) K-mer spectrum for *A. lyrata* ssp. *petraea*. GenomeScope v2.0 infers a genome length of 201,144,702 bp with a heterozygosity rate of 1.46%. The heterozygous and homozygous peaks were detected with an approximate coverage of 50 and 100, respectively. K-mers with coverage above 1000 were enriched for ribosomal, mitochondrial, and chloroplast DNA. (B) K-mer spectrum for *A. arenosa* Pusté Pole. The heterozygous and homozygous peaks were detected with an approximate coverage of 50 and 100, respectively. GenomeScope infers a genome length of 179,232,250 bp with a heterozygosity rate of 1.61%.

Figure S3: Copy number spectrum plots. For quality control, the k-mer frequencies from every assembly were compared to the k-mer frequencies of the corresponding Illumina reads. The k-mer spectrum shows how many unique 19k-mer exist (Count) with a specific coverage (k-mer multiplicity). Each Illumina read k-mer is further grouped and colored depending on how often it is found in the assemblies. The first peak at half coverage is expected to contain k-mers found only on one haplotype,
while the second peak should include k-mer from both haplotypes. (A) Copy number spectrum plot (spectra-cn) for the primary *A. lyrata* ssp. *petraea* assembly. The assembly was created with the Canu assembler using PacBio long reads. The spectrum indicates a high-quality assembly where nearly all k-mers found in the Illumina reads (not used for the assembly) were also detected in the assembly with their expected frequencies. K-mers found only in the long-read assembly are displayed as a red/blue-bar to the left of the spectrum plot. (B) Spectra-cn plot for the primary *A. arenosa* Pusté Pole assembly. The Canu assembler using uncorrected PacBio long-reads created the most complete draft assembly. Slightly reduced haploid resolution compared to the *A. lyrata* ssp. *petraea* assembly. (C) Spectra-cn plot of the *A. lyrata* ssp. *petraea* assembly after the Pilon polishing step. Using Illumina reads for polishing reduced the number of suspected erroneous k-mers found only in the assembly (blue/red bar on the left). (D) Spectra-cn plot of the *A. arenosa* Pusté Pole assembly after the Pilon polishing step. (E) Spectra-cn plot of the *A. lyrata* ssp. *petraea* assembly after the haplotic purging step. Only the primary haplotig is compared to the Illumina read set. (F) Spectra-cn plot of the *A. arenosa* Pusté Pole assembly after the haplotig purging. K-mer frequencies for the primary haplotig are shown. Half of the single-copy k-mers are missing and are found in the alternative haplotig contigs.

Figure S4: *A. lyrata* ssp. *petraea*-ssp. *lyrata* alignments. After each processing step, all *A. lyrata* ssp. *petraea* contigs and scaffolds were aligned to the *A. lyrata* ssp. *lyrata* reference genome as quality control. Larger mis-assemblies were easily detected and excluded. The reference scaffolds are on the x-axis, while the respective new assemblies are sorted on the y-axis. (A) Alignment of the *A. lyrata* ssp. *petraea* Canu draft assembly. (B) Alignment of the contigs after the Pilon polishing step shows a high duplication rate compared to the haploid reference. (C) Alignment of the contigs after the haplotic purging step. Contiguity remained after the removal of duplicated sequences. (D) Reference alignment after the reference-based scaffolding step using RaGoo. (E) Alignment after the gap closure by PBJelly displays no considerable changes. (F) Alignment of our final curated *A. lyrata* ssp. *petraea* assembly. The rearrangement of the previously reported misassembly for *A. lyrata* ssp. *lyrata* can be seen between scaffolds one and two (sorted by size) in the top left corner.

Figure S5: *A. arenosa* Pusté Pole-*A. lyrata* ssp. *lyrata* alignments For quality control, all *A. arenosa* Pusté Pole sequences were aligned to the *A. lyrata* ssp. *lyrata* reference genome. Although structural variation is expected between the species, inconsistent rearrangements between assemblies were fast detected and excluded. The y-axis represents the length sorted scaffolds from the published *A. lyrata* ssp. *lyrata* genome. (A) Contigs of the *A. arenosa* Pusté Pole Canu draft assembly on the y-axis show a high number of overlaps. (B) Alignment of the same contigs after the Pilon polishing step. (C)
Alignment of the contigs after the haplotig purging step. Only the primary haplotig is shown. Contiguity remains after the removal of duplicated sequences. (D) The alignment plots were especially helpful to remove erroneous Hi-C scaffolding approaches. The best performance displayed here is our selected approach using ALLHiC. (E) Minor scaffolding mistakes were curated with the Juicebox Assembly Tools (JBAT) based on the Hi-C linkage map. The curated result aligned astoundingly well to the *A. lyrata* ssp. *lyrata* scaffolds. (F) Gap-closure with PBJelly did not change the scaffold arrangement. The previously reported misassembly on *A. lyrata* ssp. *lyrata* scaffold can be seen in the top left corner. In addition, one more extensive inversion is displayed on scaffold 7, in the center of the plot.

Figure S6: *A. arenosa* Pusté Pole Hi-C contact maps. Hi-C contact heat maps indicate the number of contacts between any given pair of loci in the assembly (red scale). Scaffolds are indicated by a blue line, and the green line documents the manual separation used for rearrangements. (A) Hi-C assembly heat map for *A. arenosa* Pusté Pole produced by the SALSA scaffold. Strong signals far away from the diagonal were used for further scaffolding improvements. (B) The resulting contact heat map of the JBAT curated SALSA scaffolds. (C) Hi-C map of the *A. arenosa* Pusté Pole assembly scaffolded by the ALLHiC software. Problematic sequences are indicated by the low number of connections and stronger far-away signals. (D) Contact matrix after JBAT curation of mis joints and inversions. Green triangles indicate scaffold brakes. This assembly was selected and finalized by gap-filling with PBJelly (Figures S5 E and F).

Figure S7: Genome alignments indicate genomic rearrangements. SyRI (Synteny and Rearrangement Identifier) was used to detect and classify structural differences between genomes. (A) Comparison of our *A. lyrata* ssp. *petraea* assembly (dark blue) to the *A. lyrata* ssp. *lyrata* reference (light blue). Syntenic regions are shown as gray blocks, while structural differences are grouped in translocations (green), inversions (orange), and duplications (blue). For visualization purposes, the relocations between non-homolog scaffolds have been excluded (e.g., for translocation between scaffolds one and two, see Figure 1E). (B) Synteny alignment between *A. lyrata* ssp. *petraea* (dark blue) and *A. arenosa* Pusté Pole (red). Structural differences are indicated between largely syntenic scaffolds.

Figure S8: Extended MADS-box phylogeny. Phylogeny of all 841 identified MADS-box genes in *Arabidopsis* and *Capsella*. The groups correspond to previously published results with type I genes divided into three main groups (Mα, Mβ, Mγ), while type II genes fell into two monophyletic groups, MIKC and MIKC* [also referred to as Mδ] (Henschel *et al.*, 2002; Parenicová *et al.*, 2003; Arora *et al.*, 2007; Thangavel and Nayar, 2018; Gramzow and Theißen, 2013; Qiu and Köhler, 2022). The groups...
are colored with a red box around Mα, blue around Mβ, green around Mγ, yellow around MIKC*, and grey around MIKC. Sequences of *A. thaliana* are marked in blue, and the outgroup *Capsella* in orange. Monophyletic groups of *Arabidopsis* MADS-box genes, sharing a common ancestor with genes from the outgroup *Capsella*, are numbered starting from the top of the tree and delineated with solid lines. Additional gene duplications that occurred in the common ancestor of *Arabidopsis*, but after *Arabidopsis* and *Capsella* separated, are delineated with a dashed line and marked with an additional letter. For instance, “Mγ-1a” and “Mγ-1b” indicate that these two clades share a last common ancestor with *C. rubella* (i.e. “Mγ-1”), but have a gene duplication specific for *Arabidopsis* that occurred after the separation of *Arabidopsis* and *Capsella*. The right-hand column contains the result of the MEME analysis for each sequence. For the full result of the MEME analysis consult the material on GitHub.

Figure S9: Phylogenetic analysis of MADS-box type II genes in *Arabidopsis*. The tree was derived by a maximum likelihood analysis of 275 identified MADS-box type I sequences from *A. thaliana*, *A. lyrata* ssp. *petraea*, *A. arenosa* Strecno, *A. arenosa* Pusté Pole, and *A. halleri* with two species of *Capsella* (89 sequences; not shown in the figure) used as outgroup. Solid branches represent bootstrap support > 85%, while branches with support values < 85% are dashed. The root of the tree is placed between type I and type II genes (the corresponding tree and heatmap for type I genes can be found in Figure 2). Triangles represent clades where branches are collapsed at the most recent gene duplication event in the last common ancestor of the genus *Arabidopsis*. The length of the triangles corresponds to the overall branch length of the collapsed clade, see the main text for naming schemes of clades. The heatmap shows the number of gene copies for each clade in the genomes of *A. thaliana*, *A. lyrata* ssp. *petraea*, *A. arenosa* Strecno, *A. arenosa* Pusté Pole, and *A. halleri*. The column next to the heatmap indicates the canonical AGL names of the genes in *A. thaliana* found in the corresponding clade; “none” means that a gene representing the clade is not found in the *A. thaliana* genome, while “new” indicates that the gene does not have a given AGL name. The last column shows a simplified representation of the MEME motifs. A fully expanded phylogenetic tree with individual tip labels, support values for all branches, and the outgroup *Capsella* can be found in Figure S8. Results from the full MEME analysis can be found in Figure S8.

Figure S10: PCA of the distribution of MEME motifs on MADS-box type I and type II genes. The PCA was constructed from motifs identified by MEME and counted for each clade in the phylogeny. The first principal component axis captures 24.8% of the variation, and the second axis 10.2%. A polygon is drawn around each of the main groups with Mα in red, Mβ in blue, Mγ in green, MIKC* in yellow, and MIKC in grey.
Figure S11: MADS-box type II expression during seed development. Gene expression profiles are displayed for all identified MADS-box type II genes and compared between *A. thaliana* (right column), *A. arenosa* Pusté Pole (middle column), and *A. lyrata* ssp. *petraea* (left column). The *A. thaliana* development time series (Bjerkan *et al.*, 2020) serves as a reference. The endosperm cellularization in *A. thaliana* occurs between the 6 and 9 days after pollination (DAP). To adjust for the relatively slower development in *A. arenosa* Pusté Pole and *A. lyrata* ssp. *petraea*, corresponding stages before and after endosperm cellularization were sampled at 9 and 15 DAP, respectively. Ortholog genes are grouped and ordered and follow our MADS-box phylogeny (Figure 2). Sample normalized counts are shown with a base-2 logarithmic scale. The MADS-box type II seed expressions remain rather constant compared to the strong decline of type I expression around endosperm cellularization (Figure 4). However, expression differences can be seen between the *Arabidopsis* species. The *SEPALLATA (MIKC-1/2/3)* genes are strongly expressed in *A. lyrata* ssp. *petraea* and *A. arenosa* seeds while only weakly or absent in *A. thaliana*. In addition to their largely functional redundant role in flower development and ovary formation (Pelaz *et al.*, 2001; Kaufmann *et al.*, 2009), a crucial role in fruit development and ripening has been reported for *SEPALLATA* orthologs in tomato, strawberry, and apple (Ampomah-Dwamena *et al.*, 2002; Seymour *et al.*, 2011; Schaffer *et al.*, 2013). Furthermore, the orthologs of *MIKC-15 (AGL19)*, *MIKC-24 (AGL16)*, *MIKC-26 (AGL24)* as well as the FLC clade *MIKC-28* to *MIKC-32* show strong expression differences reflecting the different regulations of flowering and strengthen of vernalization between the perennial *A. lyrata* ssp. *petraea* and *A. arenosa* plants compared to the annual *A. thaliana* (Schönrock *et al.*, 2006; Alexandre and Hennig, 2008; Hu *et al.*, 2014; Müller-Xing *et al.*, 2022; Kemi *et al.*, 2013; Soppe *et al.*, 2021). We detect differing expressions of *MIKC*s between the species. *MIKC*-2 and *MIKC*-3 (*AGL30* and *AGL65*) are expressed in *A. lyrata* ssp. *petraea* and *A. arenosa* seeds but are not detected in *A. thaliana*. On the other hand, *MIKC*-6 and *MIKC*-7 (*AT4G37435* and *AGL33*) show expression in *A. arenosa* and *A. thaliana* but not in *A. lyrata* ssp. *petraea* seeds. *MIKC*s are known for their transcription activity in pollen (Verelst *et al.*, 2007) but have also been detected in endosperm (Zhang *et al.*, 2018). In addition, a high level of redundant heterodimers has been reported and double mutants reduce pollen fertility (Adamczyk and Fernandez, 2009).

Figure S12: MAFFT alignments of genomic sequences containing and surrounding *Mγ-1*. Protein coding sequences (CDS), which are displayed as dark blue arrows of *PHE1* orthologs from *A. thaliana* (green), *A. arenosa* (red), *A. lyrata* ssp. *lyrata* (light blue) and *A. lyrata* ssp. *petraea* (dark blue), are...
placed in the center. *A. thaliana* is highlighted by a light green background. On top, the consensus with identity score indicates a high similarity of the 3 prime regions downstream of the $M\gamma-1$ loci. Around 2200 bp 3 prime of *PHE1* lies the repeat-rich region crucial for its parental-specific expression (inside the AT1TE79790 RC/Helitron, highlighted by a transparent gray box). Similar locations of Line 1 (light green arrows) and LTR transposons (light blue arrows) can be found next to the $M\gamma-1$ loci between species. Further repeats are marked as light gray arrows and IncRNA as violet arrows (XR_002328948.1 and XR_002334149.1).