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Abstract 

  

Recent studies in infectious, cardiovascular and neurodegenerative diseases have 

established the presence of memory in innate immune cells. This “trained immunity 

(TI)” leads to an enhanced response to a second challenge. Monocytes in Ankylosing 

Spondylitis (AS), a common form of inflammatory arthritis, are known to be hyper-

responsive to microbial stimulus lipopolysaccharide (LPS). We asked if TI is present in 

AS monocytes and, if so, how it contributes to disease pathology.  

 

Using Single-cell RNA sequencing (scRNA-seq), flow cytometry and enzyme-linked 

immunosorbent assays (ELISA), we identify a subset of monocytes from AS patients 

exhibiting features of trained immunity and being hyperresponsive to LPS stimulation. 

Surprisingly, both trained monocytes in AS and β-glucan-trained monocytes from 

healthy donors are hyper-responsive to T-cell-induced activation. scRNA-seq of AS 

synovial mononuclear cells shows enrichment of a monocyte population with 

these/analogous features. Additionally, T cell-stimulated monocytes act back on T-cells 

to support Th17 responses (of established pathology in AS). Lastly, using genetic and 

chemical perturbations we show that ERN1, an AS risk gene enriched in this trained 

monocyte population, contributes to T-cell-induced monocyte activation. 

 

Our data provide strong evidence for the first time for the key role of TI in common 

human inflammatory arthritis.  
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INTRODUCTION 

The term “trained immunity (TI)” was first proposed a decade ago for the concept that 

innate immune cells develop the memory of past insults (1). The presence of TI in 

myeloid cells previously exposed to microbial stimulus, vaccine or lipoprotein has now 

been well-established (2-4). Trained monocytes (and/or macrophages) exhibit 

epigenetic, transcriptional and metabolic changes leading to enhanced cytokine 

production upon a second innate stimulus (5-8). TI has been implicated in infectious, 

cardiovascular and neurodegenerative diseases but not inflammatory arthritis.  

 

Ankylosing spondylitis (AS) is an immune-mediated inflammatory rheumatic disease 

with a strong genetic predisposition (9). The pathogenesis of AS is complex and still 

not yet fully understood, but a clear pathogenic role of interleukin (IL)-17A-producing 

T helper 17 (Th17) cells has been established. The frequency of Th17 cells is elevated 

in the peripheral blood of AS patients (10, 11), and biologics blocking IL-17A are 

effective treatments (12). Of note, IL-1β and IL-23 derived from myeloid cells are key 

upstream pro-inflammatory cytokines supporting the differentiation and expansion of 

Th17 cells (13-15). Interestingly, both IL-1β and IL-23 production are increased in 

myeloid cells from patients with AS (16, 17). Monocytes in AS patients show enhanced 

spontaneous (and stimulation-induced) production of IL-1β compared with healthy 

controls (16). In addition, both the level of serum IL-23 and the extent of 

lipopolysaccharides (LPS)-induced macrophage IL-23 production are significantly 

higher in AS patients in comparison with healthy controls (17-19).  
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The unfolded protein response (UPR) is a cellular mechanism implicated in AS 

pathogenesis (20).  Inositol-requiring enzyme 1 (IRE1α), encoded by the AS risk gene 

ERN1, is an endoplasmic reticulum (ER) stress sensor and UPR initiator (21, 22). 

IRE1α is activated under ER stress by self-dimerization and phosphorylation, activated 

IRE1α then cleaves the mRNA of the inactive transcription factor X-box binding 

protein 1 (XBP1) to generate the mature mRNA that encodes the cleaved XBP-1 

(XBP1s) protein, thus upregulating expression of UPR target genes involved in protein 

folding, processing, and degradation (23, 24). The IRE1α /XBP1 pathway has been 

shown to be important for the activation of several types of immune cells including 

macrophages. It has been proposed that the IRE1α /XBP1 pathway is required for toll-

like receptor (TLR)-mediated production of pro-inflammatory cytokines IL-6 and TNF-

α in macrophages (25). 

 

Why myeloid cells are hyper-responsive to stimulation in AS is unclear. We here 

provide evidence that a subset of monocytes from AS blood has a strong TI signature 

and is the main source of pro-inflammatory cytokines in response to either LPS or T-

cell stimulation. We show T cell-activated monocytes act back to support T helper 

(Th17) cell expansion. We identify a population of monocytes in AS joints that closely 

resembles T cell-activated monocytes, and identify the product of the AS risk gene 

IRE1α as a (novel) therapeutic target within this pathway. 
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RESULTS  

Identification of a subset of monocytes with TI features in blood from AS patients 

To identify the molecular and cellular cause of the monocyte hyper-activation in AS, 

we utilized 10X single-cell RNA sequencing (scRNA-seq) to profile the cellular 

heterogeneity and transcriptome of peripheral blood mononuclear cells (PBMCs) from 

3 ankylosing spondylitis (AS) patients following lipopolysaccharides (LPS) stimulation 

for 16 hours (Figure S1A). Following the annotation of major immune cell types 

(Figure S1B and C), 3358 monocytes were acquired and re-clustered (Figure S1D and 

Figure 1A). In addition to classical and non-classical monocytes, we identified a subset 

of monocyte expressing IL1B and TNF mRNA in the resting state (Figure 1B) and 

thought they might have previously experienced microbial stimulation. To test if these 

cells are “trained” monocytes, we used a set of TI signature genes defined by the 

transcriptome of trained monocytes induced in vivo through BCG vaccination of 

healthy donors (2). We found a strong enrichment of TI signature genes in this cluster 

(Figure 1C-E). Importantly, cells in the trained cluster expressed higher levels of IL1B, 

TNF and IL6 in response to LPS stimulation (Figure 1F), demonstrating the key 

functional feature of TI in myeloid cells. 

 

Activated T cells induce cytokine production by blood monocytes from AS patients 

Joint inflammation in AS is largely sterile thus the enhanced cytokine production to 

LPS stimulation in trained monocyte is less likely a major pathological mechanism in 

AS. Since activated T-cells have been shown to induce IL-1β secretion by myeloid cells 
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in murine models (26), and that T-cell activation is a key feature of AS pathology, we 

asked if monocytes can be activated by T cells. To this end, we performed intracellular 

cytokine staining (ICS) for monocytes using PBMCs from 13 AS patients stimulated 

with LPS or TAB. We gated on monocytes (Figure S2) and observed the induction of 

IL-1β, TNF-α and IL-6 by both LPS and TAB stimulations (Figure 2A). Of note, TAB 

induced a level of cytokine production either comparable to (IL-1β), higher (TNF-α) or 

lower (IL-6) than that of LPS. Since ICS was unable to measure the mature form of IL-

1β or quantify IL-23 (very low percentage in ICS), we utilized enzyme-linked 

immunosorbent assay (ELISA) to confirm the secretion of IL-1β and IL-23 in the 

culture supernatant following TAB stimulation (Figure 2B). To completely exclude the 

potential secretion of cytokines from other cells in PBMCs, we carried out a similar 

experiment using isolated monocytes and CD3+ T cells from the same donors with AS 

and observed IL-1β, IL-23 and IL-6 production exclusively from T cell/monocyte 

coculture but not in T-cell alone conditions (Figure 2C). As expected, TNF-α, known 

to be produced by activated T-cells, was detected in both conditions. Taken together, 

these data reveal a key mechanism of T cell-instructed monocyte activation leading to 

proinflammatory cytokine production. 

 

Trained monocytes are hyper-responsive to T cell-induced activation 

We next asked if cells in the trained monocyte cluster (identified in Figure 1) are more 

responsive to stimulation by T cells. Due to the lack of protein markers for these cells, 

we used scRNA-seq to profile unstimulated and T cell activated beads (TAB)-
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stimulated PBMCs using blood cells from 3 AS patients (Figure S3A-C). As expected, 

genes associated with T cell activation (IFNG and IL2) were induced by TAB in the T 

cell cluster (Figure S3D). We then extracted monocytes and identified 5 clusters 

including the subset containing the trained monocytes (Figure 3A). Notably, the higher 

levels of TNF, IL6 and IL23A were induced by T-cell stimulation in the trained 

monocyte cluster (Figure 3B).  

 

To test if the hyper-response to T cell stimulus is a common feature by TI, we utilized 

the well-established and widely-used β-glucan-mediated assay to generate trained 

monocyte in vitro using isolated monocytes from healthy donors (Figure 3C) (3, 5, 7). 

Following the stimulation using autologous activated T cells, the β-glucan-trained cells 

produced significantly higher levels of TNF-α, IL-6, IL-1β and IL-23 (Figure 3D). 

These data show for the first time that, in addition to their enhanced response to 

microbial stimulus such as LPS, trained monocytes can be hyper-reactive to T cell-

induced activation. 

 

T cell-induced cytokine secretion by monocytes supports Th17 expansion in AS 

Th17 cells play a key role in AS pathology and are known to be driven by IL-1β and 

IL-23, both expressed by monocytes following the stimulation using T cells (Figure 2B 

and Figure 3B). We hypothesized that T cell-activated monocytes could feed back to T 

cells to support Th17 expansion via cytokine secretion. To test this hypothesis, we 

examined the effect of monocyte depletion on the Th17 response in AS PBMCs 
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stimulated using the neutral T cell expansion condition (TAB and IL-2). The percentage 

of IL-17A-producing CD4+ T cells from patients with AS was significantly 

downregulated in monocyte-depleted PBMCs compared with whole PBMCs (Figure 

4A, gating strategy shown in Figure S4). Strikingly, the Th17-enhancing effect of 

exogenous IL-1β and IL-23 was only observed in monocyte-depleted PBMCs and not 

whole PBMCs from AS patients (Figure 4B and C), showing that T cell-induced 

monocytes cytokine secretion are sufficient to enhance Th17 responses. 

 

CD14+ myeloid cells in AS synovial fluid are transcriptionally similar to T cell-

activated trained monocytes  

Next, we asked if trained monocytes that we found in blood is relevant to the pathology 

of inflammatory synovium in patients with AS. To this end, we examined the 

expression profile of CD14+ myeloid cells from the synovial fluid (SF) of 8 Ankylosing 

Spondylitis (AS) patients and their corresponding blood. A total of 16952 CD14+ 

myeloid cells with high-quality scRNA-seq transcriptomic profiles were obtained 

(Figures 5A and B). We identified six monocyte clusters but decided to focus on 

clusters C0-2 as the remaining clusters were scarce in both blood and SF (Figure 5C). 

CD16+ non-classical monocytes (cluster C0) and Calprotectin+ cluster C1 were more 

enriched in SF and blood respectively. Cluster C2, dominated by SF-sourced 

monocytes, was the main source of IL1B and TNF (Figure 5D-E), key pro-

inflammatory cytokines in AS pathology. Multiple additional pro-inflammatory 

cytokines and chemokines were highly enriched in cluster C2 (Figure 5F). The 
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upregulation of IL1B and IL23A, as well as CCL20 (a known Th17 recruiter through 

CCR6), suggests that cluster C2 could enhance both enrichment and expansion of Th17 

cells.  

 

We then checked if TI is relevant to cluster C2 using the same approach used for Figure 

1C-E and observed a significant enrichment of TI signature genes (Figure 5G). Notably, 

Cluster C2 was only enriched for the T cell-activated trained monocyte gene signature 

not LPS-activated (Figure 5 H and I). Figure 5J shows that genes specifically induced 

by LPS (S100A8, S100A9, MT2A, MT1G and MT1E) in trained monocytes were 

expressed at lower levels in the IL23+ cluster C2 largely formed by cells from 

synovium fluid (Figure 5C). By contrast, many genes such as REL, BHLHE40, IL23A, 

JUN and PPP1R15A were enriched in both T cell-activated trained monocytes and in 

the IL23+ cluster C2. Notably, S100A8 and S100A9 were more abundant in cluster C1 

(Figure 5K) which is mostly composed of cells from blood (Figure 5C), further 

supporting that T cells activated trained monocytes in inflamed synovium. 

 

Activated T-cells are present in AS synovial fluid and are composed of both 

CXCR6+ and CXCR6- T-cells 

We next looked for evidence of T-cell activation in SF using T cells from the matched 

AS synovial and blood datasets. A total of 12629 T-cells were acquired revealing 8 

major populations (Figure 6A and B, Figure S5). Clear enrichment of PDCD1+IFNG+ 

activated T-cells was observed in memory CD4+ and CD8+ T-cells from SFMCs 
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compared to those from PBMCs (Figure 6C). Notably, these activated T-cells were 

composed of both CXCR6+ tissue resident and CXCR6- circulating T-cells (Figure 6D), 

suggesting that these effector cells could have been either locally generated in the joints 

or migrated from other organs (such as the gut). Overall, these findings suggest that 

activated T-cells were present in AS SF that could provide stimulation to CD14+ 

myeloid cells in SF. 

 

Multiple pieces of evidence have supported the enrichment of gut-derived T-cells in 

inflamed AS joints (27, 28). Thus, the CXCR6-PDCD1+IFNG+ activated T-cells that 

we observed in AS SF were likely generated in the gut. To test whether T-cells activated 

in extra-articular organ(s) could maintain their ability to activate monocytes following 

migration to the joints, we designed an in vitro assay to model this biological process 

(Figure 6E). We found that T cells pre-activated either 24 or 48 hours before co-culture 

preserved their ability to induce monocytes to produce pro-inflammatory cytokines IL-

1β, IL-23, IL6 and TNF-α (Figure 6F). This finding, together with data shown in Figure 

2, suggests that T-cells either locally activated in synovium or pre-activated e.g. in the 

gut are capable of inducing monocyte activation in joints. 

 

T cell-activated trained monocytes express high levels of AS-associated risk genes 

and are regulated by the AS risk gene ERN1 

In order to identify key regulators determining the function of trained monocyte in AS, 

we next looked for the expression of AS risk genes identified in Genome-wide 
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association studies (GWASs). We found 8 AS risk genes whose expression was 

enriched in trained monocytes activated by T cells (Figure 7A). The ERN1 gene was 

particularly interesting as its protein product IRE1α is a key sensor for endoplasmic 

reticulum (ER) stress, a key hypothesized cause of AS and myeloid cell activation (25, 

29). In addition, using a publicly available dataset (ImmuNexUT), we found that the 

AS risk allele (G) is associated with an increased ERN1 expression level in human 

primary monocytes (Figure 7B). These pieces of evidence encouraged us to hypothesize 

that ERN1 might contribute to T cell-instructed activation of trained monocytes. We 

used siRNA to suppress IRE1α expression in isolated primary monocytes from patients 

with AS and observed significant reduction in the production of IL-1β and IL-23 

(Figure 7C and D). In line with this, we found that 4µ8C, a widely used inhibitor 

specific for IRE1α, significantly reduced the production of IL-1β and IL-23 using the 

same assay (Figure 7E). Taken together, these results reveal a key role of IRE1α in the 

production of proinflammatory cytokines in T cell-stimulated trained monocytes. 

 

DISCUSSION 

In this study, we show that trained immunity (TI) is present in a subset of peripheral 

monocytes in patients with Ankylosing Spondylitis (AS). These “trained” monocytes 

are enriched for TI signatures and are hyper-responsive to LPS stimulation, a key 

functional feature of TI. Interestingly, we found the “trained” monocytes to exhibit 

enhanced cytokine response to stimulation induced by activated T cells and confirm 

this finding using the classic β-glucan monocyte TI training assay. To our knowledge, 
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this feature of TI monocytes has not been reported before. This may not only contribute 

to AS pathogenesis, but could provide important insights into other scenarios related to 

both TI and T cell responses, such as vaccination and Alzheimer's disease. 

 

It would be interesting to check whether the subset of trained monocytes that we 

identified in AS is present in other forms of inflammatory arthritis. Monocyte hyper-

activation has been reported in other forms of inflammatory arthritis, such as 

Rheumatoid Arthritis, Psoriatic Arthritis and Juvenile Idiopathic Arthritis (JIA) (30-32). 

Investigation of TI in these fields could be of value in advancing our knowledge in 

pathological mechanisms. 

 

We also show that cytokines produced by T cell-stimulated monocytes act back on T 

cells to enhance Th17 responses, a major component of AS pathology. The expansion 

of Th17 cells in PBMCs from AS patients was reduced by monocyte depletion and 

rescued by the addition of exogenous Th17 skewing cytokines (IL-1β and IL-23). This 

suggests that monocytes in AS have the capacity to provide sufficient Th17-supporting 

cytokines in the absence of pathogen-associated molecular patterns (PAMPs) such as 

LPS. This mechanism of monocyte activation is likely relevant to the sterile joint 

inflammation seen in AS and related inflammatory arthritides.  

 

Notably, the proinflammatory CD14+ myeloid cells identified here in the joints of 

patients with AS are enriched for the gene signature of T cell-stimulated rather than 
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LPS-stimulated trained monocytes. In line with this, and in contrast to the lack of 

evidence supporting an abundance of PAMPs in AS joints, we observed enrichment of 

PD1+IFN-g+ T-cells in AS synovial fluid. Our data thus suggest that T-cell-induced 

monocyte activation is actively occurring in inflamed AS joints and likely contributes 

to pathology. We also show that T cells activated 24 to 48 hours previously are capable 

of activating monocytes - they would thus have time to migrate to the joints following 

activation at other sites (eg gut). This data is consistent with models of either joint or 

distant T cell activation with subsequent effector function in the joint. Indeed, we here 

provide evidence that monocyte activation may indeed be a key part of this effector 

function. 

 

Interestingly, around half of the activated T-cells we observed in AS SF were CD8+, 

supporting previous studies proposing that antigen-experienced CD8+ T cells travel 

from gut to joint and then undergo local expansion (27, 28). In addition, a recent study 

reports the presence of HLA-B*27-restricted peptides that activate T cell receptors 

present in AS joint CD8+ T cells (33). Our data along with these published findings 

imply a role of (potentially gut-derived) HLA-B*27-restricted CD8+ T-cells in the 

activation of CD14+ myeloid cells in joints, which leads to the upregulation of 

proinflammatory cytokines such as IL-1β and IL-23. These Th17-supporting cytokines 

could be upstream of IL-17 production in the synovium. Future work needs to be carried 

out to test this hypothesis.  
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Drug targets with genetic linkage are more likely to reach late-stage clinical trials (34, 

35). We found that ERN1, an AS risk gene, was enriched in T cell-activated trained 

monocytes. Silencing of ERN1 or inhibiting the function of its gene product (IRE1α 

protein) both reduced the production of IL-1β and IL-23 by T cell-activated monocytes 

from patients with AS. Thus, the inhibition of IRE1α or its related pathway is an 

attractive approach for AS treatment.  

 

The enhancement of unfolded protein response (UPR) is a key hypothesized cause of 

AS, largely driven the study of HLA-B*27 function in AS. Considering the key role of 

IRE1α in UPR, it is plausible to predict that HLA-B*27 would be involved in the 

function of trained monocytes in AS. Future work needs to be carried out to test this 

hypothesis. 

 

Gut inflammation and leakage have been found in a proportion of patients with AS, 

accompanied by the upregulation of IL-1β and IL-23 in inflamed gut tissue (36-38). 

Accordingly, a model in which monocytes are activated by bacteria in the gut or by 

bacterial derivatives in the bloodstream has been considered (36). We propose that the 

trained monocytes that we identified in AS blood were likely “educated” in the gut and 

subsequently re-activated by T cells in joints.  

 

In summary, we here identify the presence of trained immunity in monocytes from 

patients with AS and show for the first time that trained monocytes are hyper-responsive 
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to T cell stimulation. Additionally, our data reveal the presence of a pro-inflammatory 

circuit initiated by T cell-induced activation of trained monocytes which then can act 

back to enhance Th17 responses. These findings thus advance our knowledge of trained 

immunity and AS pathology and offer therapeutic potential. 

 

METHODS 

 

Patient and Control Recruitment 

Peripheral blood was collected from patients attending the Oxford University Hospitals 

National Health Service Foundation Trust (OUH), with appropriate consent and ethical 

approval (Ethics reference number 06/Q1606/139, National Health Service, Health 

Research Authority, South Central - Oxford C Research Ethics Committee). All patients 

included in this study met the criteria of the Assessment of Spondyloarthritis 

International Society (ASAS) for AxSpA (which we henceforth term AS). Fifteen of 

the patients underwent biological therapy (adalimumab, etanercept, secukinumab or 

Golimumab), and twenty-eight patients were treated with non-steroidal anti-

inflammatory drugs (Ibuprofen, etoricoxib, naproxen, Meloxicam). The demographics 

of AS patients recruited for this study are shown in Table S1. 

 

Cell isolation and culture 

Human PBMCs were obtained from the whole blood of AS patients by density gradient 

centrifugation using Histopaque-1077 (Sigma-Aldrich). Primary human monocytes and 
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CD3+ T cells were isolated from PBMCs using CD14 MicroBeads™ and pan T cell 

isolation kit (Miltenyi Biotec), respectively. Human PBMCs, CD14+ monocytes or 

CD14-depleted PBMCs were cultured in RPMI 1640 medium (Sigma) supplemented 

with 10% fetal bovine serum (FBS) and 1% GlutaMAX (Gibco) at 37°C in a humidified 

atmosphere containing 5% carbon dioxide.  

 

Monocyte activation 

For monocyte stimulation assays, isolated 1x106 PBMC were cultured in 200 μl 

medium in non-tissue culture-treated 96-well round bottom plates (Corning) and 

stimulated with 200 ng/ml LPS (Enzo Bioscience) or anti-CD2/CD3/CD28-coated T-

cell activation/expansion beads (Miltenyi Biotec) for 16h. To exclude the involvement 

of non-monocytes in PBMCs, monocytes and T-cells were isolated from PBMCs (90-

95% purity) and co-cultured in the presence of TAB for 16 hours. For inhibition assays, 

0.2 x 106 CD14+ monocytes were pre-treated with the IRE1α inhibitor 4µ8C (0, 10 and 

20uM) for 17 h. The 4µ8C was then washed away before the 4 h co-culture with 

autologous CD14-depleted PBMCs and anti-CD2/CD3/CD28-coated beads. For siRNA 

experiment, siRNA-transfected CD14+ monocytes were stimulated with isolated 

autologous CD3+ T-cell and anti-CD2/CD3/CD28-coated beads. 

 

Monocyte β-glucan training assay 

0.2 x 106 isolated CD14+ monocytes were incubated with 0, 1 or 10 μg/mL of β-glucan 

(InvivoGen) for 24 hours in 24 well plates. 24 hours later, β-glucan was removed 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.10.544264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.10.544264


 19 

through washing and the use of cell strainer (Corning, 352235). Monocytes were then 

cultured in RPMI supplemented with 10% pooled human serum, 2mM Glutamax 

(GIBCO) and 1 mM pyruvate (GIBCO) for additional 5 days before the stimulation by 

activated T cells. For each well, 0.4 x 106 isolated T cells from the same donor and 0.4 

x 106  T cell activation beads (Miltenyi Biotec, anti-CD2/3/28) were added. 4 hours 

post T cell activation, BFA was added. Cells were harvested 16 hours after T cell 

stimulation for cytokine staining using ICS. 

 

Preparation of samples and libraries for scRNA-seq 

Following stimulation, PBMCs were then washed in PBS with 0.1% BSA. Blood 

samples from donors AS1802, AS1830, AS2311 were used in this experiment. For 

AS1802, we loaded 20,000 cells from each condition into a channel of Chromium Next 

GEM Chip K of the 10x Genomics platform. For AS1830 and AS2311, we multiplexed 

cells from the same conditions at a 1:1 ratio using Total-seq-C hashtag antibodies 

(C0251 and C0252), and loaded 20,000 multiplexed samples from each reaction onto 

the chip separately. Single-cell RNA-sequencing libraries were generated using the 

Chromium Next GEM Single Cell 5' v2 kit according to the manufacturer's instructions. 

The resulting DNA libraries were sequenced at >50,000 reads/cell on a Novoseq 6000 

using PE150 mode. For two pairs of AS blood and synovial fluid samples, we first 

isolated PBMCs and SFMCs and then performed fluorescence-activated cell sorting to 

enrich for CD3- live cells. We used the same library construction and sequencing 

strategies as in the in vitro stimulation experiment, except we used the Chromium Next 
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GEM Single Cell 5' v1 kit instead of v2. For the additional six donors, we profiled 

whole PBMCs and SFMCs using methods that have been described previously (39). 

 

Computational analysis of scRNA-seq data 

The paired reads obtained were mapped to the hg38 reference genome to generate gene 

expression matrices using CellRanger v7.0.0. The raw matrices were then analyzed 

using the Seurat R package (v4.0.5). Cells with low-quality profiles were excluded 

based on the number of detected genes, the percentage of mitochondrial RNA among 

total UMIs, and the total number of UMIs. The raw read counts were normalized using 

the NormalizeData function, and variable genes were identified for each sample. Data 

across different conditions were then integrated using the SCTtransform function. To 

select candidate anchor genes, genes were first selected using the 

SelectIntegrationFeatures function, and TCR genes were then further excluded. 

 

To identify cell types, we performed principal component analysis (PCA) on integrated 

data with the RunPCA function to generate principal components (PCs) used for 

dimensionality reduction. PCs representing >90% variance were used for Uniform 

Manifold Approximation and Projection (UMAP) dimensionality reduction. The 

FindNeighbors and FindCluster functions were used to cluster cells based on global 

transcriptional profile. Clusters in the 2-dimensional UMAP were used to identify cell 

types based on marker genes. When re-clustering CD14+ myeloids, CD14+ populations 

were extracted, and dendritic cells were further excluded based on the expression of 
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FLT3, CLEC9A, and CLEC10A. Pure CD14+ myeloids were then split by donors and 

re-integrated to capture the variance within this population. For differential expression 

analysis, the FindMarkers function was used to test the normalized data with the default 

Wald test method. Unless specified, default parameters were used for each function. 

 

To calculate the TI (trained immunity) signature scores for profiled cells, TI signature 

genes were defined as genes up-regulated (adjusted p-value < 0.05 and log2 fold 

change > 0.3) in blood monocytes 3 months post BCG vaccination compared to pre-

vaccination (2). The normalized and scaled counts of TI signature genes of cells were 

summed and divided by the number of genes used. The average TI signature score of 

cells within a certain cluster was used for the cluster-level scoring. 

 

T cell expansion assays 

PBMCs and CD14-depleted PBMCs were cultured in 96-well u-bottom plates at a 

density of 5 × 105 per well and stimulated with anti-CD2/CD3/CD28-coated T-cell 

activation/expansion beads (Miltenyi Biotec) in the presence of IL-2 (20 ng/ml, 

PeproTech) for 6 days. For Th17 cell cultures, recombinant human IL-23 (20 ng/mL, 

PeproTech) and IL-1β (20 ng/mL, PeproTech) were added at the initiation of culture. 

For Th0 generation, cells were stimulated as above in absence of IL-1β and IL-23. On 

day 3, half of the culture medium was replaced with the fresh medium containing the 

same concentration of IL-2, IL-23 and IL-1β. On day 6, cells were harvested for flow 

cytometry staining.  
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siRNA silencing of ERN1 gene in primary monocytes 

Primary monocytes were cultured in 24-well plates and then transfected with control 

non-targeting siRNA (Dharmacon) or siRNA targeting ERN1 (Dharmacon) using 

HiPerFect reagent (QIAGEN) following the instructions provided by the manufacturer. 

After 3 days, the cells were collected for subsequent experiments. The knockdown 

efficiency was determined by quantitative PCR (qPCR) and western blotting. For qPCR, 

primary monocytes were pelleted and resuspended in TRIzol. Total RNA was extracted 

using the Direct-zol RNA MiniPrep Kit according to the manufacturer's instructions 

(Zymo Research, R2052). The RNA was then reverse transcribed into cDNA using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368813). 

Using Taqman Gene Expression Assay probe Hs00980095_m1 for ERN1 and 

Hs1060665_g1 for ACTB (Applied Biosystems), quantitative real-time PCR was 

performed with an Applied Biosystems Prism 7500 Fast Sequence Detection System 

using the TaqMan fast universal PCR master mix reagents (Applied Biosystems, 

4352042). The mRNA expression levels were analysed using the 2–ΔΔCt method.  

 

For western blotting, primary monocytes were lysed using RIPA buffer supplemented 

with protease inhibitors (Sigma). Protein concentrations were quantified by 

bicinchoninic acid (BCA) assay. Total proteins (18 μg) were electrophoresed through a 

12% sodium dodecyl sulfate (SDS)–polyacrylamide gels, transferred to the 

polyvinylidene difluoride membranes and analyzed by immunoblotting. The primary 
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antibodies used were rabbit monoclonal anti-IRE1α (1:1000 dilution; Cell Signalling; 

14C10) and mouse anti-α-Tubulin (1:1000 dilution; Cell Signalling; DM1A). The 

secondary antibodies used were goat anti-rabbit IgG (1:35000, Bethyl Laboratories, 

A120-201P) or goat anti-mouse IgG (1:25000, Bethyl Laboratories, A90-516P). 

 

Intracellular cytokine staining (ICS) 

T cells were stimulated with 100ng/mL PMA (Sigma-Aldrich) and 1ug/mL Ionomycin 

(Sigma-Aldrich) for 2.5 h followed by 2.5 h incubation with 5 μg/ml Brefeldin-A 

(Sigma-Aldrich) before intracellular cytokine staining. The following FACS anti-

human antibodies were used: CD3 (clone OKT3; Biolegend); CD4 (clone RPA-T4; 

BioLegend) and IL-17A (clone eBio64DEC17; eBioscience).  

 

For monocyte experiments, PBMCs were stimulated with either LPS or T cell activation 

beads for 4 h followed by 12 h incubation with Brefeldin-A (Sigma-Aldrich). Following 

FACS anti-human antibodies were used for analysis: CD3 (clone OKT3; Biolegend); 

CD14 (clone M5E2; Biolegend); IL-1 beta (clone CRM56 eBioscience); IL-6 (MQ2-

13A5; eBioscience); XBP1s (Q3-695; BD Biosciences) and TNF-a (clone Mab11; 

BioLegend). To identify living cells and exclude dead cells, samples were stained with 

LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit (L34955, Invitrogen). For 

intracellular cytokines and transcription factor staining, cells were fixed and 

permeabilized in the Transcription Factor Buffer Set (562574, BD Biosciences). Data 

analysis was performed using FlowJo software. 
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Enzyme-linked immunosorbent assays (ELISA) 

The concentrations of IL-23, IL-1β, TNF-α and IL-6 in cell culture supernatants were 

assayed using standard ELISA kits (Invitrogen or R&D) in accordance with the 

protocol set out by the manufacturer. The Multiskan Ascent ELISA reader was 

employed to read the ELISA plates at a test wavelength of 450 nm and a background 

wavelength of 570 nm. Then, the standard curve of ELISA was plotted using Microsoft 

Excel software, while the corresponding concentrations of samples were calculated 

using the absorbance value and standard curve. 

 

Statistics 

The level of statistical significance was assessed by paired Student’s t-test. The 

differences were considered statistically significant at P<0.05*, P<0.01**, 

P<0.001***. All statical analyses and summarized graphs were performed using 

GraphPad Prism 8.4.0. 

 

Study approval 

Venous blood and synovial fluid were obtained under protocols approved by the Oxford 

Research Ethics committee (Ethics reference number 06/Q1606/139). 

 

Data availability  
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Raw and processed data of the in vitro stimulation experiment are available under the 

GEO accession number GSE232131. Data of paired blood and synovial fluids is 

publicly available through Zenodo (https://doi.org/10.5281/zenodo.7730757). 
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Figure 1. A monocyte subset in AS blood exhibits features of trained immunity. (A) UMAP 

visualization of transcriptionally distinct populations of monocytes extracted from unstimulated 

and LPS-stimulated PBMCs. (B) Expression of IL1B and TNF in different monocyte subsets under 

the unstimulated condition. (C) UMAP visualization showing the trained immunity signature score 

in unstimulated AS monocytes at the single cell level. (D) Trained immunity signature score of AS 

unstimulated monocytes at the cluster level. (E) Expression of top 10 trained immunity signature 

genes by different monocyte subsets (unstimulated). (F) Expression of IL1B, TNF and IL6 projected 

onto UMAP of monocytes from unstimulated and LPS-stimulated conditions. 

 

Figure 2. T-cell activation induces cytokine production by Ankylosing Spondylitis monocytes. 

(A) Representative flow cytometry plots and summary graphs of cytokine-producing CD14+ 

monocytes from whole PBMCs. (B) Cytokines secreted to supernatant from cultured PBMCs. (C) 

Isolated CD3+ T-cells from PBMCs from AS patients (n=9) were cultured alone or co-cultured with 

autologous monocytes in the absence/presence of TAB for 16 hours. The levels of cytokines IL-

1β, IL-23 and TNF-α in the culture supernatant were measured using ELISA. The P-value was 

assessed using the paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤ 0.001). 

 

Figure 3. Trained monocytes are hyper-responsive to T-cell-induced activation and act back 

to T-cells to support Th17 response. (A) UMAP visualization of transcriptionally distinct 

populations of monocytes integrated from unstimulated and TAB-stimulated conditions. (B) 

Expression of IL1B, TNF, IL6 and IL23A in different monocyte subsets. (C) Experimental schematic 

of the in vitro β-glucan-induced monocyte training model. (D) Representative flow cytometry plots 

and summary graphs of cytokine-producing trained monocytes from healthy donors (n=5). The 

P-value was assessed using the paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P

≤ 0.001). 

 

Figure 4. T cell-induced activation of monocytes act back to T cells to support Th17 response 

in AS. (A) Representative flow cytometry plots showing the percentage of IL-17A-producing CD4+ 

T cells within the whole PBMCs or monocyte-depleted PBMCs from AS patients (n=9) after 6 days 

in vitro culture under Th0 condition (left). A summary graph for the frequency of IL-17A+ cells in 

CD4 cells (right). (B) Representative flow cytometry plots of IL-17A-producing CD4+ T cells from 

the whole PBMCs from AS patients (n=9) after in vitro culture under Th0 (TAB+IL-2) or Th17 

(TAB+IL-2/IL-1β/IL-23) polarizing conditions for 6 days (left). A summary graph showing the 

frequency of IL-17A+ CD4 within the whole PBMCs (right). (C) Representative flow cytometry plots 

of IL-17A-producing CD4+ T cells from the monocyte-depleted PBMCs from AS patients (n=9) 

after in vitro culture under Th0 or Th17 polarizing conditions for 6 days (left). A summary graph 

showing the frequency of IL-17A+ CD4 within the monocyte-depleted PBMCs (right). The P-value 

was assessed using the paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤ 0.001). 

 

Figure 5. CD14+ myeloid cells in AS synovial fluid are transcriptionally similar to T cell-

stimulated trained monocytes. (A) UMAP visualization of transcriptionally distinct populations of 

CD14+ myeloid cells from 8 paired AS blood and synovial fluid samples. (B) UMAP visualization of 

CD14+ myeloid cell from blood and synovial fluids, colored by source. (C) Frequency of cells from 

various clusters in PBMCs and SFMCs. (D) UMAP visualization of IL1B expression by CD14+ 
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myeloid cells in AS synovial fluid.  (E) UMAP visualization of TNF expression by CD14+ myeloid 

cells in AS synovial fluid.  (F) MA plot of differentially expressed genes in IL23+CXCL2+ C2 cells 

versus the rest (FDR <0.05). The average expression levels are shown for C2 when the fold change 

is greater than 0, and for the others when the fold change is less than 0. GSEA analysis was carried 

out for SF C2 cluster to test of signature genes in trained monocyte (G), T cell-activated trained 

monocytes from Figure 3A and B (H) or LPS-activated trained monocytes from Figure 1A and B 

(I). Further details are described in the method section. (J) Expression of a set of representative 

genes by monocytes from in vitro and ex vivo experiments. (K) Expression of S100A8 and S100A9 

by distinct monocyte clusters from AS blood and joints. 

 

Figure 6. Activated T-cells are present in synovial fluid from patients with AS. (A) UMAP 

visualization of T cells subsets from 6 pairs of matched blood and synovial fluid samples from AS 

patients. (B) UMAP visualization of T cells from blood and synovial fluid, colored by the source of 

cells. (C) Expression of T cell activation marker genes (IFNG and PDCD1) projected onto a UMAP 

of T cells from AS blood and synovial fluid. (D) Expression of CXCR6 projected onto a UMAP of T 

cells from AS blood and synovial fluid. (E) Experimental schematic of the in vitro assay modelling 

the activation of monocytes in joints by T-cells activated in extra-articular organs. CD3+ T-cells 

(green) were isolated from PBMCs of AS patients and cultured overnight in the presence or 

absence of anti-CD3 (blue, plate-coated) and anti-CD28 (yellow, soluble) antibodies. 

Unstimulated and stimulated CD3+ T-cells were then cultured in the fresh culture medium for 24 

or 48 hours before being co-cultured with the monocytes (purple) from the same donors for 16 

hours. (F) The levels of cytokines IL-1β, IL-23, TNF-α and IL-6 in the culture supernatant were then 

measured by ELISA (n=4).  

 
Figure 7. T cell-activated trained monocytes express high levels of AS-associated risk genes 

and are regulated by the AS risk gene ERN1. (A) Expression of AS risk genes enriched in T cell-

activated trained monocytes. (B) A higher expression level of ERN1 in monocytes is associated with 

AS risk allele G at SNP rs196941 (using publicly available data from ImmuNexUT). (C) Efficient 

knockdown of ERN1 at mRNA and protein (IRE1α) levels. (D) Isolated monocytes from AS patient 

blood (n=5) were transfected with ERN1 siRNA or non-targeting control siRNA before the co-

culture with autologous CD3+ T cells and T cell activation beads for 16 hours. The levels of IL-1β 

and IL-23 in the culture supernatant were measured by ELISA. (E) Isolated monocytes from AS 

patient blood (n=6) were treated with an IRE1α inhibitor (4u8C) for 17 h. The 4u8C was then 

washed away before 4 h co-culture with autologous CD14-depleted PBMCs and T cell activation 

beads. P-values assessed using paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P

≤ 0.001). 
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Unstimulated AS blood monocytes

(Zhang et al. J Clin Invest 2022)

Figure 1. A monocyte subset in AS blood exhibits features of trained immunity. (A) UMAP
visualization of transcriptionally distinct populations of monocytes extracted from unstimulated and
LPS-stimulated PBMCs. (B) Expression of IL1B and TNF in different monocyte subsets under the
unstimulated condition. (C) UMAP visualization showing the trained immunity signature score in
unstimulated AS monocytes at the single cell level. (D) Trained immunity signature score of AS
unstimulated monocytes at the cluster level. (E) Expression of top 10 trained immunity signature
genes by different monocyte subsets (unstimulated). (F) Expression of IL1B, TNF and IL6
projected onto UMAP of monocytes from unstimulated and LPS-stimulated conditions.
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Figure 2. T-cell activation induces cytokine production by Ankylosing Spondylitis
monocytes. (A) Representative flow cytometry plots and summary graphs of cytokine-producing
CD14+ monocytes from whole PBMCs. (B) Cytokines secreted to supernatant from cultured
PBMCs. (C) Isolated CD3+ T-cells from PBMCs from AS patients (n=9) were cultured alone or co-
cultured with autologous monocytes in the absence/presence of TAB for 16 hours. The levels of
cytokines IL-1β, IL-23 and TNF-α in the culture supernatant were measured using ELISA. The P-
value was assessed using the paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤
0.001).

B
PBMCs from AS patients

(ELISA)

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL
-1
β 

(p
g/

m
l)

IL-1b

✱✱✱

✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL-23

IL
-2

3 
(p

g/
m

l)

✱✱

✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

2000

4000

6000

8000

10000

TNF-a

TN
F-
α 

(p
g/

m
l)

✱✱✱✱

✱✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL
-1
β 

(p
g/

m
l)

IL-1b

✱✱✱

✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL-23

IL
-2

3 
(p

g/
m

l)

✱✱

✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

2000

4000

6000

8000

10000

TNF-a

TN
F-
α 

(p
g/

m
l)

✱✱✱✱

✱✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL
-1
β 

(p
g/

m
l)

IL-1b

✱✱✱

✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

100

200

300

400

500

IL-23

IL
-2

3 
(p

g/
m

l)

✱✱

✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

2000

4000

6000

8000

10000

TNF-a

TN
F-
α 

(p
g/

m
l)

✱✱✱✱

✱✱✱✱

Unst
im

ulat
ed

T-
 ce

ll a
ct

iva
tio

n

 b
ea

ds LPS
0

1000

2000

3000

4000

5000

IL-6

IL
-6

 (p
g/
m
l)

✱✱✱

✱✱✱✱

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.10.544264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.10.544264


A B2381 TAB-stimulated or unstimulated
AS blood monocytes

IL
-1
β

FSC-A

IL
-6

FSC-A

TN
F-
α

FSC-A

p4
0

p19

Unstimulated               TAB TAB                               TAB
BG (μg/mL)                           0                            0                                 1                                 10

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-1
β 

se
cr

et
in

g 
m

on
oc

yt
es

IL-1β

**
**

0 1 10
0

5

10

15

BG (µg/mL)

%
 IL

-2
3 

se
cr

et
in

g 
m

on
oc

yt
es

IL-23

*
**

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-6
 s

ec
re

tin
g 

m
on

oc
yt

es

IL-6

**
**

0 1 10
0

20

40

60

80

100

TNF-α

BG (µg/mL)

%
 T

N
F-
α 

se
cr

et
in

g 
m

on
oc

yt
es

** *

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-1
β 

se
cr

et
in

g 
m

on
oc

yt
es

IL-1β

**
**

0 1 10
0

5

10

15

BG (µg/mL)

%
 IL

-2
3 

se
cr

et
in

g 
m

on
oc

yt
es

IL-23

*
**

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-6
 s

ec
re

tin
g 

m
on

oc
yt

es

IL-6

**
**

0 1 10
0

20

40

60

80

100

TNF-α

BG (µg/mL)

%
 T

N
F-
α 

se
cr

et
in

g 
m

on
oc

yt
es

** *

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-1
β 

se
cr

et
in

g
 m

o
n

o
cy

te
s

IL-1β

**
**

0 1 10
0

5

10

15

BG (µg/mL)

%
 IL

-2
3 

se
cr

et
in

g
 m

o
n

o
cy

te
s

IL-23

*
**

0 1 10
0

20

40

60

80

100

BG (µg/mL)

%
 IL

-6
 s

ec
re

tin
g

 m
o

n
o

cy
te

s

IL-6

**
**

0 1 10
0

20

40

60

80

100

TNF-α

BG (µg/mL)

%
 T

N
F

-α
 s

ec
re

tin
g

 m
o

n
o

cy
te

s

** *

D

C

Figure 3. Trained monocytes are hyper-responsive to T-cell-induced activation and act back
to T cells to support Th17 response. (A) UMAP visualization of transcriptionally distinct
populations of monocytes integrated from unstimulated and TAB-stimulated conditions. (B)
Expression of IL1B, TNF, IL6 and IL23A in different monocyte subsets. (C) Experimental schematic
of the in vitro β-glucan-induced monocyte training model. (D) Representative flow cytometry plots
and summary graphs of cytokine-producing β-glucan-trained monocytes from healthy donors (n=5).
The P-value was assessed using the paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤
0.001).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.10.544264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.10.544264


A

B

IL-
17
A

CD4

Monocyte-depleted PBMCs
Th0 (TAB+IL-2) Th17 (TAB+IL-2/1β/23)

IL-
17
A

CD4

Th0 (TAB+IL-2) Th17 (TAB+IL-2/1β/23)
PBMCs

C

IL-
17
A

CD4

PBMCs Monocyte-depleted PBMCs
Th0 (TAB+IL-2) Th0 (TAB+IL-2)

Figure 4. T cell-induced activation of monocytes act back to T cells to support Th17
response in AS. (A) Representative flow cytometry plots showing the percentage of IL-17A-
producing CD4+ T cells within the whole PBMCs or monocyte-depleted PBMCs from AS patients
(n=9) after 6 days in vitro culture under Th0 condition (left). A summary graph is shown on the right.
(B) Representative flow cytometry plots of IL-17A-producing CD4+ T cells from the whole PBMCs
from AS patients (n=9) after in vitro culture under Th0 (TAB+IL-2) or Th17 (TAB+IL-2/IL-1β/IL-23)
polarizing conditions for 6 days (left). A summary graph is shown on the right. (C) Representative
flow cytometry plots of IL-17A-producing CD4+ T cells from the monocyte-depleted PBMCs from
AS patients (n=9) after in vitro culture under Th0 or Th17 polarizing conditions for 6 days (left). A
summary graph is shown on the right. The P-value was assessed using the paired two-tailed
Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤ 0.001).
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Figure 5. (legend in the next page)



Figure 5. CD14+ myeloid cells in AS synovial fluid are transcriptionally similar to T cell-
stimulated trained monocytes. (A) UMAP visualization of transcriptionally distinct populations of
CD14+ myeloid cells from 8 paired AS blood and synovial fluid samples. (B) UMAP visualization of
CD14+ myeloid cell from blood and synovial fluids, colored by source. (C) Frequency of cells from
various clusters in PBMCs and SFMCs. (D) UMAP visualization of IL1B expression by CD14+
myeloid cells in AS synovial fluid. (E) UMAP visualization of TNF expression by CD14+ myeloid
cells in AS synovial fluid. (F) MA plot of differentially expressed genes in IL23+CXCL2+ C2 cells
versus the rest (FDR <0.05). The average expression levels are shown for C2 when the fold
change is greater than 0, and for the others when the fold change is less than 0. GSEA analysis
was carried out for SF C2 cluster to test of signature genes in trained monocyte (G), T cell-
activated trained monocytes from Figure 3A and B (H) or LPS-activated trained monocytes from
Figure 1A and B (I). Further details are described in the method section. (J) Expression of a set of
representative genes by monocytes from in vitro and ex vivo experiments. (K) Expression of
S100A8 and S100A9 by distinct monocyte clusters from AS blood and joints.
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Figure 6. (legend in the next page)



Figure 6. Activated T-cells are present in synovial fluid from patients with AS. (A) UMAP
visualization of T cells subsets from 6 pairs of matched blood and synovial fluid samples from AS
patients. (B) UMAP visualization of T cells from blood and synovial fluid, colored by the source of
cells. (C) Expression of T cell activation marker genes (IFNG and PDCD1) projected onto a UMAP
of T cells from AS blood and synovial fluid. (D) Expression of CXCR6 projected onto a UMAP of T
cells from AS blood and synovial fluid. (E) Experimental schematic of the in vitro assay modelling
the activation of monocytes in joints by T-cells activated in extra-articular organs. CD3+ T-cells
(green) were isolated from PBMCs of AS patients and cultured overnight in the presence or
absence of anti-CD3 (blue, plate-coated) and anti-CD28 (yellow, soluble) antibodies. Unstimulated
and stimulated CD3+ T-cells were then cultured in the fresh culture medium for 24 or 48 hours
before being co-cultured with the monocytes (purple) from the same donors for 16 hours. (F) The
levels of cytokines IL-1β, IL-23, TNF-α and IL-6 in the culture supernatant were then measured by
ELISA (n=4).
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Figure 7. T cell-activated trained monocytes express high levels of AS-associated risk
genes and are regulated by the AS risk gene ERN1. (A) Expression of AS risk genes enriched in
T cell-activated trained monocytes. (B) A higher expression level of ERN1 in monocytes is
associated with AS risk allele G at SNP rs196941 (using publicly available data from ImmuNexUT).
(C) Efficient knockdown of ERN1 at mRNA and protein (IRE1α) levels. (D) Isolated monocytes from
AS patient blood (n=5) were transfected with ERN1 siRNA or non-targeting control siRNA before
the co-culture with autologous CD3+ T cells and T cell activation beads for 16 hours. The levels of
IL-1β and IL-23 in the culture supernatant were measured by ELISA. (E) Isolated monocytes from
AS patient blood (n=6) were treated with an IRE1α inhibitor (4u8C) for 17 h. The 4u8C was then
washed away before 4 h co-culture with autologous CD14-depleted PBMCs and T cell activation
beads. P-values assessed using paired two-tailed Student's t-test (* P≤ 0.05; ** P≤ 0.01; *** P≤
0.001).


