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Abstract (250/250 words) 14 
RNA decay is a crucial mechanism for regulating gene expression in response to environmental 15 
stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in post-16 
transcriptional regulation, but their global impact on RNA half-lives has not been extensively 17 
studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA 18 
stability, we performed RNA sequencing of Salmonella enterica over a time course following 19 
treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and 20 
absence of these RBPs. We develop a hierarchical Bayesian model that corrects for 21 
confounding factors in rifampicin RNA stability assays and enables us to identify differentially 22 
decaying transcripts transcriptome-wide. Our analysis revealed that the median RNA half-life in 23 
Salmonella in early stationary phase is less than 1 minute, a third of previous estimates. We 24 
found that over half of the 500 most long-lived transcripts are bound by at least one major RBP, 25 
suggesting a general role for RBPs in shaping the transcriptome. Integrating differential stability 26 
estimates with CLIP-seq revealed that approximately 30% of transcripts with ProQ binding sites 27 
and more than 40% with CspC/E binding sites in coding or 3' untranslated regions decay 28 
differentially in the absence of the respective RBP. Analysis of differentially destabilized 29 
transcripts identified a role for both proteins in the control of respiration, and for ProQ in the 30 
oxidative stress response. Our findings provide new insights into post-transcriptional regulation 31 
by ProQ and CspC/E, and the importance of RBPs in regulating gene expression. 32 
 33 
Significance Statement (117/120 words) 34 
Together with transcription and translation, RNA decay is one of the major processes governing 35 
protein production. Here, we have developed a new statistical approach that corrects for 36 
confounding effects when estimating RNA decay rates from RNA-seq in bacteria. Our more 37 
accurate decay rate estimates indicate that bacterial transcripts have half-lives about three 38 
times shorter than previously thought. This approach allowed us to measure the effects of RNA-39 
binding proteins (RBPs) on decay rates, identifying large cohorts of transcripts with changes in 40 
stability following RBP deletion and conditions where post-transcriptional regulation affects 41 
survival. Our method should lead to a reevaluation of RNA stability estimates across diverse 42 
bacteria and new insights into the role of RBPs in shaping the transcriptome. 43 
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Introduction 44 
 45 
Rapid adaptation of the proteome to environmental conditions is essential for the survival of 46 

microorganisms. RNA degradation is an important post-transcriptional process directly 47 

influencing protein abundance. The lifetime of bacterial RNA ranges from seconds to an hour (1) 48 

and depends on numerous factors, including transcript identity, genotype and growth condition 49 

(2). RNA-binding proteins (RBPs) in bacteria include structural components of the ribosome and 50 

global post-transcriptional regulators such as Hfq (3, 4) and CsrA (5) which play key roles in 51 

modulating translation and RNA stability in concert with a network of small RNAs (sRNAs) (6, 52 

7). Beyond these model RBPs, recent years have seen the discovery of a menagerie of 53 

bacterial RBPs that bind hundreds or even thousands of transcripts (8–10), though their 54 

functions in shaping the transcriptome remain unclear. 55 

In Salmonella enterica serovar Typhimurium (henceforth Salmonella), these global RBPs 56 

include the FinO-domain containing protein ProQ and the cold-shock proteins CspC and CspE. 57 

ProQ has been shown to bind hundreds of mRNAs and sRNAs (11–13), affecting important 58 

biological processes including expression of virulence factors (14) and formation of antibiotic 59 

persisters (15). CspC and CspE have been shown to play partially redundant roles in virulence, 60 

affecting survival in mice, motility, biofilm formation, and survival of bile stress (16, 17). The 61 

molecular details of how these RBPs affect phenotype are not clear, although at least some of 62 

the effects of ProQ and CspC/E are mediated by the direct modulation of mRNA stability. For 63 

instance, CspC/E have been shown to stabilize the mRNA of the bacteriolytic lipoprotein EcnB 64 

by blocking digestion by the endonuclease RNase E (16). ProQ on the other hand appears to 65 

preferentially bind 3′ UTRs where in a few cases it has been shown to protect transcripts from 66 

exonuclease activity (12, 18). 67 

While these results provide hints at the mechanisms by which RBPs regulate target 68 

gene expression, in the absence of transcriptome-wide differential RNA stability measurements 69 

it remains unclear how common regulation through stability modulation is. A classical approach 70 

to study RNA stability is to halt transcription with the transcription initiation inhibitor rifampicin 71 

(19) and monitor RNA decay over time. This approach has been scaled to the whole 72 

transcriptome by combining it with microarrays (20, 21) and high-throughput sequencing (22). 73 

However, the presence of non-linear effects in the resulting time-course data makes inference 74 

of differences in decay rates between experimental conditions difficult. 75 

RNA-seq analysis tools such as limma (23), edgeR (24), and DEseq (25) solve the 76 

problem of accurately estimating dispersion in experiments with many measurements but few 77 
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replicates through an empirical Bayes approach (26). In empirical Bayes, information is pooled 78 

across transcripts under the assumption that transcripts with similar concentrations will exhibit 79 

similar biological and technical variation across samples, leading to more robust dispersion 80 

estimates. However, these tools are currently limited to linear models. Recent progress in the 81 

optimization of sampling methods has made the development of fully Bayesian hierarchical 82 

models increasingly efficient and accessible. In particular, the Stan probabilistic programming 83 

language (27) separates model description from sampler implementation, allowing easy 84 

development and testing of complex hierarchical models. This provides a powerful framework 85 

for developing analysis methods for sequencing data that can accommodate complex 86 

experimental techniques. 87 

Here, we investigate the effects of ProQ and CspC/E on RNA stability across the entire 88 

transcriptome, starting from a fully Bayesian analysis of rifampicin treatment followed by RNA 89 

sequencing (RIF-seq). During model development, we discovered that accounting for 90 

confounding factors in stability assays conducted after rifampicin treatment dramatically affects 91 

the inferred half-life, leading us to substantially revise estimates for average mRNA half-life in 92 

Salmonella to less than 1 minute, compared to previous estimates in the range of 2 to 7 minutes 93 

in the closely related species E. coli (20–22). We develop a hypothesis testing procedure for 94 

determining differential decay rates that allows us to identify hundreds of gene transcripts 95 

destabilized in the absence of ProQ and CspC/E. We combine our differential stability estimates 96 

with other high-throughput datasets available for Salmonella to further characterize RBP 97 

interactions, identifying a role for ProQ in survival of oxidative stress and for CspC/E in the 98 

control of respiration. We additionally find a substantial population of long-lived transcripts that 99 

depend on RBPs for their stability, illustrating the importance of RBPs in shaping the bacterial 100 

transcriptome. Beyond its utility in investigating RBP interactions, our improved approach to 101 

determining transcript half-life suggests that RNA stability in bacteria has generally been 102 

overestimated and will need to be reassessed in other bacterial species. 103 

 104 

Results 105 
 106 
A progressive Bayesian analysis revises RNA half-lives 107 
 108 
To determine transcriptome-wide half-lives under an infection-relevant condition, we applied 109 

RIF-seq to Salmonella at early stationary phase (ESP) where host invasion genes are 110 

expressed (28). Our RIF-seq workflow for data production and analysis is illustrated in Figure 111 

1A: wild-type and isogenic RBP deletion strains were treated with rifampicin, and cellular RNA 112 
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samples were collected over time to capture RNA decay dynamics. We collected data from 113 

eight time points following rifampicin treatment in three (ΔcspC/E), six (ΔproQ), or nine (wild-114 

type) replicates (see Methods). We included ERCC RNA spike-ins (29) for normalization 115 

between samples. Additionally, we developed a center-mean normalization technique to remove 116 

batch effects between replicate samples (Figure S2; Methods). Subsequently, we fitted a 117 

Bayesian statistical model to the normalized data using Hamiltonian Monte Carlo with Stan (27). 118 

 We employed a progressive Bayesian workflow to arrive at our final model (Figure 1B). 119 

An advantage of Bayesian analysis is that it allows the modeler to formalize their beliefs about 120 

the data generating process and provides a variety of tools for model comparison and selection. 121 

In the case of RIF-seq data, the simplest expectation would be that RNA concentrations would 122 

exhibit a linear decay on a semilog scale, which could be fit by a simple linear model with gene- 123 

and condition-dependent decay rate 𝛽. While some of our observations met this expectation 124 

(Figure S3A), the vast majority of transcripts exhibited more complex dynamics that prevent 125 

accurate extraction of decay rates with a linear model (Figure 1C; S3A), leading to large 126 

unexplained variation at late time points (Figure S3K). To account for this, we introduced 127 

additional parameters that capture confounding effects in the data. The first confounding effect 128 

is a gene-dependent delay parameter 𝛾, which captures the delay commonly observed in RIF-129 

seq data before decay initiates (Figure 1B&C, in green). As has been previously described, this 130 

is due to ongoing transcription from RNA polymerase already bound to DNA, which rifampicin 131 

does not block (22, 30). The ongoing transcription compensates for decay, manifesting as a 132 

delayed decay. To support the relationship between ongoing transcription and the delay 133 

parameter, we performed an analysis of elongation times on 60 base sub-genic windows, 134 

finding a clear association between the estimated elongation time and distance to annotated 135 

transcription start sites (Figure S3B). We used this association to infer transcription rates from 136 

our data set (see Figure S3C, Methods) finding a median transcription rate of 22.2 nt/s (Figure 137 

S3D), comparable to previous estimates in E. coli (22). 138 

 The second confounding effect we corrected for was an apparent gene- and condition-139 

dependent baseline RNA concentration 𝜋 beyond which no further decay was observed (Figure 140 

1B&C, orange). We were initially concerned that this effect may be an artifact of the 141 

pseudocount we used to avoid dividing by zero in our calculations; however, inspection of a 142 

number of decay curves illustrated that the observed baseline was generally well above the 143 

detection threshold (Figure S3E, see Methods). We also verified that the half-life of a transcript 144 

is generally constant along an operon (Figure S3G). In agreement with previous work (31) we 145 

found a small number of stable subregions which generally corresponded to known sRNAs, but 146 
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since this was not a general feature of transcripts we excluded this as a source of the observed 147 

baseline. To confirm that the baseline is not a result of our sequencing protocol, we used 148 

independent northern blot quantifications from a rifampicin treatment time course including late 149 

time points from a previous study (11). These quantifications reproduced the observed baseline 150 

effect (Figure 1D), illustrating that this is a general feature of rifampicin RNA stability assays. 151 

For wild-type Salmonella, we find that a median of 2.6% of the initial transcript concentration 152 

appears resistant to decay (Figure S3H), and that the exponential decay regime ends at 153 

different timepoints for different transcripts and genotypes (Figure S6AB&C). Whether this 154 

fraction is truly resistant to degradation or just degrades much slower than the rest of the 155 

transcript population is unclear. However, the median fraction of baseline RNA increases to 156 

5.7% when proQ is overexpressed (Figure S3H), suggesting that nonspecific RBP-RNA 157 

interactions may play a role in degradation resistance. 158 

 To compare the models with and without these two confounding factors, we calculated 159 

the difference in the expected log pointwise predictive density (ELPD), a measure of the 160 

expected predictive accuracy of a model on out-of-sample data, using Pareto-smoothed 161 

importance sampling approximate leave-one-out cross-validation (PSIS-LOO, see Methods) 162 

(32). Comparing the difference in ELPD between a simple linear model, the piecewise linear 163 

model correcting only for extension time, and the full model (henceforth log-normal model) 164 

including the baseline correction showed a clear preference for the log-normal model, 165 

particularly at late timepoints (Figure S3I&J). Additionally, examination of the fitted variance 166 

unexplained by our decay model, 𝜎!, illustrated the log-normal model captured the behavior of 167 

late timepoints better than the piecewise model (Figure S3K-M). Correcting for confounding 168 

factors has major implications for transcriptome-wide estimates of decay rates: while the linear 169 

and piece-wise linear models produced median half-life estimates of 2.7 and 2.5 minutes, 170 

respectively, our final log-normal model estimates a median half-life of 0.9 minutes (Figure 1E). 171 

To investigate whether transcripts encoding proteins involved in different cellular 172 

functions systematically differ in their stability, we calculated average half-lives across clusters 173 

of orthologous groups (COG) categories (33) (Figure 1F; S5). In agreement with previous work 174 

(20, 21), transcripts for genes involved in energy production and carbohydrate metabolism 175 

tended to be longer lived. We also found many sRNAs to have longer than average half-lives. 176 

Among the least stable transcripts were those coding for genes involved in cell division (e.g. 177 

ftsZ) and DNA replication (e.g. dnaA, dnaN), suggesting tight control of their cognate proteins. 178 

Taken together, accurately modeling RNA-decay curves led to drastically reduced 179 
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transcriptome-wide half-life estimates and allowed us to relate transcript stability to gene 180 

function.  181 

 182 

 183 
Figure 1. Pipeline and model description 184 
(A) RIF-seq workflow: WT and ΔRBP strains are treated with rifampicin, cells are harvested at various 185 
time points and subjected to RNA-seq. Read counts are normalized before the extraction of biologically 186 
relevant parameters with a Bayesian model. Significant differences between strains are identified with 187 
Bayesian p values. (B) A plate diagram of the Bayesian models in this study. The layers indicate which 188 
indices and variables the parameters depend on. The LM is parametrized by the WT decay rate 𝛽!",$ 189 
(purple). In the PLM, the gene-wise elongation time 𝛾$ (green) is added. The LNM adds a baseline 190 
parameter 𝜋$% (orange) which corresponds to the fraction of residual RNA (𝜋$% ∈ [0,0.2]). The WT decay 191 
rate 𝛽!" is a gene-wise parameter that is modeled hierarchically and depends on the hyperparameters 192 
𝜇" and 𝜎". The difference in decay rate 𝛥𝛽$% depends on the strain or condition 𝑐. The scale parameter 193 
𝜎$(𝑡) captures variation by our decay model and depends on the time-dependent hyperparameters 𝜇#(𝑡) 194 
and 𝜎#(𝑡). (C) Representative example of a decay curve in the LNM, illustrating regimes dominated by 195 
the different model parameters. The period of transcription elongation 𝛾 is marked in green, the 196 
exponential decay with decay rate 𝛽 in purple and the constant regime governed by the fraction of 197 
baseline RNA 𝜋 in orange. (D) Comparison of RNA-seq and model fit with independent northern blot 198 
quantifications for SibC (11). (E) Hyperpriors and median of transcriptome-wide WT half-lives in the three 199 
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Bayesian models. (F) Half-life distributions from the log-normal model for transcripts in selected COG 200 
categories. 201 
 202 
 203 
Steady-state abundance does not reflect changes in transcript half-life upon RBP 204 

deletion 205 

 206 
To study the influence of the RBPs ProQ and CspC/E on transcript stability, we applied the log-207 

normal model to our RIF-seq data for the proQ and cspC/E deletion strains, as well as a ProQ 208 

overexpression strain (ProQ++; see Methods). To prioritize transcripts with changes in stability, 209 

we developed a hypothesis testing procedure based on examination of the posterior distribution 210 

of the change in decay rate from the wild-type (Figure S4A) and estimated statistical 211 

significance by calculating Bayesian p-values (Figure S4B). Since Bayesian p-value 212 

distributions require calibration (34, 35), we used simulation studies to estimate the false 213 

discovery rate (FDR) (Figure S4C-E, see Methods). To evaluate our differential stability 214 

estimates, we examined known targets of ProQ and CspC/E (Figure 2A-C,S6A). For deletion of 215 

ProQ we were able to confirm destabilization of the cspD, cspE, and ompD transcripts (Figure 216 

2A), while the cspC transcript was hyperstabilized in the ProQ++ background (Figure 2B) in 217 

agreement with previous northern analysis (12). Similarly, we found the ecnB transcript 218 

destabilized following cspC/E deletion (Figure 2C) as previously reported (16). 219 

For both RBP deletions, we identify hundreds of transcripts with changes in stability at 220 

an FDR of 0.1 (Figure 2D&E). Deletion of cspC/E, whose role in maintaining transcript stability 221 

is less well explored, led to strong destabilization of a large cohort of transcripts (727), while 222 

only stabilizing 164 (Figure 2F). Curiously, we identified more transcripts which were 223 

significantly stabilized (413) than destabilized (276) following proQ deletion (Figure 2G), which 224 

was unexpected as prior studies have focused on ProQ’s stabilizing effect (11, 12). 225 

Nevertheless, stabilized transcripts tended to have much smaller changes in half-life, with a 226 

median change of 0.3 minutes (Figure S6D), compared to destabilized transcripts whose half-227 

lives changed by 0.7 minutes on average.   228 

A striking feature of our analysis of both strains was that changes in transcript half-life 229 

are not clearly related to changes in steady-state abundance upon RBP deletion (Figure 2D-G). 230 

In the proQ deletion strain, less than 10% of destabilized transcripts showed a statistically 231 

significant decrease in steady-state abundance. While this number was higher for the cspC/E 232 

deletion (~18%), it was still only a minor fraction of the total number of destabilized transcripts. 233 

This might be explained by altered activity of other regulatory proteins. Deletion of either RBP 234 
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led to perturbation of the stability of transcripts encoding major regulatory proteins including the 235 

anti-sigma factor Rsd, the transcription termination factors Rho and NusA, the alternative sigma 236 

factor RpoS, the nucleoid-associated HupA/B, and the cAMP receptor protein CRP (Figure 237 

S6B). For HupA/B and RpoS, we also observed reduced mRNA abundance in RBP deletion 238 

strains (Figure S14). Hence, loss of ProQ or CspC/E likely has complex, and in some cases 239 

indirect, effects on the global transcriptome. This suggests caution should be taken when 240 

deducing direct regulatory interactions from differential expression analysis of RBP-deletion 241 

mutants. 242 

 243 
Figure 2. Differential analysis of transcript stability in the absence of CspC/CspE/ProQ 244 
(A-C) Decay curves of known ProQ (cspD, cspE, ompD, cspC) or CspC/E (ecnB) targets. (D) 245 
Relative difference in half-life vs. steady state log-fold changes between the ΔcspCE and the 246 
WT strain. (E) Relative difference in half-life vs. steady state log-fold changes between the 247 
ΔproQ and the WT strain. (F) Overlap between stability changes and steady-state log-fold 248 
changes in the ΔcspCE strains. (G) Overlap between stability changes and steady-state log-fold 249 
changes in the ΔproQ strain. 250 
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 251 
 252 
Integrating high-throughput datasets identifies cohorts of mRNAs subject to known RBP 253 

regulatory mechanisms  254 

 255 
The location of an RBP binding site within a transcript is often a key determinant of the 256 

mechanism of RBP regulation. To investigate the potential mechanisms underlying the 257 

stabilization activity of ProQ and CspC/E, we integrated our differential stability estimates with 258 

UV crosslinking and immunoprecipitation followed by RNA sequencing (CLIP-seq), which can 259 

localize RBP binding sites within a transcript. For ProQ, we reanalyzed an existing CLIP-seq 260 

dataset (12), identifying 833 peaks indicative of binding (see Methods).  We produced new 261 

CLIP-seq datasets for both CspC and CspE and identified 1155 CspC and 861 CspE peaks, 262 

spread across 571 and 462 target transcripts, respectively (Figure 3A&B;S7A-C). In total, 717 263 

transcripts are bound by at least one CSP, with 430 CspC peaks directly overlapping with a 264 

CspE peak (Figure 3B) supporting the previously reported partial redundancy between these 265 

proteins (16) and similar observations in E. coli (36). We saw especially dense clusters of 266 

CspC/E peaks in transcripts encoding genes involved in the TCA cycle, flagellar proteins, and 267 

proteins involved in host invasion associated with the Salmonella pathogenicity island 1 (SPI-1) 268 

type three secretion system (Figure 3A).  269 

 We next examined the distribution of RBP binding sites across target transcripts, 270 

beginning with ProQ. As previously reported (12), ProQ binds predominantly at the end of 271 

coding sequences, with half of detected binding sites within 100 nucleotides of the stop codon 272 

(Figure 3D;S7D). Amongst those genes with 3′ binding sites, we identified 86 that were 273 

significantly destabilized upon proQ deletion (Table S3). Besides the known interaction of ProQ 274 

with the the cspE mRNA, these include transcripts encoding the SPI-1 effectors SopD and 275 

SopE2, involved in host cell invasion (37), and OxyR, a transcription factor involved in the 276 

oxidative stress response (38). The location of these binding sites suggests that ProQ may 277 

protect the 3′ ends of a large cohort of transcript from exoribonucleases attack, as previously 278 

shown for individual model transcripts (12, 18). 279 

In contrast to ProQ, CspC and CspE binding sites were spread across coding (CDS) 280 

regions with only slight enrichment in the vicinity of the start and stop codons (Figure 3C;S7D). 281 

We identified 177 transcripts with a CspC and/or CspE binding site in the CDS or 5’UTR that 282 

were destabilized upon cspC/E deletion (Table S4). These included the ecnB transcript (Figure 283 

S10A), which has previously been shown to bind CspC and CspE in vitro and to be protected 284 

from RNase E by CspC/E in vivo (16). To further investigate the role of the CSPs in protection 285 
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from RNase E cleavage, we combined our stability and CLIP-seq data with a published dataset 286 

mapping RNase E cleavage sites (39). We saw an enrichment of RNase E cleavage sites within 287 

CspC/E CLIP-seq peaks (410/2059 compared to a median of 331/2059 across 100 simulations, 288 

𝑝	 ≈ 	0, see Methods), but the majority of CspC/E binding sites did not directly occlude known 289 

RNase E cleavage sites. Furthermore, the presence of an RNase E cleavage site within a peak 290 

did not appear to influence differential decay rates upon cspC/E deletion (Figure S7E). This 291 

suggests that rather than directly protecting cleavage sites, CspC/E may interfere with RNase E 292 

scanning (40). This is further supported by the fact that destabilized transcripts have a median 293 

of two CspC/E binding sites, while ligands without stability changes have a median of one 294 

binding site (Figure S7F), suggesting multiple CspC/E proteins must bind to create an 295 

obstruction of sufficient size to interfere with RNase E scanning (41).  296 

 297 
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Figure 3. CspC/E CLIP-seq, comparison with RIF-seq results. 298 
CspC/E CLIP-seq analysis: (A) Number of CspC/E binding sites binned by genomic position for the 299 
positive (outer) and negative (inner) strand. The chromosome is indicated in purple and the three 300 
plasmids in blue, green and yellow. (B) Venn diagram of binding sites, with shared targets defined by an 301 
overlap by at least 12 bases between CspE and CspC sites. (C-D) Metagene plot of transcripts bound by 302 
the respective RBP, ordered by position of CLIP-seq peak relative to the start/stop codon. Target 303 
sequences are colored by the effect of RBP deletion on stability: destabilized (purple), stabilized (yellow), 304 
or no differential decay (non-DD, green). 305 
 306 
 307 
Long-lived transcripts rely on global RBPs for their stability 308 
 309 
To further examine the global impact of RBPs in shaping the transcriptome, we investigated the 310 

relationship between our estimated mRNA half-lives and RBP binding as determined by CLIP-311 

seq for four major Salmonella RBPs at early stationary phase: ProQ (12), CspC/E (this study), 312 

Hfq and CsrA (42). After sorting transcripts by stability, we saw a clear association between 313 

half-life and RBP binding, with over half of the 500 most stable transcripts (t1/2 > 2.5 min) bound 314 

by at least one RBP (Figure 4A). While the probability of detecting a CLIP-seq peak increases 315 

with transcript abundance, there is no correlation between transcript abundance and stability 316 

(Figure S3F) suggesting the relationship between RBP binding and stability is unlikely to be an 317 

artifact of our measurements. Long-lived transcripts are also more likely to be destabilized upon 318 

RBP deletion than shorter-lived ones, regardless of RBP-binding. Of the 500 most stable 319 

transcripts, 32% are significantly destabilized in the absence of ProQ and 51% in the absence of 320 

CspC/E. Investigating the relationship between transcript half-life and differential half-life upon 321 

RBP deletion revealed large changes in median half-life for stable transcripts (Figure 4B), 322 

indicating that long-lived transcripts are not only bound by RBPs but also rely on them for their 323 

stability.  324 

 325 

Figure 4. Global effect of RBP binding on transcript stability 326 
(A) Cumulative ratio of transcripts bound by RBPs. The transcripts were ordered by half-life and the 327 
fraction of transcripts bound by RBPs was calculated starting from the most long-lived transcript. (B) 328 
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Change in half-life in the ΔproQ and ΔcspCE strain for transcripts with a half-life of 0-2 min, 2-4 min, and 329 
greater than 4 min. 330 
 331 
 332 
 333 
 334 
 335 
RBPs play overlapping and complementary roles in infection-relevant pathways 336 

 337 
To investigate the physiological consequences of RBP deletion, we identified pathways 338 

enriched in differentially stabilized and differentially expressed transcripts in the proQ and 339 

cspC/E deletion strains with the GSEA algorithm (43) (Figure 5A & S8A). Surprisingly, we 340 

found a large overlap in enriched gene sets in both deletion backgrounds. On the level of 341 

stability this included responses to extracellular stimulus and oxidative stress, flagellar 342 

assembly, and metabolite transport and utilization pathways including the phosphotransferase 343 

system and glyoxylate and dicarboxylate metabolism. Several of these gene sets were also 344 

enriched in differentially expressed transcripts, though the directions of the changes were often 345 

inconsistent with the observed effects on stability. For instance, genes involved in flagellar 346 

assembly were expressed at lower levels in both deletion strains despite their transcripts being 347 

stabilized (Figure S8B & S12). Some pathways, such as aerobic and anaerobic respiration, 348 

showed consistent changes in expression levels across both strains despite no clear shared 349 

enrichment on the level of stability. 350 

The large overlap in pathways affected at the level of stability and expression between 351 

the two RBP deletion strains led us to investigate the relationship between ProQ- and CspC/E-352 

mediated regulation. We examined transcripts significantly differentially expressed in both 353 

strains, finding a strong correlation between the steady-state log fold-changes (Figure 5B, 354 

r=0.89). The slope of a line fitted to these changes indicated stronger average changes in the 355 

cspC/E deletion; this was particularly clear for genes involved in flagellar assembly and 356 

chemotaxis which exhibited an ~2-fold lower expression in the ΔcspC/E background compared 357 

to ΔproQ.  The lack of a similarly strong correlation for changes in transcript stability (Figure 358 

S8C & D) suggested that some of the similarities in changes in steady-state mRNA abundance 359 

between the two deletion strains may be due to indirect regulation, with that in the ΔproQ 360 

background possibly mediated by changes in CspE expression.  361 

Given the strong changes we observed in mRNA abundance for genes involved in 362 

aerobic and anaerobic respiration (Figure 5A & S13), we investigated the regulon of the aerobic 363 

respiratory control response regulator ArcA whose transcript was destabilized in both RBP 364 
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deletion strains (Figure S9A) but not differentially expressed. We found a strong rank-365 

correlation among genes in the ArcA regulon between differential expression previously 366 

observed in a ΔarcA strain (44) in both RBP deletion strains (Figure 5C; S9B & C), with a 367 

stronger correlation in the ΔcspC/E background (ρ=0.62 vs. 0.50) in keeping with the stronger 368 

destabilization of the arcA mRNA in this strain (Figure S9A). This indicates that some of the 369 

shared changes in steady state mRNA abundance observed in both deletion strains may be the 370 

result of shared regulation of ArcA expression, and further that transcript destabilization may be 371 

sufficient to affect protein abundance in the absence of clear changes in transcript abundance. 372 

 Despite the large overlaps in mRNA stability and abundance changes, there were a 373 

number of changes specific to each RBP, though these were often in the same pathways. For 374 

instance, deletion of each RBP affected the stability of a discrete set of secreted effectors 375 

involved in host cell invasion (Figure S9D). Another such change was in the oxidative stress 376 

response pathway, where we saw a stronger enrichment for destabilized transcripts in the 377 

ΔproQ strain (Figure S11). Transcripts destabilized by proQ deletion included those encoding 378 

for the oxidative stress regulator OxyR (Figure S9E & F), the superoxide dismutase SodB, the 379 

catalase-peroxidase KatG, and the DNA protection during starvation protein Dps; however, few 380 

of these transcripts showed significant differences in mRNA abundance.  381 

To test if destabilization was predictive of phenotype, we exposed the ΔproQ and 382 

proQ++ strains to varying concentrations of hydrogen peroxide, including a ΔoxyR/S strain as a 383 

control. After exposure to 1.5mM H2O2 we saw a survival defect for both ΔproQ and proQ++ 384 

strains intermediate between wild-type survival and that of the ΔoxyR/S strain (Figure S9G). 385 

However, this defect was concentration dependent: exposure to 2mM H2O2 led to a severe 386 

survival defect in the ΔproQ strain that could be complemented by proQ overexpression (Figure 387 

5D), while ΔoxyR/S behaved similarly to wild-type. This indicates that the ΔproQ survival defect 388 

after exposure to high concentrations of H2O2 is independent of any effects ProQ has on the 389 

stability of the oxyR transcript and likely depends on the effects of ProQ on other transcripts 390 

involved in the oxidative stress response. The sensitivity of the ΔproQ strain to oxidative stress 391 

also shows that changes in transcript stability can be predictive of RBP deletion phenotype, 392 

even without corresponding changes in transcript abundance under standard growth conditions. 393 
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￼￼394 

 395 
Figure 5. Integrative analysis of RBP binding and transcript stability 396 
(A) Comparative analysis of pathways enriched in cspCE and proQ RIF-seq data. Pathways enriched in 397 
transcripts destabilized or with negative steady-state log-fold changes (𝑡 = 0 min) upon RBP deletion are 398 
marked blue. Pathways enriched in stabilized transcripts or positive log-fold changes are marked brown. 399 
(B) Genetic features with significant log-fold changes in both the proQ and the cspC/E deletion mutant. 400 
(C) log-fold changes in the cspC/E deletion mutant vs. an arcA deletion mutant (44). (D) Exposure of 401 
various Salmonella strains to 2mM of hydrogen peroxide.  402 
 403 
 404 

Discussion 405 

Together with transcription and translation, mRNA degradation is one of the fundamental 406 

processes controlling protein production in the cell.  Rapid turnover of mRNAs underlies the 407 

ability of bacteria to rapidly adapt to new conditions: as protein production is constrained by the 408 

translational capacity of the available ribosome pool (45), clearance of transcripts encoding for 409 

unneeded proteins is essential to change the composition of the proteome. Previous work 410 

based on RNA-seq and microarray analysis of rifampicin time course data in E. coli and 411 

Salmonella has reported average mRNA half-lives in the range of 2 to 7 minutes (20–22, 46–412 

48). The most similar prior RNA-seq study to our own reported an average half-life of 3.1 413 

minutes across ~1200 transcripts in E. coli grown to stationary phase (22), over three times our 414 
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estimated average decay rate of 0.9 minutes in Salmonella at ESP. This discrepancy appears to 415 

originate from not accounting for the baseline stable RNA concentration, leading to a systematic 416 

underestimation of the decay rate. Interestingly, our estimates are in the range of those derived 417 

from classic experiments that pulse radiolabeled bulk RNA and determined average mRNA half-418 

life to be ~0.7 minutes in exponentially growing E. coli (49), far shorter than any other 419 

subsequent estimates based on high-throughput approaches. This rapid decay may in part 420 

underlie the ability of bacteria to rapidly adapt their transcriptomes, as constant transcription 421 

would be required to maintain mRNA concentrations. As mRNA half-lives have primarily been 422 

determined by rifampicin treatment followed by sequencing or microarray analysis in those 423 

bacteria where transcriptome-wide measurements are available (50), our results suggest that 424 

mRNA stability has likely been widely overestimated and that a general reevaluation of bacterial 425 

transcript stability is in order. 426 

Our hierarchical Bayesian analysis of RIF-seq data provides a principled framework for 427 

the analysis of RNA turnover, including the determination of differential decay rates after 428 

deletion of an RBP of interest. The flexibility of Bayesian analysis allowed us to account for 429 

nonlinearities due to confounding factors like transcription elongation after rifampicin addition 430 

and RNA baseline concentration, removing substantial biases in our determination of decay 431 

rates. Despite our best efforts, it is likely that there are still some limitations to our analysis. For 432 

instance, our control for false discovery rates means that we have likely missed some genuine 433 

instances of differential decay. Our simulations suggest an 85% sensitivity for the most precisely 434 

measured transcripts, but this falls to ~30% when considering the whole transcriptome (Figure 435 

S4D). Other limitations may be due to uncontrollable effects in the data. For example, some 436 

Salmonella promoters have previously been shown to respond specifically to subinhibitory 437 

rifampicin (51), which could introduce some bias to decay rate estimates for affected transcripts 438 

should similar effects occur with the rifampicin concentrations used here. Manual inspection of 439 

our decay curves suggests this is unlikely to be a widespread problem in our data. Similarly, if 440 

RBP deletion leads to modulation of expression of cellular RNases, our individual differential 441 

decay rates may not be reflective of the differential decay induced by simple ablation of an RBP 442 

binding site. Such a bias dependent on the cellular context of rifampicin treatment has 443 

previously been observed for the sRNA RyhB whose stability critically depends on the presence 444 

of its target mRNAs (52).   445 

Regardless of potential biases, high-throughput methods provide at least one major 446 

advantage over classical molecular approaches to RBP characterization: numbers. Where 447 

previously a small handful of transcripts were known to be stabilized by 3′ binding of ProQ in 448 
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Salmonella, we find 86 candidates. Similarly, we expand the number of transcripts known to be 449 

stabilized by CspC/E from two to a predicted cohort of 177. By combining CLIP-seq (12) and 450 

RNase E cleavage profiling (39) with our differential stability data, we have defined cohorts of 451 

transcripts likely subject to particular modes of RBP regulation. Depending on the binding site 452 

within a transcript, up to 44% (CspC/E, CDS) and 32% (ProQ, close to the stop codon) of direct 453 

RBP targets showed altered stability upon deletion of the respective RBP. However, in both 454 

cases transcripts stabilized by RBP binding are outnumbered by those apparently bound, but 455 

unaffected at the level of stability, raising numerous questions about RBP function. How are 456 

transcripts stabilized by RBPs differentiated from those that are not? Do RBP interactions that 457 

do not affect stability perform other functions in the cell? Our analysis suggests CspC/E may 458 

protect some transcripts from RNase E through a roadblock mechanism (40); CspC/E targets 459 

may additionally or alternatively be regulated at the level of translation (53) or antitermination 460 

(54) through the manipulation of mRNA secondary structure as has been shown for the targets 461 

of other CSPs. Alternative roles of ProQ remain to be well defined, but it has been shown to 462 

play a role in gene regulation by sRNAs (14, 55). By defining and partially characterizing RBP 463 

targets, our data provides a starting point for the molecular investigations needed to further 464 

define the functions of CspC/E and ProQ. 465 

The degree to which post-transcriptional regulation shapes the bacterial proteome has 466 

long been controversial. Recent work has suggested that, on average, protein concentrations 467 

are primarily determined by promoter on rates with post-transcriptional regulation playing only a 468 

minor role (56). Here in contrast, we have shown that deletion of bacterial RBPs thought to act 469 

primarily at the post-transcriptional level leads to large changes in both RNA stability and 470 

steady-state transcript concentration, and strong phenotypes have been observed for RBP 471 

deletion in a variety of conditions (5, 16, 57). How can these findings be reconciled? Our data 472 

provides at least two potential answers. First, as suggested by the effects of proQ and cspC/E 473 

deletion on the ArcA regulon (Figure 5C), modulation of stability or translation of single 474 

transcriptional regulators may ultimately cause phenotypic changes by indirectly affecting the 475 

promoter on rates of a large cohort of transcripts. The lack of correlation we observe between 476 

changes in steady-state RNA levels and differential stability (Figure 2D&E) indicates that such 477 

indirect effects are widespread. Secondly, our analysis shows that the majority of RNA half-lives 478 

are concentrated at less than 1 minute (Figure 1E), and it is indeed difficult to understand how 479 

further destabilization through post-transcriptional regulation could have strong effects on 480 

translation. However, the half-life distribution is long tailed, with ~500 transcripts having half-481 

lives of greater than 2.5 minutes and being preferentially bound by RBPs (Figure 4A). The 482 
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stability of this population of transcripts is strongly affected by RBP deletion (Figure 4B), further 483 

suggesting they may be the major targets of post-transcriptional regulation. 484 

 An accumulating body of work suggests that the post-transcriptional regulatory networks 485 

scaffolded by RBPs are interconnected. At least two Hfq-dependent sRNAs also serve as 486 

sponges for CsrA (58, 59), and RNA-RNA interactome studies have observed a substantial 487 

fraction of shared targets between Hfq and ProQ (13). Regulatory interactions between cold 488 

shock proteins (CSP) have long been observed, with deletion of particular CSPs leading to the 489 

induction of others (16, 60), presumably through undescribed feedback mechanisms. The cspE 490 

mRNA has previously been used as a model for understanding the molecular mechanism of 491 

ProQ protection of 3′ ends (12); our results suggest some fraction of the change in steady-state 492 

transcript levels observed in the proQ deletion strain may be the result of indirect regulation 493 

through CspE (Figure 5B). Additionally, both RBPs affect the stability of mRNAs in similar 494 

pathways (Figure 5A), though often by targeting different transcripts, as for the SPI-1 effectors 495 

(Figure S8B). We also find effects for both strains on the stability of the CsrA-sponging sRNA 496 

CsrB, with proQ and cspC/E deletion having opposite effects on half-life (Figure S10B & C), 497 

adding a further potential connection between RBP regulatory networks. Our reanalysis of 498 

publicly available CLIP-seq data suggests that a substantial number of mRNAs are targeted by 499 

two or more RBPs (Figure S10D). What this apparently dense interconnection between RBP-500 

mediated regulatory networks means for the cell, and how RBP activity is coordinated to 501 

maintain homeostasis in diverse environmental conditions, is an open question that will likely 502 

take significant conceptual advances to answer. 503 

 504 

Data Availability 505 
Data deposition: All sequencing data reported in this paper have been deposited in the Gene 506 

Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (SuperSeries no. 507 

GSE234010). Transcript annotations and source code for the Stan models have been made 508 

available at https://github.com/BarquistLab/RIF-seq_repo  509 
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Methods 517 
 518 
Media and Growth Conditions 519 
For all experiments in this study, broth cultures were grown from single colonies overnight at 37 520 
°C in LB medium (5 g/L of yeast extract, 5 g/L of NaCl, and 10 g/L of Tryptone/Peptone ex 521 
casein; Roth). Subsequently, cultures were diluted 1:100 in fresh medium, and further grown at 522 
37°C with shaking at 220 rpm to an OD600 of 2.0 (early stationary phase (ESP), a SPI-1 523 
inducing condition (28)). 524 
 525 
Bacterial Strains and Plasmids 526 
Salmonella enterica serovar Typhimurium strain SL1344 (strain JVS-1574 (61)) is considered 527 
wild-type (WT). The generation of proQ and cspC/E deletion strains by lambda red homologous 528 
recombination (62) has been previously described (11, 16). For the proQ++ strain, a strain 529 
containing plasmid pZE12-ProQ was used as previously described (11, 14).  The complete lists 530 
of bacterial strains, plasmids, oligos and antibodies used in this study are provided in Table S8-531 
11. 532 
 533 
Rifampicin assay protocol for Sequencing 534 
Wild-type (WT), ∆RBP and RBP++ strains were grown until an OD600 of 2.0 in three (WT, cspCE) 535 
or six (WT, proQ, proQ++) replicates. The cultures were treated with 500µl/ml of rifampicin (stock 536 
solution 50mg/ml resuspended in DMSO). Samples were taken before (𝑡 = 0	min) and after 3, 6, 537 
12, 24 min (proQ) or 2, 4, 8 and 16 min (cspCE) of rifampicin treatment. 2ml were collected for 538 
each sample, immediately mixed with 20% vol. stop mix (95% ethanol, 5% phenol) and snap 539 
frozen in liquid nitrogen. 540 

Subsequently, the samples were thawed on ice and centrifuged for 20 min at 4500 rpm. 541 
Half of the resuspension of each sample was then used to perform hot phenol extraction. Bacterial 542 
pellets were resuspended in 600 µl of 0.5 mg/ml of lysozyme in TE buffer pH 8 and transferred 543 
into a 2 ml Eppendorf tube. 60 µl of 10% w/v SDS was then added and the samples were mixed 544 
by inversion. Tubes were placed at 64℃ for 1-2 min until clearance of the solution, then 66 µl of 545 
3M sodium acetate solution at pH 5.2 was added and tubes were mixed by inversion. 750 µl of 546 
phenol (Roti-Aqua phenol #A980.3) was then added to each tube, mixed by inversion and 547 
incubated for 6 min at 64℃. Tubes were then placed on ice to cool and spun for 15 min at 13 000 548 
rpm, 4℃. The resulting aqueous layer was transferred in a 2 ml PLG tube (5PRIME) where 750 549 
µl of chloroform (Roth, #Y015.2) was added. After mixing by inversion, the tubes were spun for 550 
15 min at 13 000 rpm, 4℃. The obtained aqueous layer was then collected and precipitated in a 551 
30:1 mix of 100% ethanol: 3M sodium acetate pH 6.5 at -20℃ for at least 2 hr. After centrifugation 552 
for 30 min, 13 000 rpm, 4℃, the pellet was washed with 70% ethanol and the air-dried pellet was 553 
resuspended in nuclease-free water. Total RNA was measured by nanodrop, and integrity was 554 
checked on TBE agarose gel. 40 µg of RNA in 39.5 µl of nuclease free water were then subjected 555 
to DNAse I treatment. Total RNA was denatured for 5 min at 65℃ and put back on ice. 5 µl of 556 
DNase I (Fermentas), 5 µl of DNase I buffer (Fermentas) and 0.5 µl of Superase In (Thermo 557 
Fisher Scientific) were added to the denatured RNA and incubated at 37°C for 30 min. After 558 
incubation, 100 µl of nuclease free water was added and each reaction was placed in a PLG tube 559 
containing 150 µl of PCI. Tubes were centrifuged for 15 min at 4℃, 13 000 rpm. The aqueous 560 
phases were collected and precipitated in 30:1 Ethanol/sodium acetate mix at -20℃ for at least 2 561 
hr. total RNA. DNase treated pellets were collected by centrifugation (30 min, 4℃, 13 000 rpm) 562 
and after 70% ethanol wash, were resuspended in 25 µl nuclease free water. Prior to rRNA 563 
depletion and cDNA library preparation, 2.5 µl of 1/10 ERCC spike-ins was added to each sample. 564 
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RNA-seq libraries were prepared by Vertis AG (Freising-Weihenstephan, Germany). 565 
Ribosomal RNA was depleted using the Ribo-Zero bacterial rRNA Removal Kit (Illumina). RNA 566 
was polyadenylated with poly(A) polymerase, 5′-triphosphates were removed with tobacco acid 567 
pyrophosphatase followed by ligation of a 5′-adapter. First-strand cDNA synthesis was performed 568 
with an oligo(dT) barcoded adapter primer and the M-MVL reverse transcriptase. The resulting 569 
cDNA was PCR-amplified with a high fidelity DNA polymerase. cDNA was purified with the 570 
Agencourt AMPure XP kit (Beckman Coulter Genomics) and sequenced on an Illumina 571 
HiSeq2000. Replicate 2 of the 24 minute time point for WT, ΔproQ, and proQ++ was excluded 572 
from subsequent analysis, as rRNA depletion failed. 573 
 574 
Processing of Sequence Reads and Mapping RIF-seq 575 
The 75 nt RNA-seq reads were demultiplex and quality control of each sample was performed 576 
with fastQC. Afterwards, Illumina adapters were removed with Cutadapt v4.1, and STAR (63) 577 
was used to align the reads to the SL1344 genome (NCBI accessions: FQ312003.1, 578 
HE654724.1, HE654725.1 and HE654726.1). For all analyses related to annotated genomic 579 
features such as CDSs, tRNAs, and rRNAs, gene annotations from NCBI were used. We use 580 
the same definition of transcriptional units as (42) which is based on the NCBI CDS annotations, 581 
transcription start site annotations (64), and Rho-independent terminator prediction with RNIE 582 
(65). sRNA annotations are based on (11). The ERCC92.fa sequence file for the quantification 583 
of the spike-in was obtained from ThermoScientific. For quantification, htseq-count with default 584 
options was used for counting reads aligning to CDS, sRNA and ERCC spike-ins, while the 60 585 
base sub-genic windows were counted with the option --nonunique all to ensure that 586 
overlapping reads are assigned to all overlapping segments. For the 60 base windows, reads 587 
were quantified separately for the positive and the negative strand. 588 
 589 
Read Count Normalization of RIF-seq Data with ERCC spike-ins 590 
The normalization factor for each sample 𝑠 was determined using the mean M-value across 30 591 
detected ERCC spike-ins, as there were no apparent outliers (Fig. S2B&C). Only transcripts 592 
with more than 10 counts-per-million (cpm) before normalization in at least three samples in the 593 
ProQ assay were retained for further analysis. 594 
 595 
Normalized counts-per-million (cpm) were obtained by adding a pseudo count and then dividing 596 
the read counts 𝑌!$%(𝑡) by the respective library size 𝑁& and normalization factor 𝑛',& of the 597 
sample 598 

 599 
The Stan models were applied to the natural logarithm of the normalized cpm values 𝑦!$%(𝑡) ≡600 
𝑙𝑛 (𝑐𝑝𝑚!$%(𝑡)). 601 
 602 
Removal of batch effects: center-mean normalization 603 
Following spike-in normalization, we observed some clustering by replicate rather than condition 604 
within time point groups (Figure S2D&I). To account for these batch effects, we developed a 605 
center-mean (CM) normalization procedure, which can be applied after a primary normalization, 606 
e.g. with spike-ins, and compensates for small variations in the amount of spike-ins added to the 607 
individual samples. After the normalization with spike-ins, we calculated a gene-wise mean log-608 
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count 𝑦!$(𝑡) for every condition and every time-point (see Figure S2E for 𝑡 = 0 min). This value 609 

was subtracted from the observed value in every sample 610 
 611 

For every sample s (uniquely defined by condition 𝑐, time 𝑡, replicate 𝑟), we calculated the mean 612 

,  613 
where 𝑛),&	 is an additional normalization constant. The batch-corrected cpm values are then 614 
given by 615 

. 616 
PCA confirmed that the samples separated well by time point and genotype after the CM 617 
normalization (Figure S2F&L), and boxplots showed an improved alignment of median logcpm 618 
values (Figure S2G,H,J,K). Before fitting the decay curves with the Bayesian models, we 619 
subtracted the mean log-count at 𝑡 = 0 min 620 
    . 621 
 622 
Calculation of detection limit 623 
In order to regularize zero counts, we have added a pseudo count of 0.5. The library sizes vary 624 
in size around 10 million reads and the normalization constants around 1. This results in an 625 
estimated minimum log-count of 626 

   . 627 
After subtracting the mean log-count at 𝑡 = 0 min, we can calculate the detection limit for gene 𝑔 628 
in condition 𝑐 as 629 
   . 630 
This corresponds to the minimal possible value of the log relative expression. 631 
 632 
Differential gene expression analysis 633 
Log-fold changes were calculated using glmQLFit from edgeR (24) with a cutoff of 0.25 on the 634 
log-fold changes. Since batch effects present after TMM normalization (Fig. S1 A,B&E), 635 
samples were additionally normalized using RUVg (66) (Fig. S1C&G). We selected the 800 636 
least varying genes between the ΔRBP and the WT strain. Since the differences between the 637 
proQ++ and the WT strain were larger, we only took the 600 least varying genes between these 638 
two conditions. The intersection between these sets is 37 genes which we used as negative 639 
control (Fig. S1F). The number of factors of unwanted variation k was set to 6. After RUVg 640 
normalization, the samples clustered by strain (Fig. S1C&H). We selected differentially 641 
expressed genes at an FDR of 0.1 (Fig. S1I-K, Table S2). 642 
 643 
Extraction of RNA half-lives from RIF-seq data 644 
We compared three statistical models, summarized in Figure 1B. All models assume that the 645 
normalized log counts follow a normal distribution around a condition and gene-dependent 646 
mean 647 
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    . 648 
The variance 𝜎!* is not condition-dependent. The mean 𝜇!$ is parameterized differently in the 649 
three statistical models: 650 

Linear model (LM):  651 
Piecewise linear model (PLM):  652 
Log-normal model (LNM):  653 

where 𝛩 is the Heaviside step function which is 0 for negative arguments and 1 otherwise. The 654 
baseline parameter 𝜋!$ introduced in the LNM corresponds to the fraction of stable RNA for 655 
gene 𝑔 in condition 𝑐 as compared to steady-state levels at 𝑡 = 0 min. A hierarchical prior is 656 
used for both the WT decay rate and the standard deviation which leads to variance shrinking 657 
and reduces the effect of outliers. For other parameters ( e.g. difference in decay rate), broad 658 
priors were chosen to minimize their influence on posterior estimates.  Priors were defined as 659 
follows: 660 

WT decay rate  661 
Mutant decay rate  662 
Standard deviation  663 
Baseline parameter ,  664 
Hyperparameters (Cauchy/normal distribution) , 665 

 666 
Elongation time (Cauchy distribution) ,  667 

For 𝜋!$ = 0, the LNM is equivalent to the PLM, which converts to the LM as 𝛾!$ → 0. The 668 
statistical models are fitted to the RIF-seq data using the probabilistic programming language 669 
Stan (v.2.30.1)  (27) with two chains and 1000 MCMC samples each (method=sample 670 
num_samples=1000 num_warmup=1000 adapt delta=0.95 algorithm=hmc 671 
engine=nuts max_depth=15). The statistical model was applied to all four strains (WT, 672 
ΔproQ, proQ++, ΔcspCE) at once. The reported parameters (decay rate, half-life, transcription 673 
elongation time) correspond to the median of the 2000 MCMC samples. The median of the 674 
transcriptome-wide half-lives corresponds to the median of the 2000 MCMC samples of the 675 
hyperparameter 𝜇". In addition to the 2nd replicate of the time point taken at 24 minutes for the 676 
proQ experiments, the 1st replicate of the 4 min time point of the ΔcspCE mutant was removed 677 
from this part of the analysis because it clustered together with the 0 min time point (Figure S1I) 678 
which strongly influenced differences in decay rate in the ΔcspCE mutant. 679 
 680 
Model comparison using leave-one-out cross validation 681 
For a quantitative comparison of the linear model (LM), the piecewise linear model (PLM) and 682 
the log-normal model (LNM), we estimated the out-of-sample predictive accuracy using leave-683 
one-out cross validation (LOO-CV) with Pareto-smoothed importance sampling (PSIS) (32). The 684 
pointwise log-likelihood log_lik was computed in the generated quantities block in Stan 685 
during MCMC sampling. We used the loo() function from the loo R package (version 2.5.1), 686 
which computes the expected log-pointwise predictive density (ELPD) using PSIS. 687 
 688 
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Calculation of transcription velocities 689 
To calculate transcription velocities, we took advantage of ongoing transcription of RNA 690 
polymerase already bound to DNA in the RIF-seq data. We split the genome into 60 base 691 
subgenic windows, and extracted the corresponding elongation times and decay rates using the 692 
log-normal model. We split the dataset into five subsets before running the MCMC sampler (1 693 
chain: method=sample num_samples=1000 num_warmup=1000 adapt delta=0.95 694 
algorithm=hmc engine=nuts max_depth=15). Subsequently, we verified that the 695 
hierarchical parameters agreed well between the five subsets. The resulting transcription 696 
elongation times 𝛾 were combined with operon annotations taken from (42). We fitted a linear 697 
model with y-intercept 𝑎! and slope 𝑏! to the elongation times of operons or individual 698 
transcripts as shown for the mra/fts operons in Figure S3C, using the inverse of the 68% 699 
credible intervals of 𝛾! as obtained from the MCMC samples as weights (example: Fig. 2E). The 700 
transcription velocity 𝜈! is given by the ratio of the window size (𝑠&+! = 60 nt) and the slope 𝑏!. 701 
Its error was calculated via error propagation 𝛥𝜈! = 𝛥𝑏!/(𝑠&+! ⋅ 𝑏!*). We obtain 772 operons with 702 
at least 7 nonzero segments which fulfill the quality criterium 𝛥𝜈!/𝜈! < 0.75. 703 
 704 
Calculation of Bayesian p-values 705 
The half-lives were calculated from the decay rates 𝑡,/*,!$ =𝑙𝑛 (2)/𝛽!$. In order to calculate 706 
Bayesian p-values, we tested against the null hypothesis that the difference in half-life 𝛥𝑡,/*,$ =707 
𝑡,/*,$ − 𝑡,/*,./ is compatible with zero. There is a limit as to how precisely we measured the WT 708 
half-lives. We determined the minimum of the 90% credible intervals of the WT half-lives 709 
(~0.05). Assuming that we cannot measure a difference in half-life with higher precision than the 710 
WT half-lives, we selected the interval [-0.05, 0.05] as the null hypothesis. The p-value 𝑝!$ for 711 
gene 𝑔 in condition 𝑐 corresponding to the difference in decay rate 𝛥𝑡,/*,!$ is given by the 712 
fraction |𝑆0|/|𝑆| of MCMC samples 𝑆 = {𝑠,, . . . , 𝑠*000} that agrees with the null hypothesis 713 
(Figure S4A): 714 

For 𝛥𝑡,/*,!$ > 0, the samples 𝑆0 = {𝑠 ∈ 𝑆|𝑠 ≤ 0.05} agree with the null hypothesis. 715 
For 𝛥𝑡,/*,!$ < 0, the samples 𝑆0 = {𝑠 ∈ 𝑆|𝑠 ≥ −0.05} agree with the null hypothesis. 716 

We compared the distribution of p-values to the distribution of p-values under the null 717 
hypothesis which was obtained by bootstrapping from the distribution of MCMC samples of the 718 
WT half-lives and calculating the corresponding p-values (Figure S4B). 719 
 720 
Calibration of posterior predictive p-values 721 
In order to assign a false-discovery rate (FDR) to the p-values, we simulated a dataset with 722 
4000 transcripts, 3 conditions (WT, 𝑐,, 𝑐*) with time points 0, 3, 6, 12, 24 and 2 conditions (WT, 723 
𝑐1) with time points 0, 2, 4, 8, 16. We drew samples from the following distributions (which we 724 
extracted from fitting the LNM to the two RIF-seq data sets), using the definition of the LNM as 725 
given above: 726 

Relative log-counts  727 
WT decay rate  728 
Elongation time  729 
Standard deviation of log-counts  730 
Difference in decay rate  731 
Baseline parameter  732 
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Mean of relative log-counts 733 
 734 

Then,  we fitted the log-normal model to this dataset. Simulated absolute differences in half-life 735 
below 0.05 (S𝛥𝑡,/*,!$S ≤ 0.05) were assumed to agree with the null hypothesis. The Pearson 736 
correlation of 0.86 between simulated and fitted differences in half-life were obtained using the 737 
weightedCorr function from the wCorr package in R with the inverse of the size of the 90% 738 
credible intervals of the fitted half-lives as weights (Figure S4C). We calculated the posterior 739 
predictive p-values for the fitted differences in half-life and varied the p-value cutoff between 0 740 
and 1 with step size 0.01. The corresponding FDR is given by the fraction of transcripts whose 741 
simulated difference in half-life agrees with the null hypothesis and the total number of 742 
transcripts with a p-value below the cutoff. Subsequently, we fitted a LOESS curve in R 743 
(span=0.2) to determine the FDR corresponding to any p-value cutoff (Figure S4E, Table S1)  744 
A p-value of 0.082 corresponds to a FDR of 0.1 which we used as a cutoff for our analysis of 745 
differentially decaying transcripts. In addition to controlling the FDR, we verified that at an FDR 746 
of 0.1, the log-normal model identifies differentially decaying transcripts with a low simulated 747 
standard deviation on log-counts 𝜎! with high sensitivity (Figure S4D). For this, we selected five 748 
cutoffs on standard deviation (0.05, 0.1, 0.2, 0.4, 1) and calculated the false positive rate (FPR) 749 
and sensitivity for all transcripts below the cutoff. 750 
 751 
Ratio between differential gene expression and stability in ΔproQ vs. ΔcspCE 752 
The ratio between the differences in RNA half-life in the ΔproQ and ΔcspCE mutant strain (as 753 
compared to WT) was calculated by selecting only transcripts with significant stability changes 754 
in the same direction in the two RBP deletion strains (Figure S9C). Similarly, we selected only 755 
genes with significant log2-fold changes in the same direction in both RBP deletion strains 756 
(Figure 4F). 757 
 758 
Hydrogen peroxide exposure 759 
Bacterial cultures of all strains (Salmonella WT, ΔproQ, proQ++ and ΔoxyRS) were grown 760 
overnight. All strains contain the pJV300 plasmid. 10 mL of culture were inoculated 1:1000 in LB 761 
and grown at 37°C for 5 h. The cultures were then diluted 1:100 in 10 mL of LB and incubated 762 
for 2 h at 37°C with 1.5 mM or 2 mM of H2O2. Controls were incubated without H2O2. Viability of 763 
the cells was assessed by spotting 5 µL of a dilution series (100, . . . , 1023) on LB agar plates 764 
which were then incubated overnight at 37°C. 765 
 766 
RNA secondary structure 767 
The ViennaRNA web server with default settings was used to obtain the secondary structures of 768 
RNA sequences (67). Forna (68) was used for visualization. 769 
 770 
Geneset enrichment analysis 771 
In order to identify pathways with transcripts either stabilized or destabilized in the absence of 772 
ProQ or CspCE, the genes in the analysis were ranked according to the quantity 773 

−𝑠𝑔𝑛 U𝛥𝑡!
"
V 𝑙𝑜𝑔,0(𝑝 + 1024). For pathway analysis of log fold-changes,  we used the quantity 774 

−𝑠𝑔𝑛(𝑙𝑜𝑔𝐹𝐶)𝑙𝑜𝑔,0(𝑝) for ranking. We created a gene set database combining the terms for the 775 
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strain SL1344 from the eggnog database (69), QuickGo (70)  and KEGG (71). We used the r 776 
package GSEA 1.2 (43) to calculate the enrichment scores and the corresponding adjusted p 777 
values. gsea.type was set to 'preranked’ and shuffling.type to ‘gene.labels’. Gene sets with 778 
sizes between 3 and 50 genes were analyzed. For the CLIP-seq data, we performed a 779 
hypergeometric test with the R stats function fisher.test. The FDR corrected p value was 780 
obtained using the Benjamini Hochberg procedure. For the hypergeometric test, the significance 781 
cutoff on the CLIP-seq data was chosen as (𝑝567 ≤ 0.1) for CsrA, Hfq, and ProQ. For CspC/E, 782 
the value was reduced to 𝑝567 ≤ 0.01 to obtain a comparable number of interaction partners. 783 
 784 
Correlation between changes in half-lives or transcript abundance in different mutant 785 
backgrounds and its significance 786 
To compare the changes in half-life or transcript abundance in the ΔproQ and ΔcspCE strains, 787 
we used all transcripts with an FDR ≤ 0.1 in both deletion mutants as compared to WT. The 788 
Pearson correlation was calculated using R’s cor function. To calculate the significance of the 789 
correlation, we permuted gene labels of the results for the ΔcspCE strain and applied the same 790 
criteria to obtain the correlations. This was repeated 1000 times. The fraction of permutations 791 
with a correlation larger than in the actual comparison between the ΔproQ and ΔcspCE strains 792 
was used as an estimate for the significance of the observed correlation (Figure S8D). 793 

For the comparison between changes in transcript abundance in the ΔarcA strain and 794 
the two RBP deletion strains (always compared to WT), all transcripts with differential gene 795 
expression in the ΔarcA strains were used (44). To map locus tags from the S. Typhimurium 796 
LT2 genome (NCBI Accessions: AE006468.2, AE006471.2) to the SL1344 genome, we used 797 
proteinortho (v6.0.33) (72). The significance of the correlation between the published difference 798 
in transcript abundance and the differences in the RBP deletion strains were estimated by 799 
permuting gene labels 1000 times in the ΔarcA strain and calculating the corresponding 800 
correlations (Figure S9C). 801 
 802 
RNase E cleavage sites in random sequences 803 
To estimate expected overlap between CspC/E CLIP-seq peaks and RNase E cleavage sites, 804 
we generated 100 random peaks of the same length within the same transcript as the actual 805 
CspC/E CLIP-seq peak, then tested how many of these random peaks overlapped with RNase 806 
E cleavage sites. Across the 100 simulations, this resulted in a mean of 331 of overlapping 807 
binding sites compared to 410 overlapping sites in the CspC/E CLIP-seq peaks. None of the 808 
100 simulated sets yielded a value as high or higher than 410 overlapping binding sites, 809 
resulting in a p value of about 0.  810 

 811 
Cumulative ratio of transcripts bound by RBPs 812 
To visualize the relationship between the fraction of transcripts bound by RBPs and transcript 813 
half-life (Figure 4A), we calculated the cumulative ratio 𝑅$89 of transcripts bound by one of the 814 
RBPs in this study (ProQ, CspC/E, CsrA, Hfq). For every RBP, we divide the set of transcripts 𝑇 815 
into transcripts bound and not bound by the respective RBP, i.e. 816 

. 817 
Subsequently, each set is ordered by half-life. Starting with the least stable transcript, the 818 
cumulative ratio of the 𝑖th transcript is given by 819 
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                                       . 820 
 821 
UV Crosslinking, Immunoprecipitation, and RNA Purification 822 

CspC/E CLIP-seq data sets were generated with the same protocol as (12, 42). In short, 400mL 823 

of bacterial culture was grown to an OD600 of 2.0 in three biological replicates. One half of the 824 

culture was irradiated with UV-C light at 800 mJ to induce RBP crosslinking. Cells were 825 

centrifuged and resuspended in lysis buffer, mixed with 1 ml glass beads and shaken for 10 826 

minutes. Anti-FLAG magnetic beads were added to the lysate before rotating it for 1 hour at 4℃. 827 

The beads were collected by centrifugation, resuspended and subjected to multiple washing 828 

steps. Finally, the magnetic beads were collected on a magnetic separator and the supernatant 829 

was loaded and separated on a 15% SDS-polyacrylamide gel followed by transfer to a 830 

nitrocellulose membrane. The protein size marker was highlighted with a radioactively labeled 831 

marker pen, and the membrane was exposed to a phosphor screen for 30 min. The regions of 832 

the membrane containing radioactive signal were cut out, and the same regions were selected 833 

from the control samples (Figure S7A). The membrane pieces were cut into smaller pieces and 834 

incubated 1hr at 37℃ with shaking at 1000 rpm in a total volume of 400 µl of PK solution (200 µl 835 

of 2xPK buffer - 100mM Tris-Hcl pH 7.9; 10mM EDTA; 1% SDS - ;20 µl of Proteinase K 836 

(Fermentas, 20 mg/ml); 1 µl of SuperaseIN (Termo Fischer Scientist) completed with nuclease-837 

free water up to 400 µl). After incubation, 100 µl of the PK solution containing 9M Urea was 838 

added to each tube and incubated for an additional 1hr at 37℃, 1000 rpm. For RNA extraction, 839 

phase-lock tubes (5PRIME) were used to mix 450 µl of Phenol:Chloroform:Isoamyl alcohol 840 

25:24:1 (PCI; Roth) with the supernatant from proteinase K treated samples (around 450 µl). 841 

Phase lock tubes were incubated 5 min at 30℃ under agitation (1000rpm) and spined 15 min at 842 

4℃, 13 000rpm. The aqueous phase was collected and precipitated using a 30:1 mix of 100% 843 

ethanol/3M Sodium Acetate pH 5.2 at -20℃ for at least 2hr. After 30min centrifugation at 4℃, 13 844 

000rpm, the RNA pellets were washed with 70% ethanol and finally resuspended in 10 µl of 845 

nuclease-free water. 846 

 847 

CLIP-seq cDNA Library Preparation and Sequencing 848 

cDNA libraries were prepared using the NEBnext Multiplex Small RNA library kit (#E7300) 849 

according to the manufacturer’s recommendation. Briefly, for the 3’ SR adaptor ligation step, 2.5 850 

µl of RNA sample extracted from CLIP elution was mixed with 1 µl of 3’SR adaptor, diluted 1:10 851 

in nuclease-free water), incubate in thermal cycler 2min at 70℃. While on ice, a mix of 5 µl of 3' 852 
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ligation reaction buffer and 1.5 µl 3’ ligation enzyme mix was added, and the samples were 853 

incubated for 1 hr at 25℃. For the RT primer hybridization, 2.75 µl of a 1:10 diluted SR RT 854 

primer was added to the samples following an incubation of 5 min at 75℃, 15 min at 37℃ and 855 

15 min at 25℃. During incubation period, 0.5 µl of a 1:20 5’ adaptor was incubated separately 856 

for 2 min at 70℃. This denatured 5’ adaptor was used for the 5’ SR adaptor ligation step where 857 

it was added to the samples with 0.5 µl of 10X 5’ ligation reaction buffer and 1.25 µl of 5’ ligation 858 

enzyme mix. The samples were then incubated for 1 hr at 25℃. For the final step, reverse 859 

transcription, to each sample was added 4 µl of first strand synthesis reaction buffer, 0.5 µl of 860 

murine RNase inhibitor and 0.5 µl of M-MuLV reverse transcriptase. The samples were 861 

incubated for 1 hr at 50℃ and the RT enzyme later on inactivated at 70℃ for 15 min. For the 862 

cDNA amplification, 10 µl of each cDNA library was mixed with 25 µl of LongAmp Taq 2x Master 863 

mix, 1.2 µl of SR primer, 12.5 µl of nuclease free water and 1.2 µl of index primer (one different 864 

for each library). Amplification conditions applied were the following: 94℃ for 30 sec; 18 cycles 865 

of 94℃/15sec; 62℃/30sec; 70℃/15sec and a final step of 70℃ for 5 min. After amplification, 866 

samples were loaded of TBE gels and bands from amplification between 130 to 200 bp were 867 

selected by gel extraction. DNA was eluted from crushed gel pieces with 500 µl of DNA elution 868 

buffer after 2 hr incubation at RT. After collection of the supernatant using corning costar spin-X 869 

centrifuge tube filters, precipitation mix was added, and samples were placed at 80℃ for 1 hr. 870 

After centrifugation and washing steps, dried pellets were resuspended in nuclease free water. 871 

Size, quantity, and absence of primers dimers were checked by bioanalyzer before sequencing. 872 

High-throughput sequencing was performed by Vertis. The libraries were pooled on an Illumina 873 

Nextseq500 platform and sequencing done for single end 1x150 bp. 874 

 875 

Processing of Sequence Reads and Mapping CLIP-seq 876 

The CspC/E and ProQ CLIP-seq data was analyzed following the procedure described in (42) 877 

with a few alterations. First, putative PCR duplicates were removed using FastUniq v1.1 (73). 878 

The read pairs were trimmed together using Cutadapt v4.1 (74) and reads with fewer than 12 879 

remaining bases were discarded. Additionally, we performed quality trimming with a minimum 880 

phred score of 20. Read pairs longer than 25 nt were eliminated for peak calling. The remaining 881 

reads were mapped to the Salmonella Typhimurium SL1344 chromosome (NCBI Acc.-No: 882 

NC_016810.1) and plasmid (NCBI Acc.-No: NC_017718.1, NC_017719.1, NC_017720.1) 883 

reference sequences using segemehl version 0.3.4 (75) with an accuracy cutoff of 80%. Only 884 

uniquely mapping reads were considered for all subsequent analysis.For quantification of peak 885 

regions, no upper limit was imposed on read length. Reads were aligned to the Salmonella 886 
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Typhimurium SL1344 chromosome and plasmids using STAR (63). 887 

 888 

CLIP-seq Peak Calling 889 

Segemehl read alignments were converted from BAM to BED format using BEDTools v2.17.0 890 

and reformatted to satisfy blockbuster’s input requirements. Subsequently, peaks were defined 891 

by applying blockbuster v0.0.1.1 (-minBlockHeight 10 -distance 1). This resulted in a large set of 892 

clusters with overlapping blocks of reads. In clusters with only one block the peak region was 893 

defined by the position of the block. In clusters with multiple blocks, peaks were chosen 894 

iteratively. First, the block with the highest count was selected and a peak region was defined by 895 

joining together all blocks which overlapped by at least 50% with this block. Then, all reads 896 

overlapping with this block were removed. This procedure was repeated until the largest block 897 

contained less than 1% of the reads in the corresponding cluster. A formalized description of 898 

this algorithm is given in (42). The peaks were exported to gff format and htseq-count v2.0.2 899 

with default parameters was used to count the uniquely mapped reads in the STAR alignments.  900 

 901 

Differential peak abundance analysis of CLIP-seq Data 902 

DEseq2 (25)  was used to identify peaks with differential abundance in the cross-linked vs. the 903 

non-cross-linked libraries. Log-fold changes were shrunk using apeglm (76). We required a log-904 

fold change of at least 1. For ProQ, we chose the same adjusted p-value cutoff as (42) chose 905 

for CsrA and Hfq (padj<0.1, Figure S7B). For the CSPs, the adjusted p-value cutoff was 906 

reduced to 0.01 to obtain a comparable number of peaks (Figure S7C). 907 

 908 

Supplementary Material 909 
 910 
Table S1: Half-lives obtained by fitting the LNM to the RIF-seq data set. 911 
Table S2: Steady-state log-fold changes of the RIF-seq data set from edgeR. 912 
Table S3: Genetic features with ProQ-binding sites (CLIP-seq) in the 3’UTR or within 100 bases of the 913 
stop codon which are destabilized upon proQ deletion. 914 
Table S4: Genetic features with CspC/E-binding sites (CLIP-seq) in the CDS or 5’UTR which are 915 
destabilized upon cspC/E deletion. 916 
Table S5: Significant ProQ peaks obtained by re-analyzing the ProQ CLIP-seq data set (12). 917 
Table S6: Significant CspC CLIP-seq peaks. 918 
Table S7: Significant CspE CLIP-seq peaks. 919 
Table S8: Bacterial strains used in this study. 920 
Table S9: Plasmids used in this study. 921 
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Table S10: Oligos used in this study. 922 
Table S11: Antibodies used in this study. 923 
 924 
 925 
 926 
 927 
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Figure S1. Differential expression (DE) analysis at t=0 min 929 
(A) PCA plot after normalizing by library size. (B) PCA plot after TMM normalization. (C) PCA plot after 930 
running RUVg. (D) logcpm values after normalizing by library size. (E) logcpm values after TMM 931 
normalization. (F) MA plot ΔproQ vs. WT after TMM normalization. Genes used in RUVg are marked in 932 
yellow. (G) logcpm values after running RUVg. (H) Samples clustered by euclidean distance after running 933 
RUVg. (I-K) MA plots for ΔproQ, proQ++, and ΔcspCE (top to bottom) vs. WT after normalization with 934 
RUVg. Significantly DE genes (FDR < 0.05) are highlighted. 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
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 943 
Figure S2. Normalization 944 
(A) PCA plot of the raw proQ RIF-seq data. (B) Representative MA plot before TMM normalization with 945 
ERCC spike-ins. (C) Representative MA plot after TMM normalization with ERCC spike-ins. (D) PCA plot 946 
after normalization with ERCC spike-ins. (E) Illustration of the CM normalization for WT at 𝑡 = 0 min: After 947 
subtracting the condition-wise mean, the offset of the mean from 0 provides an additional normalization 948 
constant. (F) PCA plot after center-mean (CM) normalization. (G) Relative log-expression (RLE) of WT 949 
and ΔproQ libraries after TMM normalization. (H) RLE of WT and ΔproQ libraries after CM normalization. 950 
(I) PCA plot after TMM normalization with ERCC spike-ins. (J) RLE of WT and ΔcspCE libraries after 951 
TMM normalization. (K) RLE of WT and ΔcspCE libraries after CM normalization. (L) PCA plot after 952 
center-mean (CM) normalization. 953 
 954 
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 955 

 956 
Figure S3. Model development, global transcript stability and transcription rate 957 
(A) Representative WT decay curves exhibiting the dynamics correctly described by either the LM, PLM 958 
or LNM. (B) Genome-wide association of elongation time γ with the annotated primary transcription start 959 
sites. (C) An example of how the transcription rate was extracted from the elongation times of the 60 base 960 
windows including annotations and operon structure based on (64), where primary TSSs are indicated by 961 
black lines. (D) Distribution of genome-wide transcription rates as extracted from the 60 base windows. 962 
(E) Comparison of decay curves and detection limit due to adding a pseudocount for the phoP transcript. 963 
(F) Scatter plot of gene expression and decay rate. (G Half-lives of the 60 base windows scaled to the 964 
gene-average relative to the start of the CDS. (H) Distribution of genome-wide stable baseline fraction 𝜋 965 
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ordered by genotype. (I) Difference between ELPD of the LNM and the LM/PLM, respectively. Positive 966 
values favor the LNM. (J) Difference in ELPD between the LNM and the PLM at 24 min. Positive values 967 
favor the LNM. (K) Fitted unexplained variation 𝜎$(𝑡) in the LM compared to calculated standard 968 
deviation. (L) Fitted unexplained variation 𝜎$(𝑡) in the PLM compared to calculated standard deviation. 969 
(M) Fitted unexplained variation 𝜎$(𝑡) in the LNM compared to calculated standard deviation. 970 
 971 
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 973 
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 994 
Figure S4. Posterior predictive p values und false discovery rate (FDR) 995 
(A) Posterior distribution of the difference in half-life for a transcript in the RBP deletion strain vs. the WT. 996 
Under the null hypothesis, MCMC samples should fall within an interval around zero (blue, dashed lines). 997 
The Bayesian p value is given by the fraction of samples that overlap with the null hypothesis (yellow). (B) 998 
p value distribution for differential stability data for the ΔproQ strain compared to the distribution under the 999 
null hypothesis. (C) Correlation between simulated and fitted differences in half-life (Pearson 𝜌 = 0.86). 1000 
(D) ROC curves obtained from the simulated data for different simulated standard deviations of relative 1001 
log-counts. An FDR of 0.1 is marked with a black triangle. The number of transcripts which pass the cutoff 1002 
is indicated in parentheses. At an FDR of 0.1, differentially decaying transcripts with a simulated standard 1003 
deviation below 0.05 are identified with a sensitivity of 0.82. (E) We determine the FDR at a given p value 1004 
cutoff from the simulated data (black dots) and fit a LOESS curve to it to map p values to FDR (blue line). 1005 
More details on the calibration of p values can be found in the Methods. 1006 
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 1007 
Figure S5. Median half-lives for transcripts classified by COG category. Related to figure 1F. 1008 
 1009 
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 1010 
Figure S6. Representative RIF-seq results 1011 
(A) Stability changes for known ProQ targets. (B) Stability changes for the exoribonuclease PNPase and 1012 
global transcriptional regulators. (C) Transcripts with large stability changes upon deletion of proQ and 1013 
cspCE. (D) Distribution of significant stability changes in the two RBP deletion mutants. 1014 
 1015 
 1016 
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 1017 
Figure S7. CLIP-seq results and comparison to RIF-seq 1018 
(A) Autoradiograph of radioactively labeled RNA fragments covalently bound by CspC/E after UV cross-1019 
linking (CL), immunoprecipitation, gel electrophoresis, and membrane transfer. The presence of the RBPs 1020 
was verified by western blotting. (B,C) MA plots of the CLIP-seq analysis. (D) Fraction of transcripts 1021 
bound by CspC/E/ProQ which are (de-)stabilized upon cspC/E deletion or which do not decay 1022 
differentially (non-DD). Peaks which overlap with the CDS and the UTR have been assigned to the CDS 1023 
only. For ProQ, the region within 100 nt of the stop codon has been analyzed jointly with the 3’UTR. (E) 1024 
Changes in transcript stability of CspC/E targets categorized by whether or not the binding site overlaps a 1025 
known RNase E cleavage site (39). (F) Number of CspC/E binding sites per transcripts categorized by 1026 
whether or not the transcript is destabilized upon cspC/E deletion. 1027 
 1028 
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 1029 
Figure S8. Pathway analyses 1030 
(A) Summary of pathway analyses. (B) Transcriptional changes of flagellar genes. Genes highlighted in 1031 
blue are downregulated upon both proQ and cspC/E deletion (see Figure S12 for more details). (C) 1032 
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Correlation between differences in half-life in the ΔproQ and ΔcspCE strains. Only transcripts significantly 1033 
different in both deletion mutants were considered. The linear regression includes only transcripts with 1034 
changes in the same direction. (D) Significance of correlation between abundance and stability changes 1035 
in the ΔproQ and ΔcspCE strains. 1036 
 1037 
 1038 
 1039 
 1040 
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 1041 
Figure S9. Integrative analysis of RBP binding and transcript stability 1042 
(A) Decay curve of significantly destabilized transcript of the arcA transcript. (B) log-fold changes in the 1043 
ΔproQ vs. a ΔarcA strain (44). (C) Significance of correlation between abundance changes in the 1044 
ΔproQ/ΔcspCE and the  ΔarcA strains. (D) Regulation of SPI-1/2 effectors by ProQ and CspC/E. The 1045 
picture of the epithelial cell was taken from BioRender.com. (E) Decay curve of significantly destabilized 1046 
transcript of oxyR. (F) ProQ CLIP-seq peak in the 3’UTR of oxyR identified by re-analyzing (12), 1047 
FDR=0.047. (G) Exposure of various Salmonella strains to varying levels of hydrogen peroxide. 1048 
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 1049 

 1050 
Figure S10. Integrative analysis of RNA secondary structures 1051 
(A) Secondary structure of the ProQ/CspC/E-bound mRNA of the bacteriolytic lipoprotein EcnB including 1052 
RNase E cleavage sites (39). (B) Secondary structure of the ProQ/CspC/E-bound sRNA CsrB including 1053 
RNase E cleavage sites (39). (C) Normalized data for CsrB, including the fitted decay curves. (D) Overlap 1054 
in interaction partners between various CLIP-seq data sets with major RBPs. 1055 
 1056 
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Figure S11.  Top destabilized transcripts in the absence of ProQ and oxidative stress response 1058 
 1059 
 1060 
 1061 
 1062 
 1063 
 1064 
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 1065 
Figure S12. Flagellar genes with negative log-fold change in proQ and cspC/E deletion strains 1066 
 1067 
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 1068 
Figure S13. Genes involved in (an)aerobic respiration 1069 
 1070 
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 1071 
Figure S14. Transcription factors, subunits of RNA polymerase complex 1072 
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