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Abstract

Background: Inference of Gene Regulatory Networks (GRNs) is a difficult and
long-standing question in Systems Biology. Numerous approaches have been pro-
posed with the latest methods exploring the richness of single-cell data. One of
the current difficulties lies in the fact that many methods of GRN inference do
not result in one proposed GRN but in a collection of plausible networks that
need to be further refined. In this work, we present a Design of Experiment strat-
egy to use as a second stage after the inference process. It is specifically fitted for
identifying the next most informative experiment to perform for deciding between
multiple network topologies, in the case where proposed GRNs are executable
models. This strategy first performs a topological analysis to reduce the number
of perturbations that need to be tested, then predicts the outcome of the retained
perturbations by simulation of the GRNs and finally compares predictions with
novel experimental data.
Results: We apply this method to the results of our divide-and-conquer algo-
rithm called WASABI, adapt its gene expression model to produce perturbations
and compare our predictions with experimental results. We show that our net-
works were able to produce in silico predictions on the outcome of a gene
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knock-out, which were qualitatively validated for 48 out of 49 genes. Finally,
we eliminate as many as two thirds of the candidate networks for which we
could identify an incorrect topology, thus greatly improving the accuracy of our
predictions.
Conclusion: These results both confirm the inference accuracy of WASABI and
show how executable gene expression models can be leveraged to further refine
the topology of inferred GRNs. We hope this strategy will help systems biologists
further explore their data and encourage the development of more executable
GRN models.

Keywords: Gene Regulatory Network inference, executable GRN, GRN simulation,
GRN ensemble, Design of Experiment, Perturbation experiment

Background

For the last 60 years, it has been commonly admitted that a precise knowledge of

gene regulatory interactions is required to fully understand the processes of cell

decision making (differentiation, proliferation or death) in response to a stimulus

[1, 2]. Therefore, for the last three decades, the Systems Biology field has dedicated

a great deal of effort to infer the structure of Gene Regulatory Networks (GRNs).

Initial attempts suffered from the imprecision of bulk RNA-seq, in which the expres-

sion data from millions of cells was averaged, masking cellular heterogeneity and

stochastic phenomena. Algorithms developed in the last ten years benefited from the

development of single-cell RNA-seq technologies, which now allows to access mRNA

distributions in more details and investigate causal dependencies between genes.

Indeed, the single-cell resolution was shown to contain a much richer information

that the mean value alone [3–5].

However, the precise identification of biological parameters of a GRN and the

problem of distinguishing between multiple possible topologies remain to this day

challenging problems. Attempts at solving those problems were for example made

in the context of the DREAM challenges [6] where experimental design strategies
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were developed. The general goal of those strategies was to decide under which

perturbation (gene knock-out (KO), knock-down (KD) or over-expression), at which

time point(s) and through which kind of data (bulk or single-cell RNA-seq, pro-

teomics, . . . ) a process of interest should be observed to discard the largest amount

of incorrect GRNs, therefore leading to a small number of most relevant GRNs (and

ideally leaving only one). Those strategies must respond to the difficult question of

maximizing the amount of newly acquired data while minimizing the costs (financial

costs, time required), dealing with measurement uncertainties and accounting for the

stochastic nature of gene expression.

Recently our team developed WASABI [7], a tool which allows to 1) infer GRNs

from time-stamped scRNA-seq data and 2) simulate those GRNs. Simulations are

made possible by a mechanistic model of gene expression, previously described in [8],

where a stochastic process controls promoter activation and a set of ODEs determines

RNA and protein synthesis, resulting in a Piecewise Deterministic Markov Process

(PDMP). The algorithm works by iteratively building and simulating ensembles of

candidate GRNs from which the best performing are selected.

This GRN inference algorithm was applied to a dataset of single-cell RTqPCR data

obtained on differentiating chicken erythrocytic cells. As expected, it did not produce

a single GRN but rather a collection of 364 candidate GRNs equally well suited for

reproducing experimental data when simulated. It is therefore the ideal playground

for the development of a Design of Experiment strategy able to efficiently reduce the

number of candidate GRNs previously generated by a GRN inference algorithm.

To do this, we introduce TopoDoE, an iterative method for the in silico identifi-

cation of the most informative perturbation – that is eliminating as many incorrect
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candidate GRNs as possible from the data gathered in one experiment. That method

is a 4 step process in which :

1. a topological analysis is performed on the set of candidate GRNs to identify the

most promising gene targets. This is essential to avoid the heavily time-consuming

simulation of all possible gene perturbations.

2. in silico perturbation and simulation of the identified gene targets and ranking of

those perturbations to identify the most informative one.

3. in vitro execution of the selected perturbation and scRNA-seq data acquisition.

4. selection of the subset of candidate GRNs which accurately predicted the novel

experimental data.

This strategy led to the identification of the FNIP1 gene as a promising target,

that was knocked-out in chicken erythrocytic progenitor cells. The in silico predictions

of FNIP1 KO were verified for 48 out of 49 genes in our GRNs. The DoE strategy

helped reduce the 364 candidates into 133 most relevant ones. The merging of those

133 GRNs led to one GRN with a much improved goodness of fit to experimental data

than any other candidate.

Results

Initial setting

WASABI has previously been applied to the inference of the GRN governing the

differentiation process of avian erythrocyte progenitor cells (T2ECs) into mature

erythrocytes [7]. It generated 364 candidate GRNs, all made of the same 49 genes

(S1 Table) and of a unique stimulus mimicking the change of culture medium which

triggers the differentiation process [9]. As shown in S1 Fig, all 364 GRNs shared an

overall close but always different topology. When comparing all GRNs two-by-two,

we found on average a low number of different interaction values between pairs of
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genes: only 7.72 different values out of the 160 total existing interactions. Fig 1.A

shows the graph of interactions of one such candidate GRN.

GRNs generated by WASABI were defined by a mechanistic model of gene expres-

sion based on coupled Piecewise-Deterministic Markov Processes (PDMPs) governing

how the mRNA and Protein quantities change over time. In this model, the gene

promoter activation (i.e. gene bursting frequency) is function of the expression level

of all other genes. Gene A is said to regulate gene B when the interaction value θA,B

is not null.

Because this model was executable, it allowed us to simulate the behavior of

GRNs over some period of time by solving the underlying PDMPs. The result of a

GRN simulation was a collection of matrices of cells × genes values of mRNA counts,

one for each time point. When simulated, all 364 candidate GRNs produced similar

count matrices: distances between simulated and experimental data were indeed all

close (see S2 Fig), with distance variations explained purely by the randomness

of the simulations and no GRN performing significantly better than others. Here,

distances were computed using the Kantorovich distance [10] taken on marginals (i.e.

computed one gene at a time). Our next objective was thus to identify a perturbation

which would produce different GRN responses in the form of diverse count matrices.

Step 1: Topological analysis

Depending on the number of genes in the GRNs of interest, simulation of all possible

perturbations on all genes might be very time consuming or even completely unfea-

sible. We thus sought to develop a preliminary step to our strategy, based on the

topological analysis on the set of candidate GRNs, that would allow us to identify

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.04.21.537619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.21.537619
http://creativecommons.org/licenses/by-nc-nd/4.0/


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Fig. 1 Topological features of the 364 candidate GRNs inferred by WASABI. A Graph
of one of the 364 candidate GRNs. Genes are shown as blue nodes and the stimulus as a yellow node.
Green edges represent positive regulations (θ > 0) from a gene source to a gene target while orange
edges represent negative regulations (θ < 0). B Descendants Variance Index (DVI) per gene. This
index gives the variance of interactions between a gene and the genes it regulates, found in all 364
GRNs. A high value indicates that a gene has highly varying interactions among all of the candidate
GRNs.

genes having the highest chance of producing informative perturbations. This analysis
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was motivated by the fact that, while some gene-to-gene (or stimulus-to-gene) inter-

actions appeared in all GRNs, others were present in very few of them (for example,

the regulation of FNIP1 by GAB1 only appears in one of the 364 candidates; see S3

Fig). In particular, the gene FNIP1 had many possible regulator genes : interactions

with 47 out of the 49 genes could be found in the set of candidates, but only in at

most 9 GRNs at a time (except for the regulation by MFSD2B which was found in

all GRNs). This configuration is intuitively promising since the GRNs would pro-

duce many different regulatory dynamics upon perturbation of a single target gene,

because of their many distinct gene-to-gene interactions.

To identify the genes with the most variable interactions with its descendants (the

downstream genes it regulates), we proposed the Descendants Variance Index

(DVI). Briefly, this index considers one gene at a time and measures how much inter-

actions between that gene and its descendants qualitatively change in the whole set

of candidate GRNs (change from activation to inhibition or to no interaction at all).

High values for a gene on the DVI indicate that many different types of regulations

can be found in the GRNs while low values show that most GRNs have the same

regulations. Here, we focused only on downstream genes since we will only consider

KO experiments in later steps, thus only affecting the expression of genes regulated

by the KO target, as it is the case for most kinds of perturbations.

DVI values where highest for genes FNIP1 (DVI=0.4934), DHCR7 (DVI=0.2707),

BATF (DVI=0.2687), FHL3 (DVI=0.2487) and MID2 (DVI=0.2255), as shown in

Fig 1.B. Those 5 genes were thus selected for studying the effect of their in silico

perturbation.
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Step 2: In silico perturbations

We simulated the 364 candidate GRNs after KO of each of the genes identified in the

previous analysis. Simulated data had to be compared to reference unperturbed data

to obtain predictions on which genes would display significant expression variations

upon perturbation. Finally, a measure of entropy was used to select the most infor-

mative perturbation.

Before any simulation could be run however, constant hyper-parameters of our

model needed to be chosen so as to obtain balanced simulations. The goal here was

to set the initial state of the simulations so that they would reproduce experimental

data from unperturbed cells in a stable way in the absence of any perturbation. This

was an essential preliminary step for correct interpretation of the results since incor-

rect simulation balancing would introduce simulation biases, either spontaneously

drifting away from the initial state or remaining stuck on it and thus masking the

effect of a perturbation. We devised an initialisation method based on a modified

simulated annealing algorithm which simulated gene expression values for 40 hours

with different hyper-parameters’ values to identify optimal combinations.

Then, in-silico data was obtained for all 6 conditions (reference data with no

perturbation and each of the 5 selected genes knocked-out independently). For each,

all 364 candidate GRNs were simulated for 100 hours, so that they had enough time

to reach a new stable state after perturbation. Data was recorded at the end of the

100 hours to obtain mRNA count matrices of 200 cells each.

Counts of mRNA molecules after each perturbation were compared to the refer-

ence dataset using one-sided t-tests for both ‘greater‘ and ‘less‘ mean value hypothesis.

The effects on downstream genes are shown in Table 1, where the number of GRNs
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Knock-Out target Gene Effect GRNs (with interaction)

FNIP1

SNX22 down-regulation 88 (88)

SLC25A37 down-regulation 45 (45)

ENSGALG00010025565 up-regulation 102 (102)

DHCR7
FNIP1 down-regulation 6 (8)

SLC6A9 up-regulation 1 (192)

BATF

FNIP1 down-regulation 7 (7)

PIK3CG down-regulation 364∗ (364)

SNX22 up-regulation 178 (178)

FHL3

ARHGEF2 down-regulation 364∗ (364)

FNIP1 down-regulation 8 (8)

SLC6A9 ∅ 0∗ (127)

MID2

FNIP1 down-regulation 7 (8)

SLC6A9 ∅ 0∗ (45)

ENSGALG00010025565 down-regulation 39 (39)

Table 1 Effects of in-silico perturbations. The effects of single gene KO’s on downstream
genes were tested using one-sided t-tests for ‘less‘ expression in the KO condition
(down-expression in the ‘Effect‘ column, p-value < 0.01) and for ‘greater‘ expression in the
KO condition (up-expression in the ‘Effect‘ column, p-value < 0.01). The number of GRNs
in which the gene showed an expression level variation is stored in the column ‘GRNs‘. Values
in parenthesis indicate the number of GRNs which had a non-null interaction between the
knocked-out gene and the downstream gene, which is the maximum expected number of GRNs
showing an expression level variation. Asterisks indicate uninformative expression variations on
downstream genes.

for which we measured significant expression variation is reported (p-value < 0.01).

Rows colored in red indicate uninformative effects of a KO. Indeed, when the effect

of a perturbation was the same in all of the 364 candidate GRNs or when no GRN

responded to that perturbation, it provided no valuable information to discriminate

GRNs. To assess the total amount of information given by a KO experiment, we

measured for each gene the entropy on the proportions of GRNs with variations in

expression levels. Measured entropy values are given in Table 2. The KO of FNIP1

had the largest entropy (i.e. carried the most information) with a value of 1.0466.

This perturbation was thus selected for the next steps.
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FNIP1 BATF MID2 DHCR7 FHL3

entropy 1.0466 0.6933 0.4265 0.4101 0.1038

Table 2 Measured values of entropy after single gene
KO.

Predictions of gene expression variation

Since we had selected FNIP1 as target for a KO experiment, we sought to obtain in-

silico predictions of the expected gene expression variations. To that end, the mRNA

counts from all GRNs simulated under FNIP1 ’s KO were pooled together and com-

pared to the reference condition to produce average predictions. As shown in Fig 2

and as expected from the results in Table 1, genes SNX22 and SLC25A37 had over-

all decreased mRNA counts in the KO condition and ENSGALG00010025565 had

increased mRNA counts (one-sided t-tests with p-value < 0.01). Also as expected,

none of the 45 other genes had a significant expression variation (see S4 Fig).

Fig. 2 Simulations of FNIP1’s Knock-Out. Overall predictions on the gene expression levels
after the in silico KO of FNIP1. Box plots summarize the mRNA counts obtained from the simulation
of the 364 candidate GRNs in the Wild Type (WT, in blue) and in the knock-out (KO, in red)
conditions, after 100 hours of simulation. Shown are the three genes with significant (p < 0.01)
expression variation.
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Step 3: In vitro perturbations

To test experimentally our in-silico predictions, we devised a dedicated strategy to

obtain single cell transcriptomics data on cells that had been validated for the KO

of FNIP1 (Fig 3.A). One of the main challenges we had to face was that the T2ECs

being primary cells, they have a finite lifetime of 30 days [9] during which the cells

had to be transfected, cloned, amplified, molecularly validated, and seeded in 96 wells

plate for subsequent scRTqPCR analysis.

Following FNIP1 ’s KO, we acquired single cell transcriptomics data for 61 KO

cells and for 12 cells transfected with an empty plasmid which we used as control

(Fig 3.B). We recovered expression data for 45 of the 49 genes in the GRNs. Genes

ABCG2, LDHA and GAB1 displayed poor quality data and were removed from the

dataset.

Using one-sided t-tests, we found that the expression of genes SNX22 and

SLC25A37 dropped significantly in the KO condition when compared to the control,

which matched our predictions (see S2 Table and S5 Fig). Surprisingly how-

ever, the expression also dropped for genes ENSGALG00010025565 and SLC6A9.

This indicated a flaw in WASABI’s inference method where it overestimated the

basal expression level or the auto-activation strength for gene. For example, ENS-

GALG00010025565 ’s expression level was often supported by it’s own expression

alone, as much as to not be regulated by any other gene in some candidate GRNs.

Importantly however, as previously predicted, no significant expression level vari-

ation was measured for the 45 other genes. Altogether, these results allowed us to

confirm that WASABI was able to infer mostly correct GRNs with a remarkable accu-

racy. Indeed, the probability of making at most 2 errors on the qualitative responses
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Fig. 3 Generation and single-cell analysis of FNIP1 KO cells. A The experimental strategy
used for generating scRTqPCR data on validated FNIP1 KO cells. B Single cell counts for wild type
cells (in blue) and FNIP1 Knock-Out cells (in red).

of the 49 studied genes was only P (E ≤ 2) = 2.0071 · 10−20 with E the number of

errors and with a probability of 2
3 of making an error for each gene.
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Step 4: GRN selection and refinement

From the previous step, we had identified a KO target, generated predictions on the

gene expression variations after perturbation and verified most of our predictions

from experimental KO data. The last step of our strategy was to rule out incorrect

GRN candidates. From the novel information gathered in the experiment, we were

also able to build a GRN more accurately reproducing the data.

GRNs were selected by retaining only those with topologies coherent with the

obtained experimental results. 45 GRNs with FNIP1 positively regulating SNX22

matched the decreased expression of SNX22 and 88 GRNs with FNIP1 positively

regulating SLC25A37 matched the expression drop of that gene. We decided to select

those 133 GRNs among the 364 candidates and rule out the 231 others.

Interestingly, no GRN had FNIP1 regulating both SNX22 and SLC25A37 simul-

taneously. This revealed a limitation in WASABI’s exploration of possible GRN

topologies which was caused by the limited computational resources available at the

time WASABI was developed. This limitation prevented WASABI from exploring

more complex topologies in which FNIP1 regulated more that one gene at once. To

overcome this limitation, the 133 selected GRNs were merged into a single GRN by

computing the average of interaction values for each stimulus-to-gene or gene-to-gene

regulation.

To measure the performance of this new GRN, we computed the distance of

simulated to experimental KO data for all 364 candidate GRNs. The distribution of

such distances is shown as the blue histogram in Fig 4. Similarly, we computed the

distance of simulated data obtained with the merged GRN to the experimental data

(green dotted line). This distance was much lower than those obtained with any other
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GRN, demonstrated the improved goodness of fit of the constructed GRN.

Finally, to verify the relevance of our selection, we merged all 364 candidate GRNs

in the same way as before and again computed its distance to the experimental data

(red dotted line in Fig 4). Again, we obtained a better performance than any of the

364 GRNs, which could be explained by the fact that, by merging all of the GRNs, we

recovered the simultaneous regulation of SNX22 and SLC25A37 by FNIP1. However,

that merged GRN did not perform as well as the one obtained by merging the 133

selected GRNs, confirming the relevance of our selection.

Fig. 4 Simulations of FNIP1 ’s Knock-Out. Evaluation of the GRNs’ goodness of fit to exper-
imental data. Kantorovich distances between experimental and simulated data were computed for
the 364 candidate GRNs. The blue histogram shows the distribution of those distances. In red is the
distance obtained from the simulation of the 364 GRNs merged into one. In green is the distance
obtained after merging into one the 133 selected GRNs.

Discussion

We have presented TopoDoE, a DoE strategy that was designed for selecting the most

informative experiment to perform to significantly reduce the number of previously

inferred GRNs. When applied as a follow-up step to WASABI’s GRN inference algo-

rithm, the presented strategy of network selection allowed to first identify and remove
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incorrect GRN topologies and then to recover a new GRN better fitting experimental

data than any other candidate.

Validation of the inference algorithm

Initial simulations of GRNs inferred by WASABI showed they all fitted equally well

the experimental data used in the inference step. This motivated the generation of new

experimental data able to distinguish between the candidate networks. The simulation

and then the experimental completion of FNIP1 ’s KO further showed that the 364

candidate GRNs proposed by WASABI closely matched the ”true” GRN. Indeed,

among the 49 studied genes, the expression level variation after FNIP1 ’s KO was

incorrectly predicted for only 1 gene (ENSGALG00010025565 ). Most importantly,

the sole up-regulations of SNX22 and SLC25A37 were anticipated, indicating that

no other interactions with FNIP1 as regulator were missed during the inference step.

The probability of generating GRNs which would produce such accurate predictions

purely by chance was extremely low. This finding provides us confidence on the quality

of both WASABI’s algorithm and the inferred GRNs.

Identification of WASABI’s limitations

One interesting finding was the ability of TopoDoE to also identify limitations in the

GRN inference algorithm. A closer inspection of the candidate GRNs indeed revealed

two main issues in the initial implementation of WASABI : (i) the exploration of pos-

sible GRN topologies was incomplete and (ii) selected topologies has a bias towards

strong auto-activation regulations.

When WASABI was run on a super computer, it required one entire CPU node

per tested topology for its simulation. Combined with the simulation slowness, this

lead to high needs for computation resources which in turn meant that too few GRN

topologies could be explored per iteration of the algorithm. WASABI thus could not

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.04.21.537619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.21.537619
http://creativecommons.org/licenses/by-nc-nd/4.0/


691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

explore more complex alternatives in which FNIP1 would regulate more than one gene

at a time. This is a common issue in the general scope of Machine Learning in which

exploration – testing different solutions – and exploitation – evaluating a particu-

lar solution’s relevance – need to be correctly balanced (see for example [11] or [12]).

Also, WASABI allowed some genes to have high basal expression level supported

by strong auto-activations. In some cases, genes such as ENSGALG00010025565

were in fact only regulated in that way and were thus completely disconnected from

the rest of the GRN. This evidently prevented the prediction of the positive regula-

tion of ENSGALG00010025565 by FNIP1 as shown in the experimental data. This

behavior can easily be corrected by adding a penalisation term to auto-activations in

the future use of WASABI.

Quality of the predictions

Even though SNX22 ’s and SLC25A37 ’s variation of expression levels after FNIP1 ’s

KO were statistically significant in both simulation and experimental data, it must

be noted that the predictions were only qualitatively accurate, but not quantitatively.

Indeed, expression levels for both genes were very low in simulated data as compared

with experimental data of FNIP1 Knock-Out. This observation can be explained by

the variability in mRNA counts between experiments. Indeed, mRNA counts did not

always perfectly coincide between the training data (used to infer the GRNs) and the

experimental data obtained after FNIP1 ’s KO. Also, the small number of cells in the

experimental data (12 wild type and 61 knocked-out cells) could have induced a bias.

GRN selection and refinement

In the final step of our strategy, we selected the candidate GRNs which qualitatively

predicted the expression variation for at least one gene, after FNIP1 ’s KO. This
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resulted in a total of 133 selected GRNs, thus eliminating two thirds of the candidates.

Even though the “true GRN” was not in the initial set of candidates, it was possible

to recover it at least partially by merging promising GRNs together. Here, when merg-

ing the 133 selected candidates, we built a new GRN which performed significantly

better than all other candidates in reproducing the reference data.

Expanding to other perturbations

In this work, we only worked with KO perturbations since we had mastered the

CRISPR-cas9 system in T2ECs, which allowed to perturb all genes downstream of the

target. However, TopoDoE could easily be expanded to other types of perturbations

such as knock-downs (where short interfering RNA fragments inhibit the translation

of specific mRNAs [13, 14]) or over-expressions (obtained by introducing a dedicated

plasmid in a cell [13]). In some cases, these approaches would be easier to apply than

full knock-outs or allow to perturb genes that cannot be knocked-out because they

are essential for the cell’s viability. Knock-downs and over-expressions can also be

easily introduced in our expression model by increasing by some factor the d0 and

s0 parameters respectively. Here we would focus on d0 and s0 to stay close to the

biological processes since knock-downs increase the rate of mRNA degradation while

over-expressions increase the amount of mRNA molecules synthesized.

Interestingly, we found that the variability in interaction values among the candi-

date GRNs was maximal not when considering interactions between FNIP1 and the

genes it regulated, but when considering interactions with the genes that regulated

FNIP1 (see S6 Fig). It is however difficult to devise a perturbation targeting at once

all of the interactions between a gene and those upstream of it, thus producing the

maximum amount of different GRN responses.
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One possibility might be to use a reversion experiment, in which the differentia-

tion stimulus is interrupted early. Depending on the exact regulation dynamics, the

expression level of FNIP1 could change greatly. From previous work [15], we know

that T2ECs definitely commit to the differentiation after a precise amount of time

after stimulation, but remain able to fully revert to the progenitor state before that.

The exact time at which the commitment happens heavily depends on the GRN’s

topology and would thus allow to discriminate between different candidate topologies.

Iterating the DoE strategy

Our strategy can be repeated iteratively to further decrease the number of candidates:

the set of selected GRNs could now be used as input for the topological analysis step.

With a sustained rate of GRN selection of 50 to 70%, about 5 cycles of our strategy

would be needed to reduce the original set of 364 GRNs to only 10 candidates. This

would dramatically improve our confidence on the topology of the true GRN and

thus greatly improve the precision of our predictions.

Finally, one should note that this strategy is not restricted to WASABI-generated

GRNs, but is applicable whenever an ensemble of executable models of GRNs can be

obtained.

Applicability

As discussed in this work, TopoDoE heavily relies on the simulation of sets of can-

didate GRNs. To apply it in other settings, it is thus necessary to have produced

ensembles of executable GRN models. Although few such models currently exist,

several executable models have been published in the last years. Many of such models

come from the field of Boolean networks in which GRNs are executable by nature
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[16, 17]. Additionally, some models use an internal model of reactions to simulate

single cell data accurately [18] as it is done in WASABI.

Finally, ensemble inference algorithms are still very uncommon to our knowledge,

with notable exceptions such as [19] and [20]. This shows that the inference of ensem-

bles of executable GRNs is a very valuable characteristic of WASABI. Our DoE

strategy still remains applicable by combining inference and simulation methods cited

above and the growing interest for executable ensembles of GRNs makes us believe

that more such algorithms will come in the next years.

Conclusions

Inference of GRNs has been at the heart of the systems biology field for decades,

with numerous algorithms having been proposed. Their success has however been only

partial because of the extreme complexity of the problem. In recent years, important

progress has been made by :

• exploiting the richness of single-cell transcriptomics data

• introducing executable models of gene expression

• inferring ensembles of GRN topologies at once

Our strategy was specifically designed for such settings, where the goal – after

some GRN inference process has produced and ensemble of executable candidate

GRNs – is to identify where information is lacking for a more precise identification of

the true GRN topology.

TopoDoE is divised into 4 simple steps, each aimed at 1) reducing the complexity

of identifying informative perturbations, 2) generating predictions on the effects of a

perturbation and selecting the best perturbation, 3) collection of experimental data
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after perturbation and finally 4) comparison with predictions for GRN selection.

In this work, we limited our demonstration to single gene knock-outs but our

strategy can easily be expanded to any kind of perturbation that can be simulated

with the leveraged gene expression model. This, together with its iterative nature,

makes us believe that our strategy has the potential to be used by many biologists

wishing to refine their knowledge on the GRN they are studying.

It is also important to note that our results confirmed the remarkable efficiency of

WASABI. Average predictions from the full ensemble of candidate GRNs proved to

be correct for 48 out of the 49 genes in the networks, after the gene knock-out. With

corrections made to the identified limitations of the algorithm, this gives us great

confidence in WASABI and TopoDoE’s ability to build high quality GRNs, providing

us with a tool for efficiently exploring and understanding complex cellular processes

and diseases.

Methods

Average number of differences between GRNs

To measure the number of differences between candidate GRNs topologies, we con-

sidered GRNs as directed graphs where nodes were the genes and edges were the θ

interaction values. We computed for each pair of GRNs a and b the number da,b of

different θ values between all pairs of genes i and j :

da,b,=

G∑
i=1

G∑
j=1

⊮ι(θa
i,j) ̸=ι(θb

i,j)
(1)

with
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ι(θ) =


1, if θ > 0

−1, if θ < 0

0 otherwise

(2)

where G is the number of genes in the GRNs and θxi,j is the interaction value

between genes i and j in GRN x. All da,b values were finally averaged to obtain the

mean number of pairwise differences.

Mechanistic model of gene expression

Simulations were run using a mechanistic model of gene expression described in [8]

and based on the two-state model. Briefly, a gene i is described by a promoter Ei

which can be in states on or off and randomly switches between those states at rates

kon,i and koff,i respectively. When the promoter is active (on state), mRNA molecules

(Mi) are synthesized at rate s0, i. At any time, proteins (Pi) are produced at rate s1, i

from mRNA molecules, mRNAs are degraded at rate d0, i and proteins are degraded

at rate d1, i. The following equations summarize the model :


E(t) : 0

kon−−→ 1, 1
koff−−−→ 0

M ′(t) = s0E(t)− d0M(t)

P ′(t) = s1M(t)− d1P (t)

(3)

Interactions between stimuli and genes in a GRN are encoded by interaction param-

eters θ and by letting rates kon,i and koff,i be functions of protein P = (P1, ..., PG)

and stimuli Q = (Q1, ..., QS) levels as described in equation 4 (see Fig 5).

kon,i(P,Q) =
kon min,i + kon max,iβkon,iΦi(P,Q)

1 + βiΦi(P,Q)
(4)
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with

Φi(P,Q) =

S∏
s=1

1 + eθQ,i,s( Qs

HQ,s
)γ

1 + ( Qs

HQ,s
)γ

G∏
j=1

1 + eθP ,i,j(
Pj

HP,j
)γ

1 + (
Pj

HP,j
)γ

(5)

In equation 5, HQ,s and HP,j are interaction thresholds for stimuli and proteins

respectively. Similarly, the interaction function for the rate koff is given by equation

4 when replacing occurrences of index kon by koff . Equation 5 is a modified version

of those introduced in [8] and [7] to account for multiple stimuli and with the added

stimulus threshold parameter HQ,s. The Hill exponent parameter γ is set to 4 in all

cases.

For each gene, parameters βkon,i and βkoff,i modify the gene’s basal expression

level to account for the constant influence of genes outside of the modelled GRN.

β values are estimated from experimental single-cell mRNA distributions but their

correct identification is challenging and the algorithm used to that end is described

in section Simulation balancing.

Knock-Out perturbation implementation

Gene KOs were implemented in the simulation model by setting all θ interaction val-

ues between the perturbed gene and its neighbors to 0. βKon and βKoff values were

also set to 0 for that gene. During simulation, the probability of promoter activation

(E being in state on) was forced to 0 so that the gene would not even be transcribed

at the basal level.
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Fig. 5 Executable GRN model. An example of a model of 2 genes A and B with a stimulus S
represented by a yellow thunderbolt. Gene B regulates genes A, shown here by a non-null θB,A value,
and is itself under the regulation of the stimulus. Gene A has an auto-activation loop : θA,A defines
a self regulation.

During balancing and simulation, reference mRNA and protein counts were sys-

tematically set to 0 for the knocked-out gene so that the simulation would start

completely devoid of such molecules.

Variance Indices

Per-gene variances in the gene-to-gene and stimulus-to-gene interactions in a set of

GRNs (all sharing the same set of genes and stimuli) were computed using a variance

index. First, all interaction values were categorized into activation (if the interaction

value was greater than 0), inhibition (if the interaction value was lesser than 0) and no-

interaction (if the interaction values was equal to 0). Those values were consequently

replaced by 1, -1 and 0 respectively using the ι(θ) function defined in equation 2.

The Ancestors Variance Index (AVI) only considers interactions between a given

gene and its parents (i.e. the genes regulating that given gene), while the Descen-

dants Variance Index (DVI) only considers interactions with its children (i.e. genes

regulated by that gene). Those two indices make it easy to identify if a gene’s inter-

actions vary mostly because of the interactions with genes upstream or downstream.
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In particular, a gene KO is expected to have an effect on downstream genes.

For each gene i in a collection of GRNs, the indices were defined as :

AV Ii =

G∑
g=1

V ar(Pg) (6)

DV Ii =

G∑
g=1

V ar(Cg) (7)

where Pg is the vectors of interaction values between gene g and its parents and

Cg the vector of interactions values with its children. G is the number of genes in the

GRNs.

Measure of distance between multivariate distributions

Distances between multivariate distributions (simulated or experimental data) were

measured using the Kantorovich distance [10] (also referred to as Wassertein or EMD

distance). Because of the high number of variables (i.e. genes), the number of sample

points (i.e. cells) was however too low to correctly estimate the multivariate Kan-

torovich distance. We thus devised a modified distance which computes the sum of

Kantorovich distances on marginals (i.e. one variable at the time), making it practically

usable.

This distance, named Kantorovich1D, has the following form :

Kantorovich1D(D(1), D(2)) =

G∑
g=1

W2(D
(1)
g , D(2)

g ) (8)

where D(1) and D(2) are 2 multivariate distributions (both with the same G vari-

ables) and W2 is the regular Kantorovich distance. D
(1)
g and D

(2)
g refer to the vector

of values in D(1) and D(2) for variable g.
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Simulation balancing

Before any simulation could be executed, it was essential to correctly balance it, i.e.

constant hyper-parameters had to be chosen such that the initial state produced by

the simulation was a desired stable state. Here, parameters βKon and βKoff act as

adjustment variables which can force genes into high or low expression regimes by

increasing or decreasing the value of the interaction function ϕ.

Finding the correct β values is a non trivial task since 2 parameters (βKon and

βKoff ) need to be fitted for each gene of the G genes in the GRN. In our case,

49 × 2 = 98 parameters needed to be fitted per GRN. Such high dimensional opti-

mization problems suffer from the curse of dimensionality and either converge to a

solution in very long times or don’t allow a solution to be found at all.

Fortunately, each gene could be considered independent from the other since the

goal of the balancing process was to find β values such that the expression level of all

genes remained totally unchanged. In this case, all mRNA and protein distributions

(apart from that of the gene we are trying to balance) can be considered constant

through time, thus transforming a G× 2 dimensional optimization problem into G 2

dimensional problems.

Resolution of these problems was however made difficult by the stochastic nature

of the simulation outputs. To that end, we adapted a simulated annealing algorithm

to the noisy cost function case as described in [21] and [22]. We designed a cost func-

tion taking as input a tuple of βKon and βKoff values, which executes the simulation

of a single gene with those β values for 20 hours and returns the Kantorovich distance

between the simulated data (at t=20h) and the initial data (at t=0h). The simulated
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annealing method is detailed in Additional file 1.

Simulation initialization

After balancing, simulations were initialized by setting mRNA counts for each gene

from the distribution of single-cell RT-qPCR data which was used in the GRN

inference task. Only data at the initial time point was used here.

Measure of information gained after perturbation

Simulations of perturbations on the set of candidate GRNs predicted effects on vary-

ing numbers of genes and significant gene level variations were observed for different

proportions of the 364 GRNs. To determine which perturbation carried the most

information, we computed the entropy of the proportion of GRNs with significant

expression variation for each of the 49 genes. As an example, FNIP1 had significant

expression variation for genes SNX22 (in 88 out of the 364 GRNs), SLC25A37 (in 45

GRNs) and ENSGALG00010025565 (in 102 GRNs). We thus computed the entropy

using equation 9, where p was the vector ( 88
364 ,

45
364 ,

102
364 , 0, ..., 0) (with 46 trailing zeros

for the 46 genes with no significant variation) encoding the proportion of GRNs with

expression variation.

−
∑

pk × log(pk) (9)

Cell culture

T2EC were extracted from 19-days-old SPAFAS white leghorn chicken’s embryos’ bone

marrow (INRA, Tours, France). These primary cells were maintained in self-renewal

in LM1 medium as previously described [9].
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CRISPR plasmids construction

A guide RNA against FNIP1’s sequence (ENSGALG00000017462) was designed using

the CRISPOR design tool [23] to target the exon number 5. Oligonucleotides were

purchased from Eurogentec (Table 3). The guide was cloned after hU6 promoter into

BbsI-digested pCRISPR-P2A-tRNA vector [24]. The efficiency of our CRISPR vector

in T2EC cells was confirmed by analyzing mutations after sequencing.

Oligonucleotide Sequence

crFNIP1#9-Bbs1-S caccGCTTGGGTCGAACTCCGGCAA

crFNIP1#9-Bbs1-AS aaacTTGCCGGAGTTCGACCCAAGC

FNIP1-S1 TGGGGCATAAGCCATTCT

FNIP1-R3 AAACTACAGACTCAAAGCTACAGA

Table 3 Oligonucleotides sequences used for CRISPR plasmid construction.

Cells transfection

After 12 days in culture, 30 × 105 cells were resuspended in 100µL of transfection

medium (Cell Line Nucleofector Kit V – Amaxa) and transfected with 6,5µg of

pCRISPR-P2A-tRNA empty vector or pcrFNIP#9 vector using the T16 K652 pro-

gram. 500µL of RPMI (RPMI 1640 Medium no phenol red - Gibco) were added to the

cell solution for a recovery step of 8 min. Then cells were transferred at 1, 25.106 cell-

s/ml in LM1 medium without penicillin and streptomycin and grown in standard

culture conditions.

Single cells sorting

24H after transfection, cells were harvested and resuspended in LM1 medium. Sorting

was performed at room temperature using BD FACS Aria 1 flow cytometer. Living

GFP-expressing cells were sorted in 96 wells U-shape culture plates containing 50µL

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.04.21.537619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.21.537619
http://creativecommons.org/licenses/by-nc-nd/4.0/


1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

of regular LM1. Non-transfected cells were also sorted to be used as a negative control.

Plates were then placed back in incubator at 37°C, with 5% CO2 (Fig 3).

Identification of FNIP1 KO clones by sequencing

30 clones were selected 7 days post-sorting and half of the culture was collected

for DNA/RNA extraction with Quick-DNA/RNA™ Microprep Plus Kit (Zymo)

according to the manufacturer’s protocol. The amplified DNA fragments (with FNIP1-

S1/FNIP1-R3 primers (Table 3)) were cloned into the pCR™4-TOPO® TA vector

(TOPO™ TA Cloning™ Kit for Sequencing without competent cells - Invitrogen). We

selected a clone presenting a frame shift leading to an early stop codon on both alleles

for subsequent transcriptomics analysis.

Single-cell RT-qPCR analysis

Individual cells from clones transfected with the pcrFNIP#9 vector (FNIP1 KO cells)

or the empty vector clones (wild type cells) were sorted into 96-well plates using BD

FACS Aria 1 flow cytometer. All the manipulations related to the high-throughput

scRT-qPCR experiments in microfluidics were performed according to the protocol

recommended by the Fluidigm company (PN 68000088 K1, p.157-172). All steps from

single-cell isolation, gene selection, data generation by scRT-qPCR are described in

details in [25].
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