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Abstract 

Glycans constitute the most complicated post-translational modification, modulating 

protein activity in health and disease. However, structural annotation from tandem mass 

spectrometry data is a bottleneck in glycomics, preventing high-throughput endeavors 

and relegating glycomics to a few experts. Trained on a newly curated set of 300,000 

annotated MS/MS spectra, we present CandyCrunch, a dilated residual neural network 

predicting glycan structure from raw LC-MS/MS data in seconds (Top1 Accuracy: 

87.7%). We developed an open-access Python-based workflow of raw data conversion 

and prediction, followed by automated curation and fragment annotation, with 

predictions recapitulating and extending expert annotation. We demonstrate that this can 

be used for de novo annotation, diagnostic fragment identification, and high-throughput 

glycomics. For maximum impact, this entire pipeline is tightly interlaced with our 

glycowork platform and can be easily tested at 

https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCru

nch.ipynb. We envision CandyCrunch to democratize structural glycomics and the 

elucidation of biological roles of glycans. 

 

Main 

As the most abundant post-translational modification, glycans are frequently dysregulated and 

mechanistically involved in diseases ranging from cancer1 to metabolic disorders2. The exact 

structure of complex carbohydrates is often key in mediating their function3, such as sialic acid 

only facilitating influenza infection in a particular linkage orientation4. From biomarkers to 

mechanistic understanding1,2, structural resolution thus is relevant for integrating and using 

glycan information for biomedical gains. In the context of systems biology, glycans are 

routinely measured via mass spectrometry-based glycomics5, providing insights into which 

structures or substructures are dysregulated, which can be further analyzed with various 

methods6,7. 
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Currently, structural determination of glycans is, at best, semi-manual and proceeds structure 

by structure8. Since different glycan structures can result in the same mass, structural isomers 

are routinely separated via liquid chromatography (LC)9, followed by fragmentation into 

smaller sub-structures by MS, conceptually akin to shotgun sequencing. Current in-depth 

workflows are hard to parallelize, with a general trade-off between resolution and scale10. All 

this has relegated structural glycomics to a few experts, inaccessible to most life science 

researchers. 

Extensive work by Harvey and others8,11,12 has demonstrated that, in principle, most 

substructures13, linkages14, and monosaccharides15 have diagnostic fragments or intensity 

ratios. Using this fine structural information that is contained within MS/MS spectra, along 

with basic biosynthetic assumptions, it is thus frequently possible to achieve high resolution 

annotations of native glycans. In practice, however, annotation is often restricted to essentially 

topological assignments, not least due to time-constraints. Nuances of diagnostic indicators are 

challenging for humans to decrypt manually or encode programmatically, especially at scale 

and accommodating diverse experimental setups, as each linkage and monosaccharide can be 

affected by its sequence context16. This combinatorial explosion, combined with rich data, is 

promising for scalable artificial intelligence approaches, which can learn complex mapping 

functions, as recently demonstrated by endeavors such as AlphaFold217. 

So far, computational attempts to automate MS based glycomics18–23 did not engage with deep 

learning. Rather, they relied on various search methods, to either search for possible topologies 

given a precursor ion mass or suitable reference spectra, loose constraints that may yield 

unphysiological predictions. Their primary limitations are scale and annotation resolution, 

ranging from composition to glycan topology. Neither linkage type nor monosaccharide 

stereoisomers are commonly resolved during this algorithmic sequencing. Additional hurdles 

to their wider adoption include poor generalizability, as none of them employ a rigorous train-

test mentality, a standard practice in machine learning to evaluate methods on held-out data to 

prevent overfitting. Many tools were designed for very specific problems and were often tested 

on few spectra18–20, precluding their usage in many experimental setups. 

Recent efforts in related fields, particularly in proteomics24,25, have employed scalable deep 

learning strategies in mass spectrometry analysis. Proteomics has partially similar challenges 

to glycomics, e.g., precursor structure elucidation given fragment ions. We thus posit that the 

translation of analogous methods to structural glycomics, combined with domain-inspired 

additions such as biosynthetic constraints and building on the accumulated work of many years 

of glycomics analysts, could be a major leap forward for the field and the usage of glycomics 

in the broader life sciences. 

We present a scalable and accurate workflow for predicting glycan structure from LC-MS/MS 

data, centered on our deep learning model CandyCrunch. Using a large-scale, curated set of 

tandem spectra from diverse experimental set-ups, CandyCrunch predicts glycan structure with 

high accuracy (>87%), outperforms existing methods on this task, and matches/extends expert 

annotations on unseen data. This is facilitated by various domain-specific advancements, e.g., 

considering glycan structure similarity in the loss function. We embedded this into a 

downstream workflow converting predictions into interpretable results, further reducing false-

positive rates, and estimating relative abundances; all in seconds. This workflow includes 

CandyCrumbs, a comprehensive MS/MS fragment annotation plug-in we developed here. We 
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used this to uncover diagnostic fragments and more complex fragmentation behavior at scale, 

underpinned by molecular dynamics simulations. Finally, we annotate novel glycomes, analyze 

biosynthetic constraints at scale, and demonstrate that our pipeline can be used in high-

throughput glycomics. Our methods are accessible within a Python package 

(https://github.com/BojarLab/CandyCrunch) and a free-standing Google Colab notebook at 

https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ip

ynb. 

Results 

CandyCrunch predicts glycan structure within a domain knowledge-suffused workflow 

Reasoning that the fragmentation patterns and propensities (i.e., intensity ratios) in tandem 

mass spectrometry are predictive of glycan structure – a relationship that is used by human 

experts in annotation – we set out to learn this association via machine learning. For this, we 

collected and curated an unprecedentedly large set of annotated LC-MS/MS spectra that derive 

from glycans (Fig. 1A-B; see Methods). We envision that, even beyond our efforts here, this 

dataset will be a valuable resource for data-driven approaches in glycomics. Crucially, this 

dataset aims to provide a representative view over current glycomics data, with a total of nearly 

500,000 labeled MS/MS spectra from >2,000 glycomics experiments, encompassing all major 

eukaryotic glycan classes (N-linked, O-linked, glycosphingolipid, milk oligosaccharides) and 

the most common experimental setups for glycomics. The exact composition of this dataset, 

broken down by glycan classes and experimental parameters can be found in Supplementary 

Table 1. To avoid overrepresenting some classes (e.g., core 1 O-glycan), we then limited each 

class to a maximum of 1,000 example spectra (see Methods for details) and used the resulting 

300,000 spectra to train our model the most likely glycans in a multi-class classification set-up 

(see Methods). 

This resulted in our dilated residual neural network CandyCrunch, a model architecture suited 

to mass spectrometry data25. Since experimental parameters such as the ion mode drastically 

change fragmentation patterns, it uses the MS/MS spectrum, retention time, precursor ion m/z, 

and experimental parameters (e.g., LC type, ion mode, etc.) as input and predicts glycan 

rankings as its output (Fig. 1C). We note that we neither claim, nor sought to obtain, the most 

frugal model for this task, but rather the most performant and flexible, without noticeable 

hardware limitations (CandyCrunch can be readily used on a typical laptop). The model is part 

of a pipeline applied to a raw file (e.g., .mzML or .mzXML files), which groups predictions 

based on mass- and retention isomers and further curates predictions with, e.g., diagnostic ions 

(Fig. 1D). 

If precursor ion intensities are available in the raw file, this pipeline can also estimate relative 

abundances. These abundances correlate well with those gained by LC peak area integration 

(Supplementary Fig. 1), a state-of-the-art approach for estimating relative abundances. Overall, 

CandyCrunch is highly performant, with an accuracy of >87% of the top-ranked structure 

prediction in the independent test set (Fig. 1E), performing comparably across glycans 

(Supplementary Fig. 2A-B) and across different MS setups and glycan classes (Supplementary 

Table 2). Custom loss functions estimating structural distance to the ground truth, and many 

more domain-knowledge-inspired modifications (see Methods), ensure that even erroneous 

predictions are structurally close to the correct solution. Our approach also includes 

incompletely resolved structures, so that prediction uncertainty can be meaningfully conveyed 
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via, for instance, missing linkage information (indicated by a higher topology accuracy than 

structure accuracy; Fig. 1E). 
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Figure 1. Predicting glycan structure via deep learning. A-B) Overview of the curated dataset of glycomics 

LC-MS/MS by glycan class (A) and source (B). Diagonal bars indicate positive ion mode data. The numbers 

correspond to spectra with annotations. C) Schematic view of CandyCrunch model architecture. D) Pipeline of 

curating glycan predictions from raw file to final output table. E) Evaluating top-1 accuracy on the independent 

test-set (see Methods) across different levels of resolution. F) Learned representations of all spectra in the test-set 

are shown via t-SNE, colored by glycan class. Examples are illustrated with their glycan structure. G) Excerpt 

from an example prediction output using our Colab notebook on the file JC_171002Y1.mzML26. H) Proportional 

Venn diagram of the comparison of CandyCrunch and Glycoforest on the raw file JC_131210PMpx5.mzML18, 

not used for training CandyCrunch but used for developing Glycoforest. Shown are topologies (Glycoforest does 

not output full structures) matching those of the human annotator for each model (see Supplementary Fig. 5 for 

detailed comparison). All shown masses are from reduced glycans. Glycans here and in the entire manuscript are 

drawn using GlycoDraw27 according to the Symbol Nomenclature for Glycans (SNFG). 

Learned representations of spectra by CandyCrunch cluster by glycan sequence and glycan 

class (Fig. 1F), demonstrating that the model has learned to accommodate experimental 

variability. Further, structurally related glycans, even within the same class, tend to cluster 

together in the learned representation space. This can be quantified by comparing the cosine 

distance of learned representations of pairs of glycans with their structural distance, revealing 

that the co-clustering described by the representations is indeed suggestive of structural 

relatedness of glycans (two-sided Mantel test of correlating the two resulting cosine distance 

matrices; p < 0.001). 

In framing CandyCrunch as a multiclass classification problem (i.e., ranking the likelihood of 

pre-defined glycans), we minimized the chance for unphysiological glycans in the output, a 

very real possibility otherwise, given the sparsity of real glycan sequences among possible 

sequences28. However, this made zero-shot predictions – predicting a glycan sequence that was 

absent from our training set – conceptually infeasible. As repositories such as GlycoPOST do 

not catalogue all physiological glycans, and glycomics studies, such as mucin-type O-

glycomics29 or milk glycomics30, routinely discover new structures, we set out to augment our 

pipeline to allow for, limited, zero-shot prediction outside our 3,508 defined glycans. 

Reasoning that glycans in a biological sample tend to be biosynthetically related, i.e., contain 

precursors/intermediates of larger biosynthetic pathways, we turned to our recently developed 

method of constructing glycan biosynthetic networks7. Applying this method to a typical 

CandyCrunch output (Supplementary Fig. 3) revealed the existence of necessary intermediate 

structures that were absent from our predictions but would explain spectra without a valid 

prediction. We thus added this routine as an optional step in our inference workflow, to 

facilitate a certain subset of physiological zero-shot predictions. 

CandyCrunch is fundamentally database-independent but can be further enhanced by methods 

leveraging databases, such as defined within glycowork31, to augment predictions downstream. 

By carefully selecting a suitable subset of reference structures (e.g., by taxonomy, glycan class, 

or tissue), matches for unexplainable spectra could be proposed. These potential matches were 

then cross-checked for diagnostic ions as well as ranked by biosynthetic compatibility with true 

predictions. This, again, allowed for a certain subset of zero-shot predictions. It should be noted 

that this procedure still balanced the theoretical constraint of physiological glycans with the 

reality of encountering novel structures in biological samples. Our final inference workflow 

then also contained this latter expansion, resulting in a ranked prediction output that can be 

further investigated by the researcher (Fig. 1G). 
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Next, we compared CandyCrunch with alternative approaches to this problem. As a preface, 

we should note that no current approach combines CandyCrunch’s advantages of scale, 

generalizability, performance, and its flexibility in usage (Supplementary Fig. 4A). Further, 

most methods are only maintained for the briefest of periods and are no longer realistically 

accessible. Thus, we had to effectively constrain ourselves to compare CandyCrunch on 

individual raw files that were specifically used to build these alternative approaches, while we 

excluded them during training. Still, in direct comparison with state-of-the-art methods such as 

Glycoforest18 on challenging fish mucin glycans, CandyCrunch demonstrated a greater overlap 

with manual expert annotations (Fig. 1H; 62.5% versus Glycoforest’s 40.6%) and a 

substantially higher structural resolution (Supplementary Fig. 5). In addition, by tethering 

CandyCrunch and the below-mentioned CandyCrumbs to our glycowork ecosystem31 and by 

providing everything open-source, we substantially increase the chances for the long-term 

viability of our presented methods. 

Applied to fully unseen datasets, CandyCrunch routinely achieved high performance 

(Supplementary Table 3; topology: 92% accuracy, structure: 84% accuracy) and potentially 

can extend expert annotations by correctly capturing additional structures and isomers 

(Supplementary Fig. 6). The additional predictions in this sample partly even stemmed from 

remnant glycans from the previous sample, showcasing the exceptional sensitivity of our 

model. We would like to highlight here that the cross-training of CandyCrunch on all glycan 

classes yielded performance synergy, as a model only trained on O-glycans performed worse 

for predicting O-glycans (Supplementary Table 3; topology: 84% accuracy, structure: 79% 

accuracy) than the model trained on all classes. We posit that this was due to the structure-

based loss function we used for training, as well as shared information between spectra of 

different classes, stemming from shared glycan motifs across classes (e.g., Neu5Ac-Hex). 

The speed and relatively low resource requirements of CandyCrunch (Supplementary Fig. 7A) 

mean that samples can be exhaustively analyzed, without practical constraints to the X most 

abundant structures, which is a routine necessity in human analysis. In its typical application, 

CandyCrunch also makes fewer assumptions about what is or should be present in a sample, 

enhancing the chances for novel discoveries. This means, e.g., that co-released N-glycans can 

be detected in O-glycan preparations (Supplementary Fig. 8). 

CandyCrumbs automatically annotates fragment ions and facilitates diagnostic ion 

discovery 

When analyzed by humans, fragment ions are usually annotated via the Domon-Costello 

nomenclature32 and used for elucidating the structure of a glycan. While there are programs 

that automate this assignment21,22, they are either only accessible via graphical user interfaces 

or only provide annotations for simple fragment ions. We thus decided to implement an 

exhaustive Python-based solution to this problem, CandyCrumbs, which is also freely available 

via the CandyCrunch Python package. Given a candidate glycan sequence and fragment peaks, 

CandyCrumbs can automatically and rapidly (Supplementary Fig. 7B) annotate fragment ions 

in Domon-Costello and IUPAC-condensed nomenclature (Fig. 2A, see Methods). Compared 

to alternative approaches, this presents the most feature-complete and rapid implementation of 

this task (Supplementary Fig. 4B). 

Further, we used several domain knowledge-inspired heuristics and probability rules to 

highlight the most probable fragments (Supplementary Fig. 9; see Methods), if multiple 
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fragmentation options could result in an m/z value that is acceptable at a given threshold. We 

then also integrated CandyCrumbs within the aforementioned open-access Colab notebook (at 

https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ip

ynb) for full flexibility. Our implementation of CandyCrumbs then allowed us to use it in a 

high-throughput setting and integrate it into CandyCrunch workflows, such as for identifying 

diagnostic ions at scale as discussed below, to aid expert annotation of challenging cases. 
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Figure 2. Discovering diagnostic fragmentation using CandyCrumbs. A) Schematic view of the 

CandyCrumbs workflow for automatic fragment ion annotation. B-E) Negative ion mode spectra of reduced 

glycans with prediction confidence between 0.9 and 1.0 for Fucα1-2Galβ1-3GalNAc / Galβ1-4GlcNAcβ1-3Fuc 

(A), Neu5Acα2-3Galβ1-3GalNAc / Galβ1-3(Neu5Acα2-6)GalNAc (B), GlcNAcβ1-3(Neu5Acα2-6)GalNAc / 
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GalNAcα1-3(Neu5Acα2-6)GalNAc (C), and GlcNAcβ1-3(Neu5Gcα2-6)GalNAc / GalNAcα1-3(Neu5Gcα2-

6)GalNAc (D) were averaged and juxtaposed. Fragments exhibiting differential abundance were labeled by 

CandyCrumbs in the Domon-Costello nomenclature32. F-G) Negative ion mode spectra of reduced glycans with 

prediction confidence between 0.6 and 1.0 for Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-

4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc / Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-

6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc (F) and Neu5Acα2-6Galβ1-4GlcNAcβ1-

2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc / Neu5Acα2-3Galβ1-4GlcNAcβ1-

2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc (G) were averaged, juxtaposed, and 

labeled similar to (B-E). Doubly-charged fragment ions are colored gray. 

Reference spectra are routinely used as high-quality examples in semi-manual annotation33. As 

“spectrum quality” is an ill-defined and subjective characteristic, we aimed to quantify this 

aspect by using calibrated34 prediction confidence of CandyCrunch as a proxy, with the 

reasoning that a more confidently assessed spectrum is a higher-quality spectrum with more 

information for effective prediction. Rather than one reference spectrum, i.e., the usual 

approach33, we then extracted hundreds to thousands of high-quality spectra for a given 

structure from our dataset and engaged in highly-powered statistical comparisons between 

isomers. This identified numerous diagnostic ions and/or ratios for topologically distinct (Fig. 

2B-C) and identical (Fig. 2D-E) isomers, with large effect sizes. This also extended to other 

glycan classes and, e.g., facilitated detecting conserved fragmentation differences of linkages 

(e.g., stronger B3 ion in α2-6 vs α2-3) across glycan backbones (Fig. 2F-G) and recapitulated 

known effects from the literature35, such as a higher stability of α2-6 vs α2-3 in negative mode 

(see B1 ion in Fig. 2G). Importantly, these differences diminished, and eventually vanished, 

with lower-quality spectra (Supplementary Fig. 10). We then analyzed the predictiveness of 

these diagnostic features when reducing spectrum quality. Intriguingly, some diagnostic 

features, even if they were not the strongest initial signal, remained predictive even for 

medium- to low-quality spectra (Supplementary Fig. 11), making them promising candidates 

for aiding annotation. 

Similarities between Neu5Ac- and Neu5Gc-versions of the same isomers (Fig. 2D-E) 

suggested molecular determinants of fragmentation propensities. We thus first analyzed all 

high-quality O-glycan spectra juxtaposing composition-matched glycans containing 

GalNAcα1-3 or GlcNAcβ1-3, confirming systematic fragmentation propensities on a global 

scale (Supplementary Fig. 12). 

Molecular dynamics reveals mechanistic basis for diagnostic fragmentation behavior 

In the abovementioned scenario (Fig. 2D-E), our conclusion was that GlcNAcβ1-3(Siaα2-

6)GalNAc fragmented along the HexNAc-HexNAc axis, while GalNAcα1-3(Siaα2-6)GalNAc 

fragmented along the Sia-HexNAc linkage. To elucidate how structural properties of these 

molecules could give rise to these differences in fragmentation behavior, we engaged in 

molecular dynamics simulations of both isomers. 

The fragmentation pattern of the GlcNAcβ1-3(Siaα2-6)GalNAc glycan displayed evidence of 

a charge induced fragmentation mechanism (Fig. 2D-E). In agreement with this, we saw 

evidence of the carboxylic acid moiety of the terminal sialic acid interacting with the hydrogen 

of the C6 hydroxyl group of the terminal HexNAc sugar (Fig. 3). The interaction was sampled 

11.9% of our cumulative 2 μs simulations of GlcNAcβ1-3(Neu5Acα2-6)GalNAc. As these 

simulations were conducted in aqueous solution, rather than a vacuum as would be the 

environment for fractionation, the frequency of this interaction will be far greater during the in 
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vacuo fragmentation due to absence of water molecules competing for hydrogen bonding. 

Therefore, this suggests that the charge induced fragmentation mechanism of GlcNAcβ1-

3(Neu5Acα2-6)GalNAc is due to removal of a proton from the terminal HexNAc sugar, 

therefore resulting in fragmentation along the HexNAc-HexNAc axis.   

 

Figure 3. Molecular dynamics reveals fragmentation mechanism. A-B) Kernel density estimate distribution 

of the distance between the center of geometry of the carboxyl group of the sialic acid and the hydrogen of the 

hydroxyl group of C6 of the terminal HexNAc residues for the closed (A) and open (B) reducing GalNAc residue 

for both GlcNAcβ1-3(Neu5Acα2-6)GalNAc (blue) and GalNAcα1-3(Neu5Acα2-6)GalNAc (yellow). The plots 

show how in GlcNAcβ1-3(Neu5Acα2-6)GalNAc, the carboxyl group is able to interact with the hydroxyl of the 

C6 of the HexNAc. However, this interaction is not observed in GalNAcα1-3(Neu5Acα2-6)GalNAc. C) 

Representative snapshot of the structure of GlcNAcβ1-3(Neu5Acα2-6)GalNAc. A representative snapshot of the 

structure of GlcNAcβ1-3(Neu5Acα2-6)GalNAc is shown (C), with the interaction between these two moieties 

displayed a dashed line (orange). 

Conversely, simulations of GalNAcα1-3(Neu5Acα2-6)GalNAc were not able to sample this 

interaction (occurrence < 0.1%). As a result, fragmentation of this glycan occurs along the 

Neu5Ac-HexNAc linkage instead.  

Furthermore, during the ionization of both of the glycans, reductive β-elimination would result 

in the reducing end GalNAc being reduced to an alditol. As this linearized structure may result 

in increased flexibility, we also conducted molecular dynamics simulations of both glycans 

with a linearized reducing GalNAc. These simulations yielded a similar insight to those 

described previously. In the reduced GlcNAcβ1-3(Neu5Acα2-6)GalNAc glycan, the carboxyl 

group of the terminal sialic acid interacted with the hydrogen of the C6 hydroxyl group of the 

terminal HexNAc sugar during 6.8% of the simulated time. Again, the reduced GalNAcα1-

3(Neu5Acα2-6)GalNAc was not able to sample this interaction (occurrence < 0.1%). 

We therefore concluded that the identified fragmentation behavior can be used to distinguish 

between these two isomers, an endeavor that is otherwise challenging without specific 

enzymatic digestion. This implied that we could use our CandyCrunch & CandyCrumbs - 

powered approach to distinguish very close structural isomers based on diagnostic 
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fragmentation behaviors, beyond single diagnostic ions or ratios and more akin to how human 

experts would distinguish them. 

Uncovering new biological insights using CandyCrunch and CandyCrumbs 

Striving towards AI-assisted glycomics, we propose our platform as a means to enhance human 

analysts by (i) saving time, (ii) making annotations more robust, and (iii) analyzing samples 

more comprehensively. We illustrate the latter point with de novo predictions of murine 

intestinal glycans that were too low in abundance to be included in the original annotation but 

revealed, e.g., the presence of Neu5Gc-containing glycans and low levels of sialyl-Tn antigen 

in these samples (Supplementary Fig. 13). Importantly, we do not claim that human analysts 

could not have annotated these structures in principle, but rather that very real time- and 

resource-constraints make this frequently infeasible in practice. This limitation is lifted by 

CandyCrunch. 

To demonstrate that we could apply our developed methods to truly novel samples, we 

analyzed the serum N-glycome of southern bluefin tuna (Thunnus maccoyii), which was 

measured within GPST00018236 but never reported in an annotated manner. This resulted in 

over 50 glycans, including high-mannose, hybrid, and complex structures, with features such 

as bisecting GlcNAc, core and antenna fucosylation, Neu5Gc, and multi-antennae N-glycans 

(Fig. 4A, Supplementary Fig. 14). In our comprehensive database within glycowork, not a 

single glycan from T. maccoyii has been reported so far, demonstrating that these pipelines can 

facilitate new discoveries. 

We also wanted to highlight how predictions could be used downstream to derive new insights 

from aggregating glycomics studies. This can even be done in the context of already performed 

glycomics experiments, distilling results from the accumulated data of many years of study. 

For this, we re-used the total 250,000 O-glycan spectra mentioned in the context of Fig. 2, to 

construct biosynthetic networks7. As described above, this process filled in the gaps of 

unobserved intermediates in the biosynthesis of observed structures. A key benefit here is that 

all datasets have been analyzed by the same annotator (CandyCrunch), eliminating an 

important source of heterogeneity37. Applied to our dataset, this resulted in 1,003 biosynthetic 

networks (corresponding to 1,003 glycomics experiments measuring O-glycans) that we used 

to analyze systematic effects in that glycan class. This revealed that some intermediates were 

never measured (Supplementary Fig. 15, Supplementary Table 4), such as the reducing end 

GalNAc (likely due to the mass range of the used mass spectrometer), while others, such as 

Gal3Sβ1-3GalNAc, were nearly always reliably measured whenever larger structures that 

included this building block as a substructure were present in a sample. We believe that this 

approach might shed light on subsets of the O-glycome that are currently hard to measure, as 

we here, again7, noted the peculiar absence of GlcNAc-terminated structures from measured 

glycans as a trend. 
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Figure 4. Deriving biological insights from CandyCrunch predictions. A) Serum N-glycome of the southern 

bluefin tuna (Thunnus maccoyii). Shown are the precursor ion intensities, arrayed by liquid chromatography 

retention time. Representative structures that are meant to illustrate the identified sequence diversity are shown 

via the SNFG. Next to each structure, we show the cosine similarity of the shown spectrum and the averaged 

spectrum of all negative ion mode spectra of reduced glycans of the predicted structure with a confidence above 

0.5 (see Fig. 2 for background). B) O-glycan reactions are path-dependent. For every situation in which two 

glycosyltransferases competed for the same substrate, we analyzed which order of reactions was experimentally 

observed across our networks. C) O-glycan networks decomposed into biosynthetic communities relating to core 

structures. We detected communities via the Louvain method and calculated their pairwise Jaccard distances, 

shown here as a hierarchically clustered heatmap. D) Community corresponding to core 5 O-glycans. Clustering 

of the distance matrix from (C) using OPTICS (Ordering Points To Identify the Clustering Structure)38 resulted 

in conserved communities broadly corresponding to O-glycan cores, with the one from core 5 being shown here 

as a network, nodes scaled by degree. E) Clustering cancer cell line O-glycomes. Predicted O-glycomes of Acute 
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Myeloid Leukemia (AML) cell lines (GPST000214) and differentiated colorectal cancer cell lines (CaCo-2, 

GPST000256), via a CandyCrunch model not trained on these datasets, are shown via t-SNE (n = 103), using 

glycan abundance as features. F) Differential glycan expression between AML and colorectal cancer cell lines. 

Given the predicted glycomes of (E), we used the make_volcano function from glycowork to test differential 

expression at the motif level, shown as a volcano plot. Differentially expressed glycans are drawn inversely scaled 

by corrected p-value. 

Further analyses across our networks then allowed us to compare the reaction order of 

glycosyltransferases, reinforcing the highly dominant nature of galactosyltransferases7 (Fig. 

4B). Decomposing the biosynthetic networks into communities unveiled several conserved 

clusters that were modular and occurred in many of our datasets (Fig. 4C). Further investigation 

resulted in the observation that these clusters corresponded to the O-glycan core structures and 

their respective biosynthetic extensions (Fig. 4D). In general, these proved to be relatively 

modular, except for cases such as core 1 and 2, which showed some biosynthetic overlap. We 

envision that this rapid decomposition of many networks into biosynthetic subcategories will 

prove useful for comparing and understanding the eventual terminal motifs that will be exposed 

in these different O-glycan cores, as well as their biosynthesis. 

As a proof of concept, to demonstrate the capabilities of CandyCrunch for high-throughput 

analysis, we next predicted the O-glycomes of Acute Myeloid Leukemia (AML) cell lines 

(GPST00021439) and differentiated colorectal cancer cell lines (CaCo-2, GPST00025640). With 

a total of 103 glycomics raw files for this analysis, we could show that the predicted glycomes 

of AML and colorectal cancer cell lines formed distinct clusters (Fig. 4E), which both were 

separate from the blanks used in GPST000256. We then engaged in a differential glycan 

expression analysis to investigate what distinguished these clusters. While there was 

considerable intra-cluster heterogeneity, this analysis revealed that the colorectal cell lines on 

average were more enriched in structures containing fucosylated galactose and remnant N-

glycans, while the AML cell lines exhibited higher levels of sialylated glycans and Lewis 

structures (Fig. 4F). This set of analyses shows that CandyCrunch can be applied to large sets 

of glycomics measurements and eventually be used in conjunction with other glycowork 

functionality to reveal dysregulated glycans and glycan motifs, directly from LC-MS/MS raw 

files. 

Discussion 

We present here generalizable methods to (i) predict glycan structures from LC-MS/MS data 

using deep learning (CandyCrunch) and (ii) automatically annotate fragment ions in MSn 

spectra (CandyCrumbs). Both CandyCrunch and CandyCrumbs are suited for high-throughput 

usage and can scale to large datasets as well as extremely diverse glycans and experimental 

set-ups. With the high performance that we demonstrate here, we are confident that these 

pipelines will be useful both for experts, accelerating and augmenting their workflows, as well 

as for less experienced users, similar to how automated workflows in other systems biology 

disciplines have democratized access to state-of-the-art methods41,42. 

Our approach is ultimately limited by the representativeness of available data. While 

CandyCrunch is applicable to all major glycan classes and most experimental setups, we do 

note that the very best results can be expected for reduced glycans in negative mode, 

particularly O-glycans or free oligosaccharides. This is both a result of high-quality data in 

those cases and particular efforts in fine-tuning our pipeline for optimal results, as they 

intersected most with our own research interests and capabilities. In general, compelling results 
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can be expected for samples similar to our training data, strongly enriched in mammalian and 

fish samples (Supplementary Fig. 16), and we expect to perform worse, on average, on remote 

samples such as from invertebrates. We envision that, with increasing data, this will improve. 

We thus urge the community to make their glycomics data (as well as high-quality annotations) 

available through platforms such as GlycoPOST43, as this will improve approaches such as 

CandyCrunch, and ultimately advance glycobiology and its applications. 

We recognize that, as with any model, CandyCrunch predictions are imperfect, exhibiting false 

negative and false positive predictions, which occasionally might not resemble errors made by 

humans. Particularly non-CandyCrunch glycan additions within our pipeline, via biosynthetic 

networks and database queries, exhibit a more tentative character and should be further 

evaluated by experts. For ideal results, we always recommend predictions to be further refined 

by experts. We are, however, convinced that CandyCrunch predictions can raise result quality 

and comprehensiveness for both experts and novices, in addition to the considerable increase 

in throughput. Lastly, during data curation, we assumed expert annotations within our training 

data to be correct, which may retain analyst bias, such as preferential annotation of type II 

versus type I LacNAc structures in N-glycans without conclusive evidence. Once sufficient 

data become available, future work may extend this approach to higher-order MSn spectra 

and/or exoglycosidase treatments, with more detailed structural information. 

Beyond the fact that the zero-shot capabilities of CandyCrunch are limited, we would also like 

to note that, while we support common derivatizations such as permethylation, we do not 

currently support every type of glycan modification within CandyCrunch and CandyCrumbs. 

Specialized methods, such as azidosugars44, are at the moment beyond our scope. 

We are enthusiastic about the potential of upcoming methods to simulate high-resolution 

fragmentation spectra via deep learning45, which could be adapted for AI-glycomics in future 

work and aid either training or the evaluation of prediction results. While we focus on 

glycomics here, we envision that analogous efforts in glycoproteomics could also advance and 

accelerate the field. Overall, we conclude that our presented methods not only pave the way 

for AI-enhanced structural glycomics but also enable many other avenues ranging from 

systematic comparisons over data science to glycoinformatics. This is facilitated by our large, 

curated dataset and the ability to quantify spectrum quality, engaging in analyses at scale for 

many different aspects of glycomics data. 

 

Online Methods 

Dataset 

Tandem mass spectra stemmed from repositories such as GlycoPOST43, MassIVE, UniCarb-

DB33, UniCarb-DR, and NIST, as well as from individual publications with associated public 

raw data. A full list of the 189 data sources can be found in Supplementary Table 5. All raw 

files were converted into the open-access format .mzML using the msconvert software46. A 

custom script using the pymzML package47 (version 2.5.2) was used to extract all spectra at 

the MS/MS level, together with their stored precursor ion m/z and retention time, if available. 

This extraction functionality is now available as the process_mzML_stack function within our 

CandyCrunch package (version 0.1), next to an analogous process_mzXML_stack function. We 

extracted up to 1,000 fragment peaks of the highest intensity per spectrum, if available. Then, 
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spectra were retained that fell within +/- 0.5 Da m/z and +/- 2 minutes retention time of reported 

glycan peaks in the associated publications. All retained spectra were kept for self-supervised 

training, paired with the information of the respective glycan class, while only spectra that 

could be unambiguously linked to structures described in the respective publications were kept 

for supervised training. This resulted in a total number of 625,547 glycan spectra, of which 

485,406 spectra were labeled with a defined structure and could be used for training, the latter 

stemming from 3,508 unique glycan structures (Supplementary Table 6). The full dataset can 

be found at Zenodo under the doi:10.5281/zenodo.7940047. 

Data Processing 

We first removed all spectra with a retention time below two minutes as noise. Retention times 

then were normalized for each individual sample, by dividing absolute retention times by the 

respective maximal retention time (or a minimum of 30, if the maximum extracted retention 

time was below 30). Missing retention times were assigned a value of zero. Fragment 

intensities were normalized for each spectrum, by dividing the intensity of each peak by the 

total intensity of the spectrum. Then, intensities were binned in 2,048 equal-sized m/z windows 

from the observed minimum (39.714) up to a maximum of 3,000. Additionally, the m/z 

remainder (i.e., the difference of the m/z of the highest intensity peak of a bin to the left bin 

window) was calculated for each bin, as suggested in Altenburg et al25, allowing the model to 

learn exact peak location despite binning. Glycan class, mass spectrometry ion mode, ion trap 

type, LC type, and glycan modification type were coded as integers to allow for learned 

embeddings. 

During training, we capped all glycan structures to at most 1,000 randomly sampled spectra 

per structure, to avoid imbalance by frequently observed but simple glycans. In the self-

supervised setting, we preferentially sampled spectra from labeled examples and only 

supplemented, where needed, by unannotated spectra labeled by the model. This led to a final 

dataset of 300,363 spectra. We used an 85/15 split into train/test set, which was split on the 

level of samples, to ensure that spectra of one sample were not found in both train and test and 

thus make the generalizability estimation more robust. For training, classes in the test set that 

would constitute zero-shot prediction were afterwards moved into the train set. 

Model architecture 

CandyCrunch is a dilated residual neural network, with additional embedded inputs, to predict 

glycan structure from tandem mass spectrum in a multiclass classification setup. 

For the processing of binned intensities and m/z remainders, a 1D-convolution layer was 

followed by a leaky ReLU and six residual dilated convolutions, with dilations of 1, 2, 4, 8, 16, 

and 32. Then, we used max-pooling with a kernel size of 20 and a fully connected layer to 

bring this output to a dimensionality of 1,024. Glycan class, mass spectrometry ion mode, ion 

trap type, LC type, and glycan modification type were embedded into dimensionalities of 24, 

respectively. Precursor m/z and normalized retention time were also brought to 

dimensionalities of 24 via a fully connected layer, a layer normalization, and a leaky ReLU. 

Then, all inputs were concatenated and passed through two sets of fully connected layers, layer 

normalization, leaky ReLUs, and dropout (at a rate of 0.2). Finally, a last fully connected layer 

yielded the class probabilities. In total, CandyCrunch exhibited 12,375,084 trainable 

parameters. 
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Model training 

All models were trained in PyTorch48 (version 1.13.1) using two Zotac GeForce RTX 4090 

Trinity GPUs. CandyCrunch was initialized via He initialization. All models were trained for 

200 epochs, with an early stopping regularization of stopping training after 12 epochs without 

improvement in the test loss and a batch size of 256. 

We set the learning rate at 0.0001, with a schedule to reduce the learning rate to a fifth after 

four epochs with no improvement in test loss. As a base optimizer we used AdamW with a 

weight decay of 2e-5, which was further modified via Adaptive Sharpness-Aware 

Minimization (ASAM)49 to ensure a generalizable final model. 

Data augmentation during training was used only on the training set and included random (i) 

low-intensity peak removal, (ii) peak intensity jitter, and (iii) new peak addition for the binned 

spectrum, as proposed previously for mass spectrometry50, as well as adduct formation of the 

precursor ion (acetate/sodium adducts) and random noise of the precursor m/z (+/- 0.5 Da) and 

retention time (+/- 10%). 

As our base loss, we used PolyLoss51, with an additional label-smoothing of 0.1 and epsilon = 

1. We also used two additional loss terms, informed by domain knowledge, that were added to 

the PolyLoss term. These constituted a structure distance loss and a composition distance loss. 

Both involved the calculation of a distance matrix, based on pairwise cosine distances of 

fingerprint vectors of either the number of mono- and disaccharide motifs or the base 

composition of two glycans. All operations on glycans were performed using glycowork31 

(version 0.7). Then, the class probabilities for each input sample, transformed via a softmax 

activation, were multiplied by the structure distance vector and the composition distance vector 

(i.e., the distance to the target glycan), followed by mean averaging to obtain loss terms. This 

unsupervised procedure preferentially penalizes confidently predicted but structurally 

dissimilar glycans and improves performance as well as the meaningfulness of errors. 

We first engaged in supervised training on annotated MS/MS spectra. Then, using the trained 

model we predicted glycan structure for our unannotated spectra for self-supervised training. 

Spectra with a prediction score of over 0.7 were then merged with the original training dataset, 

followed by a deduplication step. Specifically, as described above, we retained the same test 

set and again formed a training dataset with at most 1,000 examples per glycan, with 

preferential sampling from the original dataset and only supplemental sampling from the 

extended dataset, followed by re-training. 

Model inference 

To predict glycan structures from unannotated raw files, all tandem spectra were extracted via 

pymzML as described above and processed as described for the general data processing. Then, 

we grouped m/z precursor ions by scanning for discontinuities larger than 0.5 Da in the 

extracted spectra. Within these m/z groups, we searched for structural isomers by analyzing 

their retention time, scanning for discontinuities above 0.5 minutes. For each retention time 

group, we averaged all spectra for input of a robust averaged spectrum to CandyCrunch and 

extracted the median spectrum, to have a representative spectrum for each glycan entity in the 

sample. We first retrieved the top 25 predictions for each averaged spectrum, using the trained 

CandyCrunch model. We then employed a single-parameter variant of Platt Scaling34 to 

calibrate the prediction confidence prior to the softmax layer, using a scaling factor of 1.15 that 
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was estimated via the L-BFGS algorithm. Using test-time augmentation, we averaged the 

predictions of five independent inferences that were modified with the same data augmentation 

strategy as employed during training. 

Next, we used domain knowledge to automatically filter out predictions, such as of (i) a 

prediction probability below a threshold of 0.01, (ii) the wrong glycan class, (iii) the wrong 

mass, even when considering multiply-charged ion forms, and (iv) predictions that lacked 

corroborating diagnostic ions in their fragment lists. Domain-specific exceptions were made, 

such as allowing cross-class predictions if the prediction confidence was extraordinarily high 

(above 0.2; justified by the fact that O-linked glycan samples often contain remnant N-linked 

glycans etc.) Finally, predictions were deduplicated by merging any mass / retention windows 

that resulted in identical predictions. 

Lastly, we used biosynthetic knowledge to refine our predictions, conceptualized in the 

canonicalize_biosynthesis function within CandyCrunch. Using the subgraph_isomorphism 

function from glycowork and starting from the largest glycan prediction, we searched for top1 

predictions of biosynthetic precursors in the whole prediction dataframe. For each prediction 

at mass M, we added 0.1 to its prediction confidence for each unique biosynthetic precursor in 

top1 predictions at mass M-1, M-2, … M-n. If this changed the order of predictions, we re-

ordered predictions according to their score. Thereafter, scores were re-normalized to 1 and 

the, up to, top5 predictions were retained. This procedure not only improved the accuracy of 

our results but also increased the meaningfulness and consistency of both correct and wrong 

predictions (i.e., wrong predictions were structurally closer to the ground truth after this 

procedure). 

Spectra without valid predictions but with valid compositions, cross-referenced by relevant 

databases within glycowork, were also retained and subjected to as many of the 

abovementioned domain filters as possible. The whole inference workflow, including elements 

described below, is available via the wrap_inference function in the CandyCrunch package. 

Zero-shot prediction 

For a given sample, all retained top1 predictions were used to construct a biosynthetic network 

as described previously7, using the implementation within glycowork. For milk 

oligosaccharides, this also included evolutionary pruning, as pre-calculated species networks 

were available. Then, we calculated whether any of the inferred biosynthetic precursors would 

explain the mass and composition of glycan spectra without a valid prediction. Matches within 

a mass difference of 0.5 Da, including multiply-charged ions, were retained as additional 

predictions beyond our model-defined library of predictable glycans. While direct model 

predictions were awarded the evidence category “strong”, the biosynthetic network 

intermediaries merited the category “medium”. 

Next, we checked for missed Neu5Gc-substituted Neu5Ac-glycans and vice versa (i.e., a mass 

difference of 16 Da, with the corresponding diagnostic ions). Additionally, we used a suitable 

subset of the glycowork-stored database, of the right taxonomic section and glycan class, to 

search for possible matches to compositions without predictions. Both of these endeavors were 

annotated with the evidence label “weak”. 

After these additional routines to enable predictions outside of our defined list of glycans, we 

again employed the domain-knowledge informed filters mentioned above. This ensured that 
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glycans introduced via these methods still had empirical support in the underlying data. 

Predictions from these routines were also subjected to the canonicalize_biosynthesis workflow 

from above (though “bonus” points were only awarded for biosynthetic precursors from the 

“strong” category), to allow for prioritization of the most probable structures. 

Fragment annotation via CandyCrumbs 

The final prediction of the CandyCrunch model was used as a starting point for fragment 

annotation and converted into a directed graph using NetworkX (version 3.0), each 

monosaccharide making up a node and each linkage labeling an edge. The randomized 

enumeration method was implemented to find all induced connected subgraphs52. After 

filtering which modifications are physically possible based on linkage numbers, each terminal 

monosaccharide on the subgraphs was permuted to create these cross-ring or bond 

fragmentations. Each possible global modification was also added to each fragment. The mass 

of each theoretical fragment was calculated to then be matched with observed masses in MS2 

spectra. Finally, the fragments were converted into Domon-Costello32 and IUPAC-condensed 

nomenclature. If multiple fragment possibilities could explain a given m/z value, a 

prioritization scheme was developed (Supplementary Fig. 9), which emphasized prior 

likelihood of each fragment option and the evidence of the remaining fragments in a given 

tandem spectrum. CandyCrumbs is available via CandyCrunch.analysis.CandyCrumbs in our 

developed Python package. 

Molecular dynamics simulation 

Initial conformations for the GlcNAcβ1-3(Neu5Acα2-6)GalNAc and GalNAcα1-

3(Neu5Acα2-6)GalNAc glycans were obtained using the Carbohydrate Builder tool of the 

GLYCAM-Web server53. Four structures were produced for each glycan with different 

combinations of the α2-6 torsion angles. This approach provided different initial starting points 

for the simulations, and thus maximized the sampling of the conformational space. Each glycan 

was parameterized with the GLYCAM06-j1 force field54, and a cuboid solvent box of TIP3P 

water molecules created to produce a minimum solute distance of 15 Å. In the case of the 

reduced glycan structures, the structures of the open GalNAc were parameterized using the 

GAFF2 forcefield55. A single Na+ ion was included in each system to neutralize the net charge 

of the system. These systems were then converted into GROMACS topology files using 

Acpype56. For each initial starting conformation of each system, a 500 ns simulation was 

performed using GROMACS2022.457, resulting in 2 μs of simulations for each respective 

system. 

Biosynthetic network analysis 

For all networks constructed and analyzed in this work, we used the code functionality within 

the glycowork.network.biosynthesis module (version 0.7). Our analyses were oriented very 

closely by the ones described in Thomès et al.7 Briefly, the analysis of glycosyltransferase 

competition was performed by analyzing diamond-like network motifs via the trace_diamonds 

and find_diamonds functions within glycowork. Thereby, we analyzed the proportion of 

networks that presented a certain case of glycosyltransferase competition and counted how 

often each alternative order of reactions was experimentally observed among these. This 

allowed us to analyze which reaction order dominated across (i) glycan contexts and (ii) 
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networks. The differences shown in Figure 4 were further filtered to contain at least (i) two 

glycan sequence contexts, (ii) a mean difference of 30, and (iii) a corrected p-value below 0.01. 

Biosynthetic communities were extracted using the get_communities function, from 

glycowork, on reaction path preference-pruned biosynthetic networks7. Conserved 

communities were detected by first calculating a distance matrix based on pairwise Jaccard 

distances, followed by clustering these distances using the OPTICS algorithm as implemented 

in scikit-learn (version 1.2.2), with a minimum number of 50 samples per cluster. 

Statistical analyses 

Comparing two groups was done via one-tailed or two-tailed Welch’s t-tests. In all cases, 

significance was defined as p < 0.05. All multiple testing was corrected with a Holm-Šídák 

correction. All statistical testing has been done in Python 3.9 using the statsmodels package 

(version 0.13.5) and the scipy package (version 1.10.1). Effect sizes were calculated as Cohen’s 

d using glycowork (version 0.7). The correlation of distance matrices was performed via two-

sided Mantel tests as implemented within scikit-bio (version 0.5.8). 

Data and Code availability 

All relevant code is integrated into glycowork (version 0.7) and/or can be found at 

https://github.com/BojarLab/CandyCrunch. CandyCrunch and CandyCrumbs can also be 

readily accessed at 

https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ip

ynb. All relevant data can be found at Zenodo under the doi:10.5281/zenodo.7940047 or is 

contained within the supplementary material. 
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