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ABSTRACT 

 

To fully understand gene regulation, it is necessary to have a thorough understanding of both 
the transcriptome and the enzymatic and RNA-binding activities that shape it. While many 
RNA-Seq-based tools have been developed to analyze the transcriptome, most only consider 
the abundance of sequencing reads along annotated patterns (such as genes). These 
annotations are typically incomplete, leading to errors in the differential expression analysis. 
To address this issue, we present DiffSegR - an R package that enables the discovery of 
transcriptome-wide expression differences between two biological conditions using RNA-Seq 
data. DiffSegR does not require prior annotation and uses a multiple changepoints detection 
algorithm to identify the boundaries of differentially expressed regions in the per-base log2 
fold change. In a few minutes of computation, DiffSegR could rightfully predict the role of 
chloroplast ribonuclease Mini-III in rRNA maturation and chloroplast ribonuclease PNPase 
in (3’/5')-degradation of rRNA, mRNA, and tRNA precursors as well as intron accumulation. 
We believe DiffSegR will benefit biologists working on transcriptomics as it allows access to 
information from a layer of the transcriptome overlooked by the classical differential 
expression analysis pipelines widely used today. 
DiffSegR is available at https://aliehrmann.github.io/DiffSegR/index.html. 
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INTRODUCTION 

It has long been recognized that transcriptomes largely surpass genomes in complexity (1). 
Besides alternative use of transcription initiation sites, most of the transcript diversity can be 
ascribed to post-transcriptional modifications, including RNA splicing, processing, 
alternative polyadenylation, editing or base modification (2). Although the advent of the 
transcriptomics revolution has allowed an unprecedented understanding of this transcript 
diversity, the combinatorial nature and very large number of variations is still an analytical 
challenge (3, 4). Moreover, because most strategies for RNA-Seq analysis rely on incomplete 
transcriptomic variant annotations, meaningful variations may currently be overlooked (5). 
This is a major issue for biological interpretation as illustrated by the crucial role played in 
disease development by poorly annotated non coding elements like 5’ and 3’ UTRs (6–9). 

As a consequence, there is a massive effort to improve transcriptomic annotations with the 
help of the third generation (long-read) sequencing technologies from Oxford Nanopore 
Technologies or Pacific Bioscience. Long RNA-Seq reads may cover an entire RNA isoform 
from start to end, directly illustrating the exon structure, splicing patterns and UTR 
composition (10–12). They carry the promise to go beyond the limits of full-length transcript 
assembly, which is notoriously prone to error (13, 14). Although such a strategy can double 
the number of referenced transcripts for a model organism (15), reaching an exhaustive 
description of a transcriptome is arguably a Sisyphean task (5, 16, 17). 

Because most RNA-Seq experiments aim at identifying RNA processes that vary between 
two biological conditions (WT vs mutant or control vs stress, for example), an alternative to 
this issue is to identify portions of the transcriptome that vary between both experimental 
conditions (differentially expressed regions or DERs) directly from the RNA-Seq data, 
without relying on annotations and bypassing assembly altogether. This is performed by a 
class of methods sometimes referred to as identify-then-annotate tools (18). Their gold 
standard is to be both highly specific (i.e. able to merge adjacent non-DERs) and highly 
sensitive (i.e. able to discriminate between adjacent DERs, in particular between up and down 
DERs). To do so, various methods summarized in Figure 1 (19–22) address a well-defined 
statistical problem known as multiple changepoints detection, or segmentation problem. This 
has been a long-standing problem in the field of genomic series analysis (23–27). To identify 
DERs, current identify-then-annotate tools mainly vary in the signal they segment and in the 
way they segment it (Figure 1). 

Here, we introduced DiffSegR, an R package that uses a new strategy for delineating the 
boundaries of DERs. It segments the per-base log2 fold change (log2-FC) using FPOP, a 
method designed to identify changepoints in the mean of a Gaussian signal (28). Intuitively, 
the per-base log2-FC is a measure that scales with the intensity of the transcription 
differences at each genomic position between the two compared biological conditions. 
Expression differences are then statistically assessed for each region using the negative 
binomial generalized linear model of DESeq2 (29) and the outputs can be visualized in IGV 
(30). 

DiffSegR and competitor methods (Figure 1) were compared on two plant RNA-Seq datasets 
that were previously used in combination with molecular biology techniques to decipher the 
roles of the chloroplast ribonucleases PNPase and Mini-III (31, 32). DiffSegR was the only 
method able to retrieve all the segments known to differentially accumulate outside of the 
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annotated genic regions (i.e. 3' and 5' extensions, anti-sense accumulation). Moreover, it is 
the only method predicting the overaccumulation of intronic regions on the plastome-scale in 
the PNPase mutant. Globally, DiffSegR better captures multiple trends of differences within 
DERs while being more parsimonious in non-DERs than its competitors.  

 

We anticipate DiffSegR will be an important tool in providing an in-depth description of 
local or regional transcript variations within RNA-seq libraries from two biological 
conditions, especially when studying RNA processes located outside of the annotated coding 
sequences, like RNA processing, trimming or splicing.  
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MATERIALS AND METHODS 

Overview of R implementation 

DiffSegR is implemented in the R statistical environment (www.R-project.org/) and can be 
found on GitHub (https://github.com/aLiehrmann/DiffSegR) with the installation procedure 
as well as a vignette with functional examples. All the simulations were performed with an 
Intel Core i7-10810U CPU @ 1.10GHz, 16 Go of RAMs and 10 logical cores. On both 
chloroplast RNA-Seq datasets (see below), DiffSegR returns results in less than 2 minutes. In 
comparison, it takes less than 30 seconds for a standard differential gene expression (DGE) 
analysis. The identification of segment boundaries using changepoint detection analysis runs 
in less than a second on both datasets. The slowest step is the construction of the coverage 
profiles followed later by the segment count table using the featureCounts program and the 
BAMs files (Table S1). Less than 1 Go of RAM is necessary and the peak of memory used is 
reached at the differential analysis step (Table S2). 

DiffSegR segmentation model 

Differential transcription profile 

DiffSegR builds the coverage profiles indexed on n genomic positions from the BAM files 
provided by the user. The coverage profile for replicate r of biological condition j  is 
noted ��� � ������

���

� �  ��. By default we propose to compute Qijr using the geometric 

mean of the number of 5’ and 3’ end of the reads overlapping position i, denoted Qijr5’ and 
Qijr3’ . Formally: 

���� � 1 � 
������  � 1��/
 � 
������  � 1��/

 . 

We describe alternative approaches that use either the full length or the 5’ or 3’ end of the 
reads, and compare them with our geometric mean heuristic in Notes S1-3. DiffSegR then 
builds the differential transcription profile between the biological conditions (named 1 and 2 
hereafter) using a log2FC per-base transformation because it scales with the intensity of the 
transcriptional differences between conditions 1 and 2.  The log2-FC at the i-th genomic 
position (denoted Yi) is given by 


� � 1
��

� log
� ���� � 1� � 1
�


��

���

� log
���
�

��

���

� 1� 

where n1 and n2 stand for the number of replicates in condition 1 and 2, respectively. 

Segmentation  

DiffSegR segments the per-base log2-FC using FPOP (28), a method used to detect 
changepoints in the mean of a Gaussian signal. FPOP estimates the number and the position 
of changepoints in the per-base log2-FC by optimizing a penalized least squares criterion. For 
many profiles lengths the computation time of FPOP is log-linear allowing for the 
segmentation of large data (106<n<107) in a matter of seconds. The number of changepoints 
is a decreasing function of the penalty λσ2 log(n). The constant λ is a hyperparameter that 
can be adjusted by the user. A good starting point, based on theoretical arguments (33) and 
simulations (34), is to set λ = 2. The variance σ2  is estimated on the data using the unbiased 
sample variance estimator. 
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Normalization 

Assuming a per-base DESeq2 model (29), the mean of the coverage µijr is composed of a 
sample-specific size factor sjr and a parameter qijr  proportional to the expected true 
concentration of transcripts overlapping position I in replicate r of condition j verifying μijr = 

sjr qijr. As the coverage, the per-base log2-FC depends on sample-specific size factors. One 
can show that the non-normalized and normalized per-base log2-FC are linked together by an 
offset denoted ρ such that 

� � �

��
∑ log
� ���� � �

��

��
��� ∑ log
��
�

��
��� �. 

For a given penalty the output of FPOP is shift invariant. That is if the data is shifted by a 
given value the returned changepoints will be the same. Therefore the segmentation returned 
by DiffSegR does not depend on the knowledge of the normalization factors. This is a key 
difference with threshold based methods (e.g. srnadiff IR, srnadiff HMM, RNAprof, 
derfinder RL, derfinder SB).  

We acknowledge that when taking into account the offset to the logs (+1) in the per-base 
log2-FC, the previous argument is approximately true for large counts but does not hold for 
small counts.   

Data and read mapping 

The true positive rate (see below) of DiffSegR and competitors were evaluated on two RNA-
Seq datasets comparing Arabidopsis thaliana control plants (col0) to mutants deficient in the 
PNPase and Mini-III chloroplast ribonucleases (31, 35). We refer to these datasets as pnp1-1 
and rnc3/4, respectively. In the rnc3/4 dataset both conditions contained two replicates with 
about 19.5 million reads each while in the pnp1-1 dataset, both conditions contained two 
replicates with about 18.6 million reads each. DiffSegR ability to work on a bacterial genome 
was evaluated using a RNA-Seq dataset comparing a Bacillus subtilis control strain (CCB375 
strain) to a mutant deficient for the Rae1 ribonuclease (SSB1002 strain) (36). We refer to this 
dataset as Δrae1. Both conditions contained three replicates with about 14.8 million reads 
each. The IDEAs dataset used to evaluate the false positive rate (see below) contained ten 
RNA-Seq replicates of the col0 Arabidopsis thaliana ecotype grown in nitrogen deficiency 
condition with about 32.7 million reads each. Plant RNA-Seq datasets were aligned to the 
Arabidopsis thaliana chloroplast genome using the OGE pipeline 
(https://forgemia.inra.fr/GNet/pipelineoge) (37). This pipeline uses the STAR aligner (38). 
The BAM files corresponding to the aligned Bacillus subtilis RNA-Seq dataset were kindly 
provided by Ciarán Condon. The alignment was performed using the Bowtie aligner (39). 
These alignments were then used for the downstream analyses. Because DiffSegR is the only 
evaluated method able to analyze stranded RNA-Seq reads, the BAM files were then split by 
strand in order to be used by the competing methods and the results for both strands were 
finally merged.  

Differentially expressed regions (DERs) 

Differentially expressed regions (DERs) stand for the largest set of segments with a fold-
change > 1.5 (symmetrically < 2/3) and a false discovery proportion upper bound set to 5%. 
Both per-segment fold-change and p-value are estimated using DESeq2 (29).  The post-hoc 
upper bound is obtained by controlling the joint error rate (JER) at significance level of 5% 
using the Simes family of thresholds implemented in the R package sanssouci (40, 41). 
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Unless specified, all methods were compared using these thresholds. All quality control of 
the DiffSegR results, including a PCA of counts, a dispersion-mean plot and an histogram of 
p-values are available in supplementary data for pnp1-1 (Figures S1-S3), rnc3/4 (Figures S4-
6) and Δrae1 (Figures S7-S9) datasets. 

Benchmarking 

For the purpose of benchmarking DiffSegR against other methods in terms of true positive 
rate (see below), one or more parameters likely to change the number and/or the positions of 
the identified changepoints were adjusted. 

1. The minimum depth threshold (minDepth) is common to derfinder RL and srnadiff. 
All contiguous positions with mean of coverages above this threshold are kept. For 
each method, on both datasets, one hundred minDepth values evenly spaced within 
the interval [1,6000] were tested. The default minDepth value of derfinder RL and 
srnadiff are 5 and 10, respectively. 

2. The minimum log2-FC threshold (minLogFC) is used by srnadiff to keep only 
contiguous positions with absolute normalized log2-FC above the threshold. For both 
methods, on both datasets, one hundred minLogFC values evenly spaced within the 
interval [0.1,7] were tested. The default minLogFC value of srnadiff is 0.5. 

3. The emission threshold (emissionThreshold) is used by srnadiff to define the HMM 
states. For both methods, on both datasets, one hundred (emissionThreshold) values 
evenly spaced within the interval [0.09, 0.9] were tested. The default 
emissionThreshold value of srnadiff is 0.1. 

For all these comparisons and on both datasets, the DiffSegR hyperparameter λ was kept to 
its default value, λ=2. In other analyses, all parameters from the different methods tested 
were set to their default values. 

Evaluation metrics 

Comparisons on pnp1-1 and rnc3/4 labeled datasets 

For the comparisons on the pnp1-1 and rnc3/4 labeled dataset the error E was defined as the 
total number of labels which are not overlapped by at least one DER. A label is a genomic 
portion whose corresponding transcript has previously been validated by molecular biology 
techniques to be differentially accumulated in the mutant compared to WT. The genomic 
coordinates of the labels can be found in Table S3-S4. The true positive rate is given by 

��� � �
�

�
  where N  is the total number of labels. 

Blank experiment 

In the blank experiment the replicates of the nitrogen deficiency condition from the IDEAs 
project were resampled in two groups to test several 2 vs 2, 3 vs 3, 4 vs 4 and 5 vs 5 designs. 
All the DERs identified are supposed to be false positives. The false positive rate is given by 

��� � ������ �� ����

������ �� ��������
    . 
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RESULTS 

Foreword 

srnadiff merges the results of a two-level segmentation approach on the per-base p-value 
(srnadiff HMM) and a three-level segmentation approach on the per-base log2-FC (srnadiff 
IR) (Figure 1). Consequently, for the purposes of the following comparisons, we will use 
srnadiff as a representative tool of the methods following similar strategies, including 
derfinder SB and RNAprof. In addition, due to the lengthy process of estimating the 
parameters of the model implemented in parseq (days) (20), comparing this tool with 
srnadiff, derfinder RL and DiffSegR is beyond the scope of our study. 

Overview of the DiffSegR package  

DiffSegR implements the four steps of a conventional pipeline for identify-then-annotate 
methods (Figure 2). 

Step 1: Computing the coverage profiles and the differential transcription profile from BAMs 

The loadData function builds coverage profiles from BAM files within a locus specified by 
the user. If the reads are stranded, the function builds one coverage profile per strand for each 
replicate of both compared biological conditions. By default the heuristic used to compute 
coverage profiles is the geometric mean of the 5’ and 3’ profiles as defined in the Material 
and Methods section. Alternative approaches use either the full length or the 5’ or 3’ end of 
the reads (Notes S1). loadData then converts the coverage profiles into the per-base log2-FC 
(one per strand) using the reference biological condition specified by the user as the 
denominator. The function returns the coverage profiles and the differential transcription 
profile as a list of run-length encoded objects. 

Step 2: Summarizing the differential transcription landscape 

The segmentation function uses FPOP (28) on the per-base log2-FC of both strands to 
identify the segment's boundaries (or changepoints). The number of returned segments is 
controlled by the hyperparameter  λ specified by the user. The segments are stored as 
GenomicRanges object and the segmentation function finally uses featurecounts (42) to 
assign them the mapped reads from each replicate of each biological condition. By default a 
read is allowed to be assigned to every segment it overlaps with. The segments and the 
associated count matrix are returned as a SummarizedExperiment object. 

Step 3: Differential expression analysis (DEA)  

The dea function uses DESeq2 (29) to test the difference in average expression between the 
two compared biological conditions for every segment. The resulting p-values are then 
adjusted using a Benjamini-Hochberg (BH) procedure to control the false discovery rate 
(FDR), which is a common approach in DEA. However, this approach does not guarantee 
that the proportion of false discoveries (FDP) will be upper bounded, and there is no 
statistical guarantee on the number of false discoveries in subsets of segments selected using 
FDR thresholding. For example, while a widespread practice in DEA is to select a subset of 
segments whose absolute log2-FC passes a threshold it can potentially result in an inflated 
FDR. To address these limitations, the dea function can also call a post-hoc inference 
procedure that provides guarantees on the FDP in arbitrary segment selections (40). Finally, 
dea returns the user-provided SummarizedExperiment object augmented with the outcome of 
the DEA. 
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Step 4.A: Annotating the DERs  

The annotateNearest function annotates the DERs found during the DEA using user specified 
annotations in the gff3 or gtf format. Seven classes of labels translate the relative positions of 
the DER and its closest annotation(s): antisense, upstream, downstream, inside, overlapping 
3', overlapping 5' and overlapping both 5' and 3'. These labels allow users to easily 
understand the relationships between the DERs and their nearest annotations, and to analyze 
the potential functional significance of the DERs in the context of the annotated genomic 
features. 

Step 4.B: Visualizing the DERs 

The exportResults function saves the DERs, not-DERs, segmentation, the mean of coverage 
profiles from both biological conditions and per-base log2-FC information, for both strands, 
in formats readable (bed, gff3) by genome viewers like the Integrative Genome Viewer (IGV) 
(30). For IGV, exportResults also creates a session in xml format that allows loading all 
tracks in one click. This provides a convenient way to save and visualize the results of the 
differential expression analysis, allowing a user-friendly exploration and interpretation of the 
data generated by the DEA. An example of the graphical output obtained with DiffSegR is 
displayed in Figure 3. 

DiffSegR facilitates the visualization of DERs 

DiffSegR was applied to a RNA-Seq dataset comparing control plants (col0) to a mutant 
deficient in the PNPase chloroplast ribonuclease (pnp1-1), a major 3’ processing enzyme 
(35). When dealing with a gene dense genome like the plastome, annotating a DER using the 
nearest gene can lead to ambiguities. In this case, visualization of the DERs in a genome 
viewer, as exemplified for the psbB-psbT-psbN-psbH-petB-petD gene cluster (Figure 3), is 
often the simplest solution. In line with previous molecular studies, DiffSegR identifies 15 
DERs, 8 on the forward and 7 on the reverse strand, respectively. For example, the 
overexpressed segment, in 5’ of the psbB gene (DER 1 with genomic positions 72,233 to 
72,395) matches an area previously shown to over accumulate RNA 5’ ends in pnp1-1 (43) 
and the segment 2 overlapping psbH and antisense to psbN (DER 2 with genomic positions 
74,224 to 74,846) corresponds to various 400 to 700 nt long RNA isoforms previously 
characterized in WT or pnp1-1 mutants (35, 44–46). The published molecular validations 
corresponding to the DERs identified in the psbB gene cluster by DiffSegR are summarized 
in Table 1. 

DiffSegR improves the search for DERs 

The ability of DiffSegR and competitor methods derfinder and srnadiff (19, 22) to identify 
DERs was evaluated on two RNA-Seq datasets generated for plants lacking the chloroplast 
ribonucleases PNPase (see above) and Mini-III (rnc3/4) (31, 35). In comparison to control 
plants, these two mutants over accumulate RNA fragments that are mainly located outside of 
the annotated genic areas and the RNA-Seq data have been extensively validated using 
molecular techniques (31, 32). These validations were used to define 23 labels (17 in pnp1-1 
and 6 in rnc3/4) where a DER was expected to be found (list and coordinates of the labels in 
Table S3-S4). Using its default segmentation hyperparameters (λ=2) DiffSegR identified 434 
and 25 DERs in the pnp1-1 and rnc3/4 datasets respectively (Tables S5-S6; Figures S10-
S30), including all the predefined labels (TPR = 1). By contrast, srnadiff and derfinder RL 
identified 16 and 4 labels out of 17 in pnp1-1 and 4 and 0 labels out of 6 in rnc3/4 (Table 2). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.05.543691doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543691


10 

After adjusting the per-base log2-FC threshold, only srnadiff was also able to reach a TPR of 
1 (Figure S31-S34). As expected, standard differential gene expression (DGE) analysis, 
which relies on known gene annotations and is considered as a routine research tool (3), was 
unable to identify labels located outside of these annotations, therefore resulting in an TPR of 
0. Because the the large number of DERs found by DiffSegR could suggest it has a high FPR, 
we evaluated and compared it to classical DGE analysis (47) using a RNA-Seq dataset 
containing 10 replicates of the nitrogen deficiency condition. Any DER identified between 
subsamples of the replicates was therefore considered a false positive. The empirical 
cumulative distribution functions (eCDFs) of the FPR for both DiffSegR and the DGE 
analysis were similar when using the 5 vs 5 designs. For the 2 vs 2 designs, approximately 
90% and 80% of the designs resulted in less than 2.5% of FPR with DiffSegR and traditional 
DGE respectively (Figure 4). These observations confirm that the FPR is not inflated in the 
results of DiffSegR (see Figure S35 for 3v3 and 4v4 designs).  

DiffSegR better captures the differential landscape 

Because derfinder RL and srnadiff use a two- or three-level segmentation model they are 
susceptible to merge in a single DER various contiguous segments having different log2-FC. 
As a consequence, distinct DER events stemming from distinct RNA maturation processes 
could be wrongly associated together (Note S4). In contrast, DiffsegR segments the mean of 
the per-base log2-FC without making any assumption on the number of levels. It should 
therefore be able to distinguish between contiguous DER events, leading to shorter DER than 
the other methods. We therefore compared the length distribution of DERs identified by 
DiffSegR, srnadiff and derfinder RL. In agreement with our expectation, the DERs identified 
by DiffSegR are on average smaller than those identified by its competitors in both the pnp1-
1 and rnc3/4 datasets (Figure 5). Respective median sizes are equal to 211 and 455 nt for 
DiffSegR and srnadiff (p-value < 2.2*10-16, Mann–Whitney U test) in pnp1-1. In rnc3/4 
respective median lengths are equal to 15 and 97 nt (p-value = 0.0362, Mann–Whitney U 
test) (Figure 5.A). An identical trend can be observed between DiffSegR and derfinder RL. In 
pnp1-1 respective median sizes are equal to 220 and 826 nt (p-value < 2.2*10-16, Mann–
Whitney U test). In rnc3/4, derfinder fails to detect DERs, accounting for the absence of 
overlapping DERs between DiffSegR and derfinder RL in this particular dataset (Figure 5.B). 
We conclude that srnadiff and derfinder RL indeed merge neighboring DERs with different 
log2-FC. 

 

Moreover, derfinder RL directly segments the mean of coverages and is therefore susceptible 
to split regions that are not differentially expressed into distinct segments (Note S5). This is 
because the shape of the transcriptional signal is strongly influenced by numerous biological 
and technical factors that are not directly related to bona fide transcriptional differences (48). 
In contrast, DiffSegR uses the per-base log2-FC that is largely unaffected by the underlying 
transcriptional coverage. This is because local variations in coverage are reproducible and 
cancel out when taking the difference of the log2 (log2-FC) (Figure S36). As a consequence, 
we expect DiffSegR to return not-DER longer than derfinder RL. We therefore compared the 
length distribution of not-DERs identified by DiffSegR, srnadiff and derfinder RL in both 
pnp1-1 and rnc3/4 datasets. Figure 5 shows that the not-DERs identified by DiffSegR are 
indeed on average longer than those identified by its competitors. Respective median sizes 
are equal to 833 and 80 nt for DiffSegR and srnadiff (p-value < 2.2*10-16, Mann–Whitney U 
test) in pnp1-1. In rnc3/4 respective median lengths are equal to 294 and 86 nt (p-value < 
2.2*10-16, Mann–Whitney U test) (Figure 5.A). An identical trend can be observed between 
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DiffSegR and derfinder RL. In pnp1-1 respective median sizes are equal to 833 and 80 nt (p-
value < 2.2*10-16, Mann–Whitney U test). In the rnc3/4 dataset, respective median lengths 
are equal to 327 and 122 nt (p-value < 2.2*10-16, Mann–Whitney U test) (Figure 5.B). We 
conclude that both srnadiff and derfinder RL over-segment regions that are not differentially 
expressed in comparison to DiffSegR. 

DiffSegR can be used on sparser genomes 

Sparsity refers to the fraction of a genomic region with a null RNA-Seq coverage and is 
known to cause artifacts in statistical analyses (49). Because the two plant chloroplasts RNA-
Seq datasets previously used have a low sparsity ranging from 0.42 to 0.57 we tested 
DiffSegR on a Bacillus subtilis RNA-Seq dataset previously used to decipher the role of the 
Rae1 ribonuclease (36) and whose sparsity ranged from 0.79 to 0.82 between the different 
replicates. Using standard differential expression analysis, Leroy et al. identified 46 mRNAs 
and ncRNAs as significantly up-regulated in the rae1 mutant (q-value < 0.05 & fold-change 
> 1.5) and eventually selected seven of them (S1025, S1024, S1026, yrzI,  bmrC, bmrD, bglC) 
as candidates for direct degradation by Rae1. DiffSegR returned significant up-regulated 
DERs overlapping 45 of the 46 genes identified by Leroy et al. including the 7 candidates of 
interests (Figures S37-S39). In addition, DiffSegR returned significantly up-regulated DERs 
overlapping 60 other genes (Table S7 and S8). A striking feature was however the over-
representation of very short DERs. The five most abundant ones were indeed 4 (6.5%), 6 
(6.4%), 5 (5.9%), 2 (5.6%) and 8 (5.4%) nt long while the five most abundant ones in the 
pnp1-1 dataset were 55 (1.7%), 73 (1.7%), 83 (1.1%), 204 (1.1%), 56 (0.8%) nt long. 
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DISCUSSION 

DiffSegR is a straightforward solution to the DERs detection problem 

We here introduced DiffSegR, an R package that allows the discovery of transcriptome-wide 
expression differences between two biological conditions using RNA-Seq data (Figure 2).  
While standard RNA-Seq differential analyses rely on reference gene annotations and 
therefore miss potentially meaningful DERs, DiffSegR directly identifies the boundaries of 
DERs without requiring any annotation. Unlike its competitors, DiffSegR is designed to 
analyze stranded RNA-Seq reads, therefore allowing the identification of transcriptional 
differences on both the forward and reverse strands. This is an invaluable asset when 
considering the pervasiveness of antisense transcripts (50–52). The output generated by 
DiffSegR can be easily loaded into the Integrative Genomics Viewer (IGV), providing a user-
friendly platform for the exploration and interpretation of the results (Figure 3). 

Like other methods willing to automatically identify transcription differences along the 
genome, DiffSegR addresses a well-defined statistical problem known as the multiple 
changepoints detection or segmentation problem. Among the many algorithmically and 
statistically well-established methods that have been developed to tackle this problem (53, 
54), DiffSegR uses FPOP (28). This method relies on a Gaussian model to detect changes in 
the mean of a signal. The computation time of FPOP is log-linear in the signal length, making 
it time efficient (Table S1). FPOP is statistically grounded (33, 55), and has been shown to be 
effective in numerous simulations (28, 53) and genomic applications (26, 27, 56). Another 
advantage of FPOP is that it only has one parameter (the penalty), therefore simplifying 
calibration and interpretation. 

A key feature of DiffSegR is the use of the per-base log2-FC signal for segmentation 
analysis, a strategy that carries three main advantages. First, it scales with the intensity of the 
difference up to a normalization constant. Second, it discriminates between up-regulated and 
down-regulated DERs and third, it is largely insensitive to local variations in coverage as 
they are reproducible (Figure S36) and cancel out when taking the difference of the logs 
(log2-FC). Moreover, in contrast to the two-level (DER and not-DER or expressed and not-
expressed) and three-level (up-regulated DER, down-regulated DER, not-DER) segmentation 
models used by other approaches (Figure 1), FPOP does not make any assumptions on the 
number of levels in the log2-FC and can effectively distinguish between adjacent DERs that 
involves distinct RNA maturation processes. As a consequence DiffSegR detects fewer 
changes in non-differential regions but detects more segments in DERs than its competitors 
(Figure 5). This suggests that DiffSegR is able to effectively summarize the data, providing a 
detailed and accurate representation of the differential landscape while being more selective 
in its analysis of not-DERs.  

DiffSegR accurately captures the differential landscape 

DiffSegR finds all the extended 3' and 5' ends of transcripts, as well as accumulated antisense 
RNA, in RNA-Seq labeled datasets pnp1-1 and rnc3/4. These labels were previously verified 
through molecular techniques, and DiffSegR was able to identify them with its default 
settings, while none of the competitors tested were able to do so. However, the use of the 
same dataset twice in DiffSegR (and its competitors), a procedure so-called double dipping, 
first for segmentation and then for differential analysis may result in an inflated false positive 
rate (57–59). We therefore verified that the FPR of DiffSegR is similar to standard DGE 
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analysis using a blank experiment (Figure 4). A possible explanation to the observed 
robustness is the fact that DiffSegR uses different aspects of the data in its two steps: while 
the segmentation uses the per-base log2-FC, the DEA relies on normalized counts, per-
segment log2-FC, and dispersion. The last three parameters are estimated by DESeq2. 

We are therefore confident that the numerous DERs identified outside of the predefined 
labels in the two chloroplastic RNA-Seq datasets represent bona fide DERs. For example, 
387 out of the 434 DERs identified in the pnp1-1 RNA-Seq experiment did not overlap 
labels. While an exhaustive molecular validation of these 387 segments is beyond the scope 
of this study, numerous evidences suggest they are accurate. Specifically, DiffSegR identifies 
72 DERs overlapping all the 25 plastid introns in the PNPase mutant, a feature previously 
shown to reflect a lack of intron degradation following splicing in the mutant (45). Neither 
srnadiff nor derfinder RL were able to capture this feature entirely. Another example 
suggesting that DiffSegR does not over-segment the differential transcription profile is 
displayed for genomic area 51,012-52,156 in Figure 5.C. While it is not differentially 
expressed according to derfinder RL, srnadiff considers it as a single DER (DER 7 with 
genomic positions 51,003 to 52,154) and DiffSegR identifies 6 contiguous different DERs 
within it. The multiplicity of DERs identified by DiffSegR seems to better reflect the shape of 
the log2-FC and is also consistent with the known roles of the PNPase in transcript 3’ end 
maturation (DER 1 with genomic positions 51,012 to 51,209 and DER 6 with genomic 
positions 51,992 to 52,156 for trnV and atpE, respectively) or the degradation of tRNA 5’ 
precursor (DER 5 with genomic positions 51,889 to 51,991 for trnV) (32). Finally, both trnV 
exons over accumulate (DERs 2 and 4 with genomic positions 51,210 to 51,282 and 51,833 
to 51,888, respectively) in the mutant, along with the corresponding intron (DER 3 with 
genomic positions 51,283 to 51,832). The segmentation in three different DERs is, once 
again, an accurate interpretation of the two different biological mechanisms targeting tRNAs 
and introns in the mutant (45, 60). 

Larger genomes with more zeroes 

DiffSegR is also effective and powerful on genomes larger and more complex than the 
chloroplast. It effectively identified the two RNA locations that have been shown to be 
degraded by the Rae1 endoribonuclease in Bacillus subtilis (36, 61)(Deves et al. 2023; Leroy 
et al. 2017). This illustrates one of the big advantages of DiffSegR, it can be easily used to 
narrow down the number of genomic regions worth investigating. From the 4.2 Gb Bacillus 
genome it identified 1833 regions (Table S7) that contained the two known cleavage sites, a 
number that is compatible with the workforce of most research teams. It is however true that 
the segmentation model used by DiffSegR may result in an over segmentation in profiles 
containing many base pairs with a null coverage. This could be problematic when addressing 
even larger genomes, like nuclear ones, and prevent interpretability of the results. 

A straightforward solution would be to apply DiffSegR to smaller portions of the genome, 
only keeping the ones with sufficient coverage. This however comes with issues of its own as 
(i) identifying those genomic portions is a segmentation problem itself, multiplying the 
genomic areas complexifies selection, and (ii) this leads to a triple-dipping problem as the 
data is used three times (identification of the genomic area, segmentation within the genomic 
area and differential expression analysis). Alternative strategies would be to integrate more 
advanced segmentation methods already available. More specifically, we believe it could be 
useful to (i) weight the base pair according to its coverage (using a weighted version of 
FPOP, (62)), (ii) consider full length reads at the prize of modeling auto-correlation (63), and 
(iii) model the discrete nature of the data using a negative binomial model (64). 
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Conclusion 

In conclusion, DiffSegR is a powerful tool that provides researchers with a systematic and 
accurate way to discover expression differences between two conditions using RNA-Seq 
data, without the need for prior annotations. Because it is designed to compare two 
conditions, we believe that DiffSegR has the potential to change the way researchers 
approach differential expression analysis, especially considering the wealth of RNA-Seq 
based strategies aimed at capturing specific events (65). For example, and to name a few, it 
could be used to find newly transcribed RNAs compared to mature RNA control in nascent 
RNA analysis  (66), to find differences in ribosome bound RNA in translatome analysis (67) 
or to discriminate structured (double-stranded RNA) from unstructured RNAs in structurome 
analysis (68). We expect that the use of DiffSegR will lead to new discoveries and insights in 
the field of transcriptomic. 
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DATA AVAILABILITY 

Software availability 

The latest version of the DIffSegR R package is available at 
https://aliehrmann.github.io/DiffSegR/index.html. The package includes a Vignette which 
shows on a minimal example how to use the main functions. 

Data availability 

● Raw sequences for the rnc3/4 dataset have been retrieved from the BioProject 
database with the number PRJNA268035. 

● Raw sequences for the pnp1-1 dataset have been retrieved from the SRA database 
with the number SRA046998. 

● Raw sequences for the nitrogen deficiency condition from IDEAs dataset have been 
retrieved from the SRA database with the number XXXXXXX 

● Raw sequences for the Δrae1 dataset can be accessed from the GEO database with the 
number GSE93894. 

Reproducibility  

The scripts used to generate the figures/tables from this manuscript and figures/tables from 
the Supplementary Materials are available at https://github.com/aLiehrmann/DiffSegR_paper. 
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FIGURE LEGENDS 

Figure 1: State-of-the-art of Identify-then-annotate methods for detecting differentially 
expressed regions (DERs) in RNA-Seq data.  
The methods included in this figure - srnadiff, srnadiff IR, srnadiff HMM (19), derfinder SB, 
derfinder RL(22), RNAprof (21), parseq (20), and DiffSegR - belong to a class of methods 
known as identified-then-annotate, which enable the identification of DERs directly from 
RNA-Seq data without relying on annotations or assembly. To identify DERs, these methods 
address a well-defined statistical problem known as multiple changepoints detection or 
segmentation problem. The methods vary in the signal they segment and the way they 
segment it. For example, srnadiff merges the results of a three-level segmentation model on 
the per-base log2 fold-change (srnadiff IR) and a two-level segmentation model on the per-
base p-value (srnadiff HMM). Similarly, derfinder SB, and derfinder RL implement a two-
level segmentation model on the per-base p-value, per-base F-statistic (similar to per-base p-
value), and the mean of coverages, respectively. RNAprof implements a three level 
segmentation model on the per-base log2 fold-change. parseq segments the mean of 
coverages without assuming the number of levels. Finally, DiffSegR introduces a new 
strategy to identify DERs by segmenting the per-base log2 fold-change without assuming the 
number of levels. All the methods except parseq assessed the found DERs using DESeq2 
(29).  
 
Figure 2: Schematic representation of the DiffSegR pipeline.  
The DiffSegR pipeline consists of four major steps: (1) Computing the coverage profiles and 
the differential transcription profile from BAMs. The loadData function creates coverage 
profiles from user-specified BAM files and a genomic region. (1.A) It produces one profile 
per strand for each replicate of both biological conditions. (1.B) The function then calculates 
the per-base log2 fold-change (log2-FC) based on the coverage profiles. (2) Summarizing the 
differential transcription landscape. (2.A) The segmentation function applies FPOP to the 
per-base log2-FC of each strand to identify segment boundaries, known as changepoints. 
(2.B) Then the featurecounts program is used to assign mapped reads to segments, resulting 
in a count matrix. (3) Differential expression analysis (DEA). The dea function uses DESeq2 
to test the difference in average expression between the two compared biological conditions 
for each segment. (4) Annotating and visualizing the differentially expressed regions (DERs). 
(4.A) The annotateNearest function annotates DERs using user-specified gff3 or gtf format 
annotations. In parallel, (4.B) the exportResults function saves DERs, not-DERs, 
segmentation, the mean of coverage profiles from both biological conditions, and per-base 
log2-FC information in formats compatible with genome viewers like IGV. An IGV session 
in XML format allows loading all tracks with one click, providing a user-friendly way to 
visualize and interpret DiffSegR results. 
 
Figure 3: DiffSegR analysis of the psbB-psbT-psbN-psbH-petB-petD gene cluster in the 
pnp1-1 dataset. 
The tracks from top to bottom represent: (log2-Cov (+)) the mean of coverages on the log2 
scale for the forward strand in both biological conditions of interest, with the blue line 
representing the WT condition and the red line representing the pnp1-1 condition; (log2-FC 
(+)) the per-base log2-FC between pnp1-1 (numerator) and WT (denominator) for the 
forward strand. The straight horizontal line represents the zero indicator. When the per-base 
log2-FC is above or below the zero indicator line, it suggests up-regulation or down-
regulation, respectively, in pnp1-1 compared to WT. The changepoint positions are indicated 
by vertical blue lines, and the mean of each segment is shown by horizontal blue lines 
connecting two changepoints; (DiffSegR (+)) the differential expression analysis results for 
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segments identified by DiffSegR on the forward strand are presented as follows: up-regulated 
regions are depicted in green, down-regulated regions in purple, and non-differentially 
expressed regions in gray; (annotations) the genes provided by users for interpretations. 
Symmetrically, the remaining tracks correspond to the same data on the reverse strand. 
DiffSegR finds 8 up-regulated DERs on the forward strand (IDs 1 to 8), 5 up-regulated DERs 
on the reverse strand (IDs 9 to 11, 14 and 15), and 2 down-regulated DERs on the reverse 
strand (IDs 12 and 13). Table 1 provides a summary of the molecular validations published 
for the DERs identified in the psbB gene cluster through DiffSegR analysis. The bedGraph 
and gff3 files used to generate the tracks and the xml file used to load them in IGV were 
created using the exportResults function of the DiffSegR R package. The session was loaded 
in IGV 2.12.3 for Linux.  
 
Figure 4: Comparison of the empirical cumulative distribution functions (eCDFs) of the 
False Positive Rate (FPR) from DiffSegR and the Differential Expression analysis 
within Gene annotations (DGE). 
The eCDFs of FPRs from DiffSegR (solid curves) and DGE (dashed curves) methods are 
compared by re-sampling two groups from 10 biological replicates of the same nitrogen 
deficiency condition in the IDEAs dataset. The figure displays results for group sizes of 2 
(blue curves) and 5 (red curves) (see Figure S35 for 3v3 and 4v4 designs). The eCDF 
represents the proportion of comparisons (y-axis) with fewer false positives than a specified 
percentage (x-axis). The eCDF analysis demonstrates that the FPR in DiffSegR results is not 
inflated compared to the widely-used DGE approach. 
 
Figure 5: Comparisons of DERs and not-DERs lengths between DiffSegR, derfinder RL 
and srnadiff on pnp1-1 and rnc3/4 datasets.  
(A) The length distribution of DERs and not-DERs identified by DiffSegR and srnadiff are 
shown using both boxplot and violin plot. Only overlapping (not-)DERs between the 
compared methods are kept. A (not-)DER of method DiffSegR is considered overlapping 
either if it covers 90% of a (not-)DER of srnadiff or if 90% of it is covered by a DER of 
method srnadiff. When there are fewer than 20 overlapping DERs or not-DERs, the violin 
plot is replaced by a dot plot. (B) Similar comparisons were made between DiffSegR and 
derfinder RL methods. Derfinder does not identify DERs in rnc3/4, which explains the lack 
of overlap between DiffSegR DERs and derfinder RL DERs in this dataset. (A & B) In both 
datasets, DiffSegR not-DERs are on average longer than srnadiff not-DERs and derfinder RL 
not-DERs in both datasets. Additionally, DiffSegR DERs are on average smaller compared to 
srnadiff DERs and derfinder RL DERs (Mann-Whitney U test). (C) Comparison of DiffSegR, 
derfinder RL, and srnadiff analyses for the trnV gene and the 3' ends of atpE, located on the 
reverse strand of the chloroplast genome. The tracks are defined as depicted in Figure 3, and 
further enhanced by incorporating the results from the derfinder RL and srnadiff analysis. 
DiffSegR identifies 6 up-regulated DERs (IDs 1 to 6). derfinder RL fails to detect any DERs 
within this region. Lastly, srnadiff discovers a singular DER (ID 7). 
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TABLES 

Table 1: DERs identified by DiffSegR within the gene cluster psbB-psbT-psbN-psbH-petB-
petD in pnp1-1 dataset. Most DERs are supported by molecular validations described in the 
literature. Up is for up-regulated and down for down-regulated.        
    

strand positions 
DiffSegR 

result genomic context ID validation 

forward 72,233-72,395 up psbB 5’ ends 1 (43) 

forward 74,224-74,846 up psbH; antisense to psbN 2 (35, 44–
46) 

forward 74,847-75,235 up petB intron 3 (45) 

forward 75,236-75,649 up petB intron 4 (45) 

forward 76,487-77,196 up petD intron 5 (45) 

forward 77,740-77,963 up 
petD 3’ ends; antisense to petD-

rpoA intergenic 
6 (35, 45) 

forward 77,964-78,112 up petD 3’ ends; antisense to rpoA 7 (35, 45) 

forward 78,113-78,218 up petD 3’ ends; antisense to rpoA 8 (35, 45) 

reverse 71,814-73,668 up psbN 3’ ends; antisense to psbB 9 NA 

reverse 73,669-73,935 up psbN 3’ ends; antisense to psbB 10 NA 

reverse 73,936-74,085 up 
psbN 3’ ends; antisense to psbB-

psbT intergenic 11 (35) 

reverse 74,232-74,365 down psbN 12 (45) 

reverse 74,366-75,133 down 
psbN 5’ ends; antisense to psbH 

and petB 
13 (35)  

reverse 75,134-77,383 up 
rpoA 3’ ends; antisense to petB 

and petD 
14 NA 

reverse 77,384-77,605 up rpoA 3’ ends; antisense to petD 15 NA 
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Table 2: Comparison of the true positive rates (TPRs) for DiffSegR, srnadiff, and derfinder 
RL methods on the pnp1-1 (17 labels) and rnc3/4 (6 labels) datasets. Each method is 
executed using its default segmentation hyperparameters.         

dataset method TPR 

pnp1-1 DiffSegR 1 (17/17) 

pnp1-1 srnadiff 0.94 (16/17) 

pnp1-1 derfinder RL 0.24 (4/17) 

rnc3/4 DiffSegR 1 (6/6) 

rnc3/4 srnadiff 0.67 (4/6) 

rnc3/4 derfinder RL 0 (0/6) 
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bam files sample information file

1.B1.A

inputs genomic region

2.A 2.Bpnp1-1 
rep 1

pnp1-1 
rep 2

WT 
rep 1

WT 
rep 2

... ... ... ... ...

56509– 
56698 
(forward)

17987 14554 134 289

... ... ... ... ...

56642-
56776 
(reverse)

307 340 921 760

 4.A & 4.B

3

Computing the coverage profiles (1.A) and the differential transcription profile (1.B)

R command : loadData()

Summarizing the differential transcription landscape : multiple changepoints detection (2.A) and counting (2.B)

R command : segmentation()

Differential expression analysis (DEA) of the segments

R command : dea()

(4.A) Annotating the DERs with nearest using using user specified annotations or 

(4.B) visualizing the DERs in IGV

R commands : annotateNearest() & exportResults()

***

Figure 2
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