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Abstract 21 

Multiplexed single-cell sequencing (mux-seq) using single-nucleotide polymorphisms 22 

(SNPs) has emerged as an efficient approach to perform expression quantitative trait loci (eQTL) 23 

studies that map interactions between genetic variants and cell types, cell states, or experimental 24 

perturbations. Here we introduce the clue framework, a novel approach to encode mux-seq 25 

experiments that eliminates the need for reference genotypes and experimental barcoding. The 26 

clue framework is made possible by the development of freemuxlet, an algorithm that clusters 27 

cells based on SNPs called from single-cell RNA-seq or ATAC-seq data. To demonstrate the 28 

feasibility of clue, we profiled the surface protein and RNA abundances of peripheral blood 29 

mononuclear cells from 64 individuals, stimulated with 5 distinct extracellular stimuli — all within 30 

a single day. Our analysis of the demultiplexed data identified rare immune cell types and cell 31 

type-specific responses to interferon and toll-like receptor stimulation. Furthermore, by integrating 32 

genotyping data, we mapped response eQTLs specific to certain cell types. These findings 33 

showcase the potential and scalability of the clue framework for reference-free multiplexed single-34 

cell sequencing studies. 35 

  36 
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Introduction 37 

Understanding the genetic architecture of gene expression remains a critical challenge in 38 

human genetics. The overwhelming enrichment of disease-associated variants in the cis-39 

regulatory regions of the genome points to the crucial role of transcription regulation in conferring 40 

disease risk1,2. Although expression quantitative trait loci (eQTL) studies in bulk tissues have 41 

identified numerous genetic variants associated with proximal gene expression, their enrichment 42 

for disease-associated variants remains modest3,4. This might be because disease-causing 43 

variants affect enhancer rather than promoter activities, modifying gene expression in particular 44 

cell types, cell states, or in response to specific environmental factors. In such situations, it can 45 

be challenging to identify eQTLs that interact with cellular states using bulk gene expression 46 

analysis, as the composition of cell types and the molecular states of cells within the same type 47 

may vary between individuals, and functionally important cell populations could be rare5. One 48 

method for mapping eQTL interactions is to sort and perturb specific cell types and then profile 49 

their gene expression. However, this approach is cost prohibitive for large population cohorts, can 50 

be susceptible to experimental confounding, and fails to capture heterogeneity within sorted 51 

populations. Consequently, there is a need for more efficient and unbiased methods for mapping 52 

eQTL interactions in the human genome. 53 

Multiplexed single-cell sequencing (mux-seq) using single-nucleotide polymorphisms 54 

(SNPs) as sample barcodes has enabled population-scaled studies for assessing the impact of 55 

case-control status6, experimental perturbations7, and genetic variants on gene expression across 56 

single cells8. Recently, our analyses of mux-seq data revealed that cell type-specific cis-eQTLs 57 

are more enriched for disease associations than those shared across circulating immune cell 58 

types6. Mux-seq is highly adaptable, requires minimal experimental modification over standard 59 

single-cell sequencing workflows, and has been shown to be compatible with single-cell RNA-60 

seq, single-nuclei RNA-seq9, and CITE-seq10. However, current mux-seq implementations require 61 
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either reference genotypes or experimental barcoding to unambiguously assign cells to each 62 

sample. This limitation precludes the application of mux-seq for studies involving cells that are 63 

sensitive to manipulation or for samples where genotyping may not be feasible due to privacy or 64 

availability concerns. 65 

Here, we introduce clue, a framework for mux-seq experiments that eliminates the need 66 

for reference genotypes or experimental barcoding. Clue incorporates a series of pooling 67 

schemes for efficient experiment encoding and a demultiplexing algorithm to determine the unique 68 

sample identity of each cell. This is made possible by the development of freemuxlet, an extension 69 

of demuxlet11 that allows clustering of genetically-identical cells from pooled scRNA- and scATAC-70 

seq experiments without reference genotypes. We applied clue to investigate the response of 71 

peripheral blood mononuclear cells (PBMCs) to five different agonists targeting the type I and 72 

type II interferon responses (recombinant IFNβ and IFNγ), viral sensing (R848), inflammatory 73 

response (TNFɑ), and broad immune cell activation (PMA/I). The clue framework allowed us to 74 

perform multiplexed CITE-seq across 384 samples from 64 individuals across 12 pools in just one 75 

day. Analyzing 134,831 cells, we discovered rare cell types and identified cell type-specific 76 

transcriptional responses that were validated by bulk RNA-sequencing. We identified shared and 77 

specific transcriptional responses to interferons in monocytes, highlighted by the discovery of 78 

specific effects in non-classical monocytes related to a migratory phenotype induced by type I 79 

interferon and complement activation induced by type II interferon. Lastly, by integrating imputed 80 

genotyping data, we mapped cell type-specific cis response eQTLs (cis-reQTLs) to each 81 

stimulation, identifying specific associations in R848-stimulated naive B cells (IFITM2) and IFNβ-82 

stimulated classical monocytes (UBE2F). These findings showcase the efficiency and robustness 83 

of clue as a framework for reference-free multiplexed single-cell sequencing.  84 
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Results 85 

clue: genetic multiplexing without reference genotypes 86 

Here, we introduce clue (compressed, lossless, unambiguous multiplexing), a workflow 87 

for multiplexed single-cell sequencing (mux-seq) that enables population-scale single-cell studies 88 

without reference genotypes or experimental barcoding (Fig. 1A). We illustrate the key features 89 

of clue utilizing a toy study that profiles 𝑛 individuals over 𝑟 conditions, where 𝑟 < 𝑛. The 90 

conditions could be different perturbations (as illustrated), time points, or aliquots of the same 91 

cells. The core of clue is a 𝑝	 × 	𝑛 pooling matrix that assigns each of 𝑛 samples to one of 𝑝 pools. 92 

After single-cell profiling of the pools, the resulting data is first analyzed through freemuxlet, a 93 

novel algorithm that clusters cells based on genetic variants identified directly from the single-cell 94 

sequencing data. Genetic clusters of cells from different pools are then demultiplexed, where 95 

each cell is correctly assigned to an individual and condition. 96 

In order to ensure successful demultiplexing, clue aims to produce a pooling matrix that 97 

assigns the 𝑛	 × 	𝑟 samples to a minimum number of pools while meeting three key objectives: 98 

 99 

● Identifiability: each cell can be uniquely assigned to a sample (e.g., individual and 100 

condition); 101 

● Robustness: samples are distinguishable while tolerating errors in the pooling or genetic 102 

clustering; 103 

● Balance: cells from each individual and each condition are uniformly distributed across 104 

pools. 105 

 106 

There are several different multiplexing schemes that can achieve these objectives. The naive 107 

all-minus-one (AMO) scheme which omits each individual’s cells from exactly one pool meets the 108 
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identifiability objective but requires 𝑛 pools, which limits the experimental efficiency of sample 109 

multiplexing (Fig. 1B). The clue_logarithmic scheme assigns samples using at least 𝑝 =110 

2	 × 𝑙𝑜𝑔!(𝑛) pools motivated by previous work describing logarithmic encoding12, which achieves 111 

significant compression compared to AMO and is experimentally easy to perform (Fig. 1C). In a 112 

toy example, multiplexing 𝑛 = 20 individuals over 𝑟 = 3 conditions can be encoded using 𝑝 = 10 113 

pools. However, it may not be the most compressed or error-tolerant scheme. 114 

The clue_ILP scheme uses integer linear programming (ILP) to identify the optimal 115 

multiplexing scheme (Methods). This scheme can further be optimized for condition 116 

randomization and error tolerance, by distributing the samples and maximizing the differences in 117 

the multiplexing matrix profiles, respectively (Fig. 1E, Fig. S1). In our toy example, the most 118 

compressed scheme only needed 𝑝 = 6 pools to ensure demultiplexing (Fig. 1D), and an error-119 

tolerant multiplexing scheme required 𝑝 = 12 (Fig. 1E).  120 

freemuxlet: genetic clustering of single cells without reference genotypes 121 

The clue framework requires the ability to group genetically identical cells without relying 122 

on reference genotypes obtained from a genotyping array or sequencing. To meet this need, we 123 

developed freemuxlet, an approach based on demuxlet11 that genetically clusters cells using only 124 

SNPs captured from multiplexed single-cell sequencing data (Fig. 2A). Instead of relying on 125 

reference genotypes, freemuxlet uses unsupervised learning to efficiently cluster genetically-126 

identical cells and identify heterotypic multiplets — droplets containing two or more cells from 127 

different individuals. 128 

At its core, freemuxlet uses a modified Expectation-Maximization (E-M) algorithm to 129 

assign barcoded droplets containing cells to clusters, updating the cluster assignments iteratively. 130 

A droplet is labeled as a singlet if it has been successfully assigned to a single cluster, or a 131 

multiplet if it cannot be unequivocally assigned to any given cluster. Compared to existing genetic 132 
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clustering algorithms like scSplit13, vireo14, and souporcell15, freemuxlet stands out with two key 133 

features. Firstly, freemuxlet incorporates a singlet score based solely on allele frequencies, 134 

significantly improving the quality of initial clustering and the speed and accuracy of convergence. 135 

This becomes especially crucial when dealing with a large number of multiplexed individuals or 136 

high multiplet rates. Secondly, freemuxlet refines cluster assignments using an identity-aware 137 

Bayes factor that leverages both base and read quality to extract the maximum information from 138 

the sequence data. Indeed, these two aspects may explain the superior performance of 139 

freemuxlet compared to existing methods16.  140 

To showcase the performance of freemuxlet and its suitability for the clue framework, we 141 

conducted multiplexed single-cell RNA- and ATAC-seq experiments assaying PBMCs from 5 142 

individuals across 4 conditions using the AMO multiplexing scheme. By using a set of curated 143 

SNP locations (Methods), freemuxlet was able to group cells based on their genotypes estimated 144 

from either the single-cell RNA-seq or the ATAC-seq data. The results from the ATAC-seq data, 145 

visualized using Uniformed Manifold Approximation and Projection (UMAP) of the pairwise 146 

genetic distances, showed 5 distinct clusters of singlets and putative doublets occupying regions 147 

of the UMAP between clusters (Fig. 2B, Fig. S2A). Analysis of the RNA-seq data revealed allele-148 

specific expression only in certain cell types or in response to certain perturbations, which 149 

highlights the importance of incorporating allele frequency in the clustering algorithm (Fig. S2B). 150 

The demultiplexing results from both the RNA-seq and ATAC-seq data matched the pooling 151 

matrix (Fig. 2C) and were consistent with demultiplexing using demuxlet with reference genotypes 152 

(Fig. S2C). Furthermore, the genotypes detected from both RNA-seq and ATAC-seq were in 153 

agreement with those obtained from a SNP genotyping array (Fig. S2D). By visualizing the 154 

resulting demultiplexed single-cell RNA- and ATAC-seq profiles using UMAP, we observed cells 155 

clustered primarily by type, and to a lesser extent by stimulation. Differential expression analysis 156 

of the same cell type between different conditions provides further evidence of correct 157 

demultiplexing (Fig. 2D, Fig. S3). For example, PMA/I stimulation induced the strongest effects, 158 
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with stimulated cells of each major cell type forming distinct clusters from unstimulated cells of 159 

the same type. On the other hand, IFNγ stimulation had the weakest effects, with stimulated cells 160 

mostly clustering with unstimulated cells. These results show that freemuxlet is a reference-free 161 

method for clustering cells based on genetic variation, suitable for both single-cell RNA-seq and 162 

ATAC-seq data and can be deployed in the clue framework to enable population-scale single-cell 163 

sequencing studies. 164 

Application of clue to parse cell type-specific immune responses  165 

To demonstrate the suitability and scalability of the clue framework for population-scale 166 

single-cell sequencing studies, we performed a multiplexed single-cell CITE-seq experiment to 167 

study the genetic modulation of immune response in PBMCs. We assayed PBMCs from 64 168 

female, non-hispanic white healthy individuals either at rest (unstimulated control) or stimulated 169 

with one of five immunomodulatory molecules: tumor necrosis factor alpha (TNFα), interferons 170 

gamma (IFNγ) and beta (IFNβ), TLR7/8 agonist resiquimod-848 (R848), and phorbol-myristate-171 

acetate with ionomycin (PMA/I) (Fig. 3A). The cells were profiled at 9 hours post-stimulation, a 172 

time point that was found to induce potent transcriptional effects in response to most stimuli from 173 

bulk RNA-sequencing of PBMCs (Fig. S4A–B). The full experiment of 384 samples (64 174 

individuals by 6 conditions) was profiled in 12 pools according to a pooling matrix produced by 175 

clue_logarithmic. The matrix assigned 32 genetically-distinct samples per pool, utilizing an 176 

internally-symmetric tree structure that is experimentally simple to execute (Fig. 3B). Upon 177 

sequencing, alignment, genetic clustering of cells using freemuxlet, and demultiplexing, we 178 

correctly reconstructed 98.9% elements of the pooling matrix (760/768 matrix elements; Fig. 3C, 179 

Fig. S5A–B). The errors were due to a mis-pooling event (genotype cluster 11) and the loss of 180 

one individual’s cells during culture due to low viability (genotype cluster 59; Fig. S5C). Although 181 
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not explicitly optimized to be error-tolerant, the multiplexing scheme was robust to these errors 182 

and cells were assigned to 64 individuals across 6 conditions. 183 

The demultiplexed CITE-seq data was visualized with UMAP, and the cell clusters 184 

determined by Leiden clustering generally tracked with cell type and stimulation and not with batch 185 

or other technical parameters (Fig. 3D–E; Fig. S6A–C). T and NK cells stimulated by IFNγ and 186 

TNFα clustered together with control cells and separately from those stimulated by IFNβ and 187 

R848. For B cells, R848- and IFNβ-stimulated cells clustered together, whereas IFNγ-stimulated 188 

and control cells clustered together. In monocytes, cells stimulated by each stimulus formed their 189 

own distinct cluster. PMA/I-stimulated lymphoid cells clustered out separately from other stimuli, 190 

replicating the strong effects observed in the AMO and bulk experiments, while PMA/I-stimulated 191 

myeloid cells were significantly depleted, likely due to differentiation and adhesion to the tissue 192 

culture plate after stimulation (Methods). 193 

After performing differential expression (DE) analysis between stimulated and 194 

unstimulated cells, we identified 1853 DE genes in at least one cell type and one perturbation 195 

(𝑙𝑜𝑔!(𝐹𝑜𝑙𝑑	𝐶ℎ𝑎𝑛𝑔𝑒) > 1, 	𝑝"#$ < 0.05). We then used K-means clustering to group these genes 196 

into functional modules that were enriched for immune-related pathways such as cytokine 197 

signaling, activation, response to exogenous stimulation (e.g. LPS, virus, other organism), type I 198 

IFN signaling, adaptive immune response, and apoptosis (Fig. 3F, Fig. S6D–G, Table S1). TNFα 199 

induced the lowest fold change, except for genes related to cellular ion homeostasis (e.g., MT1), 200 

while PMA/I induced the highest fold change, especially for genes related to ribosome biogenesis, 201 

RNA processing, and proliferation. IFNγ, IFNβ, and R848 induced intermediate fold changes for 202 

genes implicated in TLR signaling, defense response, and antigen processing/presentation. 203 

Importantly, the log fold change estimates from the pseudobulk analysis of the scRNA-seq data 204 

were highly consistent with those estimated from the bulk PBMC RNA-sequencing data after 9 205 

hours of stimulation (Fig. 3F, Fig. S4C). These findings demonstrate the clue framework can be 206 
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deployed at scale to map cell type-specific responses to immune modulation in circulating immune 207 

cells. 208 

Identification of rare lymphoid cell types and stimulation-specific 209 

transcriptional responses 210 

 To assess the impact of stimulation on PBMC subsets, we next analyzed the data after 211 

subclustering cells based on their lineage (Methods). We first jointly analyzed T and NK cells, 212 

identifying 22 distinct cell clusters consisting of naive and memory T cell subsets, gamma delta T 213 

cells (Tɣδ),  mucosal associated invariant T (MAIT) cells, and NK cells (Fig. 4A–B). Within naive 214 

CD4+ and CD8+ T cells (confirmed by CD45RA+ surface expression), we identified 4 subclusters 215 

that were differentiated by the expression of SELL (CD62L) and CD69 (CD69) transcript and 216 

protein, indicating a spectrum of stimulation-specific phenotypes. Cluster 7 consisted of R848-217 

stimulated CD4+ and CD8+ cells, which suggested condition-specific effects shared between the 218 

T cell subsets. Activated (CD45RO+, cluster 5) and resting (CD45RA+, cluster 6) Tregs were 219 

marked by their specific expression of FOXP3. Among other CD45RO+ CD4+ T cells, we identified 220 

Th2 cells (CDO1, PTGDR2; cluster 10) and a cluster of cells that did not polarize to any particular 221 

T helper cell state (CXCR3, CXCR5, RORC, CCR4, CCR5, CCR6; cluster 9; Fig. S7A). Notably, 222 

we found a subset of CD8+ T cells with high transcript and protein expression of ITGAE (CD103) 223 

(cluster 11), which is a marker for tissue resident memory cells (TRM). Among the cytotoxic cells 224 

marked by the expression of granzyme family members (GZM+), we identified expected subsets 225 

of memory CD8+ T cells, Tɣδ cells, MAIT cells, and NK cells. We also found a cluster of CD56-226 

expressing cells with high expression of IL2RA (CD25) and c-kit (CD117), and lower expression 227 

of granzymes and transcription factors (TFs) EOMES and TBX21 (Tbet), supporting their 228 

annotation as circulating innate lymphoid cells (ILCs)17,18 (Fig. S7B). Lastly, we identified two 229 

small populations (clusters 13 and 14) marked by the expression of TFs ZNF683 (HOBIT) and 230 
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IKZF2 (HELIOS) and differentiated by the expression of MME (CD10) (Fig. S7C–D). Cluster 13 231 

is labeled as immature T cells or common lymphoid progenitors (CLPs)19,20, an annotation further 232 

supported by their expression of other genes shown to be involved in T cell development (e.g. 233 

SOX421, FXDY222; shared with SELL+ and SELLint naive subsets, respectively; Fig. S7E). Cluster 234 

14  resembles the recently-described HOBIT+/HELIOS+ T cells23, an unexpected finding in 235 

circulation since HOBIT has been shown to identify non-circulating resident memory T cell 236 

precursors24. 237 

 To systematically identify cell type-specific transcriptional responses to perturbation, we 238 

ordered the DE genes by the ratio of their log2(FC) from control to their mean expression in all 239 

other cell types of the same condition (Fig. S8A, Table S2, Methods). For example, we identified 240 

several genes that were upregulated in IFNβ- and R848-stimulated NK cells (cluster 20) but lowly 241 

expressed in almost all other cell types (Fig. 4C–E, Fig. S8B). Two of the most notable genes 242 

that emerged were RNF165 and FRMD3, both of which have been recently associated with worse 243 

prognosis in colorectal cancer25,26 and possibly marking tumor-infiltrating NK cells. 244 

 In addition to T and NK cells, we identified 5 subtypes within the B and plasma cells, 245 

including naive and memory B cells, plasmablasts (PB), polyclonal plasmablastic cells (PPC), and 246 

mature plasma cells (PC), which were observed across all conditions (Fig. 4F, Fig. S8C). PPCs, 247 

marked by PCNA, TYMS, and MKI67, comprised less than 0.02% of all cells (Fig. S8D) and have 248 

not been described in other PBMC datasets to the best of our knowledge. This likely reflects their 249 

in vitro differentiation from circulating B cells in culture, consistent with previous reports of their 250 

generation from cytokine stimulation27. We found that PMA/I, and to a lesser extent R848, induced 251 

the expression of canonical PB genes in memory B cells (CD226, MET, TVP23A, MGLL; Fig. 252 

S8E–F), suggesting that these specific perturbations may be inducing early differentiation of 253 

memory B cells into PBs. Furthermore, we identified genes specifically upregulated in IFNβ-254 

stimulated memory B cells, including the striking upregulation of ERICH3 encoding glutamate rich 255 

protein 3, a poorly-understood vesicle- and cilium-associated gene mainly expressed in the 256 
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central nervous system28,29 (Fig. 4G–H). In addition to memory B cells, ERICH3 was also 257 

upregulated in NK cells, CD8+ T memory subsets, and pDCs specifically in response to IFNβ. 258 

Outside neuronal cells, ERICH3 has been shown to be upregulated in B cell aggregates in the 259 

meninges of the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple 260 

sclerosis30, a disease commonly controlled with IFNβ treatment that requires B cells for efficacy31.  261 

Type I and II interferons elicit shared and specific transcriptional responses 262 

in monocytes 263 

We next performed a focused analysis to characterize the specific and shared 264 

transcriptional responses of classical (cM) and non-classical (ncM) monocytes to type I (IFNβ) 265 

and type II (IFNγ) interferons. In response to either IFN, hundreds of genes were upregulated to 266 

similar levels in both cMs (452) and ncMs (205), including CXCL10 and GBP4 (log2(FC) > 0.5, 267 

padj < 0.05; Fig. 5A). We also observed genes that were more highly induced in response to IFNγ 268 

(cM: 587, ncM: 140) including CXCL9, IFNβ (cM: 903, ncM: 315) including CCL8, or exhibited 269 

opposing effects in response to the two IFNs, such as LRRK2 and CCL7.  270 

To annotate the upregulated genes, we performed gene ontology (GO) biological pathway 271 

enrichment analysis using BiNGO32, which generates a network graph of enriched GO terms as 272 

nodes and shared genes between terms as edges (Fig. 5B). We grouped similar terms into 273 

“pathway clusters” using Leiden clustering and identified similar pathway clusters shared between 274 

the IFNs based on high Jaccard Index of ontology terms (Fig. 5C; Methods). In cMs, we identified 275 

30 clusters, with 10 clusters (clusters 0–9) highly similar between the IFNs and 11 (IFNβ) and 9 276 

(IFNγ) clusters specific to each IFN. Clusters specific to IFNβ-stimulated cells were enriched for 277 

defense response (13), chloride ion homeostasis (14), and RNA catabolic processes (1) while 278 

clusters specific to IFNγ-stimulated cells were enriched for antigen presentation (24), lymphocyte-279 

mediated immunity (21), and protein catabolic processes (26). In ncMs, we observed 27 clusters, 280 
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with 6 highly similar clusters shared between the IFNs (clusters 0–5) enriched for many of the 281 

same terms as in cMs (Jaccard Index: IFNβ, 0.397; IFNγ, 0.501), and 11 (IFNβ) and 10 (IFNγ) 282 

clusters specific to each interferon. Directly comparing the significance of terms enriched for each 283 

IFN, we note that even in highly similar pathway clusters, terms may be much more significant for 284 

one IFN than the other, including those related to lymphocyte activation in IFNγ and NF-κB 285 

signaling in IFNβ (Fig. 5D). 286 

We further analyzed DE genes that may contribute to the enrichment of specific pathway 287 

terms for each IFN (Fig. 5E). While many genes involved in inflammatory response were similarly 288 

upregulated in cMs stimulated with either IFN, some genes exhibited specificity either in response 289 

to IFNβ, including CCL8, IL27, CCL7, IL1RN, and SIGLEC1, or IFNγ, including APOL3, P2RX7, 290 

CD40, CXCL9, and IDO1. In ncMs compared to cMs, many of the same genes and annotated 291 

pathways exhibited similar specific and shared responses to IFNβ and IFNγ. We next 292 

systematically searched for genes that exhibit an ncM-specific response to either interferon. 293 

Among the top ncM-specific genes induced by IFNβ were CXCL12, CH25H, FMNL2, LILRA5, and 294 

KCNMA1, all of which have been implicated in the polarization of ncMs to a migratory 295 

phenotype33–36 (Fig. 5F). In particular, CH25H, a known ISG with established antiviral function37, 296 

has been implicated in adipose-tissue inflammation in obesity and diabetes38. Among the top ncM-297 

specific genes induced by IFNγ were CTLA4, C1Q complement genes, C2, P2Y receptors 298 

P2RY13, P2RY14, and the P2Y receptor-like SUCNR1. The P2Y paralogs have been previously 299 

described as ISGs in various disease and stimulation contexts39,40. We note that the expression 300 

of C1Q and C2 further distinguished two subpopulations of ncMs in response to IFNγ (Fig. 5G). 301 

C1Q-expressing ncMs have been reported in autoimmune diseases including systemic lupus 302 

erythematosus (SLE)6, while early growth response gene EGR3 is known to be upregulated 303 

during differentiation of ncMs into macrophages and has also been implicated in autoimmune 304 

diseases with complement system dysfunction such as SLE41,42. However, the induction of these 305 

populations specifically by IFNγ has not been previously reported to the best of our knowledge.  306 
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clue enables the discovery of cell type-specific response expression 307 

quantitative trait loci 308 

With its ability to encode orthogonal experimental information into each condition, the clue 309 

framework is uniquely suited for single-cell eQTL studies aimed to identify interactions between 310 

genetic variants and experimental conditions such as perturbations. To demonstrate this, we 311 

performed an eQTL analysis across 16 different cell types and 6 conditions, which yielded 312 

158,445 significant cis-eQTLs (Fig. 6A). Naive CD4+ T cells had the highest number of eQTLs 313 

(52,016) likely reflecting the large number of cells comprising this group and the low transcriptional 314 

heterogeneity across individuals (Fig. S9A). Across all cell types, HLA locus genes, ribosomal 315 

proteins (e.g. RPS26, RPL8), and the aminopeptidase ERAP2 were among the most significant 316 

eQTLs. Both shared (PLEC, DNAJC15) and cell type-specific eQTLs (CTSW, ARHGAP24, 317 

CD151) were observed, some of which only emerged in response to stimulation (GBP7, IFITM3, 318 

and SLFN5; Fig. S9B–D).  319 

We and others have previously shown that cell type-specific cis-eQTLs are enriched in 320 

cell type-specific cis-regulatory elements. To confirm this observation, we performed enrichment 321 

analysis using cell type-specific regions of chromatin accessibility estimated from the single-cell 322 

ATAC-seq data from the AMO experiment. In unstimulated cells, cis-eQTLs were enriched in 323 

ATAC peaks called across all cell types (Fig. 6B, Methods). Furthermore, cis-eQTLs detected in 324 

a given cell type are significantly enriched for peaks specific to the same cell type (Mann Whitney 325 

U: CD4+ TNAIVE, p = 6.4 ⨉ 10-23; NK, p = 4.1 ⨉ 10-6; B cell, p = 9.7 ⨉ 10-115; cM, p = 8.3 ⨉ 10-77; Fig. 326 

6C). 327 

We further explored how cis-eQTLs could modify the effects of stimulation by comparing 328 

the effect sizes and significance for shared and condition-specific eQTLs (Fig. 6D). For example, 329 

we identified R848-specific cis-eQTLs for TMEM220, IFITM2, and P2RX5 in naive B cells and 330 

TNFα-specific cis-eQTLs for MAP3K5 and NINJ1 in cMs. Both MAP3K5 and NINJ1 are known to 331 
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be induced by TNFα and have been previously reported as eQTLs in lung43 and heart44. 332 

Furthermore within cMs, we observed some of the most significant cis-eQTLs in response to the 333 

interferons including IFNβ-specific cis-eQTLs for ITSN1, which has been previously reported in 334 

whole blood and skin, and IFNγ-specific cis-eQTLs for UPF2, a regulator of nonsense-mediated 335 

decay implicated in developmental disorders and with links to immune infiltration into the brain by 336 

macrophages and other immune cells45. Finally, we demonstrate that a subset of these 337 

associations are specific to both cell type and condition. For example, significant associations in 338 

IFITM2 were found solely in R848-stimulated naïve B cells, while associations in UBE2F were 339 

restricted to IFNβ-stimulated cMs (Fig. 6E–F). These findings demonstrate the power of utilizing 340 

the clue framework for population-scale single-cell eQTL analyses, mapping genetic variants that 341 

interact with experimental perturbations to impact gene expression across multiple cell types. 342 

Discussion  343 

Multiplexed single-cell sequencing (mux-seq) is emerging as a systematic approach to 344 

characterize the molecular profiles of cell types in large population cohorts. The integration of 345 

experimental perturbations and donor genetics enables the analysis of interindividual variability 346 

in molecular response and its genetic determinants. However, existing mux-seq implementations 347 

require reference genotyping or experimental barcoding, which incurs additional cost and may be 348 

experimentally challenging to deploy. To overcome these challenges, we developed clue, a 349 

framework for designing mux-seq experiments where single cells can be deterministically 350 

demultiplexed utilizing only the genotypes detected from the data. Central to clue is the 351 

development of freemuxlet, an algorithm that clusters single cells based on their genetic profiles 352 

and identifies instances where multiple cells from distinct individuals receive the same partition 353 

(droplet or well) barcode. clue obviates the need for reference genotyping while yielding high 354 
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quality single-cell epigenomic, transcriptomic, and surface protein profiles from many individuals 355 

that can be used in studies of the genetic determinants of gene regulation.  356 

To demonstrate the utility of the clue framework, we performed RNA and surface proteome 357 

sequencing in PBMCs from 64 individuals, introduced perturbations by taking advantage of 358 

redundant samples (creating 384 unique individual-conditions profiled in 12 pools), and performed 359 

differential expression and eQTL analyses with the resulting data. Genetic clustering using 360 

freemuxlet, followed by demultiplexing, assigned cells to individuals with high signal-to-noise and 361 

was robust to technical errors. The resulting demultiplexed data showed enrichment of 362 

differentially expressed genes and proteins in relevant biological pathways across 12 broad cell 363 

types and 6 conditions. Stimulation induced cell type and stimulation-specific expression of genes 364 

participating in inflammation, cytokine signaling, and adaptive and innate immune responses. 365 

The analysis of our data identified rare cell types and states previously not described from 366 

scRNA-seq of PBMCs that likely developed in culture or in response to stimulation. For example, 367 

we observed several tissue-resident phenotypes in multiple CD8+ T cell subsets, distinguished 368 

most notably by the expression of CD103 (ITGAE) and ZNF683 (which encodes HOBIT). While 369 

circulating CD103+ CD4+ T cells have been described in healthy individuals and proposed to be 370 

the basal recirculation of a skin-resident population46, their CD8+ counterparts have not been 371 

previously described or characterized. 372 

We found profound cell type-specific responses to TLR and IFNAR stimulation across 373 

monocyte and lymphocyte subsets. In particular IFNβ, and to a lesser extent R848, induced high 374 

expression of RNF165 and ERICH3 in lymphocyte but not monocyte subtypes, genes that have 375 

been implicated in colorectal cancer and autoimmunity. IFNβ and IFNγ induced condition-specific 376 

and cell type-specific responses in classical and non-classical monocytes. Specific to non-377 

classical monocytes, we observed that IFNβ induced a gene program suggestive of a migratory 378 

phenotype while IFNγ stimulation produced two subpopulations differentiated by the expression 379 
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of complement components and EGR3. The two populations may correspond to recently-380 

described subsets of ncMs distinguished by 6-sulfo LacNAc (SLAN, a carbohydrate modification 381 

of PSGL-1 protein, encoded by SELPLG), CD9, and CD61 surface expression47. We see higher 382 

albeit not statistically significant mean expression of CD9 transcript and protein, CD61 protein, 383 

and SELPLG transcript in the C2-expressing cluster, consistent with their annotations. However, 384 

further functional studies of these cell types to determine what role, if any, these genes play in 385 

the response to these agonists. 386 

Lastly, we demonstrate the clue framework can be deployed for the mapping of eQTLs, 387 

demonstrate eQTL enrichment in ATAC peaks separately generated using clue, and explore 388 

those eQTLs that emerge only in certain cell types and stimulation conditions. We propose novel 389 

cell type- and condition-specific eQTLs in myeloid cells and B cells. We demonstrated clue at 390 

scale using CITE-seq but anticipate that clue can also be deployed for ATAC-seq and multiomic 391 

profiling of chromatin state and gene expression. While we report eQTLs identified by the 392 

integrated analysis of genotyping data, we anticipate that full-length cDNA sequencing and single-393 

cell ATAC-seq may capture sufficient numbers of SNPs to enable high quality imputation and 394 

genetic mapping studies from single-cell genomic data alone. Indeed, emerging studies have 395 

already demonstrated that genotypes detected solely from scRNA-seq reads may be sufficient 396 

for eQTL discovery48–50. 397 

There are several practical considerations for deploying the clue framework at scale. First, 398 

the clue framework is not explicitly developed to identify samples utilizing genotyping data. In fact, 399 

any multiplexing scheme can benefit from clue if the same barcoded samples will be profiled 400 

across multiple conditions. Second, for large experiments, we advise that statistical power be 401 

assessed carefully before employing the framework. Given a total number of cells to be 402 

sequenced for an experiment, including tens or hundreds of individuals in a pooling matrix with 403 

high compression will result in fewer cells per individual, which may hinder the ability to carry out 404 

certain downstream analyses. One way to compensate for low cell numbers per sample would be 405 
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to minimize or omit cross-pool variation (e.g. no stimulation conditions). Another would be to 406 

assay the same pool in multiple single-cell reactions, though this increases overall costs. Finally, 407 

committing to assaying a large number of samples in one experiment involves some assumption 408 

of risk, especially if samples are precious. Robotics are recommended, if available, to minimize 409 

human error and experiment duration. With these considerations, clue is a valuable framework 410 

for highly-multiplexed single-cell sequencing studies, obviates the need for reference genotypes, 411 

can be used for both RNA and ATAC profiling, and is scalable to genetic studies involving tens or 412 

hundreds of individuals.  413 
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Methods References: 414 

Phred-scale base quality score51 415 

Detecting contamination of human DNA samples52 416 

ImmVar studies53–55  417 
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Figure 1

Figure 1. Overview of the clue framework. A, Illustrative schematic of the clue framework using the
all-minus-one (AMO) pooling matrix, in which cells from one individual are omitted per pool. After single-cell
sequencing, cells are genetically clustered and can be demultiplexed by identifying which samples are absent
in each pool. Off-diagonal variance in cell numbers in the genotype frequency matrix is due to technical
variability (e.g. unequal mixing of cells). The estimated pooling matrix is overlaid with the shading from the
genotype frequency matrix to indicate the number of cells observed per individual-pool. B, For a toy example of
20 individuals and 3 perturbations, an AMO pooling matrix is identifiable but not most compact. C,
clue_logarthmic is a more compressed pooling matrix with fewer pools. clue_ILP enables discovery of D,
optimal (i.e. most compressed) pooling schemes and E, those that are error tolerant and batch effects
minimized.
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Figure 2

Figure 2. Overview of freemuxlet as applied to clue data. A, Schematic of the freemuxlet algorithm, in
which single-cell sequencing data and a curated set of loci are input, and genetically-distinct clusters of
singlets and a variant calling format (VCF) genotype file are output. B, Visualizing the pairwise genetic distance
between droplets in UMAP space shows 5 distinct clusters corresponding to the 5 input individuals, as well as
putative doublets that embed between constituent donor clusters. C, The estimated pooling matrix of singlets
from the AMO experiment recapitulates the actual pooling matrix for both RNA and ATAC assays. Stimulation
conditions are introduced to take advantage of redundancy. D, The resulting single-cell transcriptome and
chromatin accessibility profiles visualized in UMAP space show heterogeneity due to both cell type and
stimulation condition.
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Figure 3
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Figure 3. The clue framework enables single-cell profiling of 384 samples in 12 reactions. A,
Experimental overview. PBMCs from 64 donors were incubated with 5 immunomodulatory stimulants for 9
hours, then pooled and sequenced. B–C, The actual pooling matrix and estimated pooling matrix from
freemuxlet show near-perfect concordance. Two deviations (blue arrows), one mis-pooling event (genotype
cluster 11) and one instance of cell loss (low recovery of a low viability sample, genotype cluster 59), are
highlighted with asterisks. Demultiplexing was robust to these errors. D–E, Dimensionality reduction with
UMAP and clustering with Leiden shows heterogeneity in gene expression from both stimulation condition (D)
and cell type (E). F, Heatmap of differentially expressed genes comparing stimulation conditions to controls in
each cell type. Genes are k-means clustered to yield gene modules with significant functional enrichment in
immune-relevant biological pathways. Pseudobulks across all cell types per condition are concordant with bulk
RNA data.
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Figure 4

Figure 4. Iterative clustering and less restrictive gene filtration enable high resolution cell type and cell
state map. A, Portion of UMAP showing T cells and NK cells, with identified cell groups colored and
numbered. Insets show the location of particular cell groups and the condition overlays (C/A/G: Control, TNFɑ,
IFNɣ; B/R: IFNβ, R848). B, Row-normalized expression heatmap of selected genes used to identify
subpopulations in A. C, Portion of UMAP showing Granzyme+ (GZM+) T cell and NK cell subsets, colored by
cell type (top) and condition (bottom). D, Expression of RNF165 and FRDM3, genes expressed in both a cell
type- and condition-specific manner. Plot restricted to CD16+ NK cells and organized by condition (left) or
restricted to IFNβ stimulation and organized by cell type (right). E, Full single-cell UMAP showing specific
expression of RNF165 and FRMD3. Dashed box indicates location of GZM+ T and NK cells. F, Portion of
UMAP showing B and plasma cells, colored by cell type and condition. G, Expression of CALD1 and ERICH3
as in D, for memory B cells by condition and IFNβ-stimulated cells by cell type. H, Full single-cell UMAP
showing specific expression of CALD1 and ERICH3.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.542756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542756
http://creativecommons.org/licenses/by/4.0/


Figure 5
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Figure 5. IFNs induce shared and specific transcriptional effects in classical monocytes. A, log2(FC) of
gene expression from control for each IFN in classical (cM) and non-classical (ncM) monocytes. Each gene is
colored by its direction of change (shared upregulated, red; IFNγ upregulated, purple; IFNβ upregulated,
green). B, Graph of biological pathways enriched from upregulated genes for each cell type and IFN condition
as determined by BiNGO. Each node is a gene ontology-enriched biological pathway term, and edges indicate
shared enriched genes. Nodes are organized into "pathway clusters" via Leiden clustering using the adjacency
matrix of shared genes. C, Jaccard index of terms between pathway clusters demonstrating some clusters are
similar between the IFNs, and others are specific to either IFN. D, Significance (-log10(padj)) of enriched terms
comprising various shared pathway clusters in cMs (top 4 plots) and ncMs (bottom 2 plots). Unenriched terms
in a given IFN have a significance set to 0. Terms are colored by their pathway cluster (title of each plot) as
shown in B – C, unless they clustered differently between the IFNs, in which case they are colored black. E,
Heatmap of log2(FC) for the most differentially expressed genes, organized according to direction of change as
shown in A. Genes specific to either IFN enriched in various ontology terms are annotated with a binary matrix.
F–G, Column-normalized heatmap and portions of UMAP showing expression of genes upregulated in
IFN-stimulated non-classical monocytes.
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Figure 6
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Figure 6. Genetic variants influence gene expression in a cell type- and condition-specific manner. A,
Genome-wide Manhattan plots for selected cell types. All SNPs are colored gray and significant hits are
colored by condition. Below each scatter plot is a line plot showing relative enrichment using a moving window
average (see Methods). B–C, Enrichment of eQTLs in ATAC peaks, called on all unstimulated cells together
(B) and in a cell type-specific manner (C, column-normalized). D, Comparisons of effect sizes of eQTLs
between conditions in selected cell types. Significant eQTLs in either condition are colored by condition, and
colored black if significant in both. SNPs that were insignificant but reported in both conditions are plotted in
the main plot, colored gray. SNPs for which effect sizes were not reported in one or the other condition are
plotted in the marginal distributions. E–F, Box plots showing eQTLs observed in a combination of cell type and
condition, plotting gene expression with genotype (homozygous reference → heterozygous → homozygous
alternate). Top plots show expression levels by condition in the given cell type. Bottom plots show expression
levels by cell type in the given condition. Box plots showing a significant correlation (BH < 0.001) are noted
with ***.
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